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Abstract

The top quark is the heaviest particle to date discovered, with a mass close to the electroweak

symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at

the TeV scale. One of the most important aspects of the top quark physics can be the investigation

of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current

(FCNC) couplings via the extra gauge boson Z ′ at the Large Hadron Collider (LHC) and the

Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and

the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter

x = 0.2 and the sequential Z ′ mass of 1 TeV, we find the single top quark FCNC production

cross sections 0.38(1.76) fb at the LHC with
√
spp = 7(14) TeV, respectively. For the resonance

production of sequential Z ′ boson and decays to single top quark at the Compact Linear Collider

(CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross

section 27.96(0.91) fb at
√
se+e− = 1(3) TeV, respectively. We make the analysis to investigate

the parameter space (mixing-mass) through various Z ′ models. It is shown that the results benefit

from the flavor tagging.
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I. INTRODUCTION

The top quark is a wonderful probe for the new physics beyond the Standard Model (SM)

via its decays and productions at high energy colliders. At the Large Hadron Collider (LHC)

the top quark events will be produced copiously. We may anticipate the discovery of new

physics by observing the anomalous couplings in the top quark sector. The flavour changing

neutral currents (FCNC) couplings of the top quark can also be enhanced to observable

levels in some new physics models. Many extensions of the SM predict the extra gauge

bosons, especially the Z ′-boson has been the object of extensive phenomenologial studies

([1] and references therein). An extra U(1) gauge boson Z ′ can induce flavor changing

neutral currents. In the models with an extra U(1) group the Z ′ boson can have tree-level

or an effective Z ′ − q − q′ couplings, where q and q′ are both the up-type quarks or down-

type quarks. The LHC can probe some parameter space of the Z ′ models provided necessary

luminosity. If a Z ′ boson is found at the LHC, the underlying model could be best identified

at the linear colliders through the polarization observables.

The current experimental searches of the Z ′ boson from Drell-Yan cross sections at Teva-

tron have put lower limits on the mass range 0.6 − 1.0 TeV at 95% C.L. depending on the

specific Z ′ models [2]. From the electroweak precision data analysis, the improved lower

limits on the Z ′ mass are given in the range 1.1 − 1.4 TeV at 95% C.L. [3]. These limits

on the Z ′ boson mass favors higher energy (≥ 1 TeV) collisions for direct observation of the

signal. It is also possible that the Z ′ bosons can be much heavy or weak enough to escape

beyond the discovery reach expected at the LHC. In this case, only the indirect signatures

of Z ′ exchanges may occur at the high energy colliders.

The Z ′ models have some special names [2]: sequential Z ′
S model has the same couplings

to the fermions as that of the Z boson of the SM, left-right symmetric Z ′
LR model has

the couplings a combination of right-handed and B − L neutral currents, the Z ′
ψ, Z ′

χ and

Z ′
η models corresponding to the specific values of the mixing angle in the E6 model have

different couplings to the fermions.

A work which addresses the effects of tree-level FCNC interactions induced by an ad-

ditional Z ′ boson on the single top quark production at the LHC (
√
s = 14 TeV) and

International Linear Collider (ILC) (
√
s = 1 TeV) has been performed in Ref. [4]. In the pa-

per, the relevant signal cross sections have been calculated and especially the charm tagging
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to identify the signal has been discussed. Even though it shows the potential of the LHC and

ILC for a certain parameter set in the single top FCNC production, it is free of a detailed

analysis for the background, including Monte Carlo (MC) simulation and observability for

a full parameter space.

In our work, we investigate both the single and pair production of top quarks via FCNC

interactions through Z ′ boson exchange at the LHC and Compact Linear Collider (CLIC)

[5]. The aim of this paper is to complement the previous other works by studying the signal

and background in detail in the same MC framework. Therefore, we implement the related

interaction vertices into the MC software, and study the FCNC parameters in detail as well

as the effects of initial state radiation (ISR) and beamstrahlung (BS) in the e+e− collisions.

Another feature of our work is that we analyze the signal observability (via contour plots)

for the Z ′ boson and top quark FCNC interactions.

In section II, we calculate the decay widths of Z ′ boson for the mass range 1000-3000

GeV in the framework of the model which has already been detailed in Ref. [4]. An analysis

of the mass and coupling strength parameter space for different Z ′ models are given for

the single and pair production of top quarks at the LHC in section III and at the CLIC in

section IV. Taking into account the initial state radiation (ISR) and beamstrahlung (BS)

effects in the e+e− collisions, we analyzed the signal observability for the Z ′ boson and top

quark FCNC interactions. In order to enrich the signal statistics even at the small couplings

we consider both tc̄ and t̄c single top productions in the final state. The analysis for the

signal significance and conclusion are given in sections V and VI, respectively.

II. MODEL

In the gauge eigenstate basis, following the formalism given in Ref. [4, 6, 7], the additional

neutral current Lagrangian associated with the U(1)
′

gauge symmetry can be written as

L′ = −g′
∑

f,f ′

f̄γµ
[

ǫ
′

L(ff
′)PL + ǫ

′

R(ff
′)PR

]

f ′Z
′

µ (1)

where ǫ
′

L,R(ff
′) are the chiral couplings of Z ′ boson with fermions f and f ′. The g′ is the

gauge coupling of the U(1)
′

, and PR,L = (1±γ5)/2. Here, we assume that there is no mixing

between the Z and Z ′ bosons as favored by the precision data. Flavor changing neutral

currents (FCNCs) arise if the chiral couplings are nondiagonal matrices. In case the Z ′
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couplings are diagonal but nonuniversal, flavor changing couplings are emerged by fermion

mixing. In the interaction basis the FCNC for the up-type quarks are given by

J u′

FCNC = (u, c, t) γµ(ǫ
u′

L PL + ǫu
′

RPR)













u

c

t













(2)

where the chiral couplings are given by [4]

ǫu
′

L = Cu
L













1 0 0

0 1 0

0 0 x













and ǫu
′

R = Cu
R













1 0 0

0 1 0

0 0 1













. (3)

In general, the effects of these FCNCs may occur both in the up-type sector and down-

type sector after diagonalizing their mass matrices. For the right-handed up-sector and

down-sector one assumes that the neutral current couplings to Z ′ are family universal and

flavor diagonal in the interaction basis. In this case, unitary rotations (V f
L,R) can keep the

right handed couplings flavor diagonal, and left handed sector becomes nondiagonal. The

chiral couplings of Z ′ in the fermion mass eigenstate basis are given by

Bff ′

L ≡ V f
L ǫ

′

L(ff
′)V f†

L and Bff ′

R ≡ V f
R ǫ

′

R(ff
′)V f†

R (4)

here the CKM matrix can be written as VCKM = V u
L V

d†
L with the assumption that the down-

sector has no mixing. The flavor mixing in the left-handed quark fields is simply related to

VCKM , assuming the up sector diagonalization and unitarity of the CKM matrix one can

find the couplings [4]

Bu
L ≡ V †

CKMǫu
′

L VCKM ≈













1 (x− 1)VubV
∗
cb (x− 1)VubV

∗
tb

(x− 1)VcbV
∗
ub 1 (x− 1)VcbV

∗
tb

(x− 1)VtbV
∗
ub (x− 1)VtbV

∗
cb x













. (5)

The FCNC effects from the Z ′ mediation have been studied for the down-type sector and

implications in flavor physics [7–17] and up-type sector in top quark production [4, 18–22].

The parameters for different Z ′ models are given in Table I. In numerical calculations, we

take the coupling g′ ≃ 0.65 for the sequential model and g′ ≃ 0.40 for other models. In

the left-right symmetric model we use gL = gR, and the chiral couplings Cf
L = −

√

3/5(B −
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Table I: The chiral couplings for different Z ′ models.

Z ′
S Z ′

LR Z ′
χ Z ′

ψ Z ′
η

CuL 0.3456 -0.08493 −1/2
√
10 1/

√
24 −1/

√
15

CuR -0.1544 0.5038 1/2
√
10 −1/

√
24 1/

√
15

CdL -0.4228 -0.08493 −1/2
√
10 1/

√
24 −1/

√
15

CdR 0.0772 -0.6736 −3/2
√
10 −1/

√
24 −1/2

√
15

CeL -0.2684 0.2548 3/2
√
10 1/

√
24 1/2

√
15

CeR 0.2316 -0.3339 1/2
√
10 −1/

√
24 1/

√
15

CνL 0.5 0.2548 3/2
√
10 1/

√
24 1/2

√
15

Table II: The Z ′ boson decay widths (in GeV) for different mass values in the various models with

x = 0.2 (where the numbers in the paranthesis denotes the values for x = 1).

MZ′(GeV) Z ′
S Z ′

LR Z ′
χ Z ′

ψ Z ′
η

1000 27.36(29.49) 20.08(20.09) 11.39(11.55) 4.90(5.16) 5.73(6.14)

1500 41.13(44.65) 30.30(30.35) 17.11(17.38) 7.39(7.84) 8.65(9.38)

2000 54.87(59.72) 40.49(40.58) 22.83(23.21) 9.87(10.50) 11.57(12.58)

2500 68.62(74.76) 50.66(50.78) 28.54(29.03) 12.35(13.16) 14.47(15.77)

3000 82.35(89.79) 60.82(60.98) 34.26(34.85) 14.82(15.81) 17.38(18.96)

L)/2αLR and Cf
R =

√

3/5(αLRI
f
3R) + Cf

L where the parameter αLR ≃ 1.52. Here, the B and

L denote the baryon and lepton numbers of the corresponding fermion.

For numerical calculations we have implemented the Z ′ − q − q′ interaction vertices into

the CompHEP package [23]. The decay widths of Z ′ boson for different mass values in the

sequential model, LR symmetric model and E6-inspired models are given in Table II. For

the parameter x = 1, both the left-handed and right-handed couplings become universal,

and family diagonal. In this case we cannot see the FCNC effects on the decay widths and

cross sections. In order to include a little from these effects on the decay width, we take the

parameter x = 0.2 as shown in Fig. 1. The effect of this FCNC reduces the decay width

at most 10% for the sequential model in the relevant mass range. The decay widths are

compared with the similar results from Ref. [4] for x = 0.1 to prove the implementation.
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Figure 1: The decay widths of Z ′ boson depending on its mass for different models with the FCNC

parameter x = 0.2.

III. PROTON-PROTON COLLISIONS

A. The single top quark production

The cross sections for the process pp → (tc̄+ t̄c)X depending on the Z ′ boson mass at the

LHC (both for 7 TeV and 14 TeV) are given in Fig. 2 by using parton distribution function

library CTEQ6L [24]. Here, the Z ′ boson contributes through the s- and t-channel diagrams,

and the associated production of single top quarks in the final state tc̄ well dominates over

the tc final state. For this process the cross section at
√
s = 14 TeV is about 3 times larger

than the case at
√
s = 7 TeV. Here, we also check our results for x = 0.1 which agrees with

that of the results of Ref. [4].

The rapidity distribution of the charm quarks (c and c̄) from the signal are shown in Fig.

3 at the collision energy of 14 TeV. We sum up the c and c̄ distributions, since there will

be no clear difference for them. There is a peak in the c-quark rapidity distribution ηc ≃ 0

with the tails extending to |ηc| ≃ 2.5. We may apply a rapidity cut |ηj| < 2.5 for the signal

and background analysis. The rapidity distribution of final state c quarks in the background

process pp → (tc̄+ t̄c)X is shown in Fig. 4.

Fig. 5 shows the pT distributions of the c-quark in the signal process with MZ
′=1.5

TeV for the parameter x = 0.2 at the pp center of mass energy of 14 TeV. A high pT cut
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Figure 2: The cross sections for pp→ (tc̄+ t̄c)X versus the Z ′ boson mass at the LHC (
√
s =7 TeV

left and 14 TeV right). The lines are for the five Z ′ models explained in the text.
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Figure 3: The rapidity distributions of the charm quarks (c and c̄) at the LHC with the center of

mass energy of 14 TeV. Here, we take the mass MZ′ = 1.5 TeV and the FCNC parameter x = 0.2.

(pT > MZ′/2−4ΓZ′) reduces the background significantly without affecting much the signal

cross section in the interested Z ′ mass range. The pT distribution of the c-quark from the

background is shown in Fig. 6. We may apply these cuts to make analyses with the signal

and background.

We plot the invariant mass distribution of the W+bc̄ system for the signal (sequential

model with x = 0.2 and MZ′ = 1, 2 and 3 TeV) and background at the LHC with
√
s = 14

TeV in Fig. 7.

Here, we consider two types of backgrounds for the analysis. The first one has the same

final state (tc̄ and t̄c) as expected for the signal processes and the other one (single top
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Figure 4: The rapidity distribution of the charm quarks (c and c̄) for the background process

(pp→ (tc̄+ t̄c)X) at the LHC with
√
s = 14 TeV.

associated with a b-jet) is the irreducible background and contributes to the similar final

state, assuming the b- quark which may be misidentified as the charmed jet. One can apply

very high transverse momentum (pT ) cut for the b-jets and c-jets. Employing the variable

pT cuts such that pT > MZ′/2 − 4ΓZ′ for different Z ′ mass values and the rapidity cuts

|η| < 2.5 for the central detector coverage, in Table III, we give the statistical significance

(SS) values by using,

SS =
√

2Lintǫ[(σS + σB) ln(1 + σS/σB)− σS] (6)

where σS and σB denotes signal and background cross sections in the invariant mass interval

of MZ′ − 2ΓZ′ < Mtc < MZ′ + 2ΓZ′ by assuming integrated luminosity of Lint = 105 pb−1

per year. For the Z ′ coupling parameter x = 0.1, the LHC is able to measure the Z ′ mass

up to about 2 TeV with single top FCNC.

B. The top quark pair production

We investigate the top pair production via Z ′ boson exchange at the LHC. The Z ′ boson

contributes in the t-channel via the FCNC and in the s-channel through family diagonal

neutral current couplings with a strength scaled by the parameter x. The total cross sections
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Figure 5: The pT distribution of the charm quark for the signal process pp→ tc̄+ t̄cX at the LHC

(
√
s = 14 TeV) with the FCNC parameter x=0.2.

Table III: The signal significance (SS) for the Z ′ boson predicted in different models, the SS values

correspond to the case x = 0.1. The integrated luminosity is taken to be Lint = 105pb−1.

MZ′ (GeV) Z ′
S Z ′

LR Z ′
χ Z ′

η Z ′
ψ

700 13.4 18.4 20.3 20.4 20.3

1000 8.0 10.5 11.3 11.6 11.6

1500 4.1 5.2 5.4 5.4 5.4

2000 2.4 2.9 3.0 2.9 2.9

3000 1.4 1.7 1.8 1.8 1.8

for the top pair production with x = 0.1 and x = 1 for different models of Z ′ at the LHC

are plotted in Fig.8. The main background has the same final state as the signal (tt̄).

In the invariant mass analysis, we reconstruct the mass of top pairs around the Z ′ boson

mass which are shown in Fig. 9. We assume t(t̄) → W+(W−)b(b̄), where the W bosons

decays leptonically. For each of the b-quarks, we assume the b-tagging efficiency as 60%. We

calculate the cross section of the background in the mass bin widths for each MZ′ value; as

an example, for the MZ′ = 1 TeV we take ∆M ≃ 55 GeV, and we find the background cross

section ∆σB = 2.65× 10−1 pb for pp → W+W−bb̄X, and ∆σB = 3.97 pb for pp → tt̄X .
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Figure 6: The pT distribution of the charm quarks (c and c̄) for the background process (pp →

tc̄+ t̄cX) at the LHC with
√
s = 14 TeV).
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Figure 7: The invariant mass distribution of the W+bc̄ system for the SM and Z ′ sequential model

with different mass values of Z ′ at the LHC with
√
s = 14 TeV.

In Table IV, we give the SS values for Z ′ boson in different models in the case of x = 0.1(1),

considering the leptonic channels of the top decays, taking Lint = 100 fb−1.

We plot the 3σ contours in (x−MZ′) plane, for different Z ′ models as shown in Fig. 10

at the LHC with
√
s = 14 TeV and Lint = 150 fb−1. In order to cover all the interested Z ′
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Figure 8: The total cross sections for the top pair production at the LHC (with
√
s = 14 TeV)

depending on the Z ′ mass in the framework of different models with x = 0.1 and x = 1.
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Figure 9: The invariant mass distribution of the top pairs for the SM and sequential Z ′ model with

x = 1 at the LHC (
√
s = 14 TeV).

Table IV: The signal significance (SS) for the Z ′ boson predicted in different models, the SS values

show the case x = 0.1 (1), with Lint = 100 fb−1.

Mass (GeV) Z ′
S Z ′

LR Z ′
χ Z ′

η Z ′
ψ

700 5.6(27.3) 27.0(25.5) 1.7(2.7) 7.9(12.1) 4.3(6.6)

1000 3.6(17.6) 16.2(15.6) 1.0(1.8) 4.9(8.0) 2.6(4.4)

2000 1.2(6.0) 5.3(5.2) 0.3(0.6) 1.6(2.8) 0.9(1.5)

3000 0.5(2.6) 2.3(2.2) 0.1(0.3) 0.7(1.3) 0.4(0.7)
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Figure 10: The contour plot for the discovery of Z ′ boson at the LHC (
√
s = 14 TeV) with Lint = 150

fb−1.

models in the same range of parameter space, we take the integrated luminosity of Lint = 150

fb−1 in the leptonic W -decay channel.

IV. ELECTRON-POSITRON COLLISIONS

We anticipate that the LHC will explore the new physics directions in the ongoing exper-

iments, then the parameters of the new physics will have been known with only moderate

precision. The linear collider at a high energy is expected to identify the model parameters

and make measurements with great precision beyond the hadron collider reach.

In a lepton collider, the initial state is well known for both unpolarized and polarized

beams. The energy-momentum conservation can be used in the full event reconstruction and

the energy scan allow precise measurement of the resonance parameters. For the e+e− col-

lider, we consider the Compact Linear Collider (CLIC) in two beam acceleration technology

allowing the preferable center of mass energy 1(3) TeV with L = 2(8)× 1034 cm−2s−1[5].

A. The single top quark production

The production cross sections for e+e− → tc̄ + t̄c are shown in Fig. 11 at the collision

center of mass energy ranging 0.5 − 1.5 TeV with the assumption MZ′ = 1 TeV. We also
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Figure 11: The production cross sections for e+e− → tc̄+ t̄c at the collision center of mass energy

range 500-1500 GeV. Here, we set the flavor changing parameter x = 0.2. The curves show five

models of the Z ′ boson with mass MZ′ = 1000 GeV: sequential type (S), left-right symmetrical

model (LR), E6-inspired models (χ,ψ, η) mentioned in the text.

check our results for x = 0.1 with the similar results given in [4]. In Fig. 12, the cross

sections around resonance (MZ′ = 3 TeV) are shown for the center of mass energy range of

2-4 TeV. The sequential model gives the largest cross sections, while the Z ′
LR model gives

the lowest cross section around the resonance in the e+e− collisions.

A specific feature of the linear colliders is the presence of initial state radiation (ISR)

and beamstrahlung (BS). The effects of the ISR and BS can lead to a decrease in the cross

section. Being at the resonance for MZ′ = 3 TeV, we have the cross sections 9.04× 10−1 fb

(1.93 × 10−2 fb) for sequential (LR) Z ′ model with x = 0.2. Taking center of mass energy
√
s = 3 TeV, and the mass range 1 TeV<MZ′<2.5 TeV the signal cross sections with the

ISR+BS effects are shown in Fig. 13. When calculating the ISR and BS effects, we take

updated beam parameters for the CLIC at
√
s =3 TeV as follows: the beam sizes σx + σy=

46 nm, bunch length σz= 44 µm, number of the particles in the bunch N = 3.72× 109 [25].

We plot the invariant mass distributions for the W+bc̄ system in the final state, the signal

has the peak around MZ′ = 1 TeV over the smooth background as shown Fig. 14. For each

model we can calculate the signal significance using signal and background events in the

chosen invariant mass intervals and different mixing parameters x as presented in Table V.
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Figure 12: The production cross sections for e+e− → tc̄+ t̄c at the collision center of mass energy

range 2000-4000 GeV. Here, we set the Z ′ bozon mass MZ′ = 3000 GeV and the flavor changing

parameter x = 0.2. The curves show five models of the Z ′ boson: sequential type (S), left-right

symmetrical model (LR), E6-inspired models (χ,ψ, η) mentioned in the text.
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Figure 13: The cross section for the process e+e− → tc̄+ t̄c depending on the Z ′ mass at
√
s = 3

TeV with the ISR and BS effects.

We require the events lying in the invariant mass intervals 150 GeV< MWb < 200 GeV

and MZ′ − 2ΓZ′ < MWbc < MZ′ + 2ΓZ′. Assuming Poisson statistics we require SS > 3

for signal observation, for this case we can cover almost five Z ′ models as shown in Fig.
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Figure 14: The invariant mass distribution of the W+bc̄ system for the sequantial model with

MZ′ = 1TeV.

Table V: The statistical significance for the Z ′ search in the single top production at the CLIC

(
√
s = 3 TeV) with Lint = 105 pb−1. The values are given for x = 0.1(0.6).

Mass (GeV) Z ′
S Z ′

LR Z ′
χ Z ′

η Z ′
ψ

700 11.31(4.5) 1.1(0.4) 4.1(1.6) 5.8(2.4) 4.9(2.0)

1000 9.2(2.3) 0.9(0.3) 3.3(1.3) 4.7(1.9) 4.0(1.6)

2000 3.9(1.6) 0.4(0.2) 1.4(0.6) 2.0(0.8) 1.7(0.7)

3000 6.9(2.8) 0.8(0.3) 3.6(1.5) 6.7(2.7) 6.1(2.5)

15. Nevertheless, we need to gather more luminosity (at least a factor of 10) to see more

realization of the LR model.

B. The top quark pair production

The Z ′ boson will enhance the cross section of the pair production of top quarks at the

CLIC energies. Having the center of mass energy
√
s = 3 TeV, we plot the invariant mass

distribution of the background and signal (for MZ′ = 1.5, 2 and 2.5 TeV) as shown in Fig. 16.

Here, we consider the process e+e− → tt̄ for both the background and signal. In the analysis,

we take into account leptonic decays of the top quarks with the corresponding branchings
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Figure 15: The discovery region for the mass of the Z ′ boson and the FCNC mixing parameter for

the single production of the top quarks.

Table VI: The statistical significance for the Z ′ search in top pair production at CLIC (
√
s = 3TeV).

The values are given for x = 0.1(1) .

Mass (GeV) Z ′
S Z ′

LR Z ′
χ Z ′

η Z ′
ψ

700 71.2(217.6) 161.2(157.3) 69.2(96.6) 112.0(153.3) 92.4(126.7)

1000 53.8(181.7) 126.7(126.8) 155.3(82.3) 87.2(126.8) 73.7(107.7)

2000 26.0(81.9) 55.2(56.0) 24.4(37.7) 37.6(56.7) 32.4(49.1)

3000 50.1(151.4) 115.6(117.3) 67.0(101.0) 137.3(204.6) 122.2(183.4)

and efficiency factors. We also consider the background process e+e− → W+W−bb̄, here

one can apply the Wb invariant mass cut (around top mass) to reduce this background.

We calculate the signal and background events in the invariant mass intervals ∆m for an

estimation of the signal significance. Taking integrated luminosity Lint = 105 pb−1 we

calculate statistical significance for the different Z ′ mass points as shown in Table VI. The

discovery region for Z ′ searches is given in Fig. 17.
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Figure 16: The invariant mass distribution for top pairs in the sequential Z ′ model at the CLIC

with
√
s = 3 TeV.

Z’S
Z’LR

Z’η

Z’χ

Z’ψ

 

 

 

 

 

 800  1000  1200  1400  1600  1800  2000  2200  2400
MZ’(GeV)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

x

Figure 17: The attainable region for the different Z ′ models in the x−mZ′ plane at the CLIC with

√
s = 3 TeV and Lint = 400 pb−1.

V. ANALYSIS

Heavy quark flavor tagging is useful to analyze the final state event topology. One can

identify a heavy flavor jet and measure the invariant mass of the hadrons at a secondary

vertex to differentiate the charm and bottom jets. The charm quark hadronizes immediately

after it is produced. A charmed jet has a secondary vertex mass ranging from 0 to 2 GeV

18



with a peak around 1 GeV, while bottom jet has the largest secondary vertex mass with

a tail up to 4 GeV. The light quark jets have the smallest secondary vertex masses. In

addition, the Monte Carlo samples can be used to determine the fractions of charm, bottom

and other light quarks in the event. Here, we assume that one can have success for tagging

the charmed meson together with a single top quark. The FCNC single production of top

quarks through Z ′ exchange can be probed at CLIC. For the pair production of top quarks

through the Z ′ contribution, we assumed the b-tagging efficiency as 60% and we use leptonic

decay mode of the W -boson.

VI. CONCLUSION

We find the discovery regions of the parameter space for the single and pair FCNC

productions of top quarks via Z ′ exchanges. The tree-level FCNC couplings of the top

quark can emerge in the models with an extra U(1) group. In the models considered in this

paper, the single and pair production of top quarks at the LHC can have the contributions

from the couplings of Z ′qq̄ and the FCNC couplings of Z ′qq̄′ (where q, q′ = u, c, t). For a

mixing parameter x = 0.2 the LHC can discover top FCNC up to the mass mZ′ = 1.7 − 3

TeV depending on the Z ′ models. While at the CLIC, only the Z ′tt̄ interaction contributes

to the process e+e− → tt̄ depending on the strength of parameter x. We can also investigate

the Z ′tc̄ coupling at the linear colliders independent of the other Z ′qq̄′ couplings. In case of

the resonance production CLIC has better potential than the LHC in searching the single

top FCNC via the Z ′ boson.
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