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ABSTRACT

An introduction is given to beam-beam effects in lepton and
hadron colliders. The experimental results and facts are sum-
marized and some theoretical tools and methods are explained.

1. INTRODUCTION

Lepton and hadron storage rings have become one of the most important tools in high
energy physics. These storage rings are devices which allow two beams of ultrarelativistic

charged particles, rotating in opposite directions to be accumulated, maintained and collided
(see Fig. 1).
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Fig. 1  Storage rings

One important difference between a collider and a conventional accelerator is that during
the repeated crossing of the ultrarelativistic beams the particle motion is violently disturbed.
This perturbation results in certain — mainly unwanted - effects. These so-called beam-beam
effects have been the topic of special workshops and conferences {1 — 3] and are still being
investigated intensively. Some review articles are [4 — 16].

This introductory lecture cannot cover the whole subject exhaustively. so we shall trv
to illustrate the problem, to introduce the reader to some basic facts and concepts and to
explain some of the theoretical tools and methods which can be used for a quantitative for-
mulation of the problem.

499



The paper is organized as follows: After a short recapitulation of the concept of lu-
minosity and the various interaction geometries and operational modes of a storage ring, we
calculate the deflection of a single particle traversing a strong beam with Gaussian charge
distribution. The next section treats simple linear beam-beam models — at first we consider
the perturbed linear dynamics of a single particle due to the electromagnetic fields of the
counter rotating beam. The beam-beam strength parameter ¢ is defined; this is used exten-
sively in all studies of the beam-beam effect. As a second model we investigate the motion of
two rigid bunches under the influence of the beam-beam interaction. In both cases a stability
criterion is derived for the motion of the system. The next part summarizes the experimental
facts and results for lepton and hadron colliders obtained in the past which show that the
nonlinear character of the beam-beam interaction plays a very important role. The implica-
tions due to these nonlinearities are discussed next and some of the theoretical tools such as

numerical simulations and analytical methods are explained. A list of unsolved problems and
some comments on future colliders conclude this lecture.

2. BASIC FACTS

The reaction rate for a process of cross section o obtained in a collider can be written as
R=CL.¢ (1)

where £ is the luminosity, a parameter characterizing the colliding beam system. Generally,

the luminosity is calculated by integrating over all possible collisions between the particles in
both beams [14,17]

L=f -2c/n1n2d:z:dzdsdt (2)

where f. is the collision frequency, ¢ velocity of light, n; and n, are the particle densities in
the two beams and the integration is over the collision region and over the time of collision,
x,z designate the transverse directions and s the longitudinal direction.

The interaction geometry can be different for various storage rings. Head-on collisions
are natural for particle-antiparticle single-ring colliders. Two-ring colliders generally require
special design work for head-on collisions as for example HERA. Collisions with crossing angle

as in DORIS I (18]or as foreseen for the SSC [19]need special care as we will point out later
in this lecture.

Besides these different interaction geometries, storage rings can operate in various modes:
interactions between bunched beams or interactions between continuous (coasting) beams.
Furthermore strong beams can collide with strong beams or with weak beams. The latter
case is approximately valid for proton-antiproton (p, P) colliders.

In this lecture we will concentrate on head-on collisions of bunched beams of opposite

charge. In this case the luminosity for equal beams with Gaussian charge distribution is
given by

N
-t (3)
4ro.0, B

where NV is the total number of particles per beam, f the revolution frequency, B the number
of bunches per beam, and 0.,0. the standard deviations in z and z direction respectively.
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As mentioned already, the presence of two beams which repeatedly cross each other, leads
to a variety of effects in lepton and hadron colliders e.g. the blow-up of the transverse beam
size which causes a loss of luminosity and a reduced beam lifetime. Figure 2 shows examples
for the blow-up of the beam size of colliding electron-positron bunches in PETRA [20).

Beam dimensions at [,+ = I, = 0.15mA4 I+ =0.52mA I.- =0.74mA

Beam dimensions at I,+ = I, = 0.3m4 I.+ =0.6mA4

l.- =0.6mA4

Fig. 2 Examples of beam blow-up at PETRA

Furthermore, as the beam intensity increases beyond a more or less distinct threshold one

can have rapid beam loss. In hadron colliders beam-beam effects lead to emittance dilation
and various diffusion effects.

So the problem one is facing in storage rings is very complicated and requires the self-
consistent treatment of ultrarelativistic counter-rotating and repeatedly crossing bunches of
charged particles in external electromagnetic fields in finite metallic vacuum chambers. In
addition, one has to include rest-gas scattering and - at least in the lepton (ete”) case -
radiation effects have to be taken into account.

A general theory considering all these facts does not exist, so one usually investigates
simplified models treating various aspects of the whole system. The described beam-beam

effects are then related to instability mechanisms in the model under consideration.

When crossing the electromagnetic fields of the opposing beam, a particle will be deflected
as illustrated in Fig. 3.
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particle trajectory of beam A

Fig. 3 Deflection of a particle because of beam-beam interaction

Once we know these fields, the deflection can be calculated by using the Lorentz equation,
namely:

! A z +eo s z 1
ar =P f (E + 2B, - ’-’-B,) > at (4)

p -0 [od [ P

r xr +oo z E 1
Az = 2P _ —e/ (E +%p, - "’—B,) Lt (5)

p — o0 [ C p

where E = (E,,E,,E,) and B = (B,, Bz, B.) are the electric and magnetic fields with longi-
tudinal and transverse components designated by s and z, z, respectively. v = (v,,vz,v;) Is
the particle velocity and p the momentum.

In order to calculate E and B one proceeds in several steps which we shall shortly sketch.
For details of the calculation the reader is referred to Refs. [21,22].

We assume a Gaussian charge distribution of the strong counter-rotating bunch with
standard deviations o, o;, o, in the laboratory system:

( ) Ny-e z? z? s? (6)
z,2,8) = ~—— 7 €Xp —— . —— —
e (2m)3/%0,0,0, 202 207 202

where N, is the number of particles per bunch.

In addition to this Gaussian charge distribution we require that the beta-function of
the storage ring does not change appreciably along the bunch length, i.e.

52

Bo(s) = By + " (7)
Bs
implies that
o, << By (8)
where (33 is the value of the beta function at the interaction point.

In the center-of-mass system (u,v,w) the charge density is given by

_ Ny-e U v w (9)
o(u,v,w) = (2r)3/20,0,(v0,) P 202 202 2v%0?

where v Lorentz factor = (1 — ‘c’—;)"/z.
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The potential corresponding to this charge distribution can be calculated and the electric
field of the Gaussian bunch is obtained in the center-of-mass system. Transforming the field
back to the laboratory system using the well-known transformation rules

Ezz‘yEu Ez:7Eu E,=E,

(10)
B,=%*yE, B,=-*yE, B,=0
and taking into account (4) and (5) one finally gets for short bunches
=2 32
Azl — _2Nbr,z o €exp {"2,34_‘7 - 2,3+q} g (11)
7 Jo (207 +q)¥? (202 + ¢)'/?
:2 12
Ag = _2Derez oo oxP (=t~ ) g (12)
7 Jo (207 +q)V/? (202 + ¢)3/?

with », = "%2— classical particle radius.

Remark i: The kicks experienced by the test particle can be derived from a potential
U(z,z)

Az' - - 8U8(::.z)
(13)
AI‘ — — 8Ua!:,z!
:2 22
U(li Z) _ Nyre [ 1 —exp {_203+q - 20§+Q} (14)
’ 7 Joo (207 +q)V/2 (202 + )12
Remark ii: In the limiting case of round beams with o, = 0. = ¢ Eqgs. (11) and (12) can
be evaluated easily giving
Az = —z—b—l‘f’r’;‘ (1 - exp (—r%/20%)) (
15)
Az = —ME (1 exp (—17/20%))

(r? = 2% + 2%).

Fig. 4 shows schematically the beam-beam kick as a function of displacement

—’y\‘:

Xr 20y

.‘. .‘-\M

4

Fig. 4 Beam-beam kick as a function of displacement
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For small values ¢ << 0.,z << o, the behaviour is linear. Using (11) and (12) one obtains

. 2N,r. 1
Ay oo 2N 1 (16)
Yoz + 0;)0, f:
, 2Ny, 1
Az =____—5T$ E (17)
Y(oz + 0:)02 fz
with
1 _ 2]V'[,'I‘e (18)
fo (o +0.)o,
1 2Nyr.
— = —"T.__._._, (19)
f:: 7(‘7: +Uz)az

3. LINEAR BEAM-BEAM MODELS

As a simple model we now study the dynamics of a test particle which is perturbed
by the linear beam-beam kicks. The interaction point s, is specified by (y = z or z)

Y(sip + &) = y(sip — €) (20)
i i 1
Y(sipte) =y (sip—¢)— }-y(sfp—s) (21)
Y
or in matrix notation:
Y(sip +¢€) 1 0 Y(sip — €)
, ) _ (53 o2
Y (sip +¢) -5 1 Y (sip —€)

The 2 x 2 matrix describing the beam-beam interaction in this linear model is equivalent
to the transfer matrix of a thin lens quadrupole of focal length f, [23]. The influence of this
additional perturbation on the particle motion can be calculated in the usual way [23].

For symmetry reasons we will split the beam-beam kick into two halves as sketched in

Fig. 5.

—E -+ E —E& + £
Sip Sip + C

< = 4
half beam-beam kick half beam-beam kick

( C distance between two adjacent interaction points)

Fig. 5
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The transfer matrix from one interaction point to the next interaction point is then given
by:

cos(py + Apy) By sin(py + Auy) 1 0 cos iy, B3, sin iy 10
. - 1 . 1

— 51—; Sln(#’y + A/J'y) COS(U-y + A/"'y) - 2—}; 1 - l?', SII iy, €OS L, -7 1
(23)

(ky + Apy), B; are the perturbed lattice functions (phase advance between interaction points

and beta function). As usual we assume that 5 vanishes at the interaction point.
Apy is calculated from

cos(py + Apy) = COS Uy — 2%sin fhy (24)
v

= COS by — 27 - £, sin
where we have introduced the beam-beam strength parameter

Nbreﬁ(;y

e you(o: +0.)

{y

(25)

§y plays a fundamental role in the investigations of the beam-beam interaction. It character-

izes the strength of the interaction and for small Ay, it gives the tune shift of the system
due to the perturbing beam-beam kick

Ap,

§y = ek AQ,. (26)

1t is straightforward to investigate the stability of the particle motion in this case. The motion

is stable if the eigenvalues of the transfer matrix (23) lie on the complex unit circle which
implies that the trace of (23) is less than 2, i.e.

cos py, — 2m€ysinp,| <1 (27)

or equivalently

£y < 21—71- cotg <%> (28)

The stability condition (28) is plotted in Fig. 6

Until now we have only investigated how the dynamics of a single particle is modified
by a strong counter-rotating beam (incoherent effects). As a second model we study how

the bunches as a whole, and described as rigid charge distributions, are influenced by the
beam-beam interaction (coherent beam-beam effects) {9,13,24,25].

In order to keep the mathematics as simple as possible we only consider a storage ring
with two oppositely circulating bunches. These two bunches have small center-of-mass mo-
tion in the y-direction (y = x or 2). The kicks given to the two rigid bunches are computed

by averaging the kicks over the bunch distribution. For a Gaussian distribution one obtains
in the linear approximation

505



63k \

\ Unstable

o\

01F 4
Stable

g

O i | .
0 By
05 =X

Fig. 6 Stability condition of Eq. (28)

Ay, = —-1—(y1 —Y2)- *—\}5 (29a)
' 1 1
A = —7\Y2—Y1) " —=.

(The factor 715 is due to the averaging over a Gaussian distribution; in the case of a uniform
beam 12 has to be replaced by 1 [9]). ¥ and y, describe the center-of-mass motion of beam 1
and 2 respectively. In matrix notation the beam-beam interaction is given by

Y1(8ip + €) 1 0 0 0 y1(Sip — €)
Yy(Sip +€) - \/Elfy 1 7%f—y 0 y1(sip — €)
= (30)
Ya(sip + €) 0 0 1 0 Y2 Sip — €)
Ya(sip + ) A 0 ~7n 1| walse—o)

After the collision the bunches execute free (linear) betatron motion for half a revolution

described by

COS fiy Bs,y sin py 0 0
Ty = _I;T,Sin Ky  COS Uy 0 0 (31)
0 0 COS L, Bgy sin py
0 0 - BL sin g,  COS iy
Oy

Combining (30) and (31) one obtains the motion for half a revolution
Tiwoe = To - Tes (32)
with Tgp the 4 x 4 matrix from (30).

The motion of this coupled two-bunch system is stable if the eigenvalues A of T, Lie on
the complex unit circle. The eigenvalue equation for (32) can be written in the form [26]:
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?— A4cospu, — 285, sin py) + (2 cos py — €fBg, sin py)* — € oy Zsin’u, =0 (33)

where we have used the abbreviations

1
£ =
V2§,
1
A=+ -
T3
The solution of (33) gives four eigenvalues:
Ari = e (34a)
Airrry = ety (34b)
where Ap, is determined by
4m .
cos(py + Apy) = cos py — 75511 Sin fhy. (35)

The motion belonging to (34a) is always stable and is called the o-mode. In this mode the

bunches oscillate in phase moving up and down together at the collision point. The motion
corresponding to (34b) is stable if

4n§, .
cospy, — —=sinp,| < 1 {36)
V2

or equivalently

1 (/J.y
2V2r 2
In this case the bunches oscillate out of phase, colliding at an offset changing from collision
to collision. This mode is called 7m-mode. This behaviour is similar to the motion of two

coupled linear oscillators in classical mechanics. Figure 7 shows the stability condition (37)
which is more stringent than in the incoherent case (28).

€y < cotg

(37)

I /////
Unsloblc
g,
02+
7,
Ol -
{a) Stable
0 L 1 1 1
o Qy 1

Fig. 7 Stability region for two strong rigid beams executing small center of mass oscillations
as a function of the total tune Q, of the storage ring. The dashed line shows the strong-weak
stability limit of Eq. (28).
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Remark i: For a uniform charge distribution the stability is given by

1 I
& < o cotg (&) (38)
and the tune shift for small Ay, is given by

Ap

AQ, =2 =2, (39)

(twice the incoherent tune shift).

Remark ii: These coherent modes have been excited and detected in various colliders. A
measurement performed at PETRA is shown in Fig. 8 [20,32].

Fig. 8 Vertical eigenfrequencies of two colliding bunches

Remark iii: It is instructive to re-derive the values of the tune shifts in a different way by
using perturbative methods. We will only sketch the derivation leaving the details to the
reader. For a description of this perturbative approach see Ref. [27]. Using

25 = (y1, 91,920 92) (40)
the equations of motion for the coupled bunch system can be written in the form
4, - (A+464 (41)
ds 2=(4+84)z

where A describes the unperturbed betatron motion and

0 0 0 0
_ 1 1
s 1 fy 0 fy 0 5( ) ( )
A= —— - 8(s — s 42
= V2] 0 0o 0 o ’
1 1
n 0 -7 0

specifies the beam-beam interaction.

Equation (41) is solved by the transfer matrix (from one interaction point to the ad-
jacent interaction point):

M(sip + Cysip) = M (855 + C,5ip) + 6M(8ip + C, 54p) (43)
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with
SM(sip + C,855) = M (545 + C,sip) X

=0
'iP+c 1 -1 ' ' '
x / ds' M3H(s,s5)6A(s) - M, (5, ip). (44)
Sip
In order to calculate the eigenvalues of M we need to know the unperturbed eigenvalues of
M, where the two bunches are uncoupled. It is easy to verify that

Al= A= e = )\

(451
Arr = Ay = AT
with the corresponding eigenvectors
/B(;y
. : (46a)
v = a
28, | ©
0
0
. 0 (46b)
?LIII - »
zﬂay ’BOU
1
and
v =5, Yy =Yg (47)
are solutions to
M (sip + C,8ip)0(855) = Au(sip) (48)
or explicitly:
cospy  Bg,sinpy, 0 0
_
ik cosuy 0 0| u(si) = An(sip):
0 0 COS fiy Boy sin iy
0 0 - t sinpy,  cospy
The eigenvectors (46a) and (46b) satisfy the following normalisation condition [28].
1.
~, Sv, = b, (49)
1
where + means Hermitean conjugation and S is defined by
0 -1 0 O
1 0 0 O
= 5
£ 0 0 0 -1 (50)
0 0 1 0

From (45) it follows that the unperturbed spectrum of M is degenerate and therefore the
tune shifts are calculated according to the well-known quantum mechanical expressions

1 1
6 = 2 (6 My, + §M33) = 5\/(5M11 — 6M33)? + 46 M}, (51)
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where

'

A fipt ,
M= [T dsni ()88 A Jusls ). (52)

1 ip

II(n

Substituting (46a), (46b), (47), (42) into (52) and solving (51) we get the results

A =0
(53)
A B
6 = +3 o
or equivalently
Q=0
(54)

Bs
5Q =+ 27;2)‘,,

in accordance with (36).

Remark iv: This study of rigid bunch motion under the influence of the beam-beam

interaction can be extended to more bunches per beam.

A stability diagram for six colliding bunches is shown in Fig. 9.

0.25 //
020 - Unsiable
0.15 -
g,
0.10 |-
0.05 I~
(b)
Stoble Stoble Stable
0
0 1 2 3

Qy

Fig. 9:  Stability diagram for two strong, rigid beams executing small center-of-mass os-
cillations as a function of the total tune of the storage ring. Case of six colliding bunches [9,13].

Remark v: Higher order effects dealing with changes in the bunch shape have been
studied in a water-bag model by Chao and Ruth [33].

4. EXPERIMENTAL FACTS AND RESULTS FOR
LEPTON AND HADRON COLLIDERS

In the past 20 years the beam-beam effect has been studied intensively in many lep-
ton storage rings. For a comprehensive review we refer the reader to Ref. [14].

510



In order to investigate the parameter dependence of the luminosity of a collider. we rewrite
L as:

2
__ 1 D Loy (55)
4re?fBo.o., 2er.[;, Oz
where we have used
I=N.ef=Ny-ef-B (56)

(total current)

Ir.3;.
* 7 2nyBefo.(0z +0.)

and

In all lepton colliders 0, << o, therefore one can neglect (¢, /0;) in (55).

The current I of a collider depends on single-beam instabilities and coupled-bunch in-
stabilities. Due to the chromaticity compensating sextupoles the value of B;, is limited by
aperture considerations and because of (8) by the bunch length. ¢, depends on various oper-
ating conditions such as energy, tune of the machine, coupling, dispersion, radiation damping

and all kinds of perturbations. Some important facts which have been found experimentally
are listed below:

Fact i: For a beam current smaller than a characteristic threshold current Iy, the lumi-
nosity £ is proportional to I? which implies

For currents of the order of I,5, £ varies linearly with I implying a saturation of £,. This

saturation is due to a linear increase of the beam size with current. For all existing lepton
colliders

§. <0.07 (58)

the so-called beam-beam limit. The dependence of £ on I for several colliders is shown in
Fig. 10 taken from Ref. {14].

S
000} = L - - . -
L] o Uo Uo ~
S i I ana W : 4
£ L I =2 s " a a
* o020fF o . L * : . .
~ L
I R R RN =l B S B O =S B! i o B R [ B B S o B B B L [
30 + VEPP-2M - DCI - - — CESR — PETRA = -
510 MeV L 800 Mev x100 N9932 BSAI 11 GeV
— — (Y -
20t L ol L 53 Gev o4
15 | - - L L |
y 2
> 10k c - I - = = al
2. O y Y~ i i i PEP 3b
o = ADONE ° 1
€'e gf o L A al L 15 Gev ol - T F /o March 1983
€3 . 1.88 Gev 2 1L5GeV
38 L e 0L 200 | B |/ at R i 4
* o1 1 [ . Al J A .t P 1 L Lt 1 L1 L1 | 1 ! [ 1 1 L1
81 1520 10 'S 2025 121520 30 8 10 118 6 810 118 6 81012 8 10 152025
I{(mA)/Beam
Fig. 10 Luminosity and vertical tune-shift parameter versus current for seven electron-

positron colliders. Note that the tune shift saturates at some current value above which the
luminosity grows linearly.
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Fact ii: The performance of a collider and the luminosity depend sensitively on the working
point in the tune diagram. Due to the nonlinear character of the beam-beam interaction (see
Eqs. (11) and (12)) various nonlinear resonances

an+sz =P (59)

are present. |n| + |m| characterizes the order of the resonance (n, m, p are integers). The
influence of these resonances has been nicely demonstrated in an experiment performed at
ACO [29]which shows the beam blow-up of a weak beam crossing a strong counter-rotating
beam as one changes the tune of the machine, (see Fig. 11).

Q, of the transverse size resonance
strong beam of the beam assignment
-strong- - weak -
895 — |
] } 1/12
— 10/
— - ‘ 8/9
B | 7/8
85 — - 1 ‘ —  6/7
Q,=2.836 : @ — 99— l—  5/6
] l — 9/
- - l;' 719
75— - | 4 —  3/L
———
- ll { R L 8/11
— - 1 —  5/7
70 D T t* 7110
T ¢
. % 1 r 213
65 — %
] L 71N
N
- - % % .
.60 - } ‘ —  3/5
o S .
- I ost —  7/12
— I — 4/7
55 | —  s/9

Fig. 11  Crossing of nonlinear resonances for strong-weak counter rotating beams.

Fact iii: The particle distribution in a beam is changed due to the nonlinear beam-be_am
interaction, (see Fig. 12 which shows scraper measurements for SPEAR [30]). A theoretical
analysis and model should try to explain these results. We will come to this point later.
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Iy ‘0, = 320m) 2155 Gev B
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(3,=3L3m)  £=155Gev

zlo,
w

Colliding Beams ['x1=38x38 mA

0 1 2 3 IA
z{mm)

Fig. 12 Horizontal and vertical particle density distribution at SPEAR

Next let us mention the experimental situation in hadron colliders. Much less information
is available in this case because there are only two p, p colliders existing at present. The main
parameters and performance results are summarized in Table 1 [31]. The experience with
these colliders has shown that nonlinear resonances play a dominant role and that even
high-order resonances of order 10 up to 16 must be avoided. Besides the presence of these
nonlinear resonances there is a further complication: In a nonlinear accelerator the tune
is amplitude dependent and thus occupies a certain area in the tune diagram due to the

amplitude distribution in the beam. Schematically this amplitude dependence for the beam-
beam nonlinearity is depicted in Fig. 13.
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CERN FERMILAB
S pp S | TEVATRON

Single beam energy (GeV) 315 900
Record peak luminosity = 2.49 2.06
x10%%cm=2s71
Bunches per beam 6 6
Protons per bunch x10° 11 7
. Antiprotons per bunch x10*° ' 5 - 2.5
' Crossing per circulation ¢ 3 12
Total AQ, protons 0.011 0.018
Total AQ, antiprotons 7 0.011 0.025

Table 1: Hadron colliders

AQx‘z

Fig. 13 Beam-beam detuning

Since the maximum AQ that can be accommodated in the tune diagram avoiding resonances

up to order 16 is roughly 0.02 (see Fig. 14 where we show the working point for the Tevatron
in the tune diagram) we obtain in this case for £M°*

AQ ~0.02 x n - Moz (60)
where 7 is the number of crossings per revolution.
This gives
¢Me= =~ 0.002...0.005. (61)

These low values of £M°* (58) and (61) can not be explained with our simple linear mod-
els discussed above, thus proving that the nonlinear character of the beam-beam interaction

is playing a fundamental role. In the next section we will study numerical and analytical
methods to formulate the problem quantitatively.
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Fig. 14 Fermilab working point

5. THEORETICAL TOOLS AND METHODS

Various analytical and numerical methods have been developed to explain the experimen-
tal facts described in the last section. Numerical simulations are divided into strong-strong
and weak-strong varieties. At present, simulation is the only quantitative method to study
the beam-beam interaction self-consistently and to calculate the luminosity.

For lepton colliders these simulations [15,34,35,36]have to include the coupled synchro-
betatron motion (six-dimensional phase space), the nonlinear beam-beam kicks, radiation
damping, quantum fluctuations due to the stochastic emission of synchrotron radiation and -
if necessary — other lattice or rf nonlinearities. Some results of these calculations are shown

in Fig. 15 for CESR (taken from [35)) and in Fig. 16 for PETRA (taken from [34)}).

The latter case shows the sensitive dependence of the beam size on perturbations of the
machine. Perturbations can be small differences in betatron phase advance between the
interaction points and spurious dispersion at the interaction points. Because of these numer-
ical results a different working point was chosen for PETRA. Furthermore these simulations
are very helpful for understanding the complicated interplay of nonlinearity, damping and
stochastic excitation in lepton colliders. Fig. 17 taken from [37|shows such a calculation
(weak-strong simulation). The combined effect of quantum fluctuations and nonlinearity can
move a particle starting near the origin in phase space to a (nonlinear) resonance island before
it is damped again and eventually pushed to another resonance nearby.

Analytical methods for (e™,e”) machines have to include the radiation effects. In this

case the equations of motion are given by a system of stochastic differential equations of the
form [28]:

3]

= Alz,s) + B(z,s)n(s) (62)
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Fig. 15 Beam-beam simulation results for CESR. The contours are at equally spaced relative
levels of luminosity. Crosses indicate bad lifetime. The straight lines define the positions of

strong nonlinear resonances.
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Fig 16  Simulated vertical beam height in PETRA as a function of vertical and horizontal
tunes a) without machine imperfections and b) with small imperfections.
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N=1—=10348

Fig. 17 Phase diagram (z — z') for weak-strong simulation (Q. = 25.2, Q. = 23.32)

where z is the six-dimensional phase space vector of the coupled synchro-betatron motion.
A and B include the lattice nonlinearities, the beam-beam interaction and the average effect
of the radiation. The term 7 is a stochastic vector process describing the stochastic emission
of synchrotron radiation (quantum fluctuations). Depending on the stochastic process 7, z
itself is a stochastic quantity specified by a distribution function g(z, s) which is determined
by the Fokker-Planck equation [38]:

o (B (Ba0)). (63)

Oz;

Bg(z s) Z
The Fokker-Planck equation is a linear partial differential equation. A further discussion of
this subject is beyond the scope of this lecture but can be found in Ref. [39].

In lepton colliders numerical simulations have been very helpful to get a better under-
standing of the beam-beam interaction, and in many cases a good agreement is found between
numerical results and experiments. Electron-positron storage rings are strongly influenced
by radiation effects. On the one side radiation causes damping of the particle oscillations
while on the other — because of the stochastic emission of synchrotron light — these quantum
fluctuations cause a stochastic excitation of the particle motion. After a few damping times
the system has — hopefully - relaxed to its equilibrium. Tracking and numerical simulation
of the particle motion can thus be limited to a few thousand revolutions corresponding to a
few damping times.

The situation is quite different in present-day hadron colliders where radiation effects
are almost negligible. Longtime predictions using numerical simulations are very subtle and
CPU-time consuming. In this case, one is therefore strongly relying on analytical methods
based on the theory of nonlinear (nonintegrable) Hamiltonian systems. We cannot cover this
interesting field exhaustively, we can only illustrate some ideas and concepts. For further
details the reader is referred to Refs. [7,40).

A model describing the weak-strong beam-beam interaction is given by the Hamiltonian

H = Ho+ Hy (64)
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where

2 2 2 2
Y z D z
=2 L k,(8)— + 2= 4+ k,(s)—

describes the transverse linear betatron motion in an ideal uncoupled machine (28], and k., k.
are the horizontal and vertical focusing strength.

(65)

H, =U(z,z)-é,5(s) (66)

describes the nonlinear kick a test particle is experiencing when crossing the strong counter-
rotating beam at the interaction point.

_ _ = 2
Ulz,z) = Nyr, /°° 1— exp { Zol+q 2a§+q}
0

14
T e BT g (2T T g e

8,(s) is the periodic delta function
§p(s) = 2 8(s = (sip+ - C)) (67)

n

(sip designates the interaction and C is the distance between adjacent interaction points).

The corresponding equations of motion read:

I = 6]7: = D=z a
. 8H
po= -2 k: _ BU(Z,Z) R 6P(5) (68b)
Bz z
z = sz =p;
o aH R aU(:l:,z)
o= 5= —hoz— = y(s). (68d)

In order to find the solution to (68 a-d) from si;, — € to sy, + C — € (see Fig. 18) we proceed
as follows:

T

\y

Fig. 18
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The motion from s;, — ¢ to s;, — € 1s just given by (kick):

z(sip + €) z(8ip — €)
P=(Sip + €) Pz(sip — €) — L(z(sip — €), 2(53p — €))
= (69)
2(8ip + €) 2(8ip — €)
Pz(sip +€) P:(8ip — €) — %(z(s,‘p —€),2(8ip — €))
or in shorthand notation
Y(sip +€) = N(y(sip — €)) (70)

where [V is a nonlinear four-dimensional map. From s,,+ ¢ to s;, ~C — < the particle performs
free (linear) betatron oscillations described by:

z(sip + C —€) z(sip + €)
CoS U B, sin g 0 0
Pz(8ip + C —¢) P=(Sip +~ €)
— | —4sinu, cospu, 0 0
or
z(sip+ C —€) 0 0 Cos Bo.sinu, z(sip + €)
0 0 — -sinp, cos i,
P:(8ip +C —¢) P P:{sip + €)
(71)
or
Y(sip + C —€) = L(y(sip + €)) (72)

where L is a linear map (see Eq. (71)). The combined motion is given by inserting (69) into
the right hand side of Eq. (71) or:

?i(sip +C—¢)= L.Oﬂ(g(sip —€)). {73)

Analysing the beam-beam interaction means investigating the nonlinear four-dimensional
mapping (73) and its consequences for the particle motion. Numerical and perturbative
methods have been developed to study these mappings, and it has turned out that these
systems contain extremely complicated dynamics. In order to illustrate the problem and to
demonstrate some of the unexpected features contained in

y(n +1) = T(y(n)) (74)

we make a further approximation. Since it is very difficult to visualize four-dimensional
quantities we restrict ourselves to the two-dimensional case. This case describes, for example,

the horizontal motion of a test particle which repeatedly crosses a round counter-rotating
beam [41]: ‘

z(n+1)=z(n)cospu+ B -p(n)-sinp + ff(z(n)) -sinp (75a)

pin+1)= —%z(n) sinp + p(n)cospu + f(z(n))cos u (75b)

with
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(see Eq. (15

))-

f(z)

8

1— exp (~z%/20%)

z2
202

A numerical investigation of (75 a,b) is shown in Fig. 19 [9,41].
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Fig. 19 Phase space plot of (75 a,b) for various initial conditions (x (o), p (o))

Depending on the initial conditions (z(0),p(0)) various orbits can be seen in this fig-
ure. There are closed regular trajectories, resonance islands corresponding to a rational tune
Q = r/s and chaotic trajectories. These chaotic orbits fill a certain area in phase space
which increases with increasing nonlinearity. Extended chaotic regions appear if nonlinear
resonances overlap. Two adjacent trajectories which start in this region will separate expo-
nentially quickly in time. A detailed analysis of this kind of mapping [40|shows that regular
and stochastic motion is mixed in an intricate manner in phase space. At this point a word of
caution is in order. Two-dimensional maps are special in that the existence of closed regular
trajectories (KAM orbits [40]) implies exact stability of motion. Since chaotic orbits cannot
escape without intersecting these invariant curves, they are forever trapped inside. This is
not true for higher-dimensional systems like our original mapping (73), where chaotic orbits
can in principle always explore the whole four-dimensional phase space. Taking into account
these results for nonlinear maps one hopes to be able to explain the beam-beam effects in
hadron colliders. These effects are then related to the presence of extended chaotic regions
in phase space or to diffusion effects induced by the beam-beam nonlinearities {7,41].

6. SUMMARY AND CONCLUSIONS

In this lecture we have tried to illustrate the problems related to the presence of two
colliding beams in lepton and hadron storage rings. These beam-beam effects play an impor-
tant role in all existing machines and a complete understanding is still missing.

All lepton colliders show a qualitatively similar behaviour concerning the current depen-
dence of the luminosity and the beam-beam limit £. For all machines the upper limit of £ is of
the order of 0.07. In these colliders, numerical simulations taking into account the completely
coupled synchro-betatron motion, radiation damping, quantum excitations and the nonlinear
beam-beam interaction have led to a better understanding of the parameter dependence of
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the system. In many cases, a good agreement is found between numerical calculations and
experiments. Furthermore these simulations are the only method of treating the beam-beam
interaction in a self-consistent manner so far, because the bunches will influence each other
in a very complicated way. Analytical methods using concepts from the theory of stochastic
differential equations are very difficult and are only at the beginning of their development.

In proton colliders nonlinear resonances play the dominant role in determining the lu-
minosity. Even high-order nonlinear resonances must be avoided. Numerical simulations
are very CPU-time consuming and subtle because of the lack of radiation damping. The
longtime dynamics under the influence of the (nonlinear) beam-beam interaction can not be
extrapolated easily from tracking the particles a few thousand revolutions. Therefore, in the
hadron case one relies strongly on analytic (perturbative) methods of nonlinear (noninte-
grable) Hamiltonian systems. The dynamics contained in these models shows a very rich and
complicated structure: regular and chaotic regions are intricately mixed in phase space. In
higher-dimensional systems (e.g. four-dimensional maps) various diffusion processes induced
by the nonlinear character of the beam-beam interaction are possible. These include Arnold
diffusion and various kinds of modulational diffusion {7,40]. The hope is that these concepts
will explain the beam-beam effects in hadron colliders.

Until now, we have only considered colliders with head-on collisions. Machines with a
crossing angle have to be treated with care. A detailed analysis of this case shows that the

crossing angle induces a coupling between the synchrotron and betatron motion [21,42]. In
this way, the number of nonlinear resonances is drastically increased

Q- + pQ: +1Q, = m. (77)

This coupling is due to the fact that the kick a test particle experiences depends on its
longitudinal position (see Fig. 20).

particle
1 > Se
®
@
centre of bunch

Fig. 20 Beam-beam interaction at a crossing angle

For further details and a comparison with experiments performed at DORIS I, the reader is
referred to [18,42].

Another challenging problem not mentioned until now is the beam-beam interaction in
linear colliders. Because of the extreme focusing of the beam to several square microns the
deflecting fields for the particle will be very large, causing a variety of additional problems
which we can only mention, such as beamstrahlung, pinch effect and other effects typical for

plasmas. The reader can get an idea of the problem by looking at Fig. 21 which shows a
numerical simulation of the pinch effect in linear colliders [43].
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Fig. 21 Pinch effect in linear colliders

Summarizing, we can say that many experimental and theoretical facts are known. How-
ever, designing future colliders such as B-factories, which require an increase in luminosity
by a factor 50 - 200 compared to the existing machines, or a linear collider is still very chal-

lenging. A good design has to rely on experimental observations, numerical simulations and,
last but not least, on good theoretical models.
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