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PART III.2

e
A METHOD FOR DETERMINING THE SPIN AND PARITY OF THE Y7 )

M.M. Block,

Northwestern University, Evanston, I1l., USA.

The helium bubble chamber group1) has presented evidecnce
for the presencc of the mass 1385 MoV Yﬁ state in the absqrption at

rest of K mesons in He*. They find that the reaction channel
K +He* » 7 +A° +He® (1)
is .dominated by
K +He' = Y& +He?, Y4 - A%+7 | (2)
Also, this groupz) has reported a large yield of helium hypernuclei
from the reaction

K + He? » ﬂ"4iAHe4 . ’ (3)

Dalitz and Downss) have successfully analysed hypernuéleaf.

AHe4 is a bound state of &

real He® core, surrounded by a loosely bound (~ 242 MeV) A°.  This

states by considering, for example, that

implics that the hypernuclei in Eq. (3) ere created by the strong
final state interactions causing binding between the A° and He® from
reaction (1), Since the Y* mechanism dominates (2), this implies
that hypernuclcar forﬁation in (3) is due to the reaction chain

K +He* » Y§ +He® - 17-+AHe"' . ()

This note will investigate the rate of hyperfragment production in
(4) as a function of three level assigmnments for Yy, i.e. St/ Pi/
2 2
nd .
a p%
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It is convenient to introduce the ratio

= (7r-+AHe“)/(1T~+AHe4) + (7 +A° +He®) ,

where the symbols represent the rates of the indicated reactions, The
dependence of R on the Y* spin and parity can be most clearly qualita-
tively seen as follows. We adopt the co-ordinate system sketched in

Fige 1, end make the following assumptions:

a) only a pure Y* state is found in reacticn (1);
b) the K~ is absorbed from an s-state atomic orbit’

¢) the K is pseudoscalarz).

Since the total engular momentum J = 0, and parity is conserved in (2),
it is readily seen that £ = L, independent of the Y* spin or parity.
If we let J be the spin of the Y* then ;Y = ;-l- '72 . TFor the level
assignment s1/, We then have £ = 0, L =0, and Jy = % for Prys

£ =1, L-1 =Y, andf‘orpgy,z—‘lL~1, =% . Thus,
there is only one poss:.ble state produced in reaction (2), and it is
uniquely determined by the Y* quantum numbers. A convenient axis of
quentization is the normal to the production plane of (1), since
1;;;"'131"‘53 =_,(‘)., If we rewrite the wave function of the system, not
in terms of J., L, and s3, but rather in terms of £, L and =5 +§>3,

A
we obtain

cx =80 cos @|S=0, S, =0 > + a4 sinﬁl'S=1,Sz=0> (%)

Where ) is ’che angle between pA and p;,. The relative A-m momentum
is given by p[m = meA" e /m +m_, and the spinors IS 0, S3=0 >
and lS.. 1, S3=0 > refer to the total spin S of the system, i.e. S=0
or 1. For sq4/, we have as = 03 for p1/, laol = la,lz for P3/
Iaolz = lg.la, I" « The correspondlng angular distributions are shown in
Table 1. Although the angular distributions for s% and’ pj / are the
same,. they yield very different hyperfragment production rates. The
spin of AHe4 hes been shown to be zero /. Hence, only those states

with S=0 can form hypernuclei, The probability for S=0 is also
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Table 1

Hyperfragment production rate R, as a function of
the Y* state, for capture of a pseudoscalar K
meson in an s-state orbit.

. . Angular Probability | R (hypernuclear
¢
T* level | Spin | Parity | 45 40 ipution of S=0 rate), in %
s1/ A - isotropic 1 23
P1y 1 1Y + isotropic’ 14 7
P3/ % + 1+ 3 cos® ¢ 2/ 1

shown in Table 1. It is clear that, all other factors being equal,
the s4 / state will yield the most hypernuclei. A detailed quantita-
Y .

tive estimate is made below.

We will calculate the rate for the continuum reaction
K +He* » Y4 +He> » 7 +A° +He® , - (5)

using the impulse model., The final state wave function is taken to be

->

m m= + 1

> -
msr, +mMzrs3
A

E - - ip'n' -> A
vo(F, - Fa)o <r -

i.e. a plane wave pion and a continuum A° = He® wave function vy, labelled

by its internal momentum k. The co-ordinate system and coupling scheme

used is illustrated in Fig. 2, where
- ->
m3PA" APz

-
k=—T77
.A. 3

The wave function for AHe4 is taken as a gaussian, that is

¢ He* = N, exp-(ﬁ Z(Fi—?jP)
1,
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where f is fitted to the charge radius deduced from the Hofstadters)
electron scattering experiments. The initial wave function for our
process, u(r), is thus the decomposition of the He® wave function
into the relative motion of nucleon 1 (which is later transformed into

a A) and the centre-of-mass of the He’-like core. Thus

u(r) = N exp-(a(?w -5 )2>,

where N is the normalization factor. In units where h=e=1, we find
that Vo = 89 MeV/c. Let T be defined as the transition operator for
the elementary reaction K + N - Y*, operating on the final state wave
function., Since the appropriate impulse operator also includes the

contact interaction terms S(FW—FA) B(FA—;1 ), the matrix element for

the transition of reaction (5) is given by

M= || Tva(r) T iBE u(r)az | (6)
[l | 7

where

If a pure Y* state is formed, the transition operator T in
the p, ,ps language (see Fige. 1) is completely specified., It is in

cases _(a) end (b): T = Aop, . * P3 +A1(PA7T>< ps)* Op s

s p .
€ Ps/2 or P1/2:

case (c) : T =3B ,

with Ao = 80/(p, 2/ 2u=p,**/2u) +iT/2, Ay = ay/(p,2/2u=~p, *¥*/2u)+iT /2,
A A Aw Am



and By = bo/(PAﬂ/ZH pA*Z/Zu) +3i T /2, i.e. the coefficients are
given by Breit-Wigner resonance amplitudes, with Ppr *2 /ou being the
resonant energy (4 = mm_ /mA+m ), and I'/2 being the level half-width.
We assume the a's and h's are constants, and for p;,y, Iaol L|.|a1|

and for D1/ Iaol Ia,]z

In order to discuss hypernuclear formation, we must use the
co~ordinate scheme of Fig. 2. We carry out this co-ordinate change

by transforming the transition operator T to the ié,f?ﬂ language by

‘noting that
m m
-> T = T 3 ->
Py === k+[1 - D (72)
A m, M (mﬂ+mA)(m3 +mA) ’lT
and
- => Mz -
b = -k—m3+mAP1r * ()
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Since m_ is small, we simplify our relations (72), (7o) to be

- -

Ppy = P - (8a)
s - m3 -
Ps. = -k'-m;;-!-mA 1 ‘ (8b)

Using Eqs. (8a) and (8b) we obtaein the transformed T operator,

M3 -> > -> 21, =2
cases (a) end (b): T = =Ao [m3+mA p;+ Py’ :\-— :A. I:P‘”Xk:l Sy s

for pg/or P4 / s where k represents the gradlen'b

operator on the relative co-ordinate rA-r;, H

case (c) ¢t T'= 3B ,

for 51/ .
2
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Using partial integration, it can be readily shown that the
matrix element of (6) is given by

= >

% -ip°r d -
M= -Aop ]‘VE(r)e cos & ;= u(r)dr

(9)

- >
~ip°r d
- fop_ [ vl-;*(r)e TPT sine T u(r)ar ,

where © is the angle between ; and T for the p1, and ps, cases. For sy
u Ve 7A /e
we obtain

: e
M = Bo j,vﬁzr)e-J'p T ulr)dr . (10)

To evaluate Egs. (9) and (10), we employ closure., We cal-
culate the total transition rate which is proportional to

2 5
j]‘lMl dk dp_

by allowing k to range from zero to infinity (ignoring momentum conserva=-
tion) and replacing the integration over P, by its maximum value, i.e.
He*. This procedure

A
in general tends to overestimate the rate, an effect which can reasonably

the value of P, corresponding to K +He? » 7 +

be neglected if the allowed region of integration is dominated by the

final state interactions. Thus we use the relation

K %* - z = 2y L -> ->
?;;3? v§(r)vE(r’)dk =8(r-r') vﬁ(r)vﬁ(r'),

where vais the bound state singlet hyperfragment wave function. TWe

thus obtain
2

iper du >
l /‘VB(r)e cos = (r)dr

2 :
[21 + 2 124J== < ¢ >

‘a0|2

R (11)
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for p%, and p3/2, where <g? >
2
< g > s[u*(r) f;-; u(r)d? = 3a.

In a similar way, for své’

R = |I]2, (12)
where
. 22 -
I - /vg‘(r)e 12T y(r)a?, (13)

)

of p, using the gaussian wave function for u(r) and a numerical solu-

Dalitz and Downs>’ have numerically evaluated I as a function

tion of the Schroedinger equation for Vg il.e.
%> -ip'? -qr? -
I(p) = vaB(r)e e ar . (14)
Letting
. a -
Jp) = | vir)e *P ¥ cos ® = u(r)ar, (15)
B dr
we note that
_2edl
) =2 E. (16)

Table 1 gives the numerical evaluation of the three cases.
We observe the large difference between the rates for St/ and py/, in
2 2

spite of their identical angular distribution.

Angular distributions can be markedly changed from these
predictions by a small admixture of background terms, e.g. terms arising
from the strong A° -He® interactions. This is clear because inter-
ference terms, etc., arise from the amplitudes, whereas rates go as the

square of amplitudes and hence are rather insensitive to small admixtures

5683 /NP /icw
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of contamination terms. Thus, one should expect to have much greater
confidence in the predictive powers of a rate calculation than in
angular distributions. The lerge differencc predicted between the
three cases of Y* level assigmments should pfovide us with a valuable

tool for assigning these quantum numbers.

In order to check the sensitivity of the calculation to the
assumption of p-state capture, the following transition operators were

used:

cases (a) and (b): T = AO;ﬁA. g4(0) + A4 [%ﬁ(O)ix pmé] oy

+CopZ By * VH(0) + Cap3 l:vszf(o) x %] "3

(17)

where V@(0) is the gradient of the K -He* atomic wave function,
evaluated at the origin. It is now assumed that the C terms will
be neglectable, since they correspond to L = 2 recoil terms and are

probably suppressed by the angular momentum barrier. Therefore,
i r - > |
T > hobyy * TH(0) + &y V(0] X By | * O (18)

where agein the A's are resonant emplitudes. The corresponding opera=

tor for sv/ is given by
. 2
case (c) ¢ T = Bops ° VE(0) . (19)

The rates for hyperfragment production are given by

| |7 o |
o Ro= . . . > A : (20)
1+ 2 , : - )

. 2
laol
2 , 2 }
where Iao! = gz{[ for Pa/ s
2
- . . .
and lao‘ = 1-!-!3’1I for P3/ ’
2
J 2
and R = PR for S1/ (21)
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Table 2 summarizes these rates, which are approximately equal
to those of s-state capture. - '
| o Teble 2

Hyperfragment production rate for pseudoscalar K capture
in p-wave and scalar K capture in s-wave states

- R (hypernuclear rate in %)|R (hypernuclear rate in %)
Spin|Parity for p-wave capture, for s-wave capture,
level
pseudoscalar K scalar K
st Vo | = 21 5
Pié 1/2 + 705 .-<\, 5

We further test the hypothesis that the K is scalar, and is
captured in an s=-state, This would require that the hyperfragment be
produced in a spin 1 excited state, and decay into the spin zero ground
state. Dalitz and Downsz) have estimated that if such an excited state

is found, its binding energy is I 0.1 MeV.

The matrix elements for the transition are given by

-> -> C
T = A,pAﬂ QA for Pvé and paé , ‘ (22)
-
and T = Byps ° S, for sy (23)
The corresponding rates are given by
2
- 4

R=|1] for pi, and ps, (2k)

2
and by R=|J]| <ag®>. - (25)

The primes refer to the hyperfragment wave function corresponding to

0.1 MeV binding energy.

5683 /NP /kw



For our purposes, it is suff1c1ently accurate to assume that
both I and J are proportional to E’é, where E is the binding energy.
This proportionality comes from the normalization of the hypernuclear
wave function, which for sufficiently small E, satisfies the above,
These numerical results are indicated in Table 2. In summarizing,

We éee from Tables 1 and 2 that hypernuclear production is severely
limited if the K is scalar, whereas the rates are insensitive to

whether pseudoscaler K is captured from either an s or a p orbit.
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