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INTRA-BEAM SCATTERING

A. Piwinski®)
CERN, Geneva, Switzerland

ABSTRACT

Intra-beam scattering is analysed and the rise times or damping times of the
beam dimensions are derived. The theoretical results are compared with
experimental values obtained on the CERN AA and SPS machines.

1. INTRODUCTION

Intra-beam scattering or multiple scattering is a Coulomb scattering between the particles with-
in a bunch or within an unbunched beam. It can be compared with the scattering of gas molecules in a
closed box. The focusing forces and the rf accelerating voltage of the storage ring play the same
role as the walls of the box since they keep the particles together.

It is well known that the scattering of the molecules in a closed box leads to a Gaussian
distribution of the three components of the velocities:
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where m is the mass of the molecules, T is the absolute temperature and k is Boltzmann's constant.
This can be proved by assuming that the distributions of the three velocity components are

independent.

The situation is different in the case of intra-beam scattering. Due to the dispersion a change
in energy always causes a change in the betatron amplitude, and a coupling arises between the syn-
chrotron oscillation and the betatron oscillation. Furthermore, above transition energy the par-
ticles behave as if they had a negative mass, i.e. an increase of energy reduces the revolution fre-
guency. We will see that due to this behaviour an equilibrium distribution of the particles cannot
exist above transition energy, and the intra-beam scattering will increase all three dimensions of
the bunch in so far as they do not hit other limitations.

But even when an equilibrium distribution exists (below transition energy) the initial distri-
bution will, in general, be different from the equilibrium distribution and the change of the distri-
bution due to the intra-beam scattering can reduce the lifetime or the luminosity of the storage
ring. The main purpose of the following investigation is to determine the rise times or damping
times of the bunch dimensions. This is done as follows:
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a) The transformation of the momenta of two colliding particles into their centre-of-mass system.

b) The changes of the momenta due to the collision are calculated.

c) The changed momenta are then transformed back into the laboratory system.

d) The changes of the momenta give the changes of the emittances of the betatron oscillations and
the change of the amplitude of the synchrotron oscillation.

e) At first the average is taken over all scattering angles using the Rutherford cross section.

f) Then it is averaged over all momenta and positions of the colliding particles assuming Gaussian
distributions.

g) Now one can see that the result of the intra-beam scattering is different below and above
transition energy.

h)  The average values also give the rise times or damping times of the bunch dimensions.

—

) Finally experimental results of accelerators at CERN are discussed.

2. CALCULATION OF RISE TIMES AND DAMPING TIMES

a) Lorentz transformation

The three momenta of the two particles before the collision are given by

=P {1, x1 ., 23 .}
1,2 1,2 s 1,2 1’25,x,z

o ¥

in the coordinate system {s,x,z} (see Fig. 1). For the Lorentz-transformation a new coordinate
system {u,v,w} is defined by

gu = (31 + 32)431 + 32‘

gV = 51 x 32461 x 62‘
3-8 x2

> > >
where e,, e, and e, are the unit vectors parallel to the coordinate axes. In this coordinate

system the two momenta can be written as

R .
P1,2 = Pp,2 (C0S o 9o 0, £sin g o}
k] ] £ ] t] u,v’w

where o) and a«, are shown in Fig. 1.
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Fig. 1 Relationship of the (u,v,w) coordinate system aligned on the centre-of-mass motion
and the local coordinate system (s,x,z)

A Lorentz-transformation parallel to the u-axis can now be made and gives for the momenta in the
centre of mass system

with

i ( b
P =2pPy, v, (COS o , -

ST EPL2 1,27 g,
P_=Pypsin o,

w bl k]

where the bars denote all quantities in the centre of mass system. Bet is given by the condition

> 2
PL*+Py=0
or
P L3
p; (cos o - B, ) + py (cos ay - 5y )=0
and

_ Y].Bl Ccos cxl + Ysz cos az .
Bat = nr Y
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b) Change of the momenta

The changes of the momenta of the two colliding particles have, for symmetry reasons, in the
centre of mass system the same absolute values but opposite signs. They can be described by the
polar angle ¢ and the azimuthal angle ¢ (see Fig. 2).

Fig. 2 Change of momenta in a two-particle collision in the centre-of-mass coordinate system

After the collision the momenta can be written in the form

Pl .=+ {p sin gcos p+p_ cos ¢, p sin §sin g, p_cos ¢
1,2 W i i

- p_sin ¢ cos ¢} _ _
u U,V ,W

We now assume that the particle velocities are non-relativistic in the centre of mass system:

(pl‘P2)2

_ 2
52=Zﬁr[ 02 + 2 (o + 0)?] K1

where g is the mean velocity of the particles divided by the velocity of light and p is the mean
momentum.  This condition is satisfied very well in the SPS with o1 2 = 3.107% - 3.107% at
y = 300. In this case one gets

let_Y

and
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With the abbreviations

o+ oy = 2= )T )T =
2

one gets for the changes of the momenta in the storage ring system the expression

_> -
81,2 P12 " P12

=t%{2ay sin J,cos :p+ yg(cos :1,- 1),

./'_"2
- e - - -
[t +2—zsin q;-g—acos 6] sin ¢+ o (cos ¢ - 1) ,

a

2 - - - -
[e/{+§—;sin ¢--§—§cos o] sin ¢+ ¢ (cos ¢ - 1)}

by S,.XsZ °

d) Change of the oscillation amplitudes

The betatron amplitudes are given by the emittances. Neglecting gy one gets for the change of
the horizontal emittance:

- 2 2 1oyt 2,1
B o, =2 5xﬁ + 8 Xg + g (2! + 5%')

8Xg is given, as in the case of quantum fluctuation, by the change of the absolute value of the
momentum, and &x' is given by the change of the direction of the momentum:

&, &%
& . L8 X X
_— = 4 il [ AR

B, ¢, 2XB D b D 02 * B, (2x > + 2 ) .

Here we have neglected also the derivative of the dispersion D'. For the change of the vertical
emittance one obtains

», &,
Gez =B, (2z —p"+‘;2—)

since the vertical dispersion is usually zero.



- 407 -

For the invariants of the linearized longitudinal motion one gets

2 2
p? 14
(p )+ ?25 ( &t b ) for bunched beams
H =«
wp 2
{(E“) for unbunched beams

where Q¢/2n is the synchrotron frequency. The change of H due to a scattering event is in both
cases

_, & o
=2y p *p7 -

e) Averaging over all scattering angles
The distribution of the scattering angles ¢ and ¢ is given by the Rutherford cross-section:

r 2
do = (____p__:_) sin ¢ dg d¢
¢

4;32 sin? )

where rp is the classical proton radius. Integration over all scattering angles gives

T 2n . PY‘; 254
[ ] epydo=-5— In"— {800} 4 ,
@m 0 B p
n 21 p%r2 -2
- T p 2g-d
I 8% do =7 —_—uln—f— [y2(? + £2) + (g2 + ¢?) + (2 + 9] -
&, 0 p

The minimum scattering angle ¢pis determined by the impact parameter d by

r
p

2%

nge-l

tan
with

-1
d =7 beam height .
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Furthermore,
2p%d »
B Vp
is assumed for the calculation of the integrals.

The change of the three invariants is then given by

T 2% Hl/Yz
{£ (Sexl/ﬁx do =
¢
m ezl/Bz
Ay
) -4 gt ?
o =2 X 2.2
p_ 2 D
—_—‘nr—ﬁ axte +glact-agh o= (@24 )
45"* p 1 BX BX

_4Z|C +§2+92
1

f) Averaging over all particles

The relative velocity between two colliding particles in the centre of mass system is 2cB. The
probability for a scattering into § and § per unit time in the centre of mass system is 2cBp dg where
5 = p/y is the particle density. The probability for scattering into ¢ and ¢ per unit time in the
storage ring system is

o 2cpp do

scat
v
since dt = ydt. In order to calculate the mean change of the invariants of all particles we have to
average with respect to the 12 variables of the two colliding particles:

SlsSZax 1’XB2,ZBI’ZBZ’Apl/p,Apz/p’x;,,x.z’Z;’z;

B

where three of the twelve variables are dependent:

Sl=52=S

&y 2,
xBl +D p - X32 +D D
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which follows from the assumption that the two colliding particles have the same position. It is
assumed that all variables have Gaussian density distribution except for the longitudinal distribu-
tion wg which can have a Gaussian distribution or a continuous distribution (unbunched beams). The
total density function is then

= w2
P ws(s)wX (Xﬁl)wx

21, (22 |
] (Xﬁz)w2 (Zgw, (557 & W (X" w

: 5t (" (2w, (2)

x' z' z
B 1 2 1 2

Before integrating over the three variables we make the following substitutions

=x_ 7 Dy&/2 2L = /2
Xsl,z = XB + Uyg p 7 t yE
xi,z =x' + 0/2 zi’z =2 +¢/2

and the differential becomes

dv = YdsdedzBdTpgdx'dedz'dg .

Now six of the nine integrals can be solved immediately and one obtains

<H>/y? /v
- 2
d <de,> 2cg + T
a e/B| - f —Z—ﬁ [ 6"5(1/5x dg dV =
dt
<6€2>/BZ v Y ¢m 0 5821/52
2,2 2 2 2
©® o o g 1 D 8] C
AT T T ep -1 (§+—-2-)-;——-;—}
-0 = = n Bl (§| (§
F ]
o® + g% - 28
2, .2 2 Y0 5 2 d -, dededg
gHet-200 v (et gt - 20| In 2 ) Ty
X P (g2+e?+H)¥2
g2 + o2 - 202
with
r2cN
A - p-b (bunched)

2 3y
64n T % % cchx.az.B Y

B

where N, is the number of particles in the bunch. For an unbunched beam Np/os must be replaced
by 2/aN/C where N is the number of particles in the beam and C is the circumference.
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g) Invariants

Multiplying the equation for <gH> by 1‘Y202/32x and adding it to the equations for <ggo> and
<8ey> gives

d 1 p2 8> <bep
Et_[<5H>(_Z'_E)+ 5 + 8 1=0.
R X z

In a weak focusing machine the momentum compaction factor g is given by

DZ
=27
™ B
After integration one obtains
1 <€X> <€Z>
<H (T2 - “M) + + = const .
Y By 8,

This equation shows that the behaviour of the particles is different below transition energy (YZ <
1/aM) and above transition energy (Yz > 1/°M)’ Below transition energy the sum of the three
positive invariants is limited, i.e. the three oscillation amplitudes are limited. The particles
behave like the molecules of a gas in a closed box (focusing corresponds to the walls of the box).
They can only exchange their oscillation energy, but the total oscillation energy or the temperature
is limited. In this case an equilibrium distribution must exist where the intra beam scattering does
not change the beam dimensions.

Above transition energy the coefficient of <H> is negative and the total oscillation energy can
increase as long as it does not exceed other limitations. In this case an equilibrium distribution
does not exist.

h) Rise times

The rise times for the mean oscillation amplitudes, which determine the bunch dimensions, are
given by1’2)

1.1 (—jfE—Acﬁf(abc)
° Zﬁt };

2 2
11 AFE C)+;£fwbcﬂ
T =527 G = S a3 A s>
TX 20')( dt a xﬂ

d°§ 1 a c¢
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with
% d
a= dh ’ b= 9 cgﬂ%g
YO, YO, rp
1 1 D2
Ly —
S b %
and

! 21 1 dx
f(ashyc) = 8 [ [In (- (=+ =) - 0.577 ... ](1 - x?) —==
. 2 '/ A /A

p=a?+x?(1-a2), q=b2+x?(1b?).

The function f(a,b,c) is plotted in Fig. 3. For

a=b=1
one obtains
f(l,1,c) = 0
j.e. for
L
°p yz - Bz =00 T oy

an equilibrium is reached, and the Gaussian function remains stable. This is possible only below
transition energy, i.e. y < g/D.

3. EXPERIMENTAL RESULTS

The last section shows some experimental results obtained in the two CERN storage rings, the
Super Proton Synchrotron (SPS) and the Antiproton Accumulator (AA). Investigations in the SPS have
shown that the decay of the luminosity consists of three parts3). The first part is the increase
of the dimensions of the proton bunches due to the intra-beam scattering, the second is the loss of
protons due to the intra-beam scattering and the third is the loss of antiprotons due to the beam-
beam interaction. The total decay time of the luminosity is then given by:

1 1 1 1
=F+7F +—= .
Tum %' Mlife  Tlife

The times 1;', rTife and ¢jife are, very roughly, in the order of 60 h so that the decay time of
the luminosity is in the order of 20 h and mainly determined by the intra-beam scattering.
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Figure 4 shows the longitudinal distribution of proton and antiproton bunches measured at time
intervals of 15 minutes®). It can be seen that in the case of antiprotons (b) the distribution
remains almost constant whereas in the case of protons, which havela much larger density (Nt = 1.5 x
1011, N- = 1.2 x 10!0), the bunch becomes longer and the density decreases. The rise times agree
with the calculation*). :

2.58 I

7]

U U L L e

i e U UL LR AL

T T T T
W

__/ r{ / (7 N\ “;\ &
7045 \, \
: y/ N\ \
=/ \ =
\ \ E /'/
= =
a) b)

Fig. 4 Measurements made in the CERN SPS of the longitudinal distribution of (a) proton
and (b) antiproton bunches

Figure 5 shows a direct comparison of the measured and calculated rise times for the horizontal
emittance as a function of time5). The measured growth rate, which is the inverse of the rise
time, is equal to the calculated growth rate plus a small constant. This constant is caused by the
scattering of the protons by the residual gas5).

In the AA, where the antiprotons are cooled, intra-beam scattering limits the maximum antiproton
density which can be achieved by stochastic cooling®s7). In an experiment the cooling system was
switched off after the antiprotons were cooled down and the growth times due to the intra-beam scat-
tering were measured. Figure 6 shows the growth times for the momentum spread and the horizontal
emittance®).
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Fig. 5 Measured radial emittance growth rate in CERN SPS w1 = ¢/ compared with the theoretical
intra-beam scattering rate. The dotted line includes a correction for gas scattering.
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Fig. 6 Comparison of the measured and theoretical time constants for the growth of the momentum
spread and horizontal emittance in the CERN AA with the cooling switched off
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