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ABSTRACT: A prototype silicon-tungsten electromagnetic calorimeter for an ILC detector was
tested in 2007 at the CERN SPS test beam. Data were collected with electron and hadron beams
in the energy range 8 to 80 GeV. The analysis described here focuses on the interactions of pions
in the calorimeter. One of the main objectives of the CALICE program is to validate the Monte
Carlo tools available for the design of a full-sized detector. The interactions of pions in the Si-W
calorimeter are therefore confronted with the predictionsof various physical models implemented
in theGEANT4 simulation framework.

KEYWORDS: Detector physics: concepts, processes, methods, modelling and simulations;
Calorimeter methods; Detector modelling and simulations I(interaction of radiation with matter,
interaction of photons with matter, interaction of hadronswith matter, etc.) .
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1. Introduction

The current designs of the calorimetry for detectors at the ILC are in large part driven by the
demands of jet energy reconstruction. A key aim is to achievea relative energy resolution of
∼ 30%/

√

E/GeV; this precision would for example permit the reconstruction of the hadronic
decays of the W and Z bosons with a precision comparable with their natural widths, and would
thus allow the W and Z to be distinguished in their hadronic (two-jet) decay modes.

This target for jet energy resolution is roughly a factor twobetter than achieved in previ-
ous detectors. The most promising way to achieve it is believed to be through the “particle
flow”approach [1]. The idea is that particles of different typesin jets should be reconstructed in
the different parts of the detector where they can be measured most precisely: the charged particles
in the tracking system, photons in the electromagnetic calorimeter (ECAL) and neutral hadrons in
a combination of the ECAL and the hadronic calorimeter (HCAL). The key to this concept is to
minimise confusion in the pattern recognition in the calorimeters, and to achieve this, high spatial
granularity is required. The optimum design of the ILC detectors can be addressed by Monte Carlo
simulation, but in order to do this, it is crucial first to validate the Monte Carlo tools against data.

A first round of beam tests was performed at DESY and CERN in summer 2006, followed by
more complete tests in 2007. These tests were performed witha combined system of a silicon-
tungsten (Si-W) ECAL, followed by a hadronic calorimeter and then a coarser tail catcher, the
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latter two both built from a scintillator-iron sandwich structure. Since the ECAL has a length
∼ 1.0λint., it will seldom fully contain a hadronic shower. However, more than half of hadronic
showers will start their development in the ECAL, so it is important to investigate the properties
of hadronic showers initiated in the (mainly tungsten) material of the ECAL. The ECAL also has
some advantages for the study of hadronic shower properties. For example, the interaction point
can be identified with good precision. The small ratio ofX0/λint. (a factor∼ 3 smaller for tungsten
than for iron) means that the electromagnetic products of the first interaction can be expected to
shower rapidly after the interaction point, and we can hope to exploit the fine granularity of the
detector to separate them from the hadronic products. This means that the longitudinal shower
development after the interaction point is potentially a particularly interesting quantity.

In Sect. 2 we briefly describe the main features of the Si-W calorimeter and in Sect. 3 we
outline the test beam setup at CERN. Then in Sect. 4 we review the Monte Carlo models with
which the data are confronted. In Sect. 5 we explain the selection of data for comparison with
simulation in Sect. 6.

2. The CALICE Si-W ECAL prototype

The ECAL prototype used in this study is a silicon-tungsten sampling calorimeter, made of 30
readout layers [2] . The active detectors were silicon wafers segmented into a 6×6 array of diode
pads, each with a size of 1×1 cm2. The mechanical structure was built from tungsten sheets
wrapped in carbon fibre. Between each sheet of tungsten, the structure contained alveolar slots,
into which detector slabs were inserted, each consisting ofa further tungsten sheet sandwiched
between two layers of sensors. The prototype was constructed from three stacks, each composed of
ten layers of alternating tungsten and silicon, and each stack having a different tungsten thickness:
1.4 mm or 0.4X0 per layer in the first stack, 2.8 mm or 0.8X0 per layer in the second stack and
4.2 mm or 1.2X0 per layer in the rear stack. In terms of interaction lengths,these tungsten layers
each contribute∼ 1.4%λint., ∼ 2.7%λint. and∼ 4.1%λint. respectively. Other materials (mainly
the carbon-fibre–epoxy mechanical structure, PCBs and the silicon itself) contribute alternately
∼ 0.2%λint. and∼ 1.0%λint. between successive samplings. The overall thickness is about 20 cm,
corresponding to∼ 24.6X0 or∼ 1.0λint. at normal incidence.

A detailed description of the prototype’s hardware and of its commissioning in test beams at
DESY and CERN in 2006, can be found in ref. [2], to which the reader is referred for much fuller
details.

The full prototype consists of a 3×3 array of wafers (i.e. an 18×18 array of 1 cm2 pads) in
each layer. The version of the prototype tested at CERN in 2007 consisted of 30 layers, of which
initially the first twelve were instrumented with a 3×2 array of wafers, and the remaining eighteen
were fully equipped with a 3×3 array. Later in the 2007 run six more layers were completed,
leaving only the first six in a 3×2 configuration.

In offline analysis, the raw hit energies in each cell have their pedestals subtracted, and are
converted from raw ADC counts into Minimum Ionising Particle equivalents (MIPs), as explained
in ref. [2]. This gain correction is derived by finding the most probable energy deposition in each
cell in data recorded with a high energy muon beam [2], with a typical relative precision of∼ 0.5%
per pad.
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Figure 1. Schematic layout for the CALICE beam tests at CERN in 2007 (not to scale). Dimensions are
indicated in mm.

3. The test beam

In this paper we report on some of the data taken in 2007 in the CERN H6 test beam [3]. The
layout of the CALICE calorimeters in the test beam is shown schematically in figure 1. The three
calorimeters used were the Si-W ECAL, followed by an HCAL prototype [4] (using iron as the
absorber and 38 layers of scintillator tiles with analogue readout as the active medium, using tile
size 3×3 cm in the shower core) and a tail catcher (TCMT - also an iron calorimeter with sixteen
layers of 5 cm wide scintillator strips). The thickness of the iron sheets was∼ 18 mm in the HCAL,
∼ 20 mm for the first eight layers of the TCMT, and∼ 100 mm in the rear section of the TCMT.
The ECAL and HCAL were mounted on a movable stage, providing the possibility to translate and
rotate the calorimeters with respect to the beam.

Upstream of the calorimeters were scintillation counters used for triggering. A muon veto
counter was also installed downstream of the TCMT. The standard trigger used for the present
analysis required a coincidence between any two of the upstream counters Sc1, Sc2 and Sc3. In
addition, three sets of wire chambers were operated to permit the beam position and direction to be
measured upstream of the calorimeters. AČerenkov counter was used in threshold mode to assist
particle identification.

Data were recorded in 2007 using electron, hadron and muon beams with energies in the range
8 to 180 GeV. A variety of different calorimeter translations and rotations were used, and in all
∼200 million triggers were recorded, including calibrationdata. For the present study, we used
data corresponding to a configuration with the beam impinging at normal incidence close to the
centre of the calorimeters. The analysis usesπ− beams at energies of 8, 10, 12, 15 and 20 GeV,
andπ+ runs at 30, 50 and 80 GeV. Each run comprised typically∼200,000 triggers and∼100,000
hadronic events. For theπ− runs the pressure in thěCerenkov counter was set so that electrons
could be vetoed, while for theπ+ runs, it was set so as to separate protons from pions.

4. Monte Carlo simulation

The main purpose of the present analysis is to confront the data with Monte Carlo simulations,
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and specifically to test the different physical models available. These simulations were carried out
in the framework ofGEANT4 [5], using version 4.9.3, released in December 2009. The results
presented are based on samples of typically 50000 simulatedevents.

In order to describe the geometry of the CALICE prototypes within GEANT4we used the pro-
gram Mokka [6], which is also capable of simulating full ILC detector geometries. For the current
study, the simulation of the ECAL is the most important. Individual silicon sensors, with their pad
structure and guard rings, are represented in Mokka, as wellas the tungsten radiator, and other
passive materials such as the carbon-fibre and epoxy of the support structure and the PCBs used for
readout. The layer-by-layer staggering of the wafer positions is simulated. Similar representations
of the HCAL and TCMT are also included. The detectors upstream of the calorimeter systems
(Čerenkov, scintillators and tracking chambers) are also modelled by Mokka.

During particle transport inGEANT4, Mokka records the ionisation energy deposited in sen-
sitive detectors (Silicon pads, scintillators etc.). A simple simulation of the noise contribution in
each cell is performed, as outlined in ref. [7]. At the end of the simulation, the summed energy
deposits in each cell are finally converted into MIPs. The conversion factor is based on matching
the minimum ionising energy peak in data and simulation. This procedure is estimated to lead to
a∼ 1% systematic uncertainty in the relative energy scales of the data and simulation. As a first
step in the analysis, a hit energy cut of 0.6 MIPs is imposed inboth simulation and data, in order
to eliminate most noise-only hits. The hits are also required to occur within 150 ns of the beam
arrival time at the trigger counters, in order to emulate thebehaviour of the readout electronics.

In the simulation, pions are simulated starting with a Gaussian transverse profile inx andy,1

at a point∼60 m upstream of the calorimeters, so that they pass through,and potentially interact
in, the Čerenkov counter, trigger scintillators, tracking chambers and intervening air. Hits are
recorded in the scintillators and tracking chambers, and energies deposited in the scintillators are
used as the basis of a simple simulation of the trigger. The beam profile in the ECAL, defined by the
distributions of the shower barycentre inx andy, is then compared between data and simulation.
The input Gaussian parameters are adjusted until satisfactory agreement is achieved. A typical
example of the comparison after tuning is shown in figure 2.

GEANT4 provides the user with a number of “physics lists” — combinations of models se-
lected to simulate particle interactions for different species at different energies. In our study we
are particularly concerned with the hadronic interactionsfor pions. Typically these physics lists use
different models in different energy ranges, with smooth interpolation between models achieved by
allowing the energy ranges to overlap, with smoothly varying random selection between the models
in the changeover region. Detailed descriptions of the models can be found in ref. [8]. The fol-
lowing physics lists have been chosen for our investigation, based on advice and recommendations
from theGEANT4 authors:

LHEP Uses theLEP (low energy parametrised) andHEP (high energy parametrised) models, mak-
ing a transition between the two over the range 25–55 GeV. These are essentially a recoding
into C++ of theGHEISHAmodel [9] extensively used in earlier simulations usingGEANT3,

1The CALICE coordinate system is defined withz along the nominal beam direction,y vertical, andx horizontal.
The origin is at the centre of the exit face of the most downstream tracking chamber.
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Figure 2. Example of the beam profiles in x and y (based on the shower centroid reconstructed in the ECAL)
observed with a 20 GeVπ− beam. Data (points with error bars) are compared with the tuned simulation
(solid histogram). The distributions are normalised to thesame numbers of events.

for example. It is still widely used, even though it is not regarded as the state-of-the-art
choice.

FTFP_BERT Uses theGEANT4 implementation of the Bertini cascade model2 [10] for low ener-
gies, making a transition to theFTFP model, based on theGEANT4 implementation of the
Fritiof diffractive string model [11], at pion energies between 4 and 5 GeV. We have also
studied theFTFP_BERT_TRV list, which has the same model content asFTFP_BERT, but
with a higher transition energy, in the region 6–8 GeV. In practice, for the data presented
here, we find no significant differences between these two physics lists, so we only show
FTFP_BERT here.

QGSP_BERT Uses the Bertini model [10] at low energies, making a transition to theLEP (GHEISHA)
model between 9.5 and 9.9 GeV, and a further transition to theQGSP model between 12 and
25 GeV.QGSP uses aGEANT4 implementation of a string model [12] for the high energy
interaction, supplemented by theGEANT4 precompound model[13] describing deexcitation
of the nucleus. We have also studied theQGSP_BERT_HP list, which has the same model
content asQGSP_BERT, combined with a more accurate treatment of low energy neutron
scattering. For the distributions presented in this paper we find no significant benefit in using
theQGSP_BERT_HP list, and hence we only presentQGSP_BERT.

QGSP_BERT_TRV has the same model content asQGSP_BERT, but with the transition between
LHEP andQGSP occurring at lower energy, in the region 10–15 GeV, in order to reduce the
reliance onLHEP.

QGSP_FTFP_BERT Similar toQGSP_BERT, with different transition energies, and usingFTFP
instead ofLEP in the intermediate region.

QGS_BIC Uses theGEANT4 binary cascade model (BIC) [14] at the lowest energies, thenLEP
in the intermediate region, andQGS at high energies. TheBIC model is also used for the

2This model incorporates the Bertini intra-nuclear cascademodel with excitons, a pre-equilibrium model, a nucleus
explosion model, a fission model, and an evaporation model.
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rescattering of secondaries in this case (denotedQGSB below) and theGEANT4 precom-
pound model is used to describe deexcitation of the nucleus.

QGSP_BIC In this case theBIC model is not used for pions (only for neutrons and protons), and
there is no rescattering of secondaries.LEP is used in the low energy region, andQGSP at
high energies.

FTF_BIC Uses theBIC model at low energies, with a transition to Fritiof between 4and 5 GeV.
TheBIC model is again used for the rescattering of secondaries in this case (denotedFTFB
below) and theGEANT4 precompound model is used to describe deexcitation of the nucleus.

The physics content of these models for pions is summarised in table 1. TheQGSP_BERT physics
list is generally favoured by the LHC general purpose detectors for calorimetry applications [15],
based mainly on data from test beams of higher energies than those relevant for CALICE. In our
analysis, we expect to be particularly sensitive to the model(s) used for the primary interaction at
the energy of the incident beam. This is indicated for each physics list in table 2.

Table 1. The table shows the physics models invoked for pion inelastic interactions in each physics list.
Where ranges overlap,GEANT4 chooses randomly between models, with probabilities varying linearly with
energy over the range of overlap.

Physics List Model content (forπ±)

FTFP_BERT Bertini (0–5 GeV);FTFP (>4 GeV)
QGSP_BERT Bertini (0–9.9 GeV);LEP (9.5–25 GeV);QGSP (>12 GeV)
QGSP_BERT_TRV Bertini (0–9.9 GeV);LEP (9.5–15 GeV);QGSP (>10 GeV)
QGSP_FTFP_BERT Bertini (0–8 GeV);FTFP (6–25 GeV);QGSP (>12 GeV)
QGS_BIC BIC (0–1.3 GeV);LEP (1.2–25 GeV);QGSB (>12 GeV)
QGSP_BIC LEP (<25 GeV);QGSP (>12 GeV)
FTF_BIC BIC (0–5 GeV);FTFB (>4 GeV)
LHEP LEP (0–55 GeV);HEP (>25 GeV)

Table 2. Indicates the physics model(s) which will be used for the primary pion interaction at each of the
beam energies considered here. Where two models are indicated with a solidus, an appropriate random
choice is made byGEANT4.

Physics List 8 GeV 10 GeV 12 GeV 15 GeV 20 GeV 30 GeV 50 GeV 80 GeV
FTFP_BERT FTFP FTFP FTFP FTFP FTFP FTFP FTFP FTFP
QGSP_BERT BERT LEP LEP LEP/QGSP LEP/QGSP QGSP QGSP QGSP

QGSP_BERT_TRV BERT LEP LEP/QGSP QGSP QGSP QGSP QGSP QGSP

QGSP_FTFP_BERT FTFP FTFP FTFP FTFP/QGSP FTFP/QGSP QGSP QGSP QGSP
QGS_BIC LEP LEP LEP LEP/QGSB LEP/QGSB QGSB QGSB QGSB

QGSP_BIC LEP LEP LEP LEP/QGSP LEP/QGSP QGSP QGSP QGSP
FTF_BIC FTFB FTFB FTFB FTFB FTFB FTFB FTFB FTFB

LHEP LEP LEP LEP LEP LEP LEP/HEP LEP/HEP HEP

GEANT4 also provides several interesting physics lists based wholly or in part on theCHIPS
model [16]. In this picture, the result of a hadronic or nuclear interaction is the creation of a quas-
mon (essentially an intermediate state of excited hadronicmatter) which can dissipate energy by
radiating particles statistically or by quark exchange with surrounding nucleons or clusters of nu-
cleons. We have made studies of severalCHIPS-based physics lists, but we choose not to present
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Figure 3. Showing the principle of the cuts used to remove muons and non-interacting hadrons. The energies
in the three calorimeters (in MIPs) are plotted for a 20 GeV data run. The three stacks in the ECAL are
combined using weights proportional to the corresponding thicknesses of tungsten, i.e. 1:2:3.

comparisons at this stage because, as discussed in Sect. 6.5, the model is still under active devel-
opment.

5. Selection of hadronic showers

The principal task in the selection of events is to remove muons, electrons and protons from the
sample. Muons are characterised by a small energy deposition in all three calorimeters. We show
in figure 3 a scatter plot of the energies seen in the three calorimeters. A clear cluster close to
the origin can be ascribed to muons. Bands are also seen corresponding to sharing of energy
between ECAL and HCAL, and between HCAL and TCMT, with a few showers only starting in
the TCMT. Accordingly, with a 10 GeV beam, we reject events for which the ECAL energy is less
than 300 MIPs, the HCAL energy is less than 100 MIPsandthe TCMT energy is less than 50 MIPs.
These cuts vary linearly with energy, so that with a 30 GeV beam, for example, they are 329, 114
and 64 MIPs respectively. Pions which do not interact in the ECAL are retained in the sample, to
permit comparison of the interaction cross-section between data and simulation. The fraction of
events removed as muons varies with beam energy, but it is typically ∼ 5%.

Double beam particles are very infrequent with the running conditions used in 2007, but in
order to safely reduce any possible contribution from double beam particles, a cut is imposed,
requiring that the total energy recorded in the ECAL+HCAL beless than 1.5 times the beam energy.
Fewer than 0.5% of events fail this cut. In order to reduce the influence of interactions upstream
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Figure 4. Energy observed in the ECAL for events with and without a signal from the beamČerenkov
counter. For this plot, the observed energy was converted from MIPS to GeV using a nominal conversion
factor of 240 MIPs/GeV. (a) In the case of the 12 GeV negatively charged beam, the open region shows the
total sample, and the shaded region the contribution with noČerenkov signal. (b) For the 30 GeV positively
charged beam the shaded histogram shows triggers with aČerenkov signal, and the open (red) histogram
shows those with nǒCerenkov signal.

of the calorimeters, we remove events in which more than 50 MIPs are recorded in either of the
first two layers of the ECAL. This cut removes∼ 2.5% of data, with only a weak dependence on
beam energy. A cut against beam halo is also applied, requiring the shower centroid to lie within
±50 mm in bothx and y, corresponding approximately to the trigger acceptance; this cut also
serves to remove a small number of showers close to the calorimeter edge, which are especially
prone to lateral leakage. This cut removes∼ 5% of data at the lowest energy and∼ 1% at the
highest energy, where the beam is narrowest. All of the cuts described so far are applied equally to
data and Monte Carlo events.

Electrons can provide a significant background to the pions in the negatively charged beams,
and likewise protons are present in the higher energy positively charged beams. Their effect may
be reduced by use of thěCerenkov counter. In figure 4(a) we compare, for typical negatively
and positively charged beam runs, the distribution of the energy in the ECAL for triggers with and
without aČerenkov signal. In the case of the negatively charged beam we see a clear peak at the full
beam energy in the events with aČerenkov signal, which can be ascribed to electrons depositing
their full energy in the ECAL. Therefore, for the negativelycharged beams we demand that the
Čerenkov have a signal. Conversely, for the positively charged beams used here, theČerenkov
pressure was set so that pions (and electrons) would yield a signal, while the heavier species would
not. The ECAL energy distributions with and without aČerenkov signal are shown in figure 4(b);
we see that for the events with nǒCerenkov signal, mainly protons, the distribution is shifted to
lower values, and accordingly for these runs we demand that there beno Čerenkov signal. We also
note that the contribution of positrons, which would show upas a peak close to 30 GeV in the
sample of events with ǎCerenkov signal, is small3.

In our previous study of electron showers in the ECAL [7], it was necessary to remove showers

3From fitting the region around the full beam energy, we estimate a positron contribution of∼1% at 30 GeV, de-
creasing to 0.4% at 50 GeV and 0.1% at 80 GeV. This has a negligible impact on the results shown in the present paper.
No perceptible electron contribution is seen in the negatively charged beam samples.
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Figure 5. Mean fraction of non-interacting pions (energy<100 MIPs) in the ECAL, plotted as a function
of beam energy. For this purpose, the three ECAL stacks were combined with weights 1:1:1. The data
are compared with the predictions of simulations using differentGEANT4 physics lists. The models are
separated into two plots in the interests of clarity, with the physics lists which incorporate the Bertini model
on the left, and the others on the right.

close to the edges of wafers, for two reasons. Firstly, the guard rings lead to a significant dead
region (2 mm wide), which can lead to a significant fraction ofthe electron energy not being
recorded. Secondly, we observed an effect of correlated crosstalk between the charge deposited in
the guard rings and the peripheral cells of a wafer, whereby asquare pattern of hits was sometimes
seen in the core of a high energy shower [2]. The first of these problems is less important for
hadronic showers because of their greater transverse width, and in any case the effect is sufficiently
well simulated. The second problem is not seen in hadronic showers, because the energy densities
in the core of the showers are much smaller. Therefore no further cuts on shower position are
imposed.

6. Comparison between data and simulation

6.1 Total ECAL energy

The total energy recorded in the ECAL is a useful starting point for comparison between data and
simulation. The event selection cuts were designed to retain pion events wherever they interacted
in the calorimeter system. A significant fraction of pions should not start to shower in the ECAL.
These events are characterised by a MIP-like energy in all layers (apart from occasionalδ -ray
emission) and accordingly the ECAL energy shows a large peakat ∼50 MIPs. The fraction of
such events can be used to test the interaction cross-sections inGEANT4. In figure 5 we show the
fraction of selected pions depositing fewer than 100 MIPs inthe ECAL, as a function of energy,
compared with the simulations. Most of the models give a gooddescription of the fraction of non-
interacting pions at all energies, agreeing with data within 0.01-0.02. TheLHEP physics list is the
most discrepant. This gives confidence in the cross-sections simulated inGEANT4. It could also
be interpreted as an indication that any residual beam contamination by kaons or (anti-)protons is
small, since these species would be expected to have different interaction cross-sections.

We now consider the energy deposited in the ECAL by those pions which have their first
interaction in the ECAL. In the study of electromagnetic showers [7], it was appropriate to combine
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Figure 6. Distributions of total energy recorded in the ECAL at 8, 15, 30 and 80 GeV (points with error
bars), compared with Monte Carlo predictions using the QGSP_BERT physics list (solid histograms). The
distributions are normalised to the same numbers of selected events (including the non-interacting peak).

the energies in the three stacks of the ECAL taking account oftheir relative sampling fractions.
Since the thicknesses of tungsten in the three stacks lie in the ratio 1:2:3, the weighting of the
energy should be in roughly these ratios. It is less obvious that this is the correct procedure in the
case of hadronic showers, but for the purposes of the presentcomparison, we choose to combine
energies of each stack using the naïve weighting factors of 1, 2 and 3. The level of agreement
between data and simulation is not found to be sensitive to this choice. In figure 6 we compare the
distribution of recorded energy in data with simulation using theQGSP_BERT physics list, at four
typical energies. The non-interacting peak at low energieshas been suppressed. The broad peaks
in the distributions in figure 6 represent pions which started to shower in the ECAL, extending
roughly to a point corresponding to all the energy being deposited in the ECAL (approximately
250 MIPs per GeV). The main peak is quite well modelled at 8 and15 GeV, while at 30 and
especially 80 GeV the Monte Carlo predicts significantly more energy than observed in the data.4

In order to incorporate all models and energies into the analysis, a useful global measure is
the average energy deposited in the ECAL, i.e. the mean values of the histograms such as those
shown in figure 6, excluding the non-interacting pions. Thiscan be computed for data and for
all theGEANT4 physics lists under consideration, and is plotted in figure 7in the form of ratios
of simulation to data. At 8 GeV, all of the models lie within 10% of the data, and most within

4In ref. [7] the energy response of the ECAL for electrons was seen to be linear up to 45 GeV. Since the energy
densities in electromagnetic showers are significantly greater than those encountered in hadronic showers, we can be
confident that saturation effects will not play any significant part in the hadron beam data.
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Figure 7. Ratio of simulation to data for the mean energy recorded in the ECAL, plotted as a function of
beam energy. The data are compared with the predictions of simulations using differentGEANT4 physics
lists.

5%. As energy increases, the LHEP model falls steadily further below the data. The other models
either remain∼ 5− 10% above the data or increase so that at high energies, all ofthe models
lie ∼ 5− 10% above the data. Overall,FTF_BIC is the most consistent with this aspect of the
experimental data.

6.2 Transverse energy profile

Good modelling of the transverse shower width is of importance for the development of particle
flow algorithms, since it affects the degree of overlap between showers, and therefore the efficiency
for separating them. For each hit in the ECAL, we determine the transverse distance between the
centre of the pad and the shower barycentre inx andy. By histogramming this radial distance, we
form the transverse shower profile. We weight the hits by their energy5, to emphasise the flow of
energy in the shower. This also has the benefit of minimising possible residual effects of noisy
cells.

In figure 8 we show these transverse energy profiles for four typical energies, compared with
the simulation based on the QGSP_BERT physics list. The entries in these plots are weighted by
energy, and we want to focus here on the shape rather than the normalisation, which is essentially
governed by the differences in energy response which were already considered in figure 7. There-
fore in figure 8 the distributions are normalised to unity, inorder to facilitate the comparison of
their shapes. We see that the data at 8 GeV are quite well modelled, while at higher energies the
data tend to lie below the simulation at small radii, and above at higher radii; in other words the
simulation underestimates the width of that part of the shower which is contained in the ECAL.

In order conveniently to compare all models and energies, infigure 9 we show the mean
energy-weighted shower radius (i.e. the mean values of distributions such as figure 8) as a function
of energy. The observed shower becomes narrower with increasing energy, both in data and in all of
the models. All of the physics lists underestimate the shower width at almost all energies, typically
by around 10%. The modelsFTF_BIC and especiallyFTFP_BERT tend to lie closest to the data,
especially at intermediate energies.6

5In this case we do not apply different weighting factors to each stack.
6For comparison, the mean radius of electron-induced showers, selected using the methods of ref. [7], shows agree-
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Figure 8. Radial distribution of hits (energy weighted) for data at four typical energies (points with errors)
compared with Monte Carlo (solid histograms) using theQGSP_BERT physics list. The distributions are
normalised to unity.
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Figure 9. Mean energy-weighted shower radius in the ECAL as a functionof beam energy. The data are
compared with the predictions of simulations using different GEANT4 physics lists.

Of course, the mean shower radius is only one measure of the transverse shower profile. In
figure 10 we focus on the tails of the showers by plotting the radii needed to contain 90% or
95% of the observed ECAL shower energy. As before, we find thatmost of the models tend to
underestimate the data, and none of them gives a really satisfactory description. Again, the most
successful physics lists are clearlyFTFP_BERT andFTF_BIC. It should be stressed that these
observations refer only to that part of the hadronic shower which is detected in the ECAL, i.e.

ment between data and simulation at the∼ 1−2% or 0.1–0.2 mm level.
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Figure 10. Radii required to contain 90% (upper two plots) or 95% (lowertwo plots) of the energy seen in
the ECAL, as a function of beam energy. Data are compared withsimulation for various physics lists.

roughly the first interaction length — the transverse tails are not fully sampled, and nor is most of
the longitudinal tail of the shower.

6.3 Longitudinal distribution of interaction point

The fine granularity of the CALICE ECAL makes it possible to identify the point at which the
incident pion makes its primary interaction, and this will be used in some of the results shown
below. In general one expects to see a track of MIP-like hits until the interaction point, followed
by some multiparticle shower structure thereafter. The algorithm used for the present analysis has
the merit of simplicity. Firstly, the energy in each layer iscomputed, after excluding isolated hits
(those with no neighbours in adjacent cells in the same layer). The interaction layer is defined as
the first layer containing at least 10 MIPs of energy, provided that at least two of the following
three layers also show energy greater than 10 MIPs. In simulated events, the true interaction point
is stored using information about the true activity in the Monte Carlo. In figure 11 we show the
correlation between the true interaction layer and that found by our algorithm, for a typical energy
and Monte Carlo physics list. The correct layer is identifiedwithin ±1 in ∼70% and within±2
in almost 90% of events. The mean of the difference between the true and reconstructed layer lies
within ±1 layer for all physics lists and energies studied here.

In figure 12 we show the distribution of the reconstructed interaction layer for 30 GeV data
compared with a typical Monte Carlo run. The alternation between odd and even layers reflects the
additional material associated with PCBs and the carbon-epoxy support structure; passing from an
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Figure 11. Left: comparison between reconstruction and truth for the layer identified as the interaction
layer by the algorithm described in the text. This example corresponds to a 20 GeVπ− beam simulation,
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Figure 12. Distribution of the reconstructed interaction layer in theECAL for 30 GeV data (points), com-
pared with Monte Carlo predictions using the QGSP_BERT physics list (solid histogram).

odd-numbered layer to an even layer, a particle will encounter just a tungsten plate, while going
from an even to an odd layer it will also pass through two PCBs and part of the mechanical support
structure, adding an additional∼ 0.008λint.. The attenuation of the beam through each stack is
clearly seen, becoming stronger in later stacks as the tungsten thickness increases. The upward
steps at layers 10 and 20 result from the increase of thickness of the tungsten plates at these points.
The lower values in layers 1 and 2 are a by-product of the cut designed to remove upstream interac-
tions. These features are all seen in the simulation, and aregenerally well modelled. The following
analysis concentrates on interactions in the first stack, for which the agreement is particularly good.
This distribution is similarly well described at all energies by all physics lists, which suggests that
there is no significant problem with the high energy cross-sections on tungsten in this version of
GEANT4. This is therefore not a directly useful distribution for discriminating between models.
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Figure 13. Energy per layer in the ECAL for 10 GeV electron data (points), compared with Monte Carlo
predictions (solid histogram).

6.4 Longitudinal energy profile

It is of interest to study the longitudinal development of the showers. In the case of electrons, we
find that the mean depth of electron-induced showers, selected using the methods of ref. [7], shows
good agreement between data and simulation, to better than 0.1X0 (corresponding to less than 25%
of a 1.4 mm tungsten layer), and the standard deviation is modelled to better than 0.03X0. A typical
comparison is shown in figure 13. We therefore believe that the material content of the ECAL
is well modelled. The case of hadronic showers is, however, complicated by the different points
in the ECAL at which the shower is initiated. The observed longitudinal distribution of energy
in the ECAL is the convolution of the intrinsic shape of showers with the distribution of shower
starting points. In order to have some sensitivity to the composition of the shower in terms of
different particle species, we would like to measure the shower profile with respect to the primary
interaction point.

In Sect. 6.3 we explained our algorithm for identifying the layer closest to the interaction
point, and showed that it was reasonably reliable and well modelled. We now proceed to compute
the shower profile in terms of layers after the interaction layer. This is made more complicated by
the different sampling fractions in the three ECAL stacks. We circumvent this by the following
expedient. For hits in the first stack (tungsten thickness 1.4 mm), we simply use the measured
energy in each layer. In the second stack (tungsten thickness 2.8 mm), in addition to the energy
measured in each layer, we introduce an additional fictitious pseudolayermidway between each
physical layer, whose energy is estimated by linear interpolation between the layers on either side.
Similarly, in the third stack (tungsten thickness 4.2 mm) weintroduce two pseudolayers between
each physical layer. In this way, the energy deposition is estimated in 60 layers each separated
by an effective separation of 1.4 mm of tungsten. The longitudinal shower profile (i.e. the mean
energy, in MIPs, per layer) is then trivially computed starting at the interaction layer measuring
the depth in units of these effective 1.4 mm layers. This calculation will lead to some non-trivial
correlations between neighbouring bins in the longitudinal profile. It also neglects differences in
the material between successive samplings caused by other passive materials such as PCBs, though
this effect will be averaged out by combining different interaction layers. Furthermore, both these
features will also be present in the simulation. For this study, we restrict the interaction layer to lie
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in the first stack, so that at least 50 effective layers are available for observation the shower profile,
corresponding to∼ 20X0 or 0.8 λint..

In the case of theGEANT4/Mokka simulation, it is possible to store a breakdown of thefrac-
tions of the energy of each hit contributed by various particle species. In this way, one can break
down the longitudinal shower profile into its constituent parts. We choose to separate the energies
deposited by electrons, positrons, “mesons” (charged pions, kaons and muons), protons (including
antiprotons) and “others” (e.g. deuterons,α-particles, hyperons).

In figure 14 we show, for 12 GeVπ−, the longitudinal energy profiles data compared with
simulations using different physics lists. In each case, wealso show the simulation broken down
into each of the above categories. The “mesons” show a smoothslowly falling shape, while the
electrons and positrons show the characteristic rise and fall of an electromagnetic shower, peaking
after∼10-15 layers (∼ 4−6X0). The electrons, however, also exhibit a long tail; this is because
part of the ionisation energy loss of other particles is simulated in the form of discrete knock-
on electrons, and therefore is included in the electron contribution. The protons, and the small
contribution from “others”, seem to exhibit two components– a sharp peak in the first few layers
which, because of its short range, can be attributed to low energy nuclear break-up fragments, and
a long range tail similar to the mesons. We note that there aresignificant differences between
the models, most conspicuously in the short range proton component. The comparison with data
demonstrates that our calorimeter has sufficient longitudinal granularity to be able to offer some
discrimination between these components.

The main features of the data distribution in figure 14 may be summarised as follows:

• A small peak is seen in the first few layers, which we attributeto nuclear fragments, mainly
protons. As noted above, the models exhibit considerable variation in their predictions in this
region, associated with differences in their proton yields. None agrees well with data, with
theFTF-based physics lists overestimating the data, and the others undershooting.

• A broad peak occurs around layer 10, which we ascribe to the electromagnetic component.
This is tolerably well modelled by all physics lists, with some variations in normalisation.

• A long tail follows, which appears to be generally well modelled.

In figure 15 we show similar distributions for two physics lists, FTFP_BERT andQGSP_BERT,
at four typical energies. Clearly both models have imperfections, but on balanceFTFP_BERT is
probably the more successful.

In order to quantify these observations, and extend them to all energies and models, we show
in figure 16 ratios of simulation to data as a function of energy for three regions of the longitudinal
profile: layers 1-3 (where the contribution from nuclear breakup dominates), layers 5-20 (domi-
nated by the showering of electrons and photons) and layers 30-50 (the tail, dominated by pene-
trating hadrons). This makes it clear that the greatest differences between the models occur in the
first few layers, where discrepancies up to∼ 20 % are observed. TheFTFP_BERT andFTF_BIC
models lie consistently above the data, whileLHEP, QGSP_BIC andQGS_BIC lie consistently
below. The other physics lists make a transition between thetwo regimes, as their model content
changes with energy. In the electromagnetic-dominated region, the most obvious outlier isLHEP;
the other models all agree with data within∼ 15%, with theFTFP_BERT andFTF_BIC models
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Figure 14. Longitudinal energy profiles for 12 GeVπ− data (shown as points), compared with simulations
using different physics lists. The mean energy in MIPs is plotted against the depth after the initial interaction,
in units of effective 1.4 mm tungsten layers. The total depthshown corresponds to∼ 20X0 or 0.8 λint.. The
breakdown of the Monte Carlo into the energy deposited by different particle categories is also indicated.
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Figure 15. Longitudinal energy profiles for data (shown as points) compared with simulations using two
physics lists,QGSP_BERT andFTFP_BERT, at four typical energies. The breakdown of the Monte Carlo
into the energy deposited by different particle categoriesis also indicated.

giving the best description. In the tails, most models lie within∼10% of data;LHEP is consistently
low, as isFTF_BIC at lower energies.

On balance, it appears that theFTFP_BERT physics list, while not perfect, gives the best
overall description of the longitudinal development of these showers. We emphasise, however, that
this remark refers only to the early part of the shower which is developed in the ECAL; we are not
sensitive to the later parts of the shower.
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6.5 Physics lists under development

There are several physics lists inGEANT 4.9.3 which use theCHIPS model [16] alone or in con-
junction with other models. This model has undergone substantial development recently, and is
now capable of modelling all parts of the hadronic interaction process. We made a number of
studies of these physics lists using aβ -test version 4.9.3.b01 ofGEANT. The results were very en-
couraging, and one of the physics lists tested,QGSC_CHIPS, gave a better description of our data
than any of the physics lists discussed here. However, theCHIPSmodel is still being tuned, and in
the released version ofGEANT 4.9.3, theCHIPS-based models are less successful when confronted
with our data. It would be premature to show results and draw conclusions while development is
ongoing, but theCHIPS-based models seem to be an interesting and promising new avenue, and it
is clear that our data have the power to discriminate betweentunings of such models.

7. Summary

We have studied showers induced by charged pions in the CALICE silicon-tungsten ECAL. The
calorimeter has high transverse and longitudinal granularity, which allows us to study the early part
of the shower development in unprecedented detail. Using pions in the energy range 8–80 GeV,
we have compared the data withGEANT4 simulations using eight different physics lists. Several
observables were examined – the total energy deposited in the ECAL, the distribution of interac-
tion points, the transverse shower energy profile, and the longitudinal profile with respect to the
interaction point. The most sensitive observables seem to be the shower profiles. The data tend to
show a greater shower width than the simulation for most energies and physics lists. The closest
description of the transverse profiles is provided by theFTFP_BERT andFTF_BIC physics lists.

The longitudinal profile seems the most interesting observable, because the three main compo-
nents of the shower induced by the primary interaction (energetic hadrons, photons and low energy
nuclear fragments) can be, to some extent, distinguished through their different rates of shower de-
velopment. An ECAL using tungsten is particularly useful inthis regard, because of its small ratio
of X0/λint., which amplifies the differences in shower development between various components of
the shower. It would be naïve to expect any of the physics lists to give a perfect description of the
data, but it seems clear from our study that theLHEP physics list has serious deficiencies, and that,
in the framework of the current version 4.9.3 ofGEANT4, FTFP_BERT list is the most successful.
It is to be hoped that these observations will provide usefulguidance to theGEANT4 developers.
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