Jaap Panman CERN

Flavour physics at the LHC

prospects for B-physics at the LHC

Introduction Rare decays CP violation Production

Selected topics

22nd International Workshop on Weak Internations and Neutrinos WIN'09 Electroweak Symmetry Breaking Weak Decays, CP Violation and CKM Neutrino Physics Dark Matter

Search for "New Physics"

Direct searches for new particles

Need centre-of-mass energy

Searches for indirect effects of new particles/couplings

Loop diagrams are sensitive to new physics effects Limited by precision (experiment&prediction) not by CM energy Flavour physics can provide hints before direct discovery of new particles

Flavour Physics

Standard Model established in B-physics by measurements at LEP, SLC, Tevatron, and B-factories.

Analysis in terms of Unitarity Triangle

Discussion of parameters usually with **Wolfenstein** parametrization:

$$\left(egin{array}{cccc} 1-\lambda^2/2 & \lambda & A\lambda^3(
ho-i\eta) \ -\lambda & 1-\lambda^2/2 & A\lambda^2 \ A\lambda^3(1-
ho-i\eta) & -A\lambda^2 & 1 \end{array}
ight)+\mathcal{O}(\lambda^4)$$

CP violating effects shown in $\overline{\rho}$ - $\overline{\eta}$ plane

Accuracy of amplitudes (sides) limited by theory

B-physics at the LHC

High cross-sections compared to B-factories and to Tevatron:

500 µb at 2x7 TeV (300 µb at 2x5 TeV) 1% of cross-section and small BR – need selective trigger Correlated production in forward direction High track multiplicities in underlying events All B-mesons/baryons produced

General purpose detectors (ATLAS, CMS)

Optimized for new (heavy) particle searches Barrel region Highest possible luminosity High PT triggers

Dedicated detector (LHCb)

Forward region – highest rate/sr Moderate luminosity → tracking in forward region Triggering on moderate PT PID for hadrons and leptons Good proper time resolution

B _d	B _u	B _s	B _c	baryons
40%	40%	10%	~0.1%	10%

General purpose detectors

ATLAS and CMS

B-physics at moderate luminosity 10³³ cm⁻²s⁻¹ Trigger for B: mainly muons Multiple interactions/crossing Excellent muon ID No hadron ID Annual luminosity (nominal) 10 fb⁻¹ ATLAS

CMS

General purpose detectors

ATLAS and CMS

B-physics at moderate luminosity 10³³ cm⁻²s⁻¹ Trigger for B: mainly muons Multiple interactions/crossing Excellent muon ID No hadron ID Annual luminosity (nominal) 10 fb⁻¹

LHCb is like an enlarged and specialized sector

LHCb detector

Dedicated for B-physics Maximize single interaction/crossing luminosity 2x10³² cm⁻²s⁻¹ Excellent PID: muons, electron and hadrons Excellent mass resolution Trigger on muons, electrons, photons, hadrons Relatively low PT triggers and Impact parameter triggers – decay vertices Annual luminosity (nominal) 2 fb⁻¹

Search for new physics

Phases

New Physics enters through the phases of CP violating processes:

- Measurements of β , β_s , γ

- Comparison of measurements of $_{\rm s}$ (-2 $\beta_{\rm S}$) in different processes sensitive to different diagrams

Helicity structure of couplings

e.g. **B**_s→**φγ**

Photon polarization is correlated with b flavour – no interference and therefore no CP asymmetry Non-zero asymmetry reveals presence of RH $t_{tb} = t_{tb} = t_{tb} = t_{tb}$

Masses and couplings of new particles

Rare decays e.g. In SM **B**_s→µµ small due to helicity suppression, increased sensitivity to SUSY

Sensitivities for $B_s \rightarrow \mu \mu$

Jaap Panman WIN2009 18 Sept 2009

Normalization for $B_s \rightarrow \mu \mu$

Control channels can be used to avoid reliance on MC:

Channel	Use Yield (1 fb^{-1})		
Inclusive $J/\psi(\mu\mu)$	μ -ID calibration	1.7G	
Inclusive $\Lambda(\pi p)$	μ -ID calibration	740G	
B ightarrow hh'	Mass calibration GL calibration Normalization	220k	LHCb can trigger on hadronic B decays:
$B^+ \to J/\psi(\mu\mu)K^+$	Normalization	790k	
$B^0 \rightarrow J/\psi(\mu\mu) K^{*0}(\pi K)$	Normalization	640k	

Control channels used in $B_s \rightarrow \mu \mu$ analysis

Ultimate limitation:

Normalization to known BR such as $B^+ \rightarrow J/\psi(\mu\mu)K^+$ with similar detector dependencies Limited due to uncertainty in B_s/B production ratio: about 13%.

Important when close to SM value!

Recent Belle measurement for $B_s \rightarrow D_s^- \pi^+$ (20% now) is promising if Belle continues to run further at Y(5s)

Sensitivity to Right-Handed currents

 $\begin{array}{c|c} \mbox{Radiative decays:} & \hline \mbox{Decay Mode} & \hline \mbox{Branching ratio} \\ \hline \mbox{B}_{s} \rightarrow \mbox{ } \phi \gamma & (4.6 \pm 1.4) \times 10^{-5} \\ \hline \mbox{B}^{+} \rightarrow \mbox{K}^{*+} \gamma & (4.3 \pm 1.4) \times 10^{-5} \\ \hline \mbox{B}^{0} \rightarrow \mbox{K}^{*0} \gamma & (4.3 \pm 1.4) \times 10^{-5} \\ \hline \mbox{B}^{0}_{s} \rightarrow \mbox{ } \phi \gamma & (4.3 \pm 1.4) \times 10^{-5} \end{array}$

Relatively high rate:

Expected signal yield for $B_s \rightarrow \varphi \gamma$ at LHCb is 11k for 2 fb⁻¹

 $B \rightarrow K^* \mu \mu$ is sensitive to higher q^2 than $B \rightarrow K^* ee$ and has contributions from virtual photons and Z, W Similar precision reachable as for $B_s \rightarrow \phi \gamma$

$$B_s \rightarrow \varphi \gamma$$

Measurement of the **photon polarization** in $B_s \rightarrow \varphi \gamma$ decay Opposite helicity of photon in SM for B/\overline{B} – no interference CPV small in SM (~0.04) due to m_s/m_b and gluon effects

BaBar & BELLE used CPV analysis in $B \rightarrow K^*(K^0\pi^0)\gamma$ decay

 $\sigma (A (B \rightarrow f^{CP}_{R}) / A (B \rightarrow f^{CP}_{L}) \sim 0.16 (HFAG)$

In the $B_s \rightarrow \varphi \gamma$ decay CPV analysis can be performed without flavour tagging (A^{Δ} term):

$$\Gamma(\mathbf{B}_{q}(\bar{\mathbf{B}}_{q}) \to f^{CP}\gamma) \propto e^{-\Gamma_{q}t} \left(\cosh \frac{\Delta\Gamma_{q}t}{2} - \mathcal{A}^{\Delta} \sinh \frac{\Delta\Gamma_{q}t}{2} \pm \pm \mathcal{C} \cos \Delta m_{q}t \mp \mathcal{S} \sin \Delta m_{q}t \right).$$

$$SM:$$

$$C = 0 \text{ direct CP-violation}$$

$$S = \sin 2\psi \sin \varphi_{s} \longrightarrow \tan \psi \equiv \left| \frac{A(\bar{\mathbf{B}} \to f^{CP}\gamma_{R})}{A(\bar{\mathbf{B}} \to f^{CP}\gamma_{L})} \right|.$$

$$A^{\Delta} = \sin 2\psi \cos \varphi_{s}$$

C and S only accessable with flavour tagging

Sensitivity: σ (A (B \rightarrow f^{CP}_R) / A (B \rightarrow f^{CP}_L) = 0.11 for 2fb⁻¹

 $B \rightarrow K^* \mu \mu$

In SM this $b \rightarrow s$ penguin decay contains well calculable **right-handed contribution** but this can be modified by NP giving different angular distributions

Zero-crossing point as function of $q^2 = m_{\mu\mu}^2$ of forward-backward asymmetry AFB is almost free of hadronic uncertainties

Precise SM prediction for ZCP: q² = (4.36+0.33-0.31) GeV²/c⁴

 $B \rightarrow K^* \mu \mu$

Measurements from Babar (384 fb⁻¹) and Belle (657 fb⁻¹)

opposite sign convention wrt B factories

ATLAS precision for 30 fb⁻¹

Decay channels	σ (pb)	Events	$\sigma_{A_{FB}}/A_{FB}$
$B^0 \to K^{*0} \mu^+ \mu^-$	2.5	2500	4.8%
$B_s^0 \to \phi \mu^+ \mu^-$	0.57	900	6%
$B^+ \to K^+ \mu^+ \mu^-$	2.0	4000	3%
$B^+ \to K^{+*} \mu^+ \mu^-$	2.1	2300	5.2%
$\Lambda_b \to \Lambda \mu^+ \mu^-$	1.2	800	6%

B_s mixing

Meaning of the measurement of depends on the process: In $B_s \rightarrow J/\psi \phi$ tree contribution dominates penguin contribution $\leq 10^{-3}$

 $s^{J/\psi} = -2\beta_s$ is precisely predicted in SM with small theoretical uncertainty:

 $-2\beta_s = -0.0368 \pm 0.0017$ (CKMfitter 2007)

s^{J/ψ} is not measured accurately indication of large value from CDF/D0 "tension" with SM

 $B_{s} \rightarrow J/\psi \varphi$

Measure s from time dependent asymmetry in decay rate

$$A_{CP}(t) = -\frac{\eta_f \sin \phi_s \sin(\Delta m_s t)}{\cosh\left(\frac{\Delta \Gamma_s t}{2}\right) - \eta_f \cos \phi_s \sinh\left(\frac{\Delta \Gamma_s t}{2}\right)}$$

Use angular dependence to distinguish CP-even: $\eta_f = -1$ CP-odd: $\eta_f = +1$

Need flavour tagging

 $B_{c} \rightarrow J_{r}$

In $B_s \rightarrow \phi \phi$ tree and penguin contributions are about equal and opposite $s = -2\beta_s + \Delta \approx 0$ in SM Good indicator for new physics: $\phi_s^{NP} = \phi_s^{\phi \phi} - \phi_s^{J/\psi \phi}$ Other channels are under study e.g.

 $B_s \rightarrow J/\psi$ f0 , f0 \rightarrow + ⁻. Looks promising if this CP-eigenstate mode has sufficiently large BR as indicated by CLEO

The angle γ

Present precision in γ is obtained largely from processes involving box diagrams

Not yet very precise (20 degrees):

Dalitz analyses: BELLE: $\gamma = (78.4 \pm 10.8/11.6 \pm 3.6 \pm 8.9)^{\circ}$ BABAR: $\gamma = (76 \pm 22 \pm 5 \pm 5)^{\circ}$ (see talk of Tagir Aushev)

Interesting to compare loop and tree measurements

Tree-only measurements can be used as "SM values" and are not sensitive to NP

At the LHC measurement unique to LHCb: Involves $B \rightarrow D$ decays

γ in tree processes

Many decay channels can be used – decay of D flags CP/flavour eigenstate

Direct CP violation in asymmetries (rates)

GLW method: $B \rightarrow DK$ with $D \rightarrow CP$ eigenstates $B^{\pm} \rightarrow D(K^{+}K^{-})K^{\pm}$ and $B^{\pm} \rightarrow D(\pi^{+}\pi^{-})K^{\pm}$ and neutral B with K* ADS method: $B \rightarrow DK$ with $D \rightarrow$ flavour eigenstates $B^{\pm} \rightarrow D(K^{+}\pi^{-})K^{\pm}$ and $B^{\pm} \rightarrow D(\pi^{+}K^{-})K^{\pm}$ and neutral B with K*

GGSZ method: Dalitz analysis of $D \rightarrow \pi^+ \pi^- K_s$

 $B^{\pm} \rightarrow D(\pi^{+}\pi^{-}K_{s})K^{\pm}$ and neutral B with K^{*}

Time-dependent analyses:

 $B_s \rightarrow D_s K$ and $B \rightarrow D \pi$

Combined ADS/GLW analysis

Combination of **colour suppressed/Cabibbo favoured** D decays and **Cabibbo suppressed/colour favoured** modes increases CPV sensitivity

Time-integrated measurements of self-tagging modes Combined analysis needed to constrain "nuisance parameters" (amplitude ratio of suppressed mode, and strong phases)

Rates in one nominal year in LHCb

Mode	Rate in 2 fb ⁻¹
$B^{\pm} \rightarrow D(K\pi)_{FAV}K^{\pm}$	83800
$B^{\pm} \rightarrow D(K\pi)_{SUP}K^{\pm}$	1600
$B^{\pm} \rightarrow D(KK)K^{\pm}$	8460
$B^{\pm} \rightarrow D(\pi\pi)K^{\pm}$	3000
$B^0 \rightarrow D(K\pi)_{FAV}K^*$	4000
$B^0 \rightarrow D(K\pi)_{SUP}K^*$	360
$B^0 \rightarrow D(hh)K^0$	460

Neutral modes can give similar precision

Combined tree analysis for *q*

Final result will come from combination of time-integrated rates (ADS/GLW), Dalitz analyses, and time dependent analyses

Importance of hadron PID

Analysis of $B^{\pm} \rightarrow D(\pi^{+}\pi^{-}K_{s})K^{\pm}$

Measurement of *γ* in penguins

Time-dependent CP asymmetries $ACP(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

depend on γ , mixing phases, and ratio of penguin to tree = $d e^{i\theta}$

exploit "U-spin" symmetry ($d \leftrightarrow s$) assume $d_{\pi\pi} \approx d_{KK}$ within ±20% and $\theta_{\pi\pi} \approx \theta_{KK}$ within ±20°

4 measurements and 3 unknowns, if mixing phase 2β taken from $B^0 \rightarrow J/\psi K_S$

Expected sensitivity:

59k $B^0 \rightarrow + -$ with B/S~0.5 72k $B_s \rightarrow K^+K^-$ with B/S~0.07

 $\sigma(\gamma) \sim 7^{\circ}$ in 1 year/2fb⁻¹ assuming U-spin symmetry to hold within 20% Precision comparable to J/ $\psi \phi$ analysis

Jaap Panman WIN2009 18 Sept 2009

First physics measurements

Sample will contain ~500, 000 reconstructed K_s and 2000 J/ ψ

- Alignment, calibration of tracking/PID
- Studies of single particle production, generator tuning
- K_s , Λ production + polarization + hyperon production
- Vector meson production (K^* , ϕ)

B-production measurements

Initial measurements of J/ψ production to establish B production cross-section in new energy domain

Techniques:

- mass peaks
- prompt vs B decay

 J/ψ polarization modifies cross-section measurement – must be measured at the same time

Summary

Only some selected key measurements have been shown
Many other interesting measurements will be performed
e.g. Did not mention measurements of α and β
CPV measurements with charm decays (early data!)
B-baryon production
Etc..

LEP, Tevatron, B-factories, have established SM picture in B-decays The LHC flavour physics programme has the potential to go beyond the standard model