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Abstract

The string coupling of N = 2 supersymmetric compactifications of type II string
theory on a Calabi-Yau manifold belongs to the so-called universal dilaton hy-
permultiplet, that has four real scalars living on a quaternion-Kähler manifold.
Requiring Heisenberg symmetry, which is a maximal subgroup of perturbative
isometries, reduces the possible manifolds to a one-parameter family that de-
scribes the tree-level effective action deformed by the only possible perturbative
correction arising at one-loop level. A similar argument can be made at the
level of global supersymmetry where the scalar manifold is hyper-Kähler. In this
work, the connection between global and local supersymmetry is explicitly con-
structed, providing a non-trivial gravity decoupled limit of type II strings already
in perturbation theory.
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1 Introduction

Type II superstring theories compactified on a Calabi-Yau threefold (CY3) yield N = 2

supersymmetry in four dimensions. Even if gauge symmetries are absent in perturba-

tion theory, the study of the effective field theory plays an important role in moduli

stabilization by fluxes, as well as in a more realistic framework, such as in the presence

of orientifolds and D-branes. Besides supergravity fields, their massless spectra involve

vector multiplets and hypermultiplets describing all Kähler class and complex struc-

ture deformations of the CY3 manifold, as well as a universal hypermultiplet containing

the string dilaton. Because of its special connection to the string coupling, the study

of this universal hypermultiplet is an important problem per se. In the following, we

restrict ourselves to this sector which also becomes exact in the particular case of a

compactification with no Kähler class (complex structure) moduli in type IIB (IIA),

or when these closed string moduli are fixed.

The dilaton hypermultiplet contains four real scalars parametrizing a quaternion-

Kähler manifold, as required by N = 2 supergravity [1]. Two of them come from the

NS-NS (Neveu-Schwarz) sector and correspond to the string dilaton (associated to the

string coupling constant) and the universal axion, Poincaré dual of the antisymmetric

tensor Bµν . The other two come from the R-R (Ramond) sector and are obtained from

various n-form gauge potentials. On the IIB side, they correspond to another scalar

(0-form) C0 and the dual of the two-form Cµν . At the string tree-level, these four

scalars live on the symmetric coset SU(1, 2)/SU(2) × U(1) which is also Kähler [2].

Perturbative string corrections keep at least three isometries corresponding to the three

independent shifts of the NS-NS axion and the R-R scalars, generating the Heisenberg

algebra. Imposing just these isometries and the quaternion-Kähler structure, one finds

that the only possible perturbative correction arises at one loop, destroying the Kähler

structure of the manifold [3]. This correction was computed in [4, 3] and was found to

be proportional to the Euler number of the CY3.

More precisely, in the context of IIB superstrings, the Heisenberg algebra is gener-

ated by a combination of the gauge symmetries of the two antisymmetric tensors Bµν

(NS-NS) and Cµν (R-R) and of the shift symmetry of the R-R scalar C0:

δBµν = 2 ∂[µΛν], δCµν = 2 ∂[µΛ̃ν] + λBµν , δC0 = λ. (1.1)

As a consequence, the theory depends on the invariant three-forms

Hµνρ = 3 ∂[µBνρ], Fµνρ = 3 ∂[µCνρ] − C0Hµνρ (1.2)

and on ∂µC0. The Heisenberg algebra follows from

[δ1, δ2]Cµν = 2 ∂[µλ2Λ1ν] − 2 ∂[µλ1Λ2ν]. (1.3)
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After reduction to four dimensions, the gauge symmetries imply that each tensor can

be dualized into a scalar field with axionic shift symmetry. The third global symmetry

(with parameter λ) combines then with the axionic shifts to realize again the Heisenberg

algebra on three scalar fields.

Indeed, one obtains three scalar fields ϕ, τ and η = C0, with Heisenberg variations

δη = cX , δϕ = cY , δτ = cZ − cXϕ . (1.4)

The scalars ϕ and τ are Poincaré dual to Cµν and Bµν , respectively. The duality

relations are, schematically,

∂µϕ ∼ ǫµνλρF
νλρ, ∂µτ + η ∂µϕ ∼ ǫµνλρH

νλρ .

The algebra is [X, Y ] ∼ Z, with Y and Z generating the axionic shifts (with parameters

cY and cZ), while X generates the shift of the R-R scalar (with parameter cX). Notice

that the central charge of the algebra is (depending on the representation) the gauge

symmetry of the R-R tensor and the axionic symmetry of τ , dual to the NS-NS tensor.

Actually, as we will see later on, the Heisenberg algebra is extended by a fourth per-

turbative generator M that rotates X, Y and commutes also with the central charge Z:

δMη = cMϕ , δMϕ = −cMη , δMτ =
cM
2
(η2 − ϕ2). (1.5)

Equivalently, M rotates the phase of the complex R-R scalar η + iϕ. As a result, the

perturbative symmetry becomes the two-dimensional Euclidean group E2 with central

extension Z.

Imposing N = 2 supersymmetry and Heisenberg symmetry is a powerful constraint.

In a previous work [5], we have briefly analyzed its implications in global N = 2 super-

symmetry, where hypermultiplet scalars form a Ricci-flat hyper-Kähler manifold [6].

For a single hypermultiplet, we found a unique non-trivial hyper-Kähler space admit-

ting a one-parameter deformation. In local supersymmetry where hypermultiplets live

on quaternion-Kähler manifolds [1], a one-parameter family of solutions emerges [3]

from the general analysis of Calderbank and Pedersen [7]. These similar results sug-

gest a correspondence between the local and global cases which could be studied using

a Ricci-flat limit of the quaternion-Kähler manifold preserving the Heisenberg algebra.

This is the main goal of the present article.

Taking the limit κ → 0 in a hypermultiplet theory coupled to N = 2 supergravity

is a subtle problem. In contrast to the simplest case of N = 1, N = 2 supergravity

imposes that the curvature of the hypermultiplet scalar manifold is proportional to

the gravitational coupling κ2 and hence the curved, quaternion-Kähler Einstein metric
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of the local hypermultiplet smoothly turns to a Ricci-flat hyper-Kähler metric. How-

ever, to obtain a non-trivial space, an appropriate limit must be defined, involving a

new mass scale that should remain finite as Planck mass goes to infinity. This mech-

anism has only been explicitly displayed for some particular cases, mostly using the

quaternionic quotient method [8, 9].

Thus, in this work, we establish the precise connection between the local and global

N = 2 supersymmetric actions of a single hypermultiplet with Heisenberg isometry, to

explicitly obtain the gravity-decoupled limit. We first reconstruct the N = 2 super-

gravity Lagrangian using the method of quaternionic quotient, starting with supercon-

formal supergravity and imposing gauge conditions and constraints. We then define

the zero-curvature limit that reduces the perturbative-corrected metric of the dilaton

hypermultiplet to the non-trivial hyper-Kähler form found in [5]. It turns out that

the deformation parameter corresponding to the one-loop correction plays a crucial

role. Indeed, the zero-curvature limit of the tree level SU(1, 2)/SU(2)×U(1) metric is

trivial, leading to free kinetic terms. The presence of the one-loop parameter however

allows for a non-trivial limit, giving rise to a hyper-Kähler metric that depends on a

mass scale which remains finite as the four-dimensional Planck mass goes to infinity.

At the same time, the value of the string coupling is tuned to a fixed value determined

by the one-loop correction and can be made weak for large and positive Euler number

of the CY3 manifold, so that non-perturbative corrections remain suppressed while

taking the gravity decoupled limit.

This paper is organized as follows. In Section 2, we recall the global construction

of a four-dimensional hyper-Kähler manifold with the Heisenberg isometry in three

formulations [5]: single-tensor which has the advantage of an off-shell N = 2 super-

symmetry formulation, scalar that provides a geometric description with a metric, and

double tensor corresponding to the type IIB string basis1. In Section 3, we first review

the Calderbank-Pedersen metric with Heisenberg symmetry and show that the latter

is actually extended by a fourth generator which commutes with its central charge and

rotates the other two. This generates a fourth perturbative isometry of the metric,

as described above. We then rederive in supergravity the quaternion-Kähler metric

with the Heisenberg isometry [3], by taking an appropriate quaternionic quotient of

the symmetric quaternion-Kähler space Sp(2, 4)/Sp(2)× Sp(4) containing two hyper-

multiplets. Their reduction to one is achieved by gauging a symmetry corresponding to

the central charge of the Heisenberg algebra. In Section 4, we take the zero-curvature

limit, leading to the one parameter hyper-Kähler manifold with Heisenberg symmetry

of Section 2. We thus find the correspondence of string fields in the rigid globally

1Note though that the basis of string vertex operators corresponds to the single-tensor representa-
tion [3].
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supersymmetric limit and we also discuss the coupling of the dilaton hypermultiplet

to a D-brane where one of the two supersymmetries in non-linearly realized. Finally,

Section 5 contains some concluding remarks.

2 On the Heisenberg algebra and global supersym-

metry

2.1 Lagrangians

Consider a N = 1 globally supersymmetric theory with two superfields, a chiral Φ and

a real linear L. It contains three real scalars, Reφ = ReΦ|θ=0, Im φ = ImΦ|θ=0, and

C = L|θ=0, and L also depends on the curl of an antisymmetric tensor Hµνρ = 3 ∂[µBνρ].

The Lagrangian (up to two derivatives) is

L =

∫
d2θd2θH(L,Φ,Φ) +

∫
d2θW (Φ) +

∫
d2θW (Φ) . (2.1)

Besides the gauge invariance of Bµν which does not act on the superfields, we also

impose a two-parameter global symmetry acting on Φ with variations

δΦ = α− iβ. (2.2)

In this formulation, all three symmetries trivially commute. Nevertheless, in the ver-

sion where Bµν is dualized to a scalar, or in the version where Imφ (for instance) is

transformed into a second antisymmetric tensor, the three-parameter symmetry real-

izes a Heisenberg algebra acting either on three scalars according to Eq. (1.4), as in the

hypermultiplet formulation of IIB strings compactified to four dimensions, or on two

tensors and one scalar according to Eqs. (1.1) and (1.3). The Lagrangian compatible

with the required symmetry (2.2) has

H(L,Φ,Φ) = F(L) + [AL+B]ΦΦ, W (Φ) = kΦ, (2.3)

with an arbitrary function F(L) and real constants A andB. 2 The constant k generates

a C–dependent potential V = |k|2/(AC+B) which does not admit a vacuum if A 6= 0.

We take then k = 0.

The superfields Φ and L provide an off-shell representation of the N = 2 single-

tensor multiplet. On the N = 1 Lagrangian, the condition for a second supersymmetry

is [10]3

∂2H
∂L2

+ 2
∂2H
∂Φ∂Φ

= 0, (2.4)

2Of course, B can be eliminated by a constant shift of L.
3The same conventions as in Ref. [5] are used. They slightly differ from Ref. [10].
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which in turn indicates that

FN=2(L) = −A

3
L3 −BL2. (2.5)

The same theory is given by

F̂N=2(L) = − 1

3A2
(AL+B)3. (2.6)

Hence, the N = 2 theory compatible with complex shift symmetry of Φ is the sum

LN=2 =

∫
d2θd2θ

[
A

(
−1

3
L3 + LΦΦ

)
+B(−L2 + ΦΦ)

]
(2.7)

of a trilinear interacting term and of a free term where the symmetry is trivial. If

canonical dimensions are assigned to L and Φ, A has dimension (mass)−1 and B is

dimensionless.

Fur further use, we need the bosonic component expansion of this superfield theory.

Using

L(x, θ, θ) = C + θσµθ vµ +
1
4
θθθθ2C, vµ = 1

6
ǫµνρσH

νρσ, Hνρσ = 3 ∂[νBρσ],

Φ(x, θ, θ) = φ(x)− iθσµθ ∂µφ− θθf − 1
4
θθθθ2φ,

we obtain4

LN=2, bos. = (AC +B)
[
1
2
(∂µC)2 + (∂µφ)(∂

µφ) + 1
12
HµνρHµνρ

]

− i
12
A ǫµνρσ(φ∂µφ− φ ∂µφ)Hνρσ.

(2.8)

Since, ∂[µHνρσ] = 0, the variation (2.2) of φ induces a total derivative. Kinetic terms

are positive if AC+B > 0. If A 6= 0, B can be eliminated by shifting C. The (shifted)

field C will be assumed strictly positive and the two options are an interacting, cubic

theory with A > 0 and B = 0, or the free theory A = 0, B > 0.

We may then perform two supersymmetric duality transformations [11] on theory

(2.3), either turning the linear L into a chiral S or turning the chiral Φ into a second

linear multiplet L′. The first transformation leads to

L =

∫
d2θd2θ

[
F̃(Y) +BΦΦ

]
, (2.9)

where F̃(Y) is the Legendre transform of F(L) and the variable is5 Y = S+S+AΦΦ.

Invariance of Y under shift symmetries (2.2) requires a compensating variation of S:

δHS = (αδX + βδY + γδZ)S = −A(α + iβ)Φ + 2iγ, (2.10)

4The auxiliary field f vanishes.
5Notice that

∫
d2θd2θΦΦ = 1

A

∫
d2θd2θY + derivative.
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where the axionic shift symmetry of ImS is dual to the gauge symmetry of Bµν , and

the subscripts X, Y, Z make clear the correspondence with the transformations (1.4).

Indeed, since

[δ′H , δH ]S ≡ −A(α′ + iβ ′)δHΦ+ A(α + iβ)δ′HΦ = 2iA(α′β − αβ ′), [δH , δ
′
H ]Φ = 0,

(2.11)

the chiral theory has Heisenberg symmetry. Moreover, the theory (2.9) has another

symmetry M rotating the chiral superfield Φ, as already mentioned in the Introduction

(see Eq. (1.5)).

For the N = 2 single-tensor theory (2.7), the dual hypermultiplet theory6 is

LN=2 =

∫
d2θd2θK(Y) =

2

3A2

∫
d2θd2θ

(
AY +B2

)3/2
. (2.12)

Eliminating some derivatives, the limiting case A = 0 is a free theory. As required for

a hyper-Kähler sigma-model, the determinant of the Kähler metric is constant (and

positive).

A useful change of variable is

Ŝ = S − A

2
Φ2, Y = Ŝ + Ŝ +

A

2
(Φ + Φ)2. (2.13)

and transformation (2.10) becomes δH Ŝ = −2AαΦ + 2iγ. With these variables, the

transformations with parameters β and γ only act as shift symmetries of ImΦ and Im Ŝ

respectively. In terms of variables Y , Im Ŝ, ReΦ and ImΦ, one immediately deduces

that the most general Heisenberg-invariant supersymmetric theory is of the form (2.9).

Performing the second duality transformation of the chiral Φ into a linear L′, always

leads to the dual theory

L =

∫
d2θd2θ

[
F(L)− 1

2

L′2

AL+B

]
, (2.14)

with F given in Eq. (2.5). Expression (2.14) is actually the most general N = 1

Lagrangian for L and L′ with symmetry

δL′ = α(AL+B). (2.15)

This transformation, which links the two antisymmetric tensors in L and L′ as in

variation (1.1), forms with their respective gauge symmetries a Heisenberg algebra

realized as in type IIB strings.

6With positive Kähler metric.
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Instead of ImΦ, we could have chosen to dualize eiaΦ for any phase a, since
∫

d2θd2θ (AL+B)ΦΦ =
1

2

∫
d2θd2θ (AL+B)(eiaΦ + e−iaΦ)2 + derivative.

The result would be again theory (2.14). This is a consequence of symmetry M , which

is however fixed by the choice of dualization and does not act on L′.

2.2 Hyper-Kähler metrics with Heisenberg symmetry

The Kähler coordinates defined by N = 1 chiral superfields S and Φ are not necessarily

the most appropriate to describe a hyper-Kähler manifold. There is a ‘standard’ set of

coordinates used to describe hyper-Kähler metrics with shift isometries in the literature.

For comparison purposes, we define in this Subsection these coordinates in terms of

our superfield components.

For any hyper-Kähler manifold with a shift symmetry, one can find coordinates in

which the metric has the Gibbons-Hawking form [12]

ds2 = f(~x) dxi dxi + f(~x)−1(dτ + ωi dxi)
2, (2.16)

with condition ~∇ × ~ω = ~∇f . Imposing the requirement of a Heisenberg symmetry

acting according to

δH x1 =
√
2α, δH x2 = −

√
2β, δH x3 = 0, δH τ = −

√
2αx2 + γ (2.17)

also defines dτ+x1 dx2 as the invariant derivative of τ and indicates that ~ω = (0, x1, 0).

The value of f(~x) follows then from ~∇×~ω = ~∇f . This last condition is invariant under

~ω → ~ω+ ~∇λ(~x), for any gauge function λ(~x). In turn, invariance of the metric requires

the compensating transformation τ → τ − λ(~x).

From the N = 2 Kähler potential (2.12), the Kähler metric can be written7

ds2 = 1
2
(AY +B2)−1/2

[
1
4
dY2 +

(
d ImS + iA

2
(Φ dΦ− Φ dΦ)

)2
]

+(AY +B2)1/2 dΦdΦ,

(2.18)

using coordinates (Y , ImS,ReΦ, ImΦ). The supersymmetric duality transformation

from L to S exchanges a real scalar C = L|θ=0, invariant under Heisenberg variations,

and ReS with variation (2.10). The Legendre transformation defines the change of

variable from Y to C:

AC +B =
√

AY +B2. (2.19)

7From here on, we do not distinguish chiral superfields S and Φ and their lowest complex scalar
components.
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Then, in terms of coordinates (C, ImS,ReΦ, ImΦ), the metric becomes

ds2 =
AC +B

2

[
dC2 + 2 dΦdΦ

]
+

2

(AC +B)

(
dτ + AReΦ d ImΦ

)2

. (2.20)

This is the Gibbons-Hawking metric (2.16) with ~x = (
√
2ReΦ,

√
2 ImΦ, C) and

τ =
1

2
(ImS − AReΦ ImΦ) =

1

2
Im Ŝ.

The function

f(~x) =
AC +B

2
(2.21)

solves the hyper-Kähler condition ~∇ × ~ω = ~∇f with ~ω = (0, A
2
x1, 0). Choosing for

instance λ = −A
2
x1x2 turns then ~ω into (−A

2
x2, 0, 0) and dτ+ A

2
x1dx2 into dτ− A

2
x2dx1.

Similarly, a rotation of Φ

δM x1 = mx2, δM x2 = −mx1,

which is compatible with the shift symmetry (2.2), corresponds to λ(~x) = Am
4
(x2

2−x2
1).

It is the isometry M of metric (2.20).

The conclusion is that the Gibbons-Hawking Ansatz for the hyper-Kähler metric

corresponds to coordinates where ReS is replaced by its Legendre dual C, which is

also the lowest scalar component of the linear superfield dual to S.

3 The universal hypermultiplet in N = 2 super-

gravity

Hypermultiplet scalars of N = 2 supergravity live on 4n–dimensional quaternion-

Kähler manifolds with holonomy included in Sp(2n) × Sp(2). Supergravity requires

that the curvature of these Einstein spaces is proportional to the gravitational coupling

κ2 [1]. Hence, the decoupling limit κ → 0 turns the hypermultiplet manifold into a

Ricci-flat hyper-Kähler space, as required by global N = 2 supersymmetry [6]. For a

single hypermultiplet, or a four-dimensional quaternion-Kähler manifold, the defining

condition on the holonomy is not pertinent since Sp(2)×Sp(2) ∼ SO(4). The relevant

condition is then self-duality of the Weyl tensor.

3.1 The Calderbank-Pedersen metric with Heisenberg sym-
metry

Calderbank and Pedersen [7] have classified all four-dimensional Einstein metrics with

self-dual Weyl curvature and two commuting isometries. Using coordinates (ρ, η, ϕ, τ)
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with the isometries acting as shifts of ϕ and τ , their metrics are written in terms of

any single function F (ρ, η) verifying

∂2F

∂ρ2
+

∂2F

∂η2
=

3F

4ρ2
. (3.1)

It is simple to see [3] that metrics with Heisenberg symmetry are then obtained if F

does not depend on η, i.e. if 8

√
ρF (ρ) =

1

2
[ρ2 − χ], (3.2)

with an arbitrary real parameter χ. The Calderbank-Pedersen metric with Heisenberg

symmetry (the CPH metric) reads then

ds2CPH =
ρ2 + χ

(ρ2 − χ)2
(dρ2 + dη2 + dϕ2) +

4ρ2

(ρ2 − χ)2(ρ2 + χ)
(dτ + η dϕ)2 . (3.3)

The coordinate ρ is positive, ρ > 0, and positivity of the metric requires ρ2 +

χ > 0, a stronger condition if χ is negative. It is an Einstein metric with negative

curvature, and is Kähler only if χ = 0. Notice that if χ 6= 0, the rescaling (ρ, η, ϕ, τ) →
(|χ|1/2ρ, |χ|1/2η, |χ|1/2ϕ, |χ|τ) turns χ in metric (3.3) into ±1. This is not true if we

turn on string interactions, such as in the presence of D-branes where the dilaton, or

equivalently the field ρ, couples to the Dirac-Born-Infeld (DBI) action in a non-trivial

way (see Section 4). For this reason, we keep explicitly χ throughout the paper. We

may use a new coordinate V = ρ2 with metric

ds2CPH =
V + χ

(V − χ)2

(
dV 2

4V
+ dη2 + dϕ2

)
+

4V

(V − χ)2(V + χ)

(
dτ + η dϕ

)2

. (3.4)

The particular case χ = 0 has extended symmetry: it is the SU(2, 1)/SU(2) × U(1)

metric with Kähler potential

K(Ŝ, Ŝ,Φ,Φ) = − lnV, V = Ŝ + Ŝ − (Φ + Φ)2, (3.5)

and with Φ = 1√
2
(η + iϕ), τ = −1

2
Im Ŝ.

The CPH metric is invariant under four isometry variations acting on coordinates

(η, ϕ, τ):

δXη =
√
2, δY η = 0, δZη = 0, δMη = ϕ,

δXϕ = 0, δYϕ = −
√
2, δZϕ = 0, δMϕ = −η,

δXτ = −
√
2ϕ, δY τ = 0, δZτ = 1, δMτ = 1

2
(η2 − ϕ2).

(3.6)

8The metric does not make sense without the ρ3/2 contribution to F and the overall normalization
of F is a choice of coordinates. Our χ is χ̂ in Ref. [3].
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The non-zero commutators are

[X, Y ] = 2Z, [M,X ] = Y, [M,Y ] = −X. (3.7)

Hence, X , Y and Z generate the Heisenberg algebra and Z is a central extension of a

two-dimensional euclidean algebra generated by M (which rotates ϕ and η), X and Y

(which translate ϕ and η). With these conventions,

δH Φ = (αX + βY + γZ)Φ = α− iβ, δH Ŝ = 4αΦ− 2iγ (3.8)

and V is invariant.

The metric (3.4) appears in the one-loop-corrected Lagrangian of the universal

hypermultiplet of type II strings, reduced to four dimensions, with the NS-NS and

R-R tensors dualized to scalars with shift symmetry [3]. At one-loop order, the four-

dimensional dilaton field is related to coordinate V and parameter χ by

e−2φ4 = V − χ, χ = −χ1, χ1 =
χE

12π
, (3.9)

where χE is the Euler number of the internal CY3 manifold. The real number χ1

encodes the one-loop correction [3]. Notice that this relation also indicates that V −χ =

V +χ1 > 0, which is stronger than V = ρ2 > 0 if the Euler number is negative (χ > 0).

Since positivity of the CPH metric also requires V + χ > 0 if χ < 0, the domain of V

is naturally restricted to V > |χ|.

The R-R scalar is

C0 ≡ η , (3.10)

and is shifted by symmetry X . Finally, Poincaré duality gives the following equivalences

dϕ ∼ F3 = dC2 − η dB2,

dτ + η dϕ ∼ H3 = dB2.

In the scalar version, the central charge is the shift Z of τ (related to the NS-NS tensor

B2) while in the two-tensor version, it is the gauge variation of the (R-R) tensor C2.

Writing η and ϕ in a complex Φ is conventional: we always use

Φ =
1√
2
(η + iϕ).

In the previous Section, we found a unique four-dimensional hyper-Kähler manifold

with Heisenberg symmetry. It also admits the fourth isometry M rotating Φ. In the

quaternion-Kähler case, the theorem of Calderbank-Pedersen [7] leads then to a very

similar uniqueness conclusion. We will see how these two results are connected when

taking an appropriate zero-curvature limit. But we first want to obtain the N = 2

supergravity coupling of the universal hypermultiplet on the CPH manifold.
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3.2 Coupling to N = 2 supergravity

There are different methods to construct hypermultiplet couplings to N = 2 super-

gravity. The simplest procedure, which is however not the most general, is to use

hypermultiplets coupled to local N = 2 superconformal symmetry [13] and to per-

form a quaternionic quotient [8, 9] using supplementary hypermultiplet(s) and non-

propagating vector multiplet(s). In this Section, we use this procedure to obtain the

supergravity theory of the one-loop-corrected dilaton hypermultiplet.

Related constructions, using more general but also more complicated methods, can

be found in Ref. [14], in the language of projective superspace or in Ref. [15], using

harmonic superspace.

Conformal N = 2 supergravity is the gauge theory of SU(2, 2|2), which has a

SU(2)R×U(1)R R–symmetry with non-propagating gauge fields. Pure Poincaré N = 2

supergravity is obtained from the superconformal coupling of one propagating vector

multiplet9 (which may be charged under U(1)R) and one hypermultiplet (charged under

SU(2)R) by gauge-fixing of the extraneous symmetries. These two multiplets include

in particular the compensating fields used in the gauge-fixing to the Poincaré theory.

For the superconformal construction of our particular hypermultiplet sigma-model,

we also need a physical hypermultiplet, with positive kinetic metric, to describe the

dilaton multiplet. In addition, for the quaternionic quotient, we need a non-propagating

vector multiplet with gauge field Wµ, gauging a specific generator T to be discussed

below, and, since the elimination of the algebraic vector multiplet involves three con-

straints and one gauge choice on scalar fields, we also need a third non-physical hy-

permultiplet. Its kinetic metric can have a positive or negative sign, depending on the

constraints induced by the choice of T . Hence, we need to consider the N = 2 supercon-

formal theory of two vector multiplets and three hypermultiplets. The superconformal

hypermultiplet scalar sector has then an ‘automatic’ Sp(2, 4) global symmetry in which

the gauge generator T of the quaternionic quotient is chosen.

3.3 Sp(2, 4)

In the following, we consider three hypermultiplets coupled to (superconformal) N = 2

supergravity. One (compensating) hypermultiplet has negative signature, the physical

hypermultiplet has positive signature, the third hypermultiplet, associated to the non-

propagating vector multiplet, may have a positive or negative signature, depending on

the constraints applied to the scalar fields. In any case, we are considering Sp(2, 4)–

9Its gauge field is the graviphoton.
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invariant supergravity couplings of N = 2 hypermultiplets.

The hypermultiplet scalars are Aα
i , with SU(2)R index i = 1, 2 and Sp(2, 4) index

α = 1, . . . , 6. They transform in representation (6, 2) of Sp(2, 4) × SU(2)R. Their

conjugates are10

Ai
α = (Aα

i )
∗ = ǫijραβA

β
j (3.11)

with ραβρβγ = −δαγ and ǫijǫjk = −δik. We choose the Sp(2, 4)–invariant metric as

ρ = I3 ⊗ iσ2 =

(
0 I3

−I3 0

)
(3.12)

and we use

d =

(
η 0
0 η

)
, η = diag(−1, 1,−1), ρ d ρ = −d. (3.13)

In our choice of η, direction 1 corresponds to the superconformal compensator, direction

2 to the physical hypermultiplet and our choice of quaternionic quotient will require a

negative metric in direction 3; otherwise, our construction does not work. On scalar

fields, Sp(2, 4) acts according to

δAα
i = g tαβA

β
i , δAi

α = g tα
βAi

β, tα
β = −ραγ t

γ
δ ρ

δβ . (3.14)

Since relation (3.11) also implies tα
β = (tαβ)

∗, the choice (3.12) and the invariance of

dαβA
i
αA

β
i lead to

t =

(
U ηQ

−ηQ∗ U∗

)
, U † = −ηUη, Q = Qτ , t† = −d t d. (3.15)

This is an element of Sp(2, 4): U generates the U(1, 2) subgroup (9 generators) and Q

(12 generators) generates Sp(2, 4)/U(1, 2). The (2 × 2) matrix A† d tA, with matrix

elements Ai
αd

α
βt

β
γA

γ
j , is antihermitian, as required by gauge invariance of A†dA, and

traceless.

3.4 The Heisenberg subalgebra of SU(1, 2) and Sp(2, 4)

At string tree-level, the universal hypermultiplet of the dilaton in type II strings lives,

when formulated in terms of four real scalars, on the quaternion-Kähler and Kähler

manifold SU(1, 2)/SU(2) × U(1) = U(1, 2)/U(2) × U(1). Since U(1, 2) = SU(1, 2) ×
U(1)0 is maximal in Sp(2, 4), Sp(2, 4) has a unique generator commuting with SU(1, 2):

the generator of U(1)0. At one-loop however, the isometry is reduced and includes the

10We follow the conventions of the second paper of Ref. [13].
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Heisenberg algebra which is known to be a subalgebra of SU(1, 2). We need to find the

most general generator T of Sp(2, 4) which commutes with a Heisenberg subalgebra.

In the following subsections, we will perform the quaternionic quotient construction

induced by the gauging of T .

Since elements U of the U(1, 2) algebra verify U † = −η U η and we have chosen

η = diag(−1, 1,−1), a generic U is

U =




ia A B
A ib C
−B C ic


 , (3.16)

with a, b, c real, A, B, C complex and elements of SU(1, 2) are traceless. On a

three-dimensional complex vector, U(1, 2) variations are δA = UA.

We may define the Heisenberg subalgebra as the U(1, 2) transformations leaving

A1−A2 invariant: (δHA)1− (δHA)1 = (UA)1− (UA)2 = 0. The transformations acting

on A1 and A2 are generated by the following three elements

X =




0 0 1
0 0 1
−1 1 0


 , Y =




0 0 i
0 0 i
i −i 0


 , Z =




i −i 0
i −i 0
0 0 0


 (3.17)

which verify

0 = XZ = ZX = Y Z = ZY = Z2, XY = −Y X = Z, X2 = Y 2 = iZ. (3.18)

The Heisenberg algebra

[X, Y ] = 2Z, [X,Z] = [Y, Z] = 0 (3.19)

is then realized as a subalgebra of SU(1, 2), with variations

δH A = (αX + βY + γZ)A =




iγ −iγ α + iβ
iγ −iγ α + iβ

−α + iβ α− iβ 0







A1

A2

A3


 (3.20)

in the fundamental representation. Since Z is a central charge of the Heisenberg alge-

bra, we are interested in the elements of U(1, 2) which commute with Z. They form

an algebra generated by five elements, U0, M , X , Y and Z, with

U0 = iI3, M = i




1 0 0
0 1 0
0 0 −2


 (3.21)

(U0 generates the abelian factor of U(1, 2) = SU(1, 2)×U(1)0). Besides the Heisenberg

algebra generated by X, Y, Z, we also have

[M,X ] = 3Y, [M,Y ] = −3X (3.22)
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and M generates a rotation of (X, Y ) leaving X2+Y 2 = 2iZ invariant: [M,X2+Y 2] =

2i[M,Z] = 0.

One then easily checks that the most general U(1, 2) generator which commutes

with the Heisenberg algebra generated by X, Y, Z is proportional to

T̂ = U0 + χZ = i




1 + χ −χ 0
χ 1− χ 0
0 0 1


 , U0 = iI3, (3.23)

where χ is an arbitrary real number. If χ = 0, T̂ = U0 commutes with the whole

U(1, 2). If χ 6= 0, T̂ commutes with the Heisenberg algebra supplemented by U0 and

M . The extension to Sp(2, 4) is straightforward. Requiring that

T =

(
T̂ 0

0 T̂ ∗

)
(3.24)

in Sp(2, 4) commutes with an element of Sp(2, 4)/U(1, 2) corresponds to find a (non-

zero) symmetric matrix Q in Eq. (3.15) such that T̂ †Q is also antisymmetric, which

is impossible.11 Hence, T is also the most general generator in Sp(2, 4) which com-

mutes with the Heisenberg algebra generated by X , Y and Z in SU(1, 2). It actually

commutes with X , Y , Z, M and U0.

3.5 N = 2 supergravity scalar Lagrangian

To construct the scalar kinetic metric, the relevant terms of the N = 2 conformal

supergravity Lagrangian are [13, 8, 9]

e−1L = dαβ(DµA
β
i )(D

µAi
α) + (g dαβ A

i
αT

β
γA

γ
k Y

k
i + c.c.)

+1
6
R(−X0X0 + dαβA

i
αA

β
i ) + d(X0X0 +

1
2
dαβA

i
αA

β
i ).

(3.25)

The complex scalar X0 is the partner of the graviphoton, Y i
j , Y

i
i = 0, is the triplet of

real auxiliary scalars in the non-propagating vector multiplet with gauge field Wµ used

in the quaternionic quotient. The covariant derivatives are

DµA
α
i = ∂µA

α
i − g′WµT

α
βA

β
i − gVµi

jAα
j ,

DµA
i
α = ∂µA

i
α − g′WµTα

βAi
β − gVµ

i
jA

j
α,

(3.26)

where g and g′ are SU(2)R and U(1)T coupling constant. The (anti-hermitian) SU(2)

gauge fields Vµ i
j, Vµ i

i = 0, and the real auxiliary scalar d belong to the multiplet of

superconformal gauge fields:

Vµ i
j =

i

2
V x
µ (σ

x)i
j, Vµ

i
j = ǫikǫjlVµk

l = (Vµ i
j)∗.

11This would not be true for T̂ = Z, which commutes with a larger subalgebra of Sp(2, 4). The U0

component is necessary.
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We will commonly use a matrix notation, with a 6 × 2 complex matrix A and its

2× 6 conjugate A† replacing Aα
i and Ai

α. Condition (3.11) implies that A contains six

complex components only. It also implies, in particular, that A†dA = 1
2
Tr(A†dA) I2.

Since Vµ = −V †
µ , the Lagrangian and the derivatives read

e−1L = Tr(DµA
†)d(DµA) + gTr Y A†d TA+ c.c.

+1
6
R(−X0X0 + TrA†dA) + d(X0X0 +

1
2
TrA†dA);

DµA = ∂µA− g′WµTA− gAVµ,

DµA
† = ∂µA

† − g′WµA
†T † + gVµA

†.

(3.27)

Constraints are obtained from the elimination of the auxiliary fields and from the

gauge-fixing of dilatation symmetry in the Poincaré theory:

• Einstein frame gauge-fixing condition and d auxiliary field equation:

X0X0 =
1

κ2
, TrA†dA = − 2

κ2
. (3.28)

The second condition is invariant under SU(2)R and Sp(4, 2). With an SU(2)

gauge choice, it allows to eliminate four scalar fields and would lead to the

Sp(4, 2)/Sp(4)× Sp(2) sigma-model.

• Auxiliary fields Y i
j :

A†d TA = 0. (3.29)

Since this 2× 2 matrix is traceless and antihermitian, these conditions eliminate

three scalars and the associated abelian gauge invariance removes a fourth field.

The SU(2)R gauge fields Vµi
j and the abelian Wµ have then algebraic field equations:

• Gauge field Wµ, associated with generator T :

Wµ =
Tr(∂µA

†d TA− A†d T∂µA)

2g′Tr(A†T †d TA)
. (3.30)

• SU(2)R gauge fields Vµ i
j:

Vµ = −∂µA
†dA− A†d ∂µA

gTr(A†dA)
. (3.31)

According to the second Eq. (3.28), the denominator is −2g/κ2.
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At this point, the scalar kinetic Lagrangian in theory (3.25) reduces to

e−1L = e−1(Lkin. + LT + LSU(2))

= Tr(∂µA
†)d(∂µA)− g′2Tr(A†T †d TA)W µWµ − g2

κ2 Tr(V
µVµ).

(3.32)

The scalar fields are submitted to constraints (3.28) and (3.29) and the gauge fields

Wµ and Vµ i
j are defined by their field equations (3.30) and (3.31).

To study the constraints (3.28) and (3.29) for our specific choice (3.23) and (3.24)

of gauged generator T , we introduce two three-component complex vectors:

Aα
i =

(
~A+

~A−
− ~A∗

−
~A∗
+

)
, Ai

α =

(
~A∗
+

~A∗
−

− ~A− ~A+

)
, (3.33)

verifying the reality condition (3.11). On each doublet A+a, A−a, a = 1, 2, 3, act

two different SU(2) groups. Firstly, the superconformal SU(2)R acts on ± indices.

Secondly, Sp(2, 4) ⊃ Sp(2)1 × Sp(2)2 × Sp(2)3 ∼ SU(2)1 × SU(2)2 × SU(2)3 and

(A+a,−A∗
−a) is a doublet of SU(2)a. One could define three quaternions

Qa =

(
A+a A−a

−A∗
−a A∗

+a

)
a = 1, 2, 3 (3.34)

with a left action of SU(2)a and a right action of the superconformal SU(2)R. They

verify (for each a)

Qa Q
†
a = Q†

aQa = detQa I2, detQa = |A+a|2 + |A−a|2. (3.35)

The second condition (3.28) from N = 2 supergravity becomes:

~A∗
+ · ~A+ + ~A∗

− · ~A− = − 1

κ2
, ~A∗ · ~A = ~A†η ~A = −|A1|2 + |A2|2 − |A3|2. (3.36)

With Eq. (3.24), condition (3.29) leads to three (real) equations:

~A†
+ iηT̂ ~A+ = ~A†

− iηT̂ ~A−,

~A†
− iηT̂ ~A+ = 0

(3.37)

([iηT̂ ]† = iηT̂ ). With the explicit form of T̂ , Eq. (3.23), and defining dimensionless

fields a±i =
√
2κA±i, the four constraints (3.36) and (3.37) read finally

I : |a+1|2 + |a−1|2 − |a+2|2 − |a−2|2 + |a+3|2 + |a−3|2 = 2,

II : −|a+1|2 + |a+2|2 − |a+3|2 − χ|a+1 − a+2|2

= −|a−1|2 + |a−2|2 − |a−3|2 − χ|a−1 − a−2|2,

III : 0 = −a+1a−1 + a+2a−2 − a+3a−3 − χ(a+1 − a+2)(a−1 − a−2).

(3.38)

They are invariant under Heisenberg variations (3.20) of ~a+ and ~a−. The case χ = 0 has

been considered by Galicki [8]. Since it leads to SU(1, 2)/SU(2) × U(1), coordinates

more appropriate for this larger isometry have been used.
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3.6 Solving the constraints

To solve the constraints (3.38), we insist on keeping in ~a− a field Φ which transforms

under the Heisenberg variations12 δH ~a− = (αX + βY + γZ)~a− with a complex shift:

δH Φ = α− iβ. (3.39)

This is the case if a−1 = a−2, and a−3 is then invariant. We may define Φ = a−1/a−3

and constraint III reduces to a+3 = (a+2 − a+1)Φ. Since

δH

(
a+2 + a+1

a+2 − a+1

)
= −2iγ + 2(α + iβ)

a+3

a+2 − a+1

= −2iγ + 2Φ δHΦ,

we finally define

S =
a+2 + a+1

a+2 − a+1
+ Y, δHS = −2iγ + 2(α + iβ)Φ (3.40)

and the quantity

Y = S + S − 2ΦΦ (3.41)

is invariant under Heisenberg variations. The algebra follows from [δ′H , δH ] = (α′β −
αβ ′)[X, Y ] = 2(α′β − αβ ′)Z:

[δ′H , δH ]S = 2(α′ + iβ ′)δHΦ− 2(α+ iβ)δ′HΦ = −4i(α′β − αβ ′) = 2(α′β − αβ ′)Z.

These definitions are summarized in the choice

~a− =
K

∆




Φ

Φ
1


 , ~a+ =

1

∆




S − Y − 1
S − Y + 1

a


 , (3.42)

with complex fields S, Φ and a. The four available gauge choices have been used

to take ∆ = |∆|, K = |K| and a−1 = a−2. Under Heisenberg variations, ∆ and K

are invariant. Hence, we are left with eight real scalar fields submitted to the four

constraints (3.38) which drastically simplify:

I : ∆2
(
2− |a+1|2 + |a+2|2 − |a+3|2

)
= K2,

II : 2(S + S)− |a|2 − 4Y = 4χ−K2,

III : a = 2Φ.

(3.43)

Hence, the solution is

~a− =

√
Y + 2χ

Y + χ




Φ
Φ
1


 , ~a+ =

1√
2(Y + χ)




S − Y − 1
S − Y + 1

2Φ


 . (3.44)

12See Eq. (3.20).
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The solution implies Y + χ > 0 if χ > 0 or Y + 2χ > 0 if χ < 0. The scalar kinetic

Lagrangian (3.32) obtained from this solution is13

κ2L =
(Y + 3χ)

4(Y + 2χ)(Y + χ)2
(∂µY )2 − 2

Y + χ
∂µΦ ∂µΦ

+
1

2(Y + χ)(Y + 3χ)

[
Im(∂µS − 2Φ ∂µΦ)

]2

+
1

2(Y + χ)2
[
Im(∂µS − 2Φ ∂µΦ)

]2
+

4(Y + 2χ)

(Y + χ)2
∂µΦ ∂µΦ.

(3.45)

The first line comes from the basic scalar kinetic terms Lkin. in Lagrangian (3.32). The

second line is the contribution LT of the gauge field of T , the third line arises from the

supergravity SU(2)R gauge fields. Each term is separately invariant under Heisenberg

variations. Collecting terms, the final form of the theory is

κ2L =
Y + 3χ

(Y + χ)2

[
1

4

(∂µY )2

Y + 2χ
+ 2∂µΦ ∂µΦ

]

+
Y + 2χ

(Y + 3χ)(Y + χ)2

(
∂µ Im Ŝ − 4ReΦ ∂µ ImΦ

)2

,

(3.46)

where

Ŝ = S + Φ2, (3.47)

for which Y = Ŝ + Ŝ − (Φ + Φ)2 and Im(dS − 2Φ dΦ) = d Im Ŝ − 4ReΦ d ImΦ. From

the existence of solutions (3.44) and positivity of the Lagrangian, the range of Y is

Y + χ > 0 if χ > 0 and Y + 3χ > 0 if χ < 0 Writing as usual

L =
1

κ2
gab(∂µq

a)(∂µqb) = Gab(∂µq
a)(∂µqb), (3.48)

qa = (Y,ReΦ, ImΦ, Im Ŝ), and comparing ds2 = gab dq
adqb with expression (3.4), we

see that the hypermultiplet kinetic metric gab is the CPH metric with

Y = V − 2χ = ρ2 − 2χ, (3.49)

and with14

Φ =
1√
2
(η + iϕ), Im Ŝ = −2τ. (3.50)

Positivity of kinetic terms is obtained if V = ρ2 > |χ| which is, as explained at the end

of Subsection 3.1, the natural domain of V .

13 All fields and parameter χ are dimensionless.
14This choice is not unique. We may for instance rotate Φ using isometry M .
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As already observed, the case χ = 0 corresponds to the SU(2, 1)/SU(2) × U(1)

metric

ds2 =
1

Y 2

[
1

4
dY 2 +

(
d Im Ŝ − 4ReΦ d ImΦ

)2
]
+

2

Y
dΦdΦ. (3.51)

With Kähler coordinates Ŝ and Φ, the Kähler potential is K = − lnY , with Y = V =

Ŝ + Ŝ − (Φ + Φ)2.

This relatively simple construction of the one-loop-corrected dilaton hypermultiplet

metric allows easily to derive the full N = 2 supergravity Lagrangian, using N = 2

superconformal tensor calculus [13, 8, 9].

4 Zero-curvature hyper-Kähler limit

All quaternion-Kähler metrics are Einstein spaces with nonzero curvature. With one

hypermultiplet, the scalar kinetic Lagrangian (3.48) verifies [1]

Rab = −6 gab = −6κ2Gab. (4.1)

The link with global N = 2 supersymmetry is realized by defining a κ → 0 hyper-

Kähler limit of the CPH metric (3.4) or (3.46) in which, if feasible, the Heisenberg

algebra does not contract to an abelian symmetry. As observed in Subsection 3.1, the

magnitude of χ can be eliminated by rescaling of the coordinates (in the absence of D-

branes). We then have three |χ|-independent cases to examine: firstly, positive χ, with

V > 0; secondly, χ = 0 (V > 0) which is SU(1, 2)/SU(2) × U(1); thirdly, a negative

χ, with V > |χ|. In each case, we should seek to find a parameter-free zero-curvature

limit. The most interesting case turns out to be χ negative, which we first study.

With χ negative, we are interested in the CPH metric in the region V +χ ∼ 0. We

then apply to metric (3.4) the following change of variables:

V = 2|χ| κ2/3µ−1/3C − χ , ϕ =
√

|χ|κ2/3µ−1/3 ϕ̂ ,

η =
√

|χ|κ2/3µ−1/3 η̂ , τ = |χ| κ4/3µ1/3 τ̂ ,
(4.2)

where µ is an arbitrary mass scale. Positivity of the metric, V + χ > 0 implies C > 0.

While the original fields are dimensionless, the new, hatted, fields (C, φ̂, η̂, τ̂) have

canonical dimension. With this choice of dependence in κ, the resulting metric is

ds2 = gab dq
adqb =

κ2

2

µC

[(κµ)2/3C + µ]2

[
dC2

2κ2/3µ−1/3C + 1
+ dη̂2 + dϕ̂2

]

+
κ2µ2

2C

2(κµ)2/3C + µ

[(κµ)2/3C + µ]2

[
dτ̂ +

1

µ
η̂dϕ̂

]2
,

(4.3)
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since χ = −|χ|. Using this metric in Lagrangian (3.48), the overall factor κ2 cancels

and we can take the limit κ → 0, with result

Lκ→0 =
C

2µ

[
(∂µC)2 + (∂µη̂)

2 + (∂µϕ̂)
2
]
+

µ

2C

[
∂µτ̂ +

1

µ
η̂ ∂µϕ̂

]2
. (4.4)

This scalar Lagrangian has the hyper-Kähler metric with Heisenberg symmetry (2.20)

with A = 1/µ and B = 0 and with relations Φ = 1√
2
(η̂ + iϕ̂), τ̂ = 2τ . As noticed

earlier, parameter B can always be absorbed in a shift of C, as long as A 6= 0.

Notice that to obtain limit (4.4), we only need the change of variables (4.2) up

to higher orders in κ. In particular, according to Eq. (3.9), we may write the four-

dimensional string dilaton as

e−2φ4 = 2|χ|κ2/3µ−1/3C − 2χ,

φ4 = 〈φ4〉 − κ2/3µ−1/3φ̂4,

e−2〈φ4〉 = −2χ = 2|χ|, C = 2φ̂4,

(4.5)

in terms of the fluctuation φ̂4 and of the background value 〈φ4〉. Since |χ| = χ1 =

χE/(12π), we are considering the case of a positive Euler number χE = 2(h11 − h21),

with h11, h12 the corresponding Betti numbers of the CY3 manifold. A typical example

with a single hypermultiplet would be IIA strings on a CY3 manifold with h21 = 0.

Positivity-related questions with several hypermultiplets, as is in particular the case

with a negative Euler number, should be reanalyzed.

Comparing the scalings (4.2) and the identification of the string coupling in the

last Eq. (4.5), we see that the R-R fields η and ϕ carry as expected a supplementrary

factor gstring.

We could also consider the single-tensor version of the theory. Dualizing τ̂ into

Hµνρ, we find

Lκ→0,ST =
C

µ

[
1

2
(∂µC)2 +

1

12
HµνρHµνρ + (∂µΦ)(∂

µΦ)

]

− i

12µ
ǫµνρσ(Φ∂µΦ− Φ∂µΦ)Hνρσ.

(4.6)

This is the bosonic sector (2.8) of the single-tensor theory (2.7) with again A = 1/µ and

B = 0. Then, for negative χ, the N = 2 supergravity hypermultiplet with Heisenberg

symmetry is described in the global supersymmetry limit by the unique nontrivial

theory with the same symmetry.

For completeness, we may also consider the case of the CPH metric with positive
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χ. The interesting limiting regions are V ∼ 0 and V − χ ∼ 0. If V = ρ2 ≪ χ,

ds2CPH =
1

χ
(dρ2 + dη2 + dϕ2) +

4ρ2

χ3
(dτ + η dϕ)2. (4.7)

The appropriate rescalings are (ρ, η, ϕ, τ) = (
√
χκρ̂,

√
χκη̂,

√
χκϕ̂, χτ̂) to obtain

ds2CPH = κ2
[
dρ̂2 + dη̂2 + dϕ̂2 + 4ρ̂2(dτ̂ + κ2 η̂dϕ̂)2

]
. (4.8)

The Heisenberg symmetry acting on the rescaled fields has algebra [X, Y ] = 2κ2Z. In

the limit κ → 0, it contracts to [X, Y ] = 0 and we find

lim
κ→0

1

κ2
ds2CPH = dρ̂2 + 4ρ̂2dτ̂ 2 + dη̂2 + dϕ̂2, (4.9)

which is the trivial four-dimensional euclidean space. The second region of interest if

χ > 0 is V − χ ∼ 0. First, we change coordinates to

V = 2λC + χ, η = λη̂/
√
χ, ϕ = λϕ̂/

√
χ, τ = λτ̂ (4.10)

and the metric for λ → 0 and χ finite reads

ds2CPH =
1

2C2

[
dC2 + dη̂2 + dϕ̂2 + dτ̂ 2

]
. (4.11)

This limiting metric is SO(1, 4)/SO(4), again with Rij = −6gij and with radius ∼
〈C〉. In the large radius, zero-curvature limit, the metric is trivial. Finally, in the

SU(1, 2)/SU(2)× U(1) case χ = 0, the zero-curvature limit is again trivial.

The conclusion is that in the zero-curvature limit, the CPH one-loop Lagrangian

for the dilaton hypermultiplet is the hyper-Kähler N = 2 sigma-model with Heisenberg

symmetry (2.7). If the one-loop parameter χ is negative, then A 6= 0 and the Heisenberg

algebra has a non-trivial realization in this limit. If χ ≥ 0 however, A = 0 and the

limit of N = 2 global supersymmetry is the free hypermultiplet. In the string context,

the above non-trivial limit can be taken if the string coupling is tuned at a fixed value,

according to the third line of Eq. (4.5), which applies with positive Euler number.

In a recent paper [5], we have constructed the interaction of a hypermultiplet with

the Dirac-Born-Infeld Maxwell Lagrangian. The hypermultiplet sector has a full linear

N = 2 supersymmetry while the second supersymmetry is nonlinearly realized on

the Maxwell superfield Wα. As an application of our results, we can easily use our

identification of the string universal hypermultiplet. The bosonic DBI action, after
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elimination of the Maxwell auxiliary field and using the single-tensor formulation, is15

LDBI =
1

8f
(2gReΦ− 1

f
)

[
1−

√
1 +

2g2C2

(2gReΦ− 1
f
)2

√
− det(ηµν + 2

√
2f Fµν)

]

+ gǫµνρσ
(
f

4
ImΦFµνFρσ −

1

4
BµνFρσ +

1

24f
Cµνρσ

)
.

(4.12)

In this expression, f is the breaking scale of the second, nonlinearly realized super-

symetry (with dimension (energy)−2) and g is the Chern-Simons coupling16 (equal to

the string coupling for a D3-brane). The four-form field Cµνρσ is a component of the

single-tensor multiplet required by supersymmetry of the nonlinear theory [5].

Since we have control of the kinetic Lagrangian of the universal string hypermul-

tiplet in the global supersymmetry limit, we can then identify the single-tensor fields

in terms of string fields. First, C is the global dilaton and Bµν is the NS-NS tensor.

Then, the complex scalar Φ includes the R-R fields. The supersymmetric minimum of

the scalar potential included in theory (4.12) implies 〈C〉 = 0 and Φ corresponds to

flat directions of this vacuum.

5 Conclusions

In this work, we analyzed the effective field theory of the universal dilaton hypermulti-

plet of type II string compactifications on a CY3 manifold with a special emphasis on

the global supersymmetry limit. The perturbative isometries form the two-dimensional

Euclidean algebra E2 with a central extension, which contains a Heisenberg subalge-

bra. Using this isometry as a guiding principle and the method of quaternionic quotient

in conformal supergravity, we rederived the two-derivative N = 2 supergravity action,

depending on a deformation parameter that corresponds to the one-loop correction pro-

portional to the Euler number of the CY3 manifold. We then established the precise

connection with a one-parameter family of hyper-Kähler spaces in N = 2 global super-

symmetry, possessing the same isometry, by defining a non-trivial gravity decoupled

limit characterized by a new mass scale. This requires the string coupling to be tuned

at a fixed value which only occurs for a positive Euler number. As the latter becomes

large, the theory becomes weakly coupled, justifying the perturbative approximation

15In Ref. [5], this is the electric version of the theory, induced by a N = 2 Chern-Simons coupling
gB ∧ F .

16In contrast to Ref. [5], we have defined single-tensor fields with canonical dimension so that g has
dimension (energy). We also chose the Fayet-Iliopoulos term to be 1/F so that gauge kinetic terms
are canonically normalized at ReΦ = 0.
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in taking the global limit. Notice that in the absence of moduli stabilization effects,

this positivity requirement is compatible with the possibility of choosing h21 = 0 in

type IIA, that guarantees the absence of other hypermultiplets in the spectrum, which

could modify the constraints we derived from the positivity of the metric. It would be

interesting to understand this requirement in the general case.
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