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In the CERN-PS group is was felt desirable to have
an analogue model for studying betatron oscillations in
2 dimensions and in non-linear fields; in particular for ‘
studying the dynamic behaviour of the beam when sweep-
ing through sub-resonance lines.

The construction of a model suited to imitate the focusing
forces in an alternating gradient machine would require
a great deal of work.

It is, however, sufficient to consider only the “smooth”
part of the particle trajectory for all problems concerning
the influence of non-linearity. (This follows from the
theory outlined in the preceding papers.)
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Thus the model could be realised in the form of an elastic £

pendulum. Linear and non-linear perturbations are (=]

simulated by electrostatic forces acting on it. &
The elastic pendulum consists of a thin thread of fused L

quartz, the end of which widens out into the form of a little
ball. It oscillates by flexion in vacuum, and has a linear
dependence of restoring force on displacement.

The surface of the pendulum is metal coated and when
connected to a voltage source, the ball carries an electrical
charge.

Non-linear forces and perturbations can now be applied
in the form of electric fields, produced by a set of cylin- J \
drical electrodes parallel to the axis of the quartz thread
and arranged on a circle around it (fig. 1.). The potential
produced is of the form

n
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where 1, ¢, z are the coordinates, R the radius of the cyl-
inder- on which the electrodes are placed, and Vn the
voltage harmonic of the multipole components of the
field.
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In its plane of oscillation the ball is subject to elec-
trical forces.
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Fig. 1. Mechanical betatron analogue.
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Fig. 2. Photograph of the tube
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q being the charge on the ball.
Fig. 2 shows a photograph of the tube.

Satisfactory models have been obtained with a pendulum
having about 5 cm. length, 0.1 mm. thickness, and a ball
volume of 1 mm3. The fundamental frequency of oscil-
lation is about 10 c/s and the voltages applied need not
exceed a few Kkilovolts.

By applying a constant 6- or 8-pole field for having a
quadratic or cubic non-linearity, the oscillation frequency
is made dependent on the amplitude. Fig. 3 shows the
frequency shift which must be linear with the square of the
amplitude, obtained for a cubic non-linearity, and uni-
dimensional motion.
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Fig. 3. Amplitude squared against frequency shift with cubic
non linearity.

Fig. 4 shows a Ist-order resonance curve in the presence
of a cubic non-linearity, giving the maximum amplitudes
reached when exciting the pendulum around its own
natural frequency by a dipole field, starting from the
equilibrium position. The shift of the frequency for maxi-
mum response and the sharp assymmetry of the curve are
typical.
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Fig. 4. 1st order resonance line with cubic non linearity.

If we apply to the tube time varying 6-, 8-, 10-pole
fields of very nearly 3, 4, 5 times the natural oscillating
frequency we observe sub-resonances. Fig. 5, 6, 7 show
the observed sub-resonance lines of 3rd, 4th, 5th-order
in the Q-diagram. (Ordinate and abscissa are propor-
tional to the ratios of the applied perturbation frequency
to the natural frequencies in the 2 principal axes of vibra-
tion of the rod, which can be made more or less different
by applying a fixed electrical quadrupole).

All the lines calculated by Hagedorn show up exactly.
In particular we observed only sum resonance-lines
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Fig. 5. 3rd order subresonance lines.
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(negative slope in the diagram) and no difference resonance
lines (positive slope), as predicted.

On vertical and horizontal lines, growth of amplitude
takes place only along the corresponding coordinate axis;
on the inclined lines, growth of amplitude is observed
along both coordinates. The last mentioned lines were
excited more easily (the amplitude building up more
quickly with the same perturbation). All this is in accord-
ance with theory.
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Fig. 6. 4th order subresonance lines.

The next project was to quench a sub-resonance with
a constant non-linearity. Fig. 8 shows a 3rd order sub-
resonance curve (excited by a 6-pole on the 3rd harmonic)
with a constant cubic non-linearity (8-pole). The asym-
metry of the sub-resonance curve and its sharp drop
break are again typical.

Further work is to be done on the dynamic behaviour of
oscillation while sweeping repeatedly to and fro through
sub-resonance lines as is the case due to a synchrotron
oscillation.

Work is also contemplated on the form of the closed
orbit for various misalignments for magnets, which can
be done with the same model.

Qy [
6,5
6,4
[
62
6 -
] 62 6.4 65 Qx
Fig. 7. 5th order subresonance lines.
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Fig. 8. 3rd order subresonance line with constant cubic non

linearity.



