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Life at hadronic colliders is not easy ...

proton - (anti)proton cross sections
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L1Calo - a major part of ATLAS L1 trigger

* Level-1

< Custom built HW (ASICS and FPGAs)
+ Fixed latency < 2.5 ps, L1A~75 kHz

* Level-2
= CPU's

+ Full granularity for areas of activity
marked by L1 - Regions of Interest

(RoI)
+ Latency ~40 ms, L2A~2kHz
* Event Filter (Level-3)
<+ CPU's
+ Offline algorithms on full event
+ Latency~1s, EFA~100Hz

* Level-1 trigger:

+ L1-Muons
¢ L1-Calorimeters (L1Calo)
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Selection of interesting events

Hard final state objects in an event:
* e/yand t/h objects
* Jet candidates

Global event properties:

N F_:T
*» Missing E_
» Jet sum E_

* Sends to Central trigger:
= Multiplicity of electrons/photons, t's and
jets passing thresholds
~ Thresholds passed by Total and Missing E_

* Sends to Level 2 trigger:
~ position of RoIs [ if L1 misses an object,
it is lost also for L2!
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Li1Calo

- HW implementation

* Pipelined, synchronous
system with fixed latency

* Many processing stages

* Highly parallel, mainly FPGA
based

* Mainly custom electronics:
+ ~300 VME modules of 10

types housed in 17 crates

Main parts:
¥ Preprocessor:

+ Conditioning and calibration of
analog signals, digitization,

bunch cross identification
* Cluster processor:
+ Electrons/photons, taus
¥ Jet processor:
~ jets, E_, Missing E_
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System installation and commissioning

* Most of the system installed end of
2007

* 2008, first part of 2009:
* trigger commissioning with cosmics

AS 2008-09-10 09:49:56 CEST event:pc—tdg-mon-15:24242 run:87764 ev:13779 geometry: <default> Atlantis
ot 2 - 4

+ fix digital links
< repair faulty modules
+ First calibrations and timing with
pulser
* Early data - end of 2009:
+ detailed checks of L1Calo performance
* Spring of 2010:
+ gradual increase in delivered luminosity
+ Stepwise updates of L1Calo
calibrations
+ Early July:
+ High Level Trigger rejects events
(running in pass-through mode before)
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Calibration of the trigger
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Pulse conditioning and calibration

Analogue receivers:
* variable gain amplifier
[\ + E - E_conversion (where needed)

ner-s
-
u

/S * first step in energy calibration — <—uw

— Digitization:

* 40 MHz, 10-bit FADCs

* timing at ns level -—
* ~0.25 GeV/count

Bunch Crossing ID:
¥ assign sighal to correct bunch crossing
* Linear digital filter -~
* special treatment of saturated pulses

: Look-up table (LUT):

T * pedestal subtraction

* noise suppression

* killing of noisy channels
* final energy calibration

* 8-bit output for algorithms
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- Introduction

Timing

B [ BIE s

LA ﬁ Tile/LAr
[EMr) Calorimeters WV (hadronic)

* Signals from individual calorimeter cells
summed on detector into projective Trigger

Towers

* Analogue signals routed using 30-70 m long

75|
Tiles (semi-projective segmentation )

twisted pair cables (4.76 ns/m)

* Signals at input of L1Calo need to be aligned in s

Time
* Compensate for:

+ Different cable lengths
= Individual channel variations
* If mistiming large, event lost

* Smaller mistiming means wrong energy

measurement
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Timing with pulser

Several parameters available to adjust

Tlmlng FADC
* Fine timing (PHOS4 chip) - 1 ns step
+ Input delays (in input FIFO) - step of |~/

1 BC FprPHOSE '

* Readout pointer - 1 BC step, used for
the data readout of triggered events

First approximation done in dedicated
runs with pulser (setup to mimic
collisions): 200
* Adjust readout pointer such that
signals are visible
* Align signals with BC precision 100
using input timing
* Adjust fine timing to strobe at

220

ADC counts
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Timing with splashes T

Beam hits
collimator

.

145 m

Splash events occur when beam is hitting collimator:
* Large signals in all towers
¥ Geometry of splashes different to collisions, need to correct for different
time-of-flight effects:
+ ToF from collimator to Trigger Tower
+ ToF from beam vertex to Trigger Tower
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Timing with splashes IT

* Signals from splashes Time
fitted by a function ["S]E
describing expected
pulse shape

* Determine position of
signal peak in time

* See time of flight for
splashes nicely

* Correct for differences
in time of flight
between splashes and
collisions
+ timing delays as used
for early datal —
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Timing with collisions
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Final corrections are extracted from collision data:
* Good signals are selected
+ No hardware problems or noise
= Coming from collisions
* Fit with function describing expected pulse shape
< Determine timing corrections for individual Trigger Towers
< After this correction timing known (for most towers) at the level of +2 ns
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FIR filter I

* pulses are several bunch crossings wide

* Need to associate them with a single bunch
crossing

* A 5-sample digital Finite Impulse Response
(FIR) filter is applied:

S= > ¢,FADC,

10-bit Data Pipeline

—.'ds d4 d3 d2 d-|—h'

+ Maximum of filter output defines

Multipliers
32_4 4-bit
a;,ag 3-bit

\VAdderTree
¥ 16
- f3 f2 f1
IDropbitsI

xa5 xa4 xﬂs xaz xd

)

bunch crossing

output from LUT gives E_

+ Value of filter output is input o LUT,  Out n

latency
-

¥10

ET calibration Peak Finder
LuUT

+ Best performance expected for
filter adjusted to the shape of
pulse in each tower

+ Studied using calibration pulses
superimposed on realistic noise
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FIR filter IT

ATLAS preliminary ATLAS preliminary
3 1 : P : = T
? 0.9- - = 5 0.45 * Matched
. - B —] - archnc
§ - E 0‘4 Common
@ 0'8— . 3 0.35 ®m  Pass-through
= 0.?: 2 03
0.6¢ E 0.25
0.5_— = Matched = 0.2
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0.3- - . = Pass-through = 0.1
02 | L | 0.05
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simulated energy [GeV] measured - simulated [GeV]

* Three sets of coefficients: * FIR filter clearly helps Only marginal difference

<= Matched to each tower for: between matched and

= Common (one for EM = Efficiency for small common |
layer, ohe for HAD, one pulses + Running with common filters
in forward region) + Noise rejection now .

~ Pass-through (only « Energy resolution . Nexf step- take into account
central sample in time is differences between
used) calibration and physics pulse

shapes
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Energy calibration with pulser I

+ Number of ADC counts does not

immediately translate to energy in
GeV (1 FADC count =0.250 GeV)

* need (ener'gy) calibration S = ,IQTLAI.S‘Ipreﬁrﬁf;wary ] énsgtdf o.ozailg.:)i
+ Implemented in receiver gains (and £ SR DD
LUT slope) S 2%
+ Use dedicated pulser runs —
* Calibrate with respect to energy o
measured in calorimeter readout e B
(more precise than trigger readout)  _ - :
= Several energy (pulse amplitude) : .-
steps % 80 Too 750 200 250
= Compare energy seen in calo mr e et
readout and in L1Calo Trigger I;:;ﬁ)lﬁt

Towers
- Calibration factors determined in

offline analysis
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Energy calibration with pulser IT
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* Checks of the calibration done with collision data
+ Compare E_ of large energy deposits seen in L1Calo readout with E_seen in

corresponding areas in calorimeters

+ Correlation looks reasonable

+ Next steps:
+ understand/fix problematic electronic channels
+ Use physical objects
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Experience from datataking
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Datataking performance I

Digital consistency:
* duplicated readout from several
places in the system
+ Good system in place to ensure that
there are no digital inconsistencies!

+ Trigger readout compared to
bit-by-bit trigger simulation

+ Starting from FADC counts
+ Simulating (recalculating)

response of the electronics

Zero tolerance to digital errors!

¥ Checked for each run

* Online (during data taking) for
part of events

* Offline (when the data are
reconstructed) for all events
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Datataking performance II

Trigger rates at peak luminosity L=2.1x10*cm2s1

~ ATLAS Trigger Operation

E‘l 04 E_.. ................................... » Stable--beéam ............................ ..................................... ..................................... .....

@ = : ; ;

H o

m -

x [
103 =__ ............. L1 all

C EF out

102 L1 EM

L1 Muon out

EF Electron out

1

02:00 04:00 06:00 08:00 _ 10:00 12:00
Time [May 24th, 2010]

Typical LHC fill:
* Smooth data taking, rate excursions are very rare!
* Rates of L1 electromagnetic triggers follow nicely luminosity profile of the fill
* High level trigger improves event selection, reducing rate to acceptable level
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Datataking performance IIT

-
N

- ATLAS Preliminary
—\/s= 7 TeV, Data 2010

(_f_/
MBTS 1 (x0.05) / ‘

+ Raw L1 rates as a function
of instantaneous luminosity

+ June 2010 (two colliding
bunches)

* Nice linear dependence of
L1Calo rates on luminosity

- EM2

L1 rate [kHZ]

o
o0

* Contribution of noise 0.6 -
negligible, mainly QCD i
background -

* Rate of Minimum Bias 041 =M
Trigger Scintillators ! J5
(MBTS), used to trigger 0.2 = 4 TAU5
bulk of inelastic cross N MU
section saturates at high b bdtetettebottet et | AL

0 010203040506 0.7 08 0.9
instantaneous luminosity [10 *°cm2s1]

rates
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Efficiency for triggering of
physical objects
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Efficiency for physics objects - EM clusters

* Data taken using independent
trigger (MBTS) - checking
efficiency (#triggered/#all) of
electromagnetic L1Calo trigger for
reconstructed offline clusters

* L1 threshold EM5:

+ Energy of cluster as seen by L1
should be larger then 5 counts
(output of LUT)

+ roughly equivalent to 5 GeV

+ that is where efficiency curve
starts to rise (frigger uses
E_>threshold condition)

+ Full efficiency reached at 8 GeV
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L1 efficiency

Efficiency for physics objects - hadronic Tt

I I : I : - [ ‘ : _ % i T [ T 11T 1 ] T 1.1 1 [ L ] T 1 T 1 [ LI T ]—
T —— 3 . & @ﬁ 10% 4 —e— Data2010 hs=7TeV) _|
= L — e = -
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i = - !
i ] = ATLAS Preliminary
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* Trigger efficiency for reconstructed offline 1
+ L1 threshold set to 5 (LUT) counts ( 05 GeV )
» Efficiency rises up 10 100% at 1 E_of 30 GeV

+ L1 uses "raw" EM energy scale without dead material corrections
+ Part of T energy may not be contained in L1 1 cluster
+ Noise cuts at L1 are harder than offline
* Both efficiency and E_distribution of L1 1 candidates are well described by

Monte Carlo |
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Efficiency for physics objects - jets

* efficiency (#Trigger‘ed/#all) for‘ >‘ 1_2 T 1 L L L T 1 T 1 L T 1
reconstructed offline jets e I |
+ L1 threshold set to 5 (LUT) counts -% 1.0E -
— soteseostsey
(05 GeV) = . ]
+ Efficiency rises up to 100% at . .
offline jet E_of 40 GeV 0.8/~ > -
+ L1 uses "raw" EM energy scale 0 6: ATLAS Preliminary i
without dead material i N Level 1 Trigger Jet E™>5 GeV -
corrections i bt "
- =7 TeV -
-+ Often not whole offline jet 0.4 \Et_ . _Et R=04. [y <28 ]
energy gets collected into L1 - anti-Krjets R =04,y | <2 2
ObJCCT 02 B . A Rmatch <04 ]
+ Noise cuts at L1 are harder than I ® DATA O PYTHIA |
offline 0_.f5.|...|...|...|...|...||.||..f
* Turn-on curve is well described by 00 20 40 60 80 100 120 140 160
Monte Carlo | jet
P (GeV)
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Conclusions and plans

L1 Calorimeter trigger is an essential part of
ATLAS trigger

* Based on custom hardware

> Optimized for speed

> As much parallel processing as possible

To run it efficiently is a challenge ...
(but getting therel)

Looking forward to wealth of LHC data !l
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