Measurement of B_c mass and lifetime at LHCb

Jibo HE (on behalf of the LHC*b* collaboration)

LAL, Orsay

DIS 2009

Jibo HE (LAL, Orsay)

Meas. of Bc mass and lifetime at LHCb

DIS 2009 1 / 15

Introduction

- B_c spectrum
 - Estimated using potential models
- B_c^{\pm} mass
 - Potential: 6.2-6.4 GeV/c²
 - pQCD: 6326⁺²⁹₋₉ MeV/c²
 - Lattice QCD: 6278(6)(4) MeV/c²
 - PDG'08: 6276 ± 4 MeV/c²
 - B_c^{\pm} lifetime

- $\tau(B_c^{\pm})_{\rm SR} = 0.48 \pm 0.05 \ \rm ps$
- ▶ PDG'08: 0.46±0.07 ps
- *B*[±]_c cross section
 - Considering the contributions of the decays of the excited states, $\sigma(B_c^{\pm}) \sim 0.4 \ \mu b @ 14 \text{ TeV} \Rightarrow \sim 4 \times 10^8 \ B_c^{\pm}/\text{fb}^{-1}.$
 - $\sigma(B_c^{\pm})_{LHC}/\sigma(B_c^{\pm})_{Tevatron} \sim O(10)$

• Using $B_c^{\pm} \rightarrow J/\psi(\mu^+\mu^-)\pi^{\pm}$ to measure B_c^{\pm} mass and lifetime at LHCb.

The LHCb detector

$B_c^\pm o J/\psi(\mu^+\mu^-)\pi^\pm$ event selection

- Main issue: large background (remind: $\sigma(B_c^{\pm}) \sim$ 0.4 μ b)
 - ► Real J/ψ + π from fragmentation or from *b* decays
 - * Prompt J/ ψ (cross section: \sim 300 μ b)
 - * $b \rightarrow J/\psi X$ (cross section: O(100) μ b)
 - Combinatorial J/ψ + π from fragmentation or from *b* decays
 - ★ Inclusive $b\bar{b}$ (cross section: ~ 700 μ b)
- Selection variables
 - Final states
 - Track fit quality to reduce ghost rate
 - Loose particle identity
 - Transverse momentum
 - Lifetime cuts to suppress prompt backgrounds
 - ► J/ψ
 - ★ Di- μ invariant mass (resolution ~15 MeV/ c^2)
 - ★ Vertex fit quality
 - Lifetime cuts to suppress prompt backgrounds
 - ► B_c[±]
 - Vertex fit quality
 - ★ Transverse momentum

Signal yields and background level

5/15

Assuming

- Cross section $\sigma(B_c^{\pm})$: 0.4 μb
- $\mathsf{BR}(B_c^{\pm} \to J/\psi\pi^{\pm})$: 1.3×10^{-3} (0.6-4.5) ×10^{-3}
- Selection results in the $B_c^{\pm} \pm 3\sigma$ mass window

Description	Result
Total efficiency ε_{tot} (including trigger) Signal yield (1 fb ⁻¹ @ 14 TeV) B/S @ 90% CL	$\begin{array}{c}(1.01\pm 0.02)\ \%\\ \sim\ 310\\ [1,\ 2]\end{array}$

Mass distribution after event selection (1 fb⁻¹)

B_c^\pm mass measurement

- Signal events taken from the full Monte Carlo simulation, background events generated by toy MC (shape from full MC).
- J/ψ mass constraint vertex fit applied to improve $\sigma_m(B_c^{\pm})$.
- Signal described by a Gaussian, background by 1st order polynomial.
- Un-binned maximum likelihood method, fitting result (1 fb⁻¹):
 - $M(B_c^{\pm}) = 6399.6 \pm 1.7$ (stat.) MeV/ c^2 (input: 6400 MeV/ c^2).

B_c^{\pm} lifetime fitting functions

гнср

• Mass lifetime combined fitting, likelihood function

$$f(m_i, t_i, \sigma_{t_i} | M, \sigma_m, sl_{\text{pol1}}, \tau, S_t) = f_s \cdot f_{\text{sig}}^m(m_i | M, \sigma_m) \cdot \boxed{\left[E(t_i | \tau) \otimes G(t_i | \sigma_{t_i}, S_t) \right] \cdot f_{\text{sig}}(\sigma_{t_i}) \cdot \varepsilon(t_i)} + (1 - f_s) \cdot f_{\text{bkg}}^m(m_i | sl_{\text{pol1}}) \cdot \boxed{f_{\text{bkg}}(t_i) \cdot f_{\text{bkg}}(\sigma_{t_i})}$$

- $[E(t_i|\tau) \otimes G(t_i|\sigma_{t_i}, S_t)]$: exponential convoluted with a Gaussian, in which S_t is the scale factor of σ_t to account for the effects that the σ_t can be over- or under-estimated.
- $\varepsilon(t_i)$: proper decay time acceptance

Toy Monte Carlo study

- Input Parameters $\tau_{B_c^{\pm}} = 0.46 \text{ ps}, M_{B_c^{\pm}} = 6400 \text{ MeV}/c^2, \sigma_m = 26.89 \text{ MeV}/c^2,$ $f_s = 0.11, sl_{\text{poll}} = -9.7 \times 10^{-5}.$
- 10⁴ experiments.
- Lifetime pull
 - $\mathsf{Pull} = \frac{\tau^{\mathrm{fit}} \tau^{\mathrm{input}}}{\sigma_t^{\mathrm{fit}}}$
 - Follow N(0,1) if there is no bias.
 - ► Pull mean: 0.004 ± 0.010 ⇒ No bias induced by fitting.

Dependence on $p_{\rm T}(B_c^{\pm})$ distribution

• If $p_{\rm T}(B_c^{\pm})$ distribution in real data is different from that in MC...

• Toy Monte Carlo study, B_c^{\pm} lifetime biased by 0.023 ps.

• • • • • • • • • • • • •

- To reduce the dependence of the lifetime measurement on the *B*[±]_c *p*_T distribution (theoretical model), *p*_T(*B*[±]_c) divided into two intervals, 5-12 GeV/*c* and > 12 GeV/*c*.
- Event selection re-optimized, lifetime cuts in the high p_T region loosened.
- Selection results

${m ho}_{ m T}$ intervals of ${m B}_{m c}^{\pm}$	5-12 GeV/c	\geq 12 GeV/c
Total efficiency ε_{tot}^{1} (including trigger) Signal yield (1 fb ⁻¹ @ 14 TeV) B/S @ 90% CL	$egin{array}{l} (0.34 \pm 0.01) \ \% \ \sim 100 \ [3, 6] \end{array}$	$egin{array}{l} (0.86 \pm 0.02) \ \% \ \sim 260 \ [0.6, 1.2] \end{array}$

Jibo HE (LAL, Orsay)

Meas. of Bc mass and lifetime at LHCb

DIS 2009 10 / 15

 $^{{}^{1}\}varepsilon$ in the two p_{T} intervals are both defined with respect to the total number of the events in the full p_{T} range.

B_c^{\pm} lifetime fitting results

Doing the mass lifetime combined fitting in the two *p*_T intervals simultaneously, τ(*B*[±]_c) = 0.438 ± 0.027 (stat.) ps (input: 0.46 ps).

11 / 15

Collab.	$\mathscr{L}_{int} [pb^{-1}]$	Mode	Signal events	Mass [MeV/c ²]	Lifetime [ps]
CDF	110	$J/\psi\ell^{\pm}v$	$20.4_{-5.5}^{+6.2}$	$6400 \pm \! 390 \! \pm \! 130$	$0.46^{+0.18}_{-0.16}\pm0.03$
D0	210	$J/\psi\mu^\pm X$	$95 \pm 12 \pm 11$	$5950^{+140}_{-130}\pm 340$	$0.45^{+0.12}_{-0.10} \pm 0.12$
CDF	360	$J/\psi\pi^\pm$	14.6 ± 4.6	$6285.7 \pm 5.3 \pm 1.2$	_
CDF	360	$J/\psi e^{\pm} v_e$	238	—	$0.463^{+0.073}_{-0.065}\pm0.036$
CDF	2400	$J/\psi\pi^\pm$	108 ± 15	$6275.6 \pm 2.9 \pm 2.5$	—
D0	1300	$J/\psi\pi^\pm$	54 ± 12	$6300 \pm 14 \pm 5$	—
D0	1300	$J/\psi\mu^\pm X$	881 ± 80	—	$0.448^{+0.038}_{-0.036}\pm 0.032$
CDF	1000	$J/\psi\ell^\pm v$	_	—	$0.475^{+0.053}_{-0.049}\pm0.018$
LHCb	1000	$J/\psi\pi^\pm$	~310	\pm 1.7(stat.)	_
LHCb	1000	$J/\psi\pi^\pm$	\sim 360	_	\pm 0.027(stat.)

< E

・ロト ・ 日 ・ ・ 回 ・

- $B_c^\pm
 ightarrow J/\psi(\mu^+\mu^-)\pi^\pm$ from the first 1 fb⁻¹ of data
 - ▶ Signal yield ~ 310, *B*/S<2 @ 90% CL
 - Mass measurement precision: ±1.7 (stat.) MeV/c²
 - ► Lifetime measurement precision: ±0.027(stat.) ps
- 0.3 fb⁻¹ in 2010
 - Mass measurement precision: ~ 3.1 (stat.) MeV/c²
 - Lifetime measurement precision: ~ 0.049(stat.) ps
- Systematics under study.

Backup

・ロト ・御ト ・ヨト ・ヨト

$B_c^\pm ightarrow J/\psi(\mu^+\mu^-)\pi^\pm$ event selection

Final states

- Track χ²/ndf < 4</p>
- $\Delta \ln L_{\mu\pi}(\mu) > -5$
- $\Delta \ln L_{\pi K}(\pi) > -5$
- ▶ p_T(µ) > 1.0 GeV/c
- *p*_T(π) > 1.6 GeV/c
- ► IPS(π)>3.0 ^a

^aIPS =
$$\sqrt{\chi^2_{IP}} \sim$$
 IP $/\sigma_{IP}$

- J/ψ selection
 - Mass: (3.04, 3.14) GeV/c²
 - Vertex fit quality: $\chi^2/\text{ndf} < 9$
 - ► IPS(J/ψ)>3.5
- B_c^{\pm} selection
 - Vertex fit quality: $\chi^2/\mathrm{ndf} < 4$
 - ▶ p_T(B[±]_c) > 5.0 GeV/c
 - ► IPS(*B*[±]_c)<3.0

