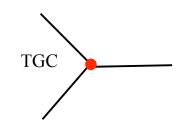

Gauge Couplings at the LHC

22nd Rencontres de Blois Château Royal de Blois, July15th-20th, 2010

Song-Ming Wang Academia Sinica

On behalf of the ATLAS and CMS Collaborations



Gauge Couplings

• In Standard Model (SM) non-abelian nature of $SU(2)_L \times U(1)_Y$ allow gauge bosons to interact with one another

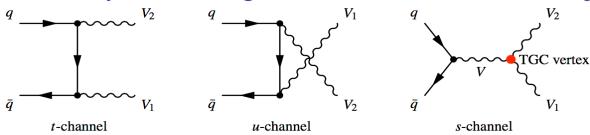
- •Coupling between 3 gauge bosons ⇒ Triple Gauge-Boson Coupling (TGC)
- •SM only allows charged coupling (WWZ,WW γ), does not allow pure neutral coupling (ZZZ, ZZ γ , Z $\gamma\gamma$, $\gamma\gamma\gamma$) since Z/ γ has no charge nor weak isospin
- Physics beyond SM can introduce anomalous TGC which may allow neutral couplings, or increased the charged TGC coupling strength
- Effective Lagrangians which characterized the charged and neutral TGC, introduced a few anomalous coupling parameters (assuming C,P symmetry conservation and QED gauge invariance)

Charged TGC:

•
$$\lambda_{\gamma}$$
, λ_{Z}

•
$$\Delta \kappa_{\gamma} = \kappa_{\gamma} - 1$$
, $\Delta \kappa_{Z} = \kappa_{Z} - 1$, $\Delta g_{1}^{Z} = g_{1}^{Z} - 1$

•SM at tree level:
$$\lambda_{\gamma} = \lambda_{Z} = \Delta \kappa_{\gamma} = \Delta \kappa_{Z} = \Delta g^{Z}_{1} = 0$$

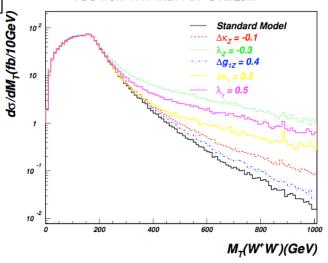

Neutral TGC:

•
$$f_{4}^{Z}$$
, f_{5}^{Z} , f_{4}^{γ} , f_{5}^{γ}

•SM at tree level:
$$f_{4}^{Z} = f_{5}^{Z} = f_{4}^{Y} = f_{5}^{Y} = 0$$

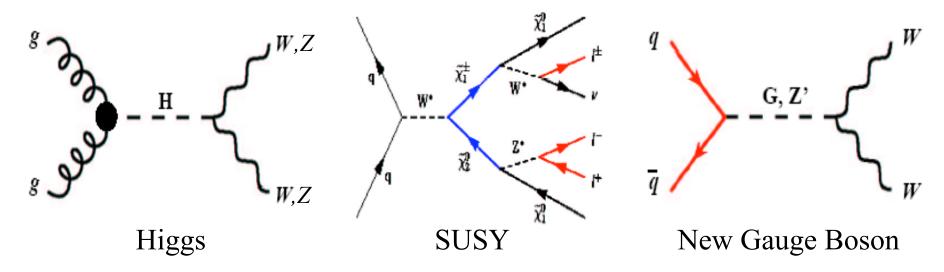
Diboson at LHC

•At the LHC one can study TGC through the measurement of diboson production

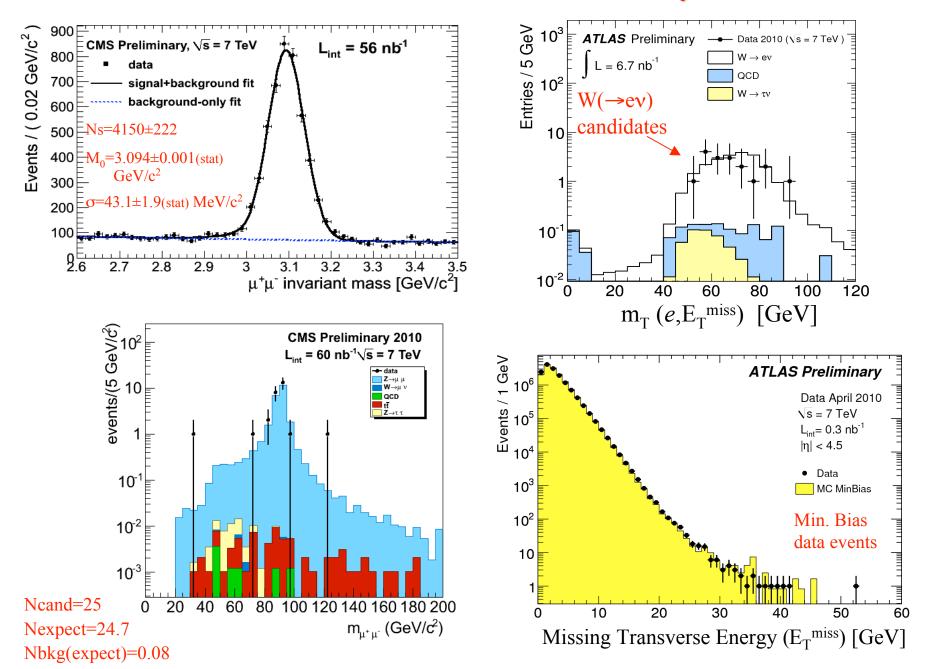


Final State	WZ	Wγ	WW	ZZ	Ζγ
SM	W [±] TGC W [±] Z	W [±] TGC W [±] Y	W ⁺ TGC Z/Y W ⁻		
an.TGC	W [±] TGC W [±] Z	W [±] TGC W [±] Y	W† TGC Z/Y W	Z TGC Y/Z Z	Y TGC Y/Z Z

• The presence of anomalous TGC will enhance diboson production rate, particularly at high transverse momentum of bosons


- Each diboson production can probe one or more TGC:
 - WZ : WWZ vertex
 - WW : WWZ,WWγ vertex
- Measures the anomalous coupling parameters

TGC from WW with PDF CTEQ6M


Diboson and Searches

•Diboson productions are also background to other searches :

⇒ Important to understand this production process!

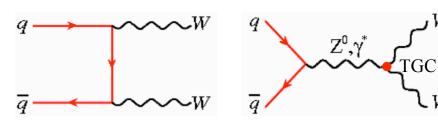
Performances of ATLAS & CMS on Early LHC Data

Diboson Studies at the LHC

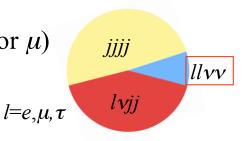
- •Performed simulation studies on the sensitivity to the SM diboson production
 - Most studies were at $\sqrt{s}=14$ TeV
 - Look at leptonic decay modes of W/Z

Diboson mode	Conditions	$\sqrt{s}=1.96 \text{ TeV}$	$\sqrt{s}=14 \text{ TeV}$	$\sqrt{s}=7 \text{ TeV}$
mode		$\sigma(p\overline{p})[pb]$	σ(pp) [pb]	σ(pp) [pb]
W^+W^-	W-boson width included	12.4	111.6	44.8
$W^{\pm}Z$	Z and W on mass shell	3.7	47.8	23.3
ZZ	Z's on mass shell	1.43	14.8	6.0
$W^{\pm}\gamma$	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(l, \gamma) > 0.7$	19.3	451	
Ζγ	$E_T^{\gamma} > 7 \text{ GeV}, \Delta R(l, \gamma) > 0.7$	4.74	219	

σ: for all W/Z decay

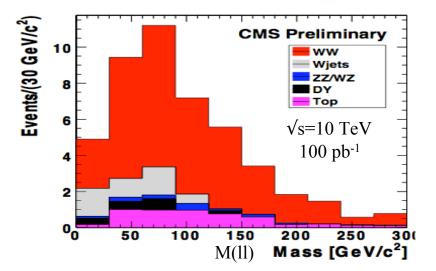

- Expect LHC sensitivity to anomalous TGC to be much better than Tevatron and LEP
 - •Higher diboson production rate (>5~10X in cross section, >10X in instantaneous luminosity)
 - Higher energy reach

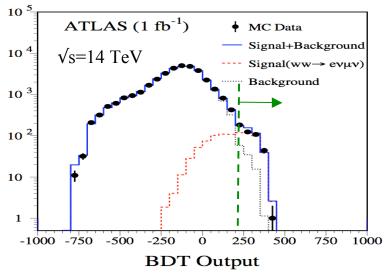
References:


- •CERN-OPEN-2008-020
- •CMS PAS EWK-09-002

- •CMS PAS EWK-08-003
- •CMS NOTE 2006/108
- •CMS NOTE CMS CR 2004/044

WW→lvlv




- •Small BR: \sim 5-6% (l=e or μ)
- •Clean sample

•Probes WWy & WWZ TGC

- •Main background from :
 - ttbar
 - W+jets
 - Drell-Yan
- •CMS performed a cut based study
- •ATLAS performed studies with:
 - cut based
 - a multivariate algorithm (Boosted Decision Tree, BDT), trained to separate signal from background. Cut on BDT output to select signal enriched region.

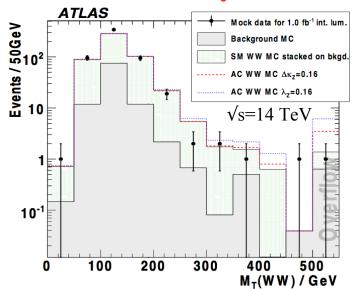
Background Estimation:

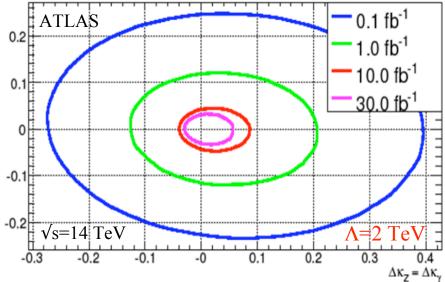
- Most are estimated from simulation
- CMS and ATLAS developed data-driven method to estimate some background contributions
 - E.g. measure jet faking lepton rate to predict W+jets background

GeV)	25					CMS	S Preli	minary	, =
(10 (20						Actual W	/+jets	
Events/(10 GeV	15	1.	+			× E	Estimate	d W+jets	
ш́	10	×	١.			√s	=10	TeV	-
	10		×			L=	=100	pb-1	
	5		×	*	V				-
	00	20	40	60	80	100	* + × 120	140 p _T [G	160 eV]

Experiment	#Signal (Ns)	#Bkg (Nb)	Ns/Nb
CMS (cut based) $\sqrt{s}=10 \text{ TeV}, L=100 \text{ pb}^{-1}$	37.5	12.9	2.9
ATLAS (cut based) $\sqrt{s}=14 \text{ TeV}, L=1 \text{ fb}^{-1}$	104.4	19.3	5.4
ATLAS (BDT based) \sqrt{s} =14 TeV, L=1 fb ⁻¹	469	92	5.1

Assume signal, background rate decrease by 2X going from 14 TeV to 7 TeV \Rightarrow Ns~23, Nb~4.6 @ L=0.1 fb⁻¹

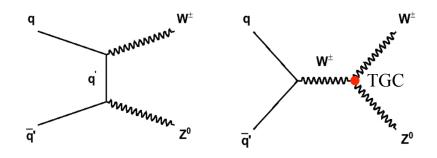

- Predictions at 10,14 TeV
- •Sensitivities still good at 7 TeV (signal/bkg scale down with energy), may observe clear signal with L~100 pb⁻¹

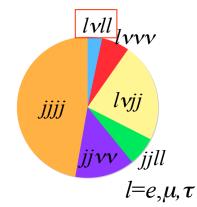

WWZ, WWy Anomalous TGC in WW Analysis

• Fit transverse mass (M_T) spectrum of WW to obtain WWZ and WW γ anomalous TGC sensitivity at 95% C.L.

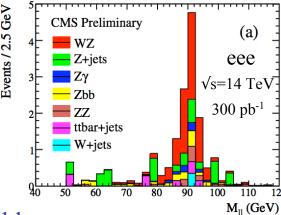
•1-D sensitivity interval:

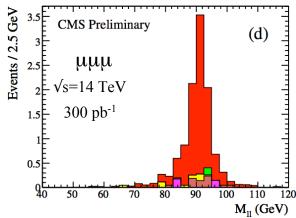
∫L (fb ⁻¹)	0.1	1.0	10.0	30.0	
$\Delta \kappa_Z$	[-0.242 , 0.356]	[-0.117, 0.187]	[-0.035 , 0.072]	[-0.026 , 0.048]	- 3
λ_{Z}	[-0.206, 0.225]	[-0.108 , 0.111]	[-0.040 , 0.038]	[-0.028 , 0.027]	
Δg^{Z}_{1}	[-0.741 , 1.177]	[-0.355, 0.616]	[-0.149 , 0.309]	[-0.149 , 0.251]	
$\Delta \kappa_{\gamma}$	[-0.476, 0.512]	[-0.240 , 0.251]	[-0.088 , 0.089]	[-0.056 , 0.054]	
λ_{γ}	[-0.564 , 0.775]	[-0.259, 0.421]	[-0.074 , 0.165]	[-0.052 , 0.100]	




•2-D anomalous TGC limit:

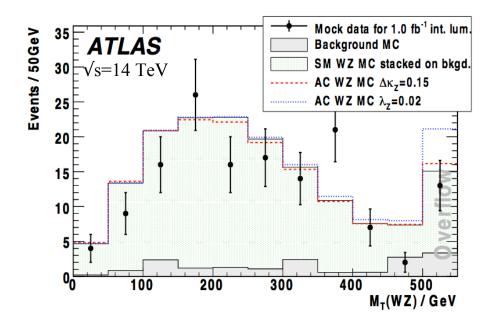
•Assume: $\lambda_Z = \lambda_\gamma$, $\Delta \kappa_Z = \Delta \kappa_\gamma$


WZ→l∨ll



- •Small BR:~2% (l=e or μ)
- •Clean final state

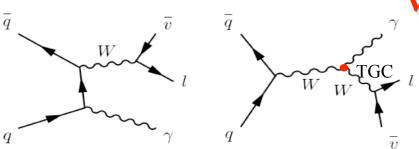
- Probe WWZ TGC
- Probe WWZ TGC
 Select events with 3 isolated high Pt lepton and large E_T^{miss} • Select events with 3 isolated
- Main backgrounds:
 - •Z+jets, ZZ, Zγ, ttbar


•Number of expected signal and bkg

Experiment	#Signal	#Bkg
CMS (cut based)	34.9	13.6
\sqrt{s} =14 TeV, L=300 pb ⁻¹		
ATLAS (cut based)	53	7.3
\sqrt{s} =14 TeV, L=1 fb ⁻¹		
ATLAS (BDT based)	128	16
\sqrt{s} =14 TeV, L=1 fb ⁻¹		

- CMS: expect 5 σ reach for WZ with $L \sim 350 \text{ pb}^{-1}$
- ATLAS: expect 5.9 σ significant when applying BDT and with L~100 pb-1

WWZ Anomalous TGC in WZ Analysis


• $M_T(WZ)$ and $P_T(Z)$ spectra are fit to extract WWZ anomalous parameters at 95% C.L.

1-D sensitivity interval:

∫L (fb ⁻¹)	0.1	1.0	10.0	30.0
$\Delta \kappa_Z$	[-0.440 , 0.609]	[-0.203 , 0.339]	[-0.095 , 0.222]	[-0.080 , 0.169]
λ_{Z}	[-0.062 , 0.056]	[-0.028 , 0.024]	[-0.015 , 0.013]	[-0.012 , 0.008]
Δg^{Z}_{1}	[-0.063 , 0.119]	[-0.021 , 0.054]	[-0.011 , 0.034]	[-0.005 , 0.023]

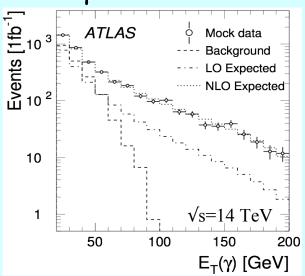
 Λ =2 TeV

$W\gamma \rightarrow l \gamma \gamma$

- Wγ measurement can probe WWγ TGC
- Events selected with 1 isolated lepton (e,μ) , 1 isolated photon, large E_T^{miss}

•Main background:

- W+jets (jet fakes as γ)
- Z+ γ /jets (one lepton not Id, jet mis-Id as γ)
- W+γ (γ from FSR)

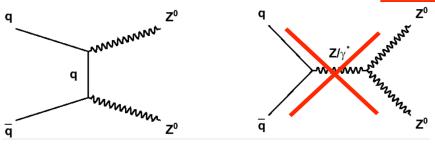

ATLAS:

• Train BDT to discriminate Wγ signal from background

\sqrt{s} =14 TeV, L=1 fb ⁻¹	#signal	#bkg
l = e	1604	1183
$l = \mu$	2166	1342

Still can achieve $S/\sqrt{B} > \sim 10$ at $\sqrt{s} = 7$ TeV, for L=0.1 fb⁻¹, if assume signal and background scale by ~ 0.5 going from $\sqrt{s} = 14$ TeV to 7 TeV

WWy Anomalous TGC



• $E_T(\gamma)$ distribution to determine WW γ anomalous parameters at 95% C.L.

(ATLAS, $\sqrt{s}=14$ TeV, $\Lambda=2$ TeV)

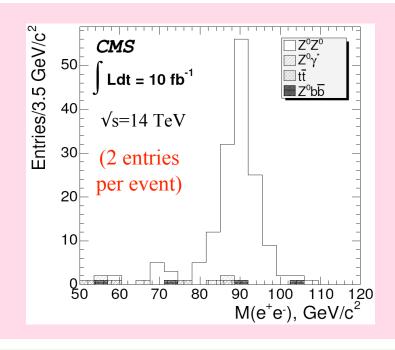
		$W(\ell v)\gamma$	
	$1~\mathrm{fb^{-1}}$	$10 \; {\rm fb^{-1}}$	$30 \; {\rm fb^{-1}}$
λ_{γ}	[-0.09, 0.04]	[-0.05, 0.02]	[-0.02, 0.01]
$\Delta \kappa_{\gamma}$	[-0.43, 0.20]	[-0.26, 0.07]	[-0.11,0.05]

ZZ→llll, vvll

• *llll* : BR ~ 0.5%

• *vvll* : BR ~ 3%

•ZZZ and ZZy couplings forbidden in SM

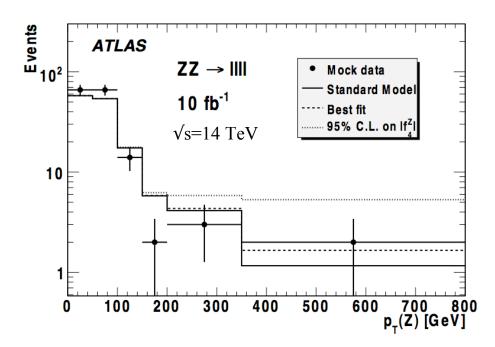

ZZ→*llll*:

- Require 2 pairs of opposite charged isolated leptons of same flavor
- ATLAS considers : eeee, eeμμ, μμμμ
- CMS considers : *eeee* in the study (will also include muon channel in measurement)

 $(ZZ\rightarrow llll)$

\sqrt{s} =14 TeV, L=1 fb ⁻¹	#signal	#bkg
CMS	7.1	0.36
ATLAS	13.3	0.2

Clear signal with 1 fb-1 of data!


$ZZ \rightarrow vvll$:

• ATLAS expects (@ 1 fb⁻¹):

•#signal = 10.2, #bkg = 5.2

ZZZ and ZZy Anomalous TGC in ZZ Analysis

• ZZZ and ZZ γ anomalous parameters are extracted from fit to $P_T(Z)$ distribution

•Expected 95% C.L. intervals:

	f_4^Z	$f_5^{\rm Z}$	f_4^{γ}	f_5^{γ}
$ZZ \to \ell\ell\ell\ell$	[-0.010, 0.010]	[-0.010, 0.010]	[-0.012, 0.012]	[-0.013, 0.012]
$ZZ \rightarrow \ell\ell \nu \nu$	[-0.012, 0.012]	[-0.012, 0.012]	[-0.014, 0.014]	[-0.015, 0.014]
Combined	[-0.009, 0.009]	[-0.009, 0.009]	[-0.010, 0.010]	[-0.011, 0.010]
LEP Limit	[-0.30, 0.30]	[-0.34, 0.38]	[-0.17, 0.19]	[-0.32, 0.36]

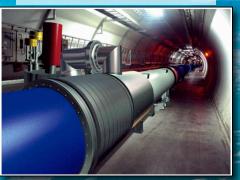
 $L=10 \text{ fb}^{-1}$, $\Lambda=2 \text{ TeV}$

Anomalous TGC from LHC and Other Experiments

- •Anomalous TGC limits at 95% C.L.
- •∧=2 TeV
- •ATLAS : $\sqrt{s} = 14 \text{ TeV}$, L = 10 fb⁻¹

Diboson	Assumption	$\lambda_{ m Z}$	$\Delta \kappa_{ m Z}$	Δg^{Z}_{1}	$\Delta \kappa_{\gamma}$	λ_{γ}
WZ(ATLAS)		[-0.015,0.013]	[-0.095,0.222]	[-0.011,0.034]		
Wγ(ATLAS)					[0.26,0.07]	[-0.05,0.02]
WW(ATLAS)		[-0.040,0.038]	[-0.035,0.073]	[-0.149,0.309]	[-0.088,0.089]	[-0.074,0.165]
WZ (D0, 1 fb ⁻¹)	$(\Delta g^{Z}_{1} = \Delta \kappa_{Z})$	[-0.017,0.21]	[-0.12,0.29]			
WW+Wγ+WZ (D0, 1 fb ⁻¹)	$(\lambda_{\gamma} = \lambda_{Z,} \\ \Delta \kappa_{Z} = \Delta g_{1}^{Z} - \Delta \kappa_{\gamma}^{*} \\ \tan^{2} \theta_{W})$			[-0.07,0.16]	[-0.29,0.38]	[-0.08,0.08]
WW (CDF, 3.6 fb ⁻¹)	$(\lambda_{\gamma} = \lambda_{Z,} \\ \Delta \kappa_{Z} = \Delta g_{1}^{Z} - \Delta \kappa_{\gamma}^{*} \\ \tan^{2} \theta_{W})$			[-0.22,0.30]	[-0.57,0.65]	[-0.14,0.15]
WW (LEP)	$(\lambda_{\gamma} = \lambda_{Z,} \\ \Delta \kappa_{Z} = \Delta g_{1}^{Z} - \Delta \kappa_{\gamma}^{*} \\ \tan^{2} \theta_{W})$			[-0.051,0.034]	[-0.105,0.069]	[-0.059,0.026]

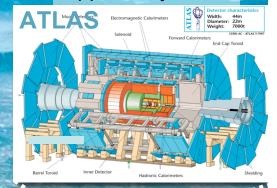
[•] Many LHC results can be better than current best limits from Tevatron and LEP


Summary

- •LHC physics has started!
 - Both experiments are performing WELL!
- Perspectives for SM diboson measurements at LHC and sensitivity to anomalous TGC have been investigated
 - Although studies performed at $\sqrt{s}=10,14$ TeV, sensitivity results indicate diboson cross sections can still be measured at $\sqrt{s}=7$ TeV with low luminosity (e.g. Wy, WW with few hundreds pb⁻¹)
 - Expect limits on anomalous TGC will be much improved at LHC compared to Tevatron and LEP
- So let's measure it *NOW*!!!

BACK UP

Large Hadron Collider (LHC)


LHC: 27 km long 100m underground

pp, B-Physics, CP Violation

General Purpose, pp, heavy ions

- p-p collider
- Design parameters:

$$\cdot \sqrt{s} = 14 \text{ TeV}$$

•
$$L_{\text{inst}} = \sim 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$$

Current operation:

$$\cdot \sqrt{s} = 10 \text{ TeV}$$

•
$$L_{\text{inst}} = \sim 10^{30} \text{ cm}^{-2} \text{ s}^{-1}$$

General Purpose, pp, heavy ions

Heavy ions, pp

Detectors

B field: 2T solenoid, 4T toroid				
	ATLAS CMS	B field: 3.8T solenoid		
	ATLAS	<u>CMS</u>		
Inner tracker : η coverage	2.5	2.5		
$\sigma(P_T)/P_T$ at $P_T=100 \text{ GeV}$	3.8%	1.5%		
EM calorimeter: η coverage	3.2	3.0		
σ(E)/E	$10\%/\sqrt{E+0.7\%}$	$3\%/\sqrt{E+0.5\%}$		
HAD calorimeter: η coverage	4.9	5.2		

Muon system: η coverage	2.7	2.4
(D)/D (D 1/D 1//) 1 1)	100/ (1.1.5)	1.5.400//1 1

 $\sigma(E)/E$ (EM+HAD combined)

 $\sigma(P_T)/P_T$ at P_T =1 TeV (standalone) 12% ($|\eta|$ <1.5) 15-40% (depend on η range)

 $50\%/\sqrt{E+3\%}$

85%/VE+7%

Performances of ATLAS & CMS on Early LHC Data

ATLAS (W(ev) selection)

- \geq 1 electron candidate, Et>20 GeV, $|\eta|$ <2.47, (not in 1.37< $|\eta|$ <1.52)
- $E_t^{miss} > 25 \text{ GeV}$
- $m_T > 40 \text{ GeV}$

•
$$m_T = \sqrt{2p_T^l p_T^{\nu} (1 - \cos(\phi^l - \phi^{\nu}))}$$

ATLAS (Missing Transverse Energy)

- Calorimeter based
- •Cell energies at EM scale

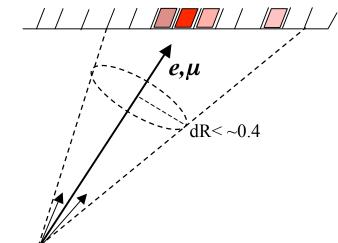
•
$$E_{\rm x}^{\rm miss} = -\sum_{i=1}^{N_{\rm cell}} E_i \sin \theta_i \cos \phi_i$$
,

$$E_{y}^{\text{miss}} = -\sum_{i=1}^{N_{\text{cell}}} E_{i} \sin \theta_{i} \sin \phi_{i}$$

$$E_{\rm T}^{\rm miss} = \sqrt{(E_{\rm x}^{\rm miss})^2 + (E_{\rm y}^{\rm miss})^2}$$
,

- •Remove events with bad jets
 - Jets caused by noise or by out-of-time energy deposition in calorimeter

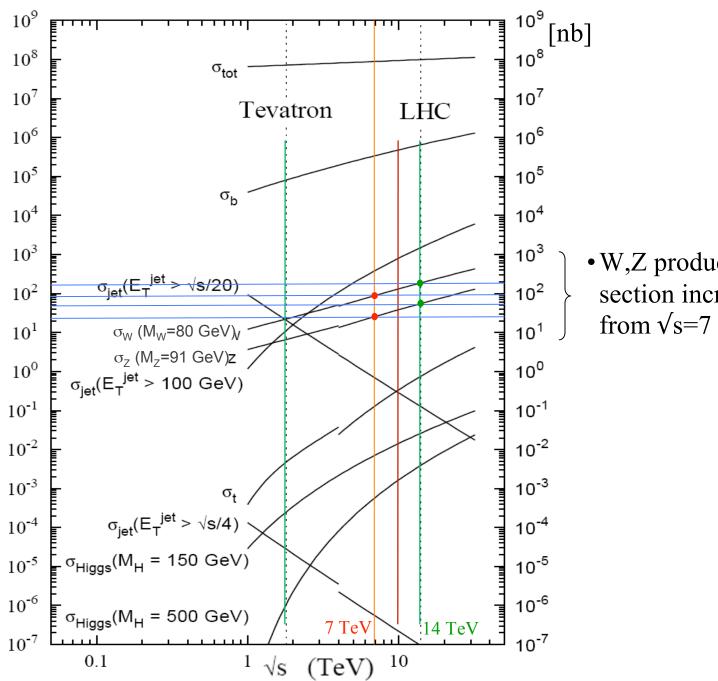
Basic Selection Criteria in Diboson Studies


• List several selection cuts common in the diboson simulation studies which focus on leptonic decays of W/Z boson

• Lepton (e,μ) selection:

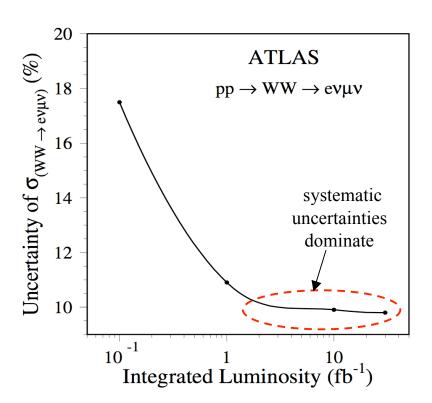
- $p_T > \sim 20 \text{ GeV}$, $|\eta| < 2.5$ (tracking coverage)
- Isolated: little activity recorded in calorimeter or tracking volume surrounding lepton (reduce bkg from jet faking lepton)
- •Require large E_T^{miss} : $E_T^{miss} > \sim 20-50 \text{ GeV}$
 - Missing energy from ν in W decay
 - Cut reduce background from Drell-Yan

•Di-lepton invariant mass :

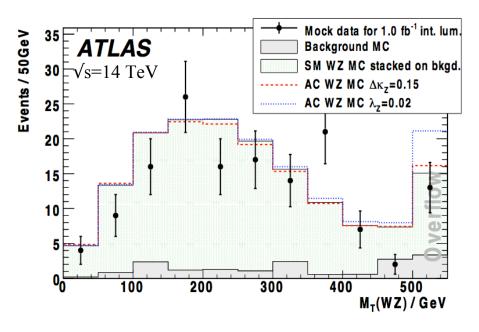

- If Z boson is produced
- Consistent with Z mass
 - $(|m_{1+1} m_z| < 10 \sim 20 \text{ GeV})$

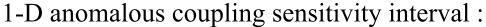
•Jet Veto :

- Backgrounds with leptons and hadronic jets in final state (W+jets, Z+jets, ttbar)
- Require no presence of jet (Et>20~30 GeV, $|\eta|$ <3)

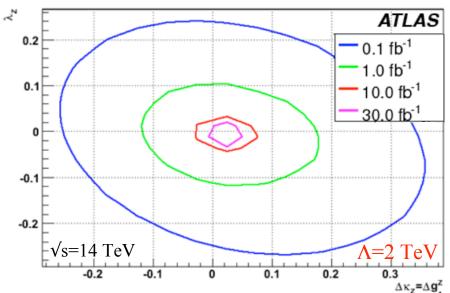

Production Cross Section at LHC

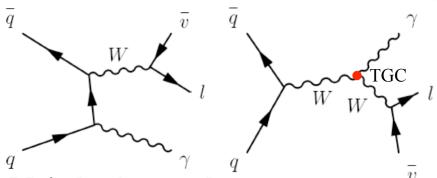
• W,Z production cross section increase by \sim 2X from \sqrt{s} =7 TeV to 14 TeV


WW→*l*∨*l*∨


- Cross section uncertainties estimated ~20-30% @ L~100 pb⁻¹
- Expect uncertainties to improve with more data

WWZ Anomalous TGC in WZ Analysis


• $M_T(WZ)$ and $P_T(Z)$ spectra are fit to extract WWZ anomalous parameters at 95% C.L.


JL (fb ⁻¹)	0.1	1.0	10.0	30.0
$\Delta \kappa_Z$	[-0.440 , 0.609]	[-0.203 , 0.339]	[-0.095 , 0.222]	[-0.080 , 0.169]
λ_{Z}	[-0.062 , 0.056]	[-0.028 , 0.024]	[-0.015 , 0.013]	[-0.012 , 0.008]
Δg^{Z}_{1}	[-0.063 , 0.119]	[-0.021 , 0.054]	[-0.011 , 0.034]	[-0.005 , 0.023]

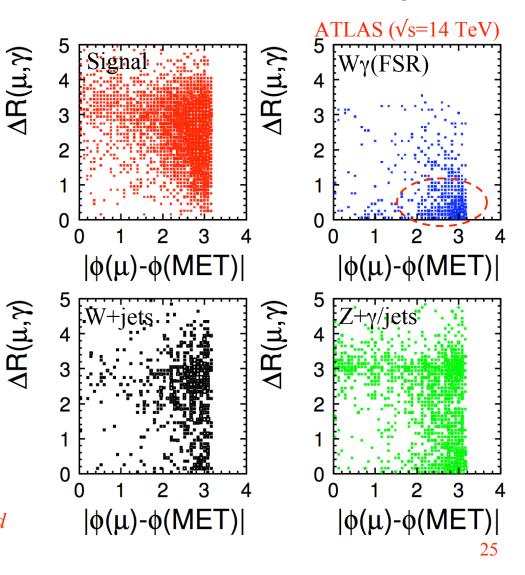
$$\Lambda$$
=2 TeV

- •2-D anomalous TGC limit:
- Assume: $\Delta \kappa_Z = \Delta g_1^Z$

$W\gamma \rightarrow l \nu \gamma$

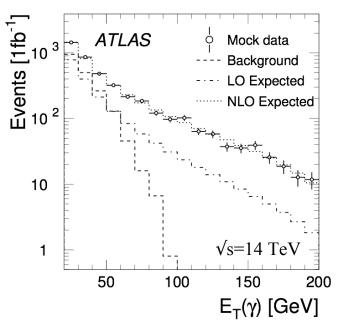
•Main background:

- W+jets (jet fakes as γ)
- •Z+ γ /jets (one lepton not Id, jet mis-Id as γ)
- W+γ (γ from FSR)

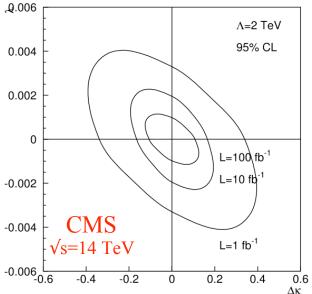

ATLAS:

• Train BDT to discriminate Wγ signal from background

\sqrt{s} =14 TeV, L=1 fb ⁻¹	#signal	#bkg
l=e	1604	1183
$l = \mu$	2166	1342


Still can achieve $S/\sqrt{B} > \sim 10$ at $\sqrt{s} = 7$ TeV, for L=0.1 fb⁻¹, if assume both signal and background scale by ~ 0.5 going from $\sqrt{s} = 14$ TeV to 7 TeV

- Wγ measurement can probe WWγ TGC
- Events selected with 1 isolated lepton (e,μ) , 1 isolated photon, large E_T^{miss}


WWy Anomalous TGC in Wy Analysis

• $E_T(\gamma)$ distribution is used to determine the WW γ anomalous parameters at 95% C.L.

1-D anomalous coupling sensitivity interval (ATLAS, \sqrt{s} =14 TeV, Λ =2 TeV)

		$W(\ell v)\gamma$	· · · · · · · · · · · · · · · · · · ·
	$1 \; { m fb^{-1}}$	$10 \; { m fb}^{-1}$	$30 \; { m fb^{-1}}$
λ_{γ}	[-0.09, 0.04]	[-0.05, 0.02]	[-0.02, 0.01]
$\Delta \kappa_{\gamma}$	[-0.43, 0.20]	[-0.26, 0.07]	[-0.11,0.05]

2-D anomalous TGC limit from CMS:

•@ L=100 fb-1 ,
$$\Lambda$$
=2 TeV

•
$$|\Delta \kappa_{\gamma}| < 0.1$$

•
$$|\lambda_{\gamma}| < 0.009$$