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1 Introduction

Type II superstring theories compactified on a Calabi-Yau threefold (CY3) yield N = 2

supersymmetry in four dimensions. Even if gauge symmetries are absent in perturbation

theory, the study of the effective field theory plays an important role in moduli stabilization

by fluxes, as well as in a more realistic framework, such as in the presence of orientifolds and

D-branes. Besides supergravity fields, their massless spectra involve vector multiplets and

hypermultiplets describing all Kähler class and complex structure deformations of the CY3

manifold, as well as a universal hypermultiplet containing the string dilaton. Because of its

special connection to the string coupling, the study of this universal hypermultiplet is an

important problem per se. In the following, we restrict ourselves to this sector which also

becomes exact in the particular case of a compactification with no Kähler class (complex

structure) moduli in type IIB (IIA), or when these closed string moduli are fixed.

The dilaton hypermultiplet contains four real scalars parametrizing a quaternion-

Kähler manifold, as required by N = 2 supergravity [1]. Two of them come from the

NS-NS (Neveu-Schwarz) sector and correspond to the string dilaton (associated to the

string coupling constant) and the universal axion, Poincaré dual of the antisymmetric ten-

sor Bµν . The other two come from the R-R (Ramond) sector and are obtained from various

n-form gauge potentials. On the IIB side, they correspond to another scalar (0-form) C0

and the dual of the two-form Cµν . At the string tree-level, these four scalars live on the
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symmetric coset SU(1, 2)/SU(2)×U(1) which is also Kähler [2–4]. Perturbative string cor-

rections keep at least three isometries corresponding to the three independent shifts of the

NS-NS axion and the R-R scalars, generating the Heisenberg algebra. Imposing just these

isometries and the quaternion-Kähler structure, one finds that the only possible perturba-

tive correction arises at one loop, destroying the Kähler structure of the manifold [5]. This

correction was computed in [5, 6] and was found to be proportional to the Euler number

of the CY3.

More precisely, in the context of IIB superstrings, the Heisenberg algebra is generated

by a combination of the gauge symmetries of the two antisymmetric tensors Bµν (NS-NS)

and Cµν (R-R) and of the shift symmetry of the R-R scalar C0:

δBµν = 2 ∂[µΛν], δCµν = 2 ∂[µΛ̃ν] + λBµν , δC0 = λ. (1.1)

As a consequence, the theory depends on the invariant three-forms

Hµνρ = 3 ∂[µBνρ], Fµνρ = 3 ∂[µCνρ] − C0Hµνρ (1.2)

and on ∂µC0. The Heisenberg algebra follows from

[δ1, δ2]Cµν = 2 ∂[µλ2Λ1ν] − 2 ∂[µλ1Λ2ν]. (1.3)

After reduction to four dimensions, the gauge symmetries imply that each tensor can be

dualized into a scalar field with axionic shift symmetry. The third global symmetry (with

parameter λ) combines then with the axionic shifts to realize again the Heisenberg algebra

on three scalar fields.

Indeed, one obtains three scalar fields ϕ, τ and η = C0, with Heisenberg variations

δη = cX , δϕ = cY , δτ = cZ − cXϕ . (1.4)

The scalars ϕ and τ are Poincaré dual to Cµν and Bµν , respectively. The duality relations

are, schematically,

∂µϕ ∼ ǫµνλρF
νλρ, ∂µτ + η ∂µϕ ∼ ǫµνλρH

νλρ .

The algebra is [X,Y ] ∼ Z, with Y and Z generating the axionic shifts (with parameters cY

and cZ), while X generates the shift of the R-R scalar (with parameter cX). Notice that

the central charge of the algebra is (depending on the representation) the gauge symmetry

of the R-R tensor and the axionic symmetry of τ , dual to the NS-NS tensor.

Actually, as we will see later on, the Heisenberg algebra is extended by a fourth per-

turbative generator M that rotates X,Y and commutes also with the central charge Z:

δMη = cMϕ , δMϕ = −cMη , δMτ =
cM

2
(η2 − ϕ2). (1.5)

Equivalently, M rotates the phase of the complex R-R scalar η + iϕ. As a result, the

perturbative symmetry becomes the two-dimensional Euclidean group E2 with central ex-

tension Z.
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Imposing N = 2 supersymmetry and Heisenberg symmetry is a powerful constraint.

In a previous work [7], we have briefly analyzed its implications in global N = 2 super-

symmetry, where hypermultiplet scalars form a Ricci-flat hyper-Kähler manifold [8]. For a

single hypermultiplet, a unique non-trivial hyper-Kähler space admitting a one-parameter

deformation is found. In local supersymmetry where hypermultiplets live on quaternion-

Kähler manifolds [1], a one-parameter family of solutions emerges [5] from the general

analysis of Calderbank and Pedersen [9]. These similar results suggest a correspondence

between the local and global cases which could be studied using a Ricci-flat limit of the

quaternion-Kähler manifold preserving the Heisenberg algebra. Our main goal is to ana-

lyze this correspondence using an explicit and intuitive construction of the supergravity

couplings of the universal hypermultiplet

Taking the limit κ → 0 in a hypermultiplet theory coupled to N = 2 supergravity is

a subtle problem. In contrast to the simplest case of N = 1, N = 2 supergravity imposes

that the curvature of the hypermultiplet scalar manifold is proportional to the gravitational

coupling κ2 and hence the curved, quaternion-Kähler Einstein metric of the local hypermul-

tiplet smoothly turns to a Ricci-flat hyper-Kähler metric. However, to obtain a non-trivial

space, an appropriate limit must be defined, involving a new mass scale that should remain

finite as the Planck mass goes to infinity. Some particular simple cases have been studied

long ago, using the quaternionic quotient method [10, 11], which however does not describe

all quaternion-Kähler geometries for hypermultiplets coupled to N = 2 supergravity. The

construction associating hyperkähler cones (or rigid superconformal hypermultiplets) [12–

15] and projective supergravity techniques [16, 17] is general, and a construction of the

perturbative universal hypermultiplet has been obtained with this method [18]. In the

following, we prefer to use a construction based on a quaternionic quotient which is simple

and intuitive and displays clearly the algebraic structure underlying the theory.

Thus, in this work, we establish the precise connection between the local and global

N = 2 supersymmetric actions of a single hypermultiplet with Heisenberg isometry, to

explicitly obtain the gravity-decoupled limit. We first reconstruct the N = 2 supergravity

Lagrangian using the method of quaternionic quotient, starting with superconformal super-

gravity and imposing gauge conditions and constraints. We then define the zero-curvature

limit that reduces the perturbative-corrected metric of the dilaton hypermultiplet to the

non-trivial hyper-Kähler form found in [7]. It turns out that the deformation parameter

corresponding to the one-loop correction plays a crucial role. Indeed, the zero-curvature

limit of the tree level SU(1, 2)/SU(2)×U(1) metric is trivial, leading to free kinetic terms.

The presence of the one-loop parameter however allows for a non-trivial limit, giving rise

to a hyper-Kähler metric that depends on a mass scale which remains finite as the four-

dimensional Planck mass goes to infinity. At the same time, the value of the string coupling

is tuned to a fixed value determined by the one-loop correction and can be made weak for

large and positive Euler number of the CY3 manifold, so that non-perturbative corrections

remain suppressed while taking the gravity decoupled limit.

This paper is organized as follows. In section 2, we recall the global construction of

a four-dimensional hyper-Kähler manifold with the Heisenberg isometry in three formu-

lations [7]: single-tensor which has the advantage of an off-shell N = 2 supersymmetry
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formulation, scalar that provides a geometric description with a metric, and double tensor

corresponding to the type IIB string basis.1 In section 3, we first review the Calderbank-

Pedersen metric with Heisenberg symmetry and show that the latter is actually extended

by a fourth generator which commutes with its central charge and rotates the other two.

This generates a fourth perturbative isometry of the metric, as described above. We then

rederive in supergravity the quaternion-Kähler metric with the Heisenberg isometry [5],

by taking an appropriate quaternionic quotient of the symmetric quaternion-Kähler space

Sp(2, 4)/Sp(2)× Sp(4) containing two hypermultiplets. Their reduction to one is achieved

by gauging a symmetry corresponding to the central charge of the Heisenberg algebra.

In section 4, we take the zero-curvature limit, leading to the one parameter hyper-Kähler

manifold with Heisenberg symmetry of section 2. We thus find the correspondence of string

fields in the rigid globally supersymmetric limit and we also discuss the coupling of the

dilaton hypermultiplet to a D-brane where one of the two supersymmetries in non-linearly

realized. Finally, section 5 contains some concluding remarks.

2 On the Heisenberg algebra and global supersymmetry

2.1 Lagrangians

Consider a N = 1 globally supersymmetric theory with two superfields, a chiral Φ and

a real linear L. It contains three real scalars, Re φ = ReΦ|θ=0, Im φ = Im Φ|θ=0, and

C = L|θ=0, and L also depends on the curl of an antisymmetric tensor Hµνρ = 3 ∂[µBνρ].

The Lagrangian (up to two derivatives) is

L =

∫
d2θd2θH(L,Φ,Φ) +

∫
d2θ W (Φ) +

∫
d2θ W (Φ) . (2.1)

Besides the gauge invariance of Bµν which does not act on the superfields, we also impose

a two-parameter global symmetry acting on Φ with variations

δΦ = α − iβ. (2.2)

In this formulation, all three symmetries trivially commute. Nevertheless, in the version

where Bµν is dualized to a scalar, or in the version where Imφ (for instance) is transformed

into a second antisymmetric tensor, the three-parameter symmetry realizes a Heisenberg

algebra acting either on three scalars according to eq. (1.4), as in the hypermultiplet for-

mulation of IIB strings compactified to four dimensions, or on two tensors and one scalar

according to eqs. (1.1) and (1.3). The Lagrangian compatible with the required symme-

try (2.2) has

H(L,Φ,Φ) = F(L) + [AL + B]ΦΦ, W (Φ) = kΦ, (2.3)

with an arbitrary function F(L) and real constants A and B.2 The constant k generates a

C-dependent potential V = |k|2/(AC + B) which does not admit a vacuum if A 6= 0. We

take then k = 0.

1Note though that the basis of string vertex operators corresponds to the single-tensor representation [5].
2Of course, B can be eliminated by a constant shift of L.
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The superfields Φ and L provide an off-shell representation of the N = 2 single-tensor

multiplet. On the N = 1 Lagrangian, the condition for a second supersymmetry is [19]3

∂2H
∂L2

+ 2
∂2H

∂Φ∂Φ
= 0, (2.4)

which in turn indicates that

FN=2(L) = −A

3
L3 − BL2. (2.5)

The same theory is given by

F̂N=2(L) = − 1

3A2
(AL + B)3. (2.6)

Hence, the N = 2 theory compatible with complex shift symmetry of Φ is the sum

LN=2 =

∫
d2θd2θ

[
A

(
−1

3
L3 + LΦΦ

)
+ B(−L2 + ΦΦ)

]
(2.7)

of a trilinear interacting term and of a free term where the symmetry is trivial. If canonical

dimensions are assigned to L and Φ, A has dimension (mass)−1 and B is dimensionless.

Fur further use, we need the bosonic component expansion of this superfield theory.

Using

L(x, θ, θ) = C + θσµθ vµ + 1
4θθθθ�C, vµ = 1

6ǫµνρσHνρσ, Hνρσ = 3 ∂[νBρσ],

Φ(x, θ, θ) = φ(x) − iθσµθ ∂µφ − θθf − 1
4θθθθ�φ,

we obtain4

LN=2,bos. = (AC + B)
[

1
2(∂µC)2 + (∂µφ)(∂µφ) + 1

12HµνρHµνρ

]

− i
12Aǫµνρσ(φ∂µφ − φ∂µφ)Hνρσ.

(2.8)

Since, ∂[µHνρσ] = 0, the variation (2.2) of φ induces a total derivative. Kinetic terms are

positive if AC + B > 0. If A 6= 0, B can be eliminated by shifting C. The (shifted) field C

will be assumed strictly positive and the two options are an interacting, cubic theory with

A > 0 and B = 0, or the free theory A = 0, B > 0.

We may then perform two supersymmetric duality transformations [20] on theory

(2.3), either turning the linear L into a chiral S or turning the chiral Φ into a second linear

multiplet L′. The first transformation leads to

L =

∫
d2θd2θ

[
F̃(Y) + BΦΦ

]
, (2.9)

where F̃(Y) is the Legendre transform of F(L) and the variable is5 Y = S + S + AΦΦ.

Invariance of Y under shift symmetries (2.2) requires a compensating variation of S:

δHS = (αδX + βδY + γδZ)S = −A(α + iβ)Φ + 2iγ, (2.10)

3The same conventions as in ref. [7] are used. They slightly differ from ref. [19].
4The auxiliary field f vanishes.
5Notice that

R

d2θd2θ ΦΦ = 1

A

R

d2θd2θY + derivative.
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where the axionic shift symmetry of ImS is dual to the gauge symmetry of Bµν , and

the subscripts X,Y,Z make clear the correspondence with the transformations (1.4). In-

deed, since

[δ′H , δH ]S ≡ −A(α′+iβ′)δHΦ+A(α+iβ)δ′HΦ = 2iA(α′β−αβ′), [δH , δ′H ]Φ = 0, (2.11)

the chiral theory has Heisenberg symmetry. Moreover, the theory (2.9) has another

symmetry M rotating the chiral superfield Φ, as already mentioned in the introduction

(see eq. (1.5)).

For the N = 2 single-tensor theory (2.7), the dual hypermultiplet theory6 is

LN=2 =

∫
d2θd2θK(Y) =

2

3A2

∫
d2θd2θ

(
AY + B2

)3/2
. (2.12)

Eliminating some derivatives, the limiting case A = 0 is a free theory. As required for a

hyper-Kähler sigma-model, the determinant of the Kähler metric is constant (and positive).

A useful change of variable is

Ŝ = S − A

2
Φ2, Y = Ŝ + Ŝ +

A

2
(Φ + Φ)2. (2.13)

and transformation (2.10) becomes δH Ŝ = −2AαΦ + 2iγ. With these variables, the trans-

formations with parameters β and γ only act as shift symmetries of Im Φ and Im Ŝ respec-

tively. In terms of variables Y, Im Ŝ, Re Φ and ImΦ, one immediately deduces that the

most general Heisenberg-invariant supersymmetric theory is of the form (2.9).

Performing the second duality transformation of the chiral Φ into a linear L′, always

leads to the dual theory

L =

∫
d2θd2θ

[
F(L) − 1

2

L′2

AL + B

]
, (2.14)

with F given in eq. (2.5). Expression (2.14) is actually the most general N = 1 Lagrangian

for L and L′ with symmetry

δL′ = α(AL + B). (2.15)

This transformation, which links the two antisymmetric tensors in L and L′ as in varia-

tion (1.1), forms with their respective gauge symmetries a Heisenberg algebra realized as

in type IIB strings.

Instead of ImΦ, we could have chosen to dualize eiaΦ for any phase a, since

∫
d2θd2θ (AL + B)ΦΦ =

1

2

∫
d2θd2θ (AL + B)(eiaΦ + e−iaΦ)2 + derivative.

The result would be again theory (2.14). This is a consequence of symmetry M , which is

however fixed by the choice of dualization and does not act on L′.

6With positive Kähler metric.
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2.2 Hyper-Kähler metrics with Heisenberg symmetry

The Kähler coordinates defined by N = 1 chiral superfields S and Φ are not necessarily

the most appropriate to describe a hyper-Kähler manifold. There is a ‘standard’ set of

coordinates used to describe hyper-Kähler metrics with shift isometries in the literature.

For comparison purposes, we define in this subsection these coordinates in terms of our

superfield components.

For any hyper-Kähler manifold with a shift symmetry, one can find coordinates in

which the metric has the Gibbons-Hawking form [21, 22]

ds2 = f(~x) dxi dxi + f(~x)−1(dτ + ωi dxi)
2, (2.16)

with condition ~∇× ~ω = ~∇f . Imposing the requirement of a Heisenberg symmetry acting

according to

δH x1 =
√

2 α, δH x2 = −
√

2β, δH x3 = 0, δH τ = −
√

2 αx2 + γ (2.17)

also defines dτ + x1 dx2 as the invariant differential of τ and indicates that ~ω = (0, x1, 0).

The value of f(~x) follows then from ~∇ × ~ω = ~∇f . This last condition is invariant under

~ω → ~ω + ~∇λ(~x), for any gauge function λ(~x). In turn, invariance of the metric requires the

compensating transformation τ → τ − λ(~x).

From the N = 2 Kähler potential (2.12), the Kähler metric can be written7

ds2 = 1
2(AY + B2)−1/2

[
1
4dY2 +

(
d Im S + iA

2 (Φ dΦ − Φ dΦ)
)2
]

+(AY + B2)1/2 dΦdΦ,

(2.18)

using coordinates (Y, Im S,Re Φ, Im Φ). The supersymmetric duality transformation from

L to S exchanges a real scalar C = L|θ=0, invariant under Heisenberg variations, and

Re S with variation (2.10). The Legendre transformation defines the change of variable

from Y to C:

AC + B =
√

AY + B2. (2.19)

Then, in terms of coordinates (C, Im S,Re Φ, Im Φ), the metric becomes

ds2 =
AC + B

2

[
dC2 + 2 dΦdΦ

]
+

2

(AC + B)

(
dτ + ARe Φ d Im Φ

)2
. (2.20)

This is the Gibbons-Hawking metric (2.16) with ~x = (
√

2Re Φ,
√

2 Im Φ, C) and

τ =
1

2
(Im S − ARe Φ Im Φ) =

1

2
Im Ŝ.

The function

f(~x) =
AC + B

2
(2.21)

7From here on, we do not distinguish chiral superfields S and Φ and their lowest complex scalar

components.
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solves the hyper-Kähler condition ~∇×~ω = ~∇f with ~ω = (0, A
2 x1, 0). Choosing for instance

λ = −A
2 x1x2 turns then ~ω into (−A

2 x2, 0, 0) and dτ + A
2 x1dx2 into dτ − A

2 x2dx1. Similarly,

a rotation of Φ

δM x1 = mx2, δM x2 = −mx1,

which is compatible with the shift symmetry (2.2), corresponds to λ(~x) = Am
4 (x2

2 − x2
1). It

is the isometry M of metric (2.20).

The conclusion is that the Gibbons-Hawking Ansatz for the hyper-Kähler metric cor-

responds to coordinates where ReS is replaced by its Legendre dual C, which is also the

lowest scalar component of the linear superfield dual to S.

3 The universal hypermultiplet in N = 2 supergravity

Hypermultiplet scalars of N = 2 supergravity live on 4n-dimensional quaternion-Kähler

manifolds with holonomy included in Sp(2n)×Sp(2). Supergravity requires that the curva-

ture of these Einstein spaces is proportional to the gravitational coupling κ2 [1]. Hence, the

decoupling limit κ → 0 turns the hypermultiplet manifold into a Ricci-flat hyper-Kähler

space, as required by global N = 2 supersymmetry [8]. For a single hypermultiplet, or a

four-dimensional quaternion-Kähler manifold, the defining condition on the holonomy is

not pertinent since Sp(2) × Sp(2) ∼ SO(4). The relevant condition is then self-duality of

the Weyl tensor.

3.1 The Calderbank-Pedersen metric with Heisenberg symmetry

Calderbank and Pedersen [9] have classified all four-dimensional Einstein metrics with self-

dual Weyl curvature and two commuting isometries. Using coordinates (ρ, η, ϕ, τ) with

the isometries acting as shifts of ϕ and τ , their metrics are written in terms of any single

function F (ρ, η) verifying
∂2F

∂ρ2
+

∂2F

∂η2
=

3F

4ρ2
. (3.1)

It is simple to see [5] that metrics with Heisenberg symmetry are then obtained if F does

not depend on η, i.e. if8

√
ρF (ρ) =

1

2
[ρ2 − χ], (3.2)

with an arbitrary real parameter χ. The Calderbank-Pedersen metric with Heisenberg

symmetry (the CPH metric) reads then

ds2
CPH =

ρ2 + χ

(ρ2 − χ)2
(dρ2 + dη2 + dϕ2) +

4ρ2

(ρ2 − χ)2(ρ2 + χ)
(dτ + η dϕ)2 . (3.3)

The coordinate ρ is positive, ρ > 0, and positivity of the metric requires ρ2 + χ >

0, a stronger condition if χ is negative. It is an Einstein metric with negative curva-

ture, and it is Kähler only if χ = 0. Notice that if χ 6= 0, the rescaling (ρ, η, ϕ, τ) →
8The metric does not make sense without the ρ3/2 contribution to F and the overall normalization of F

is a choice of coordinates. Our χ is χ̂ in ref. [5].
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(|χ|1/2ρ, |χ|1/2η, |χ|1/2ϕ, |χ|τ) turns χ in metric (3.3) into ±1. This is not true if we turn

on string interactions, such as in the presence of D-branes where the dilaton, or equiva-

lently the field ρ, couples to the Dirac-Born-Infeld (DBI) action in a non-trivial way (see

section 4). For this reason, we keep explicitly χ throughout the paper. We may use a new

coordinate V = ρ2 with metric

ds2
CPH =

V + χ

(V − χ)2

(
dV 2

4V
+ dη2 + dϕ2

)
+

4V

(V − χ)2(V + χ)

(
dτ + η dϕ

)2
. (3.4)

The particular case χ = 0 has extended symmetry: it is the SU(2, 1)/SU(2)×U(1) metric

with Kähler potential

K(Ŝ, Ŝ,Φ,Φ) = − lnV, V = Ŝ + Ŝ − (Φ + Φ)2, (3.5)

and with Φ = 1√
2
(η + iϕ), τ = −1

2 Im Ŝ.

The CPH metric is invariant under four isometry variations acting on coordinates

(η, ϕ, τ):

δXη =
√

2, δY η = 0, δZη = 0, δMη = ϕ,

δXϕ = 0, δY ϕ = −
√

2, δZϕ = 0, δMϕ = −η,

δXτ = −
√

2 ϕ, δY τ = 0, δZτ = 1, δMτ = 1
2(η2 − ϕ2).

(3.6)

The non-zero commutators are

[X,Y ] = 2Z, [M,X] = Y, [M,Y ] = −X. (3.7)

Hence, X, Y and Z generate the Heisenberg algebra and Z is a central extension of a two-

dimensional euclidean algebra generated by M (which rotates ϕ and η), X and Y (which

translate ϕ and η). With these conventions,

δH Φ = (αX + βY + γZ)Φ = α − iβ, δH Ŝ = 4α Φ − 2iγ (3.8)

and V is invariant.

The metric (3.4) appears in the one-loop-corrected Lagrangian of the universal hyper-

multiplet of type II strings, reduced to four dimensions, with the NS-NS and R-R tensors

dualized to scalars with shift symmetry [5]. At one-loop order, the four-dimensional dilaton

field is related to coordinate V and parameter χ by

e−2φ4 = V − χ, χ = −χ1, χ1 =
χE

12π
, (3.9)

where χE is the Euler number of the internal CY3 manifold. The real number χ1 encodes

the one-loop correction [5]. Notice that this relation also indicates that V −χ = V +χ1 > 0,

which is stronger than V = ρ2 > 0 if the Euler number is negative (χ > 0). Since positivity

of the CPH metric also requires V +χ > 0 if χ < 0, the domain of V is naturally restricted

to V > |χ|.
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The R-R scalar is

C0 ≡ η , (3.10)

and is shifted by symmetry X. Finally, Poincaré duality gives the following equivalences

dϕ ∼ F3 = dC2 − η dB2,

dτ + η dϕ ∼ H3 = dB2.

In the scalar version, the central charge is the shift Z of τ (related to the NS-NS tensor B2)

while in the two-tensor version, it is the gauge variation of the (R-R) tensor C2. Writing

η and ϕ in a complex Φ is conventional: we always use

Φ =
1√
2
(η + iϕ).

In the previous section, we found a unique four-dimensional hyper-Kähler manifold

with Heisenberg symmetry. It also admits the fourth isometry M rotating Φ. In the

quaternion-Kähler case, the theorem of Calderbank-Pedersen [9] leads then to a very similar

uniqueness conclusion. We will see how these two results are connected when taking an

appropriate zero-curvature limit. But we first want to obtain the N = 2 supergravity

coupling of the universal hypermultiplet on the CPH manifold.

3.2 Coupling to N = 2 supergravity

As mentioned in the introduction, there are different methods to construct hypermulti-

plet couplings to N = 2 supergravity. The simplest procedure, but not the most general,

is to use hypermultiplets coupled to local N = 2 superconformal symmetry [23, 24] and

to perform a quaternionic quotient [10, 11] using supplementary hypermultiplet(s) and

non-propagating vector multiplet(s). In this section, we use this procedure to obtain the

supergravity theory of the one-loop-corrected dilaton hypermultiplet. Related construc-

tions can be found in ref. [18], in the language of projective superspace or in ref. [25], using

harmonic superspace.

Conformal N = 2 supergravity is the gauge theory of SU(2, 2|2), which has a SU(2)R×
U(1)R R-symmetry with non-propagating gauge fields. Pure Poincaré N = 2 supergrav-

ity is obtained from the superconformal coupling of one propagating vector multiplet9

(which may be charged under U(1)R) and one hypermultiplet (charged under SU(2)R) by

gauge-fixing of the extraneous symmetries. These two multiplets include in particular the

compensating fields used in the gauge-fixing to the Poincaré theory.

For the superconformal construction of our particular hypermultiplet sigma-model, we

also need a physical hypermultiplet, with positive kinetic metric, to describe the dilaton

multiplet. In addition, for the quaternionic quotient, we need a non-propagating vector

multiplet with gauge field Wµ, gauging a specific generator T to be discussed below, and,

since the elimination of the algebraic vector multiplet involves three constraints and one

gauge choice on scalar fields, we also need a third non-physical hypermultiplet. Its kinetic

9Its gauge field is the graviphoton.
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metric can have a positive or negative sign, depending on the constraints induced by the

choice of T . Hence, we need to consider the N = 2 superconformal theory of two vector

multiplets and three hypermultiplets. The superconformal hypermultiplet scalar sector

has then an ‘automatic’ Sp(2, 4) global symmetry in which the gauge generator T of the

quaternionic quotient is chosen.

3.3 Sp(2, 4)

In the following, we consider three hypermultiplets coupled to (superconformal) N = 2

supergravity. One (compensating) hypermultiplet has negative signature, the physical

hypermultiplet has positive signature, the third hypermultiplet, associated to the non-

propagating vector multiplet, may have a positive or negative signature, depending on the

constraints applied to the scalar fields. In any case, we are considering Sp(2, 4)-invariant

supergravity couplings of N = 2 hypermultiplets.

The hypermultiplet scalars are Aα
i , with SU(2)R index i = 1, 2 and Sp(2, 4) index

α = 1, . . . , 6. They transform in representation (6,2) of Sp(2, 4) × SU(2)R. Their conju-

gates are10

Ai
α = (Aα

i )∗ = ǫijραβAβ
j (3.11)

with ραβρβγ = −δα
γ and ǫijǫjk = −δi

k. We choose the Sp(2, 4)-invariant metric as

ρ = I3 ⊗ iσ2 =

(
0 I3

−I3 0

)
(3.12)

and we use

d =

(
η 0

0 η

)
, η = diag(−1, 1,−1), ρ d ρ = −d. (3.13)

In our choice of η, direction 1 corresponds to the superconformal compensator, direction

2 to the physical hypermultiplet and our choice of quaternionic quotient will require a

negative metric in direction 3; otherwise, constraints cannot be solved. On scalar fields,

Sp(2, 4) acts according to

δAα
i = g tαβAβ

i , δAi
α = g tα

βAi
β, tα

β = −ραγ tγδ ρδβ . (3.14)

Since relation (3.11) also implies tα
β = (tαβ)∗, the choice (3.12) and the invariance of

dα
βAi

αAβ
i lead to

t =

(
U ηQ

−ηQ∗ U∗

)
, U † = −ηUη, Q = Qτ , t† = −d t d. (3.15)

This is an element of Sp(2, 4): U generates the U(1, 2) subgroup (9 generators) and Q (12

generators) generates Sp(2, 4)/U(1, 2). The (2 × 2) matrix A† d t A, with matrix elements

Ai
αdα

β tβγAγ
j , is antihermitian, as required by gauge invariance of A†dA, and traceless.

10We follow the conventions of ref. [24].
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3.4 The Heisenberg subalgebra of SU(1, 2) and Sp(2, 4)

At string tree-level, the universal hypermultiplet of the dilaton in type II strings lives, when

formulated in terms of four real scalars, on the quaternion-Kähler and Kähler manifold

SU(1, 2)/SU(2)×U(1) = U(1, 2)/U(2)×U(1). Since U(1, 2) = SU(1, 2)×U(1)0 is maximal

in Sp(2, 4), Sp(2, 4) has a unique generator commuting with SU(1, 2): the generator of

U(1)0. At one-loop however, the isometry is reduced and includes the Heisenberg algebra

which is known to be a subalgebra of SU(1, 2). We need to find the most general generator

T of Sp(2, 4) which commutes with a Heisenberg subalgebra. In the following subsections,

we will perform the quaternionic quotient construction induced by the gauging of T .

Since elements U of the U(1, 2) algebra verify U † = −η U η and we have chosen η =

diag(−1, 1,−1), a generic U is

U =




ia A B

A ib C

−B C ic


 , (3.16)

with a, b, c real, A, B, C complex and elements of SU(1, 2) are traceless. On a three-

dimensional complex vector, U(1, 2) variations are δA = UA.

We may define the Heisenberg subalgebra as the U(1, 2) transformations leaving A1−A2

invariant: (δHA)1 − (δHA)1 = (UA)1 − (UA)2 = 0. The transformations acting on A1 and

A2 are generated by the following three elements

X =




0 0 1

0 0 1

−1 1 0


 , Y =




0 0 i

0 0 i

i −i 0


 , Z =




i −i 0

i −i 0

0 0 0


 (3.17)

which verify

0 = XZ = ZX = Y Z = ZY = Z2, XY = −Y X = Z, X2 = Y 2 = iZ. (3.18)

The Heisenberg algebra

[X,Y ] = 2Z, [X,Z] = [Y,Z] = 0 (3.19)

is then realized as a subalgebra of SU(1, 2), with variations

δH A = (αX + βY + γZ)A =




iγ −iγ α + iβ

iγ −iγ α + iβ

−α + iβ α − iβ 0







A1

A2

A3


 (3.20)

in the fundamental representation. Since Z is a central charge of the Heisenberg algebra,

we are interested in the elements of U(1, 2) which commute with Z. They form an algebra

generated by five elements, U0, M , X, Y and Z, with

U0 = iI3, M = i




1 0 0

0 1 0

0 0 −2


 (3.21)

– 12 –



J
H
E
P
0
6
(
2
0
1
1
)
1
3
9

(U0 generates the abelian factor of U(1, 2) = SU(1, 2) × U(1)0). Besides the Heisenberg

algebra generated by X,Y,Z, we also have

[M,X] = 3Y, [M,Y ] = −3X (3.22)

and M generates a rotation of (X,Y ) leaving X2 + Y 2 = 2iZ invariant: [M,X2 + Y 2] =

2i[M,Z] = 0.

One then easily checks that the most general U(1, 2) generator which commutes with

the Heisenberg algebra generated by X,Y,Z is proportional to

T̂ = U0 + χZ = i




1 + χ −χ 0

χ 1 − χ 0

0 0 1


 , U0 = iI3, (3.23)

where χ is an arbitrary real number. If χ = 0, T̂ = U0 commutes with the whole U(1, 2).

If χ 6= 0, T̂ commutes with the Heisenberg algebra supplemented by U0 and M . The

extension to Sp(2, 4) is straightforward. Requiring that

T =

(
T̂ 0

0 T̂ ∗

)
(3.24)

in Sp(2, 4) commutes with an element of Sp(2, 4)/U(1, 2) corresponds to find a (nonzero)

symmetric matrix Q in eq. (3.15) such that T̂ †Q is also antisymmetric, which is impossi-

ble.11 Hence, T is also the most general generator in Sp(2, 4) which commutes with the

Heisenberg algebra generated by X, Y and Z in SU(1, 2). It actually commutes with X,

Y , Z, M and U0.

3.5 N = 2 supergravity scalar Lagrangian

To construct the scalar kinetic metric, the relevant terms of the N = 2 conformal super-

gravity Lagrangian are [10, 11, 23, 24]

e−1L = dα
β(DµAβ

i )(DµAi
α) + (g dα

β Ai
αT β

γAγ
k Y k

i + c.c.)

+1
6R(−X0X0 + dα

βAi
αAβ

i ) + d(X0X0 + 1
2dα

βAi
αAβ

i ).
(3.25)

The complex scalar X0 is the partner of the graviphoton, Y i
j , Y i

i = 0, is the triplet of real

auxiliary scalars in the non-propagating vector multiplet with gauge field Wµ used in the

quaternionic quotient. The covariant derivatives are

DµAα
i = ∂µAα

i − g′WµTα
βAβ

i − gVµi
jAα

j ,

DµAi
α = ∂µAi

α − g′WµTα
βAi

β − gVµ
i
jA

j
α,

(3.26)

11This would not be true for T̂ = Z, which commutes with a larger subalgebra of Sp(2, 4). The U0

component is necessary.
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where g and g′ are SU(2)R and U(1)T coupling constant. The (anti-hermitian) SU(2)

gauge fields Vµ i
j, Vµ i

i = 0, and the real auxiliary scalar d belong to the multiplet of

superconformal gauge fields:

Vµ i
j =

i

2
V x

µ (σx)i
j , Vµ

i
j = ǫikǫjlVµ k

l = (Vµ i
j)∗.

We will commonly use a matrix notation, with a 6 × 2 complex matrix A and its 2 × 6

conjugate A† replacing Aα
i and Ai

α. Condition (3.11) implies that A contains six complex

components only. It also implies, in particular, that A†dA = 1
2 Tr(A†dA) I2. Since Vµ =

−V †
µ , the Lagrangian and the derivatives read

e−1L = Tr(DµA†)d(DµA) + g Tr Y A†dTA + c.c.

+1
6R(−X0X0 + Tr A†dA) + d(X0X0 + 1

2 Tr A†dA);

DµA = ∂µA − g′WµTA − gAVµ,

DµA† = ∂µA† − g′WµA†T † + gVµA†.

(3.27)

Constraints are obtained from the elimination of the auxiliary fields and from the gauge-

fixing of dilatation symmetry in the Poincaré theory:

• Einstein frame gauge-fixing condition and d auxiliary field equation:

X0X0 =
1

κ2
, Tr A†dA = − 2

κ2
. (3.28)

The second condition is invariant under SU(2)R and Sp(4, 2). With an SU(2) gauge

choice, it allows to eliminate four scalar fields and would lead to the Sp(4, 2)/Sp(4)×
Sp(2) sigma-model.

• Auxiliary fields Y i
j :

A†dTA = 0. (3.29)

Since this 2×2 matrix is traceless and antihermitian, these conditions eliminate three

scalars and the associated abelian gauge invariance removes a fourth field.

The SU(2)R gauge fields Vµi
j and the abelian Wµ have then algebraic field equations:

• Gauge field Wµ, associated with generator T :

Wµ =
Tr(∂µA†dTA − A†dT∂µA)

2g′ Tr(A†T †dTA)
. (3.30)

• SU(2)R gauge fields Vµ i
j :

Vµ = −∂µA†dA − A†d ∂µA

g Tr(A†dA)
. (3.31)

According to the second eq. (3.28), the denominator is −2g/κ2.
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At this point, the scalar kinetic Lagrangian in theory (3.25) reduces to

e−1L = e−1(Lkin. + LT + LSU(2))

= Tr(∂µA†)d(∂µA) − g′2 Tr(A†T †dTA)W µWµ − g2

κ2 Tr(V µVµ).
(3.32)

The scalar fields are submitted to constraints (3.28) and (3.29) and the gauge fields Wµ

and Vµ i
j are defined by their field equations (3.30) and (3.31).

To study the constraints (3.28) and (3.29) for our specific choice (3.23) and (3.24) of

gauged generator T , we introduce two three-component complex vectors:

Aα
i =

(
~A+

~A−
− ~A∗

− ~A∗
+

)
, Ai

α =

(
~A∗

+
~A∗
−

− ~A− ~A+

)
, (3.33)

verifying the reality condition (3.11). On each doublet A+a, A−a, a = 1, 2, 3, act two

different SU(2) groups. Firstly, the superconformal SU(2)R acts on ± indices. Secondly,

Sp(2, 4) ⊃ Sp(2)1 × Sp(2)2 × Sp(2)3 ∼ SU(2)1 × SU(2)2 × SU(2)3 and (A+a,−A∗
−a) is a

doublet of SU(2)a. One could define three quaternions

Qa =

(
A+a A−a

−A∗
−a A∗

+a

)
a = 1, 2, 3 (3.34)

with a left action of SU(2)a and a right action of the superconformal SU(2)R. They verify

(for each a)

Qa Q†
a = Q†

a Qa = detQa I2, detQa = |A+a|2 + |A−a|2. (3.35)

The second condition (3.28) from N = 2 supergravity becomes:

~A∗
+ · ~A+ + ~A∗

− · ~A− = − 1

κ2
, ~A∗ · ~A = ~A†η ~A = −|A1|2 + |A2|2 − |A3|2. (3.36)

With eq. (3.24), condition (3.29) leads to three (real) equations:

~A†
+ iηT̂ ~A+ = ~A†

− iηT̂ ~A−,

~A†
− iηT̂ ~A+ = 0

(3.37)

([iηT̂ ]† = iηT̂ ). With the explicit form of T̂ , eq. (3.23), and defining dimensionless fields

a±i =
√

2κA±i, the four constraints (3.36) and (3.37) read finally

I : |a+1|2 + |a−1|2 − |a+2|2 − |a−2|2 + |a+3|2 + |a−3|2 = 2,

II : −|a+1|2 + |a+2|2 − |a+3|2 − χ|a+1 − a+2|2

= −|a−1|2 + |a−2|2 − |a−3|2 − χ|a−1 − a−2|2,

III : 0 = −a+1a−1 + a+2a−2 − a+3a−3 − χ(a+1 − a+2)(a−1 − a−2).

(3.38)

They are invariant under Heisenberg variations (3.20) of ~a+ and ~a−. The case χ = 0 has

been considered by Galicki [10]. Since it leads to SU(1, 2)/SU(2)×U(1), coordinates more

appropriate for this larger isometry have been used.
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3.6 Solving the constraints

To solve the constraints (3.38), we insist on keeping in ~a− a field Φ which transforms under

the Heisenberg variations12 δH ~a− = (αX + βY + γZ)~a− with a complex shift:

δH Φ = α − iβ. (3.39)

This is the case if a−1 = a−2, and a−3 is then invariant. We may define Φ = a−1/a−3 and

constraint III reduces to a+3 = (a+2 − a+1)Φ. Since

δH

(
a+2 + a+1

a+2 − a+1

)
= −2iγ + 2(α + iβ)

a+3

a+2 − a+1
= −2iγ + 2Φ δHΦ,

we finally define

S =
a+2 + a+1

a+2 − a+1
+ Y, δHS = −2iγ + 2(α + iβ)Φ (3.40)

and the quantity

Y = S + S − 2ΦΦ (3.41)

is invariant under Heisenberg variations. The algebra follows from [δ′H , δH ] = (α′β −
αβ′)[X,Y ] = 2(α′β − αβ′)Z:

[δ′H , δH ]S = 2(α′ + iβ′)δHΦ − 2(α + iβ)δ′HΦ = −4i(α′β − αβ′) = 2(α′β − αβ′)Z.

These definitions are summarized in the choice

~a− =
K

∆




Φ

Φ

1


 , ~a+ =

1

∆




S − Y − 1

S − Y + 1

a


 , (3.42)

with complex fields S, Φ and a. The four available gauge choices have been used to take

∆ = |∆|, K = |K| and a−1 = a−2. Under Heisenberg variations, ∆ and K are invariant.

Hence, we are left with eight real scalar fields submitted to the four constraints (3.38)

which drastically simplify:

I : ∆2
(
2 − |a+1|2 + |a+2|2 − |a+3|2

)
= K2,

II : 2(S + S) − |a|2 − 4Y = 4χ − K2,

III : a = 2Φ.

(3.43)

Hence, the solution is

~a− =

√
Y + 2χ

Y + χ




Φ

Φ

1


 , ~a+ =

1√
2(Y + χ)




S − Y − 1

S − Y + 1

2Φ


 . (3.44)

12See eq. (3.20).
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The solution implies Y + χ > 0 if χ > 0 or Y + 2χ > 0 if χ < 0. The scalar kinetic

Lagrangian (3.32) obtained from this solution is13

κ2L =
(Y + 3χ)

4(Y + 2χ)(Y + χ)2
(∂µY )2 − 2

Y + χ
∂µΦ ∂µΦ

+
1

2(Y + χ)(Y + 3χ)

[
Im(∂µS − 2Φ ∂µΦ)

]2

+
1

2(Y + χ)2
[
Im(∂µS − 2Φ ∂µΦ)

]2
+

4(Y + 2χ)

(Y + χ)2
∂µΦ ∂µΦ.

(3.45)

The first line comes from the basic scalar kinetic terms Lkin. in Lagrangian (3.32). The

second line is the contribution LT of the gauge field of T , the third line arises from the

supergravity SU(2)R gauge fields. Each term is separately invariant under Heisenberg

variations. Collecting terms, the final form of the theory is

κ2L =
Y + 3χ

(Y + χ)2

[
1

4

(∂µY )2

Y + 2χ
+ 2∂µΦ ∂µΦ

]

+
Y + 2χ

(Y + 3χ)(Y + χ)2

(
∂µ Im Ŝ − 4Re Φ ∂µ Im Φ

)2
,

(3.46)

where

Ŝ = S + Φ2, (3.47)

for which Y = Ŝ + Ŝ − (Φ + Φ)2 and Im(dS − 2Φ dΦ) = d Im Ŝ − 4Re Φ d Im Φ. From the

existence of solutions (3.44) and positivity of the Lagrangian, the range of Y is Y + χ > 0

if χ > 0 and Y + 3χ > 0 if χ < 0. Writing as usual

L =
1

κ2
gab(∂µqa)(∂µqb) = Gab(∂µqa)(∂µqb), (3.48)

qa = (Y,Re Φ, Im Φ, Im Ŝ), and comparing ds2 = gab dqadqb with expression (3.4), we see

that the hypermultiplet kinetic metric gab is the CPH metric with

Y = V − 2χ = ρ2 − 2χ, (3.49)

and with14

Φ =
1√
2
(η + iϕ), Im Ŝ = −2τ. (3.50)

Positivity of kinetic terms is obtained if V = ρ2 > |χ| which is, as explained at the end of

subsection 3.1, the natural domain of V .

As already observed, the case χ = 0 corresponds to the SU(2, 1)/SU(2)×U(1) metric

ds2 =
1

Y 2

[
1

4
dY 2 +

(
d Im Ŝ − 4Re Φ d Im Φ

)2
]

+
2

Y
dΦdΦ. (3.51)

13 All fields and parameter χ are dimensionless.
14This choice is not unique. We may for instance rotate Φ using isometry M .
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With Kähler coordinates Ŝ and Φ, the Kähler potential is K = − ln Y , with Y = V =

Ŝ + Ŝ − (Φ + Φ)2.

This relatively simple construction of the one-loop-corrected dilaton hypermultiplet

metric allows easily to derive the full N = 2 supergravity Lagrangian, using N = 2 super-

conformal tensor calculus.

4 Zero-curvature hyper-Kähler limit

All quaternion-Kähler metrics are Einstein spaces with nonzero curvature. With one hy-

permultiplet, the scalar kinetic Lagrangian (3.48) verifies [1]

Rab = −6 gab = −6κ2 Gab. (4.1)

The link with global N = 2 supersymmetry is realized by defining a κ → 0 hyper-Kähler

limit of the CPH metric (3.4) or (3.46) in which, if feasible, the Heisenberg algebra does not

contract to an abelian symmetry. As observed in subsection 3.1, the magnitude of χ can

be eliminated by rescaling of the coordinates (in the absence of D-branes). We then have

three |χ|-independent cases to examine: firstly, positive χ, with V > 0; secondly, χ = 0

(V > 0) which is SU(1, 2)/SU(2)×U(1); thirdly, a negative χ, with V > |χ|. In each case,

we should seek to find a parameter-free zero-curvature limit. The most interesting case

turns out to be χ negative, which we first study.

With χ negative, we are interested in the CPH metric in the region V + χ ∼ 0. We

then apply to metric (3.4) the following change of variables:

V = 2|χ|κ2/3µ−1/3 C − χ , ϕ =
√

|χ| κ2/3µ−1/3 ϕ̂ ,

η =
√

|χ|κ2/3µ−1/3 η̂ , τ = |χ|κ4/3µ1/3 τ̂ ,
(4.2)

where µ is an arbitrary mass scale. Positivity of the metric, V + χ > 0 implies C > 0.

While the original fields are dimensionless, the new, hatted, fields (C, φ̂, η̂, τ̂) have canonical

dimension. With this choice of dependence in κ, the resulting metric is

ds2 = gab dqadqb =
κ2

2

µC
[
(κµ)2/3C + µ

]2
[

dC2

2κ2/3µ−1/3C + 1
+ dη̂2 + dϕ̂2

]

+
κ2µ2

2C

2(κµ)2/3C + µ

[(κµ)2/3C + µ]2

[
dτ̂ +

1

µ
η̂dϕ̂

]2

,

(4.3)

since χ = −|χ|. Using this metric in Lagrangian (3.48), the overall factor κ2 cancels and

we can take the limit κ → 0, with result

Lκ→0 =
C

2µ

[
(∂µC)2 + (∂µη̂)2 + (∂µϕ̂)2

]
+

µ

2C

[
∂µτ̂ +

1

µ
η̂ ∂µϕ̂

]2

. (4.4)

This scalar Lagrangian has the hyper-Kähler metric with Heisenberg symmetry (2.20)

with A = 1/µ and B = 0 and with relations Φ = 1√
2
(η̂ + iϕ̂), τ̂ = 2τ . As noticed earlier,

parameter B can always be absorbed in a shift of C, as long as A 6= 0.
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Notice that to obtain limit (4.4), we only need the change of variables (4.2) up to

higher orders in κ. In particular, according to eq. (3.9), we may write the four-dimensional

string dilaton as

e−2φ4 = 2|χ|κ2/3µ−1/3 C − 2χ,

φ4 = 〈φ4〉 − κ2/3µ−1/3φ̂4,

e−2〈φ4〉 = −2χ = 2|χ|, C = 2φ̂4,

(4.5)

in terms of the fluctuation φ̂4 and of the background value 〈φ4〉. Since |χ| = χ1 = χE/(12π),

we are considering the case of a positive Euler number χE = 2(h11 − h21), with h11, h12

the corresponding Betti numbers of the CY3 manifold. A typical example with a single

hypermultiplet would be IIA strings on a CY3 manifold with h21 = 0. Positivity-related

questions with several hypermultiplets, as is in particular the case with a negative Euler

number, should be reanalyzed.

Comparing the scalings (4.2) and the identification of the string coupling in the last

eq. (4.5), we see that the R-R fields η and ϕ carry as expected a supplementrary fac-

tor gstring.

We could also consider the single-tensor version of the theory. Dualizing τ̂ into Hµνρ,

we find

Lκ→0,ST =
C

µ

[
1

2
(∂µC)2 +

1

12
HµνρHµνρ + (∂µΦ)(∂µΦ)

]

− i

12µ
ǫµνρσ(Φ∂µΦ − Φ∂µΦ)Hνρσ.

(4.6)

This is the bosonic sector (2.8) of the single-tensor theory (2.7) with again A = 1/µ and

B = 0. Then, for negative χ, the N = 2 supergravity hypermultiplet with Heisenberg

symmetry is described in the global supersymmetry limit by the unique nontrivial theory

with the same symmetry.

For completeness, we may also consider the case of the CPH metric with positive χ.

The interesting limiting regions are V ∼ 0 and V − χ ∼ 0. If V = ρ2 ≪ χ,

ds2
CPH =

1

χ
(dρ2 + dη2 + dϕ2) +

4ρ2

χ3
(dτ + η dϕ)2. (4.7)

The appropriate rescalings are (ρ, η, ϕ, τ) = (
√

χκρ̂,
√

χκη̂,
√

χκϕ̂, χτ̂) to obtain

ds2
CPH = κ2

[
dρ̂2 + dη̂2 + dϕ̂2 + 4ρ̂2(dτ̂ + κ2 η̂dϕ̂)2

]
. (4.8)

The Heisenberg symmetry acting on the rescaled fields has algebra [X,Y ] = 2κ2Z. In the

limit κ → 0, it contracts to [X,Y ] = 0 and we find

lim
κ→0

1

κ2
ds2

CPH = dρ̂2 + 4ρ̂2dτ̂2 + dη̂2 + dϕ̂2, (4.9)

which is the trivial four-dimensional euclidean space. The second region of interest if χ > 0

is V − χ ∼ 0. First, we change coordinates to

V = 2λC + χ, η = λη̂/
√

χ, ϕ = λϕ̂/
√

χ, τ = λτ̂ (4.10)
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and the metric for λ → 0 and χ finite reads

ds2
CPH =

1

2C2

[
dC2 + dη̂2 + dϕ̂2 + dτ̂2

]
. (4.11)

This limiting metric is SO(1, 4)/SO(4), again with Rij = −6gij and with radius ∼ 〈C〉. In

the large radius, zero-curvature limit, the metric is trivial. Finally, in the SU(1, 2)/SU(2)×
U(1) case χ = 0, the zero-curvature limit is again trivial.

The conclusion is that in the zero-curvature limit, the CPH one-loop Lagrangian for

the dilaton hypermultiplet is the hyper-Kähler N = 2 sigma-model with Heisenberg sym-

metry (2.7). If the one-loop parameter χ is negative, then A 6= 0 and the Heisenberg

algebra has a non-trivial realization in this limit. If χ ≥ 0 however, A = 0 and the limit of

N = 2 global supersymmetry is the free hypermultiplet. In the string context, the above

non-trivial limit can be taken if the string coupling is tuned at a fixed value, according to

the third line of eq. (4.5), which applies with positive Euler number.

In ref. [7], we have constructed the interaction of a hypermultiplet with the Dirac-Born-

Infeld Maxwell Lagrangian. The hypermultiplet sector has a full linear N = 2 supersymme-

try while the second supersymmetry is nonlinearly realized on the Maxwell superfield Wα.

As an application of our results, we can easily use our identification of the string universal

hypermultiplet. The bosonic DBI action, after elimination of the Maxwell auxiliary field

and using the single-tensor formulation, is15

LDBI =
1

8f
(2gReΦ − 1

f
)

[
1 −

√
1 +

2g2C2

(2g Re Φ − 1
f
)2

√
− det(ηµν + 2

√
2f Fµν)

]

+gǫµνρσ

(
f

4
ImΦFµνFρσ − 1

4
BµνFρσ +

1

24f
Cµνρσ

)
.

(4.12)

In this expression, f is the breaking scale of the second, nonlinearly realized supersymetry

(with dimension (energy)−2) and g is the Chern-Simons coupling16 (equal to the string

coupling for a D3-brane). The four-form field Cµνρσ is a component of the single-tensor

multiplet required by supersymmetry of the nonlinear theory [7].

Since we have control of the kinetic Lagrangian of the universal string hypermultiplet

in the global supersymmetry limit, we can then identify the single-tensor fields in terms

of string fields. First, C is the global dilaton and Bµν is the NS-NS tensor. Then, the

complex scalar Φ includes the R-R fields. The supersymmetric minimum of the scalar

potential included in theory (4.12) implies 〈C〉 = 0 and Φ corresponds to flat directions of

this vacuum.

5 Conclusions

In this work, we analyzed the effective field theory of the universal dilaton hypermultiplet of

type II string compactifications on a CY3 manifold with a special emphasis on the global

15In ref. [7], this is the electric version of the theory, induced by a N = 2 Chern-Simons coupling gB ∧F .
16In contrast to ref. [7], we have defined single-tensor fields with canonical dimension so that g has

dimension (energy). We also chose the Fayet-Iliopoulos term to be 1/F so that gauge kinetic terms are

canonically normalized at ReΦ = 0.
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supersymmetry limit. The perturbative isometries form the two-dimensional Euclidean

algebra E2 with a central extension, which contains a Heisenberg subalgebra. Using this

isometry as a guiding principle and the method of quaternionic quotient in conformal

supergravity, we rederived the two-derivative N = 2 supergravity action, depending on

a deformation parameter that corresponds to the one-loop correction proportional to the

Euler number of the CY3 manifold. We then established the precise connection with a

one-parameter family of hyper-Kähler spaces in N = 2 global supersymmetry, possessing

the same isometry, by defining a non-trivial gravity decoupled limit characterized by a

new mass scale. This requires the string coupling to be tuned at a fixed value which only

occurs for a positive Euler number. As the latter becomes large, the theory becomes weakly

coupled, justifying the perturbative approximation in taking the global limit. Notice that

in the absence of moduli stabilization effects, this positivity requirement is compatible

with the possibility of choosing h21 = 0 in type IIA, that guarantees the absence of other

hypermultiplets in the spectrum, which could modify the constraints we derived from the

positivity of the metric. It would be interesting to understand this requirement in the

general case.
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