Prospects for γ measurements at LHCb

Lake Louise Winter Institute

16th-21st Feb 2009

Ying Ying Li

(on behalf of the LHCb collaboration)

LHCb detector

- LHC: 14 TeV $\rightarrow \sigma_{bb} =$ 500 μb
- **10¹²** $b\overline{b}$ per year (2 fb⁻¹)
- Special purpose detector to search for:
 - New physics rare b quark decays See: E. Lopez talk
 - CP violation
- B^{\pm} , B^{0} , B_{s} , B_{c} , Λ_{b} ...

Excellent tracking system (**VELO** retractable sensors: 5-35mm from beam)

- t-resloution: ~40 fs
 - B_s t-dependent studies
- RICH system hadronic ID
 - K π separation: 96% (3σ)
 - 2-100GeV
- Trigger system: many B decay topologies

CKM angle y

- CKM matrix in SM
 - Parameterisation of physical observables
 - Appears in SM Lagrangian
- LHCb: measure all angles and one-side+height independently
- γ least well determined angle $\gamma = (70^{+27}_{-29})^{\circ}, [2\sigma] = (29^{\circ}, 113^{\circ})$
- To disentangle 'new physics' in γ loop measurements
 - Need σ_y a few degrees from trees

Hep-ph/0406184

Standard Model y benchmark

- D^0/\overline{D}^0 decay to same final state
 - γ extracted from **interference**
- 3 common parameters global fit
 - + D decay parameters

ADS/GLW

- $B^{\pm} \rightarrow D^{0}(hh)K^{\pm}$
- $B^0 \rightarrow D^0(hh)K^{*0}$
 - self tagged $K^{*0} \rightarrow K^+ \pi^-$
- 6 rates, 5 parameters
- Constraint:

$$δ_{K\pi} = (22^{+11+9}_{-12-11})^{\circ}$$
from CLEO-c

- ADS: f_D= D⁰ DCS and CF (B[±]: Kπ)
 - Low event rate, larger interference
- GLW: f_D = D⁰ eigenstates (B[±]: K⁺K⁻, π⁺π⁻)
 - High event rate, smaller interference

	B [±]	B ⁰
γ	60°	60°
r _B	0.10	0.40
δ_{B}	130º (PDG)	Scan (0 – π)
r _{Kπ}	0.0616 (PDG)	0.0616 (PDG)
$\delta_{K\pi}$	-158 °	-158 °

ADS formalism requires -180° phase shift 6

$B^{\pm(0)} \rightarrow D^0(hh) K^{\pm(*0)}$

2 fb⁻¹

• Yields:

B [±] Mode	Yield	B/S
$B^{\pm} \rightarrow D_{fav} (K\pi) K^{\pm}$	28k	0.6
$B^{\pm} \rightarrow D_{sup}(K\pi)K^{\pm}$	650	1.2
B [±] →D _{CP} (KK)K [±]	3k	1.2
$B^{\pm} \rightarrow D_{CP}(\pi\pi)K^{\pm}$	1k	3.6

B ⁰ Mode	Yield	B/S (90%c.l)
$B^0 \rightarrow D_{fav}(K\pi)K^{*0}$	3.4k	[0.4,2.0]
$B^0 \rightarrow D_{sup}(K\pi)K^{*0}$	540	[2.0,13.0]
B⁰→D _{CP} (KK)K*⁰	470	[0,0.4]
B ⁰ →D _{CP} (ππ)K* ⁰	130	[0,14.0]

LHCb-2007-050

LHCb-2008-011

• Sensitivity:

 $B^{\pm} \rightarrow D^{0}(hh)K^{\pm}$

LHCb-2008-031

 $B^0 \rightarrow D^0(hh)K^{*0}$

δ	$\delta_{K\pi}(0)$	-190	-174	-158	-144	-130
Q	5γ(°)	12.7	10.8	13.8	12.6	10.8

δ _B 0(°)	0	45	90	135	180
σ _γ (°)	6.2	10.8	12.7	9.5	5.2

Dalitz

• $B^{\pm} \rightarrow D^{0}(K_{s}\pi^{+}\pi^{-})K^{\pm}$

- Sensitivity to γ arises from interference between B⁺ and B⁻
- Two approaches to γ extraction
 - Unbinned Isobar model dependent method Belle + BaBar
 - Binned model independent method bins of δ_D

(Dalitz) $B^{\pm} \rightarrow D^{0}(K_{s}\pi\pi)K^{\pm}$

@ 90% c.l.

(Dalitz) $B^{\pm} \rightarrow D^{0}(K_{s}\pi\pi)K^{\pm}$

- Unbinned isobar model fit (Belle+BaBar)
 - 17-19 intermediate resonances
 - Carries model error ~7°

2fb ⁻¹	σ _γ (°)	σ _{r_B}	σ_{δ_B} (°)
Amp. Fit	9.8	0.018	9.3
Binned Fit	12.8	0.020	12.6

- Binned model independent method binned according to δ_{D}
 - Slight loss on statistical power from binning
 - Input from $\psi(3770)$ on D decays **CLEO-C**
 - Residue error from CLEO-C statistics ~1-2°

LHCb-2007-048

LHCb-2007-141

Sensitive to new physics

$B^0 \rightarrow \pi\pi$ and $B_s \rightarrow KK$

Sounts 00000

250

200

150

100

LHCb-2007-059

- γ sensitivity from interference
 - Mixing
 - Tree and penguin diagrams
- Fit t-dependent CP asymmetries

$$A_{f}^{CP}(\tau) = \frac{A_{f}^{dir} \cos(\Delta m \cdot \tau) + A_{f}^{mix} \cdot \sin(\Delta m \cdot \tau)}{\cosh\left(\frac{\Delta\Gamma}{2} \cdot \tau\right) - A_{f}^{\Delta\Gamma} \cdot \sinh\left(\frac{\Delta\Gamma}{2} \cdot \tau\right)}$$

4 U-spin asymmetry observables:

				50
Mode	Sig. yield (untagged)	B/S	2 fb ⁻¹	8.1 5.15 5.2 5.25 5
$B^0 \rightarrow \pi \pi$	36k	0.5	ν (de ^{iθ})	Input:@.
$B_s \rightarrow KK$	36k	0.15	Weak Uspin con	straint [.]
$B^0 \rightarrow K\pi$	140k	< 0.06		
$B_{a} \rightarrow \pi K$	10k	1.9	$\ d_{\pi\pi} = d_{KK} \pm 20\%, \theta_{\pi}$	_π ,θ _{KK} indep.

Inpution and o	Sensitivity	2 fb ⁻¹	10 fb ⁻¹
input: ϕ_d and ϕ_s	σ _γ (°)	10	5
raint:	$ \begin{array}{c c} \text{Sensitivity} & 2 \text{ fbr} \\ \hline \sigma_{\gamma} (\circ) & 10 \\ \hline \sigma_{d_{\pi\pi}} & 0.18 \\ \hline \sigma_{\theta_{\pi\pi}} (\circ) & 9 \end{array} $	0.18	0.09
θ _{κκ} indep.	σ _{θππ} (°)	9	5

Summary

- LHCb has a rich γ measurement program
 - Measurement from trees and loops with an aim to combine and disentangle NP
- Trees
 - 'Standard candle' γ measurement
 - CLEO-c D decay constraints key to LHCb γ sensitivities See C. Thomas talk
 - Combined tree γ sensitivity: σ_γ~ 4-5 (2-3)° 2 (10) fb⁻¹ LHCb-2008-031
 - Other channels: $D \rightarrow K \pi \pi^0$, $D \rightarrow K_s K K$, $D \rightarrow K_s K \pi$, $B \rightarrow D^{(*)} K^{(*)}$, $B_s \rightarrow D_s^{(*)} K_1$...

Loops

- Sensitive to NP
- B \rightarrow hh γ sensitivity: $\sigma_{\gamma} \sim 10$ (5)° 2 (10) fb⁻¹
- Promising first studies of B \rightarrow hhh $\sigma_{\gamma} \sim 5^{\circ} (2 f b^{-1})$ G.Guerrer CKM 2008
- Other channels: $B_d \rightarrow KK$, $B_s \rightarrow \pi\pi$, $B_s \rightarrow K\pi\pi^0$...

1st LHC collisions Oct 2009 + 1st physics data early 2010

Backup Slides

(ADS) $B^{\pm} \rightarrow D^{0}(K\pi\pi\pi\pi)K^{\pm}$

LHCb-2008-031

• $B^{\pm} \rightarrow D^{0}(K\pi\pi\pi)K^{\pm}$	Mode	Sig. Yield	B/S	
4 decay rates	$B^+ \rightarrow D(K^+ 3\pi)K^+$	31k	0.7	
 Integrate over all phase space Coherence factor R_{K3π}(= 0-1) δ^{K3π}_{K3π} averaged over all amp 	$B^+ \rightarrow D(K^- 3\pi)K^+$	530	2.3	
$\Gamma(B^+ \to D(K^- \pi^+ \pi^+ \pi^-)K^+) \propto r_B^2 + (r_D^{K3\pi})^2 + 2r_B r_D^{K3\pi} R_{K3\pi} \cos(\delta_B + \delta_D^{K3\pi} + \gamma)$				
 r_{K3π}=0.0568 (PDG) 	CLEO-c			
 Interference effects JPS – small Global analysis + contribution to determ 	constraints			
Prelim: arXiv:0805.1722 CLEO-C \bigcirc 13 \bigcirc 12 \bigcirc 12	• B	Combined w D(hh)K: <mark>σ</mark> _γ ~	vith ~ 7-10 °	
$ \begin{array}{c} $	LHCb Kπ/hh ADS/GLW	‡ •	‡ *	
$ \begin{array}{c} 100 \\ 50 \\ 00 \\ 00 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0.6 \\ 0.7 \\ 0$	+ CLEO-c $\delta_D^{K\pi}$ constraint + LHCb K3 π ADS + CLEO-c K3 π constraint -180 -170 -160	2 fb⁻¹	-130 SKπ (c)	

Time dependent $B^0 \rightarrow D\pi$

- Analogous to $B_s \rightarrow D_s K$
 - measure $\gamma + \varphi_d (B^0 \rightarrow J/\psi K_s)$ from decay amplitude ratio and mixing • Can ...
- But...

HC

- 8 fold ambiguity ($\Delta\Gamma$ small)
- Small interference

$$r_{D\pi} \sim -\lambda^2 r_{DK} \approx -0.02$$

• Compare with other channels (e.g. $B^0 \rightarrow D^* \pi$)

LHCb-2008-035

• Uspin approach: $B^0 \rightarrow D\pi$ and $B_s \rightarrow D_s K$ Uspin symmetry

Mode	Sig. yield	B/S
$B_s \rightarrow D_s K$	6.2K	0.7
$B \rightarrow D\pi$	1340K	0.22

Input $\gamma = 60^{\circ}$	(±Stat. ±30%	Uspin	breaking)
-----------------------------	--------------	-------	-----------

Sensitivity	2 fb ⁻¹	10 fb ⁻¹		
$\sigma_{\!\gamma}\left(^{\rm o}\right)$ for $\delta=60^{\rm o}$	$\pm 9^{+3}_{-4}$	$\pm 5\pm 3$		
σ_{γ} (°) for $\delta = 10^{\circ}$	$+30 +22 \\ -20 -10$	+12 + 4 -8 -15		

$K^{++}C^{-}B^{+} \rightarrow K^{+}\pi^{+}\pi^{-}$ and $B^{0} \rightarrow K_{s}\pi^{+}\pi^{-}$

- Dalitz analysis to extract γ
 - Dominant K* resonance
- 2 step process
 - $B^+ \rightarrow K^+ \pi^+ \pi^-$ penguin contribution
 - Dalitz anisotropy CP asymmetry including phase differences
 - $B^0 \rightarrow K_s \pi^+ \pi^-$ Dalitz analysis
 - Input B[±] penguin contribution
 - Extract untagged B⁰ tree contribution $\alpha e^{i\gamma}$

Mode	Sig. Yield	B/S
Β ⁺→ Κ ππ	494k	0.3
В° → K _s $\pi\pi$	90k	t.b.d

σ_γ~ 5° with 2fb⁻¹

(Dalitz) Isobar model

	Resonance	BABAR			BELLE		
		a_r	ϕ_r (°)	F_r	a_r	ϕ_r (°)	F_r
	$K^{*}(892)^{-}$	1.781	131.0	0.586	1.621	131.7	0.612
	$K_0^*(1430)^-$	2.45	-8.3	0.083	2.15	-11.3	0.074
	$K_2^*(1430)^-$	1.05	-54.3	0.027	1.11	-39.5	0.022
	$K^{*}(1410)^{-}$	0.52	154	0.004	0.22	120	0.001
doubly-Cabbibo	$K^{*}(1680)^{-}$	0.89	-139	0.003	2.34	110	0.004
suppressed	$K^{*}(892)^{+}$	0.180	-44.1	0.006	0.154	-42.3	0.006
	$K_0^*(1430)^+$	0.37	18	0.002	0.52	89	0.004
\sim	$K_2^*(1430)^+$	0.075	-104	0.000	0.23	-97	0.001
	$K_2^*(1410)^+$	_	-	-	0.35	-107	0.001
	$K_2^*(1680)^+$	_	-	_	1.3	87	0.001
	$\rho(770)$	1 (fixed)	0 (fixed)	0.224	1 (fixed)	0 (fixed)	0.216
	$\omega(782)$	0.0391	115.3	0.006	0.0310	113.4	0.004
	$f_0(980)$	0.482	-141.8	0.061	0.394	-153	0.049
	$f_0(1370)$	2.25	113.2	0.032	1.25	69	0.011
	$f_2(1270)$	0.922	-21.3	0.030	1.32	-12	0.015
	$\rho(1450)$	0.52	38	0.002	0.89	1	0.004
	σ	1.36	-177.9	0.093	1.57	-146	0.098
	σ'	0.340	153.0	0.013	0.23	-150	0.006
	Non-res.	3.53	128.0	0.073	3.8	157	0.097

!0

(Dalitz) Model independent

- Plot shows 8 bins of Belle
- δ_D phase values measured from CLEO-c

Global y sensitivity from trees

LHCb-2008-031

Decay modes considered:

- $B^{\pm} \rightarrow D^0 K^{\pm}$
 - D⁰→Kπ,KK,ππ
 - D⁰→Kπππ
 - $D^0 \rightarrow K_s \pi \pi$
- B⁰→D⁰K^{*0}
 - D⁰→Kπ, KK, ππ
- t-dependent modes
 - $B^0 \rightarrow D\pi$
 - B_s→D_sK

δ _B θ (°)	0	45	90	135	180
$\sigma_{\!\gamma}^{}$ for 0.5 fb ⁻¹ (°)	8.1	10.1	9.3	9.5	7.8
$\sigma_{\!\gamma}^{}$ for 2 fb ⁻¹ (°)	4.1	5.1	4.8	5.1	3.9
$\sigma_{\!\gamma}^{}$ for 10 fb ⁻¹ (°)	2.0	2.7	2.4	2.6	1.9

Input fit parameters:

γ - (60°)

- r_{B} magnitude ratio of D^{0}/\overline{D}^{0} diagrams (0.1)
- δ_{B} strong CP conserving phase (130°)

Analogues: $r_{B^0} - (0.4)$

 $\delta_{B^0} - (\text{Scan})$

Standard approach: use $\sigma_{\gamma}=20^{\circ}$ with 2fb⁻¹ in B⁰ \rightarrow D π to avoid large correlations between the two modes

Parameters for $D^0 \rightarrow K\pi, K\pi\pi\pi$:

$$\mathbf{r}_{\mathbf{K}\pi}, \mathbf{r}_{\mathbf{K}3\pi}$$
 – Established (PDG)
 $\mathbf{\delta}_{\mathbf{K}\pi}(-158^{\circ}), \mathbf{\delta}_{\mathbf{K}3\pi}(144^{\circ})$
 $\mathbf{R}_{\mathbf{K}3\pi}$ – coherence factor

Contribution to γ in % from each mode with varying δ_{B^0}

Analysis	$\delta_{B} o = 0^{\circ}$	$\delta_{\rm B}o=45^{o}$
$B^{\pm} \rightarrow D^{0}(hh)K^{\pm},$ $B^{\pm} \rightarrow D^{0}(K3\pi)K^{\pm}$	25%	38%
$B^{\pm} \rightarrow D^{0}(K_{s}\pi\pi)K^{\pm}$	12%	25%
$B^0 \rightarrow D^0(hh)K^{*0}$	44%	8%
$B_s \rightarrow D_s K^{\pm}$	16%	24%
$B^0 \rightarrow D\pi$	3%	5%