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I. F.F.A.G. CYCLOTRONS

1. Introduction

The original proposal of FFAG fields by K. R. Symon
introduced a new family of accelerators, including spiral
ridge cyclotrons. Much work has been done by Kerst,
Symon and others in the MURA group and at Oak Ridge,
the Carnegie Institute of Technology and elsewhere. Work
at Berkeley, California on the “clover leaf” cyclotron is
also relevant.

We became interested in the spiral ridge cyclotron because
it obviously offers the possibility of high beam currents at
energies somewhat higher than those economically obtain-
able with synchrocyclotrons. There is even the possibility
of continuous (constant frequency or CW) operation at
quite high energies.

In the following sections a linear theory is developed
for the particle dynamics of spiral ridge cyclotrons. This
theory has been checked against orbits computed by the
digital computers at Manchester University and the
National Physics Laboratory, and the results are in good
agreement, for oscillations of small amplitude.

Estimates are made of the beam “ blow-up ” in passing
both half-integral and integral resonances (see Appendices
II-1V). The latter appear to be disastrous and therefore
place an upper limit (E/E, ~ 2) on the energy obtainable
with C.W. operation. The half-integral resonances are
also serious but present estimates suggest that they could
be passed with very accurate shimming.

The frequency and field tolerances in C.W. cyclotrons,
in order to avoid serious phase-slip, are also estimated.
In practice, phase-slip may further limit the energy obtain-
able in C.W. machines to perhaps a few hundred Mev.

For higher energies, certainly above ~ 900 Mev protons,
it is necessary to introduce some degree of frequency
modulation (FM), and to establish a fixed ‘working point’
in the later stages of acceleration by using a power-law
field. It may be expedient to introduce a small degree
of F.M. even in the early stages of acceleration. Various

possible field laws and F.M. programmes are analysed
in order to determine the system which gives the best
duty cycle consistent with practicable tolerances on field
and frequency.

A brief analysis is given of the problem of producing
spiral-ridge type fields by means of ridged magnet pole-
pieces. It is shown that in general rather small magnet
gaps are necessary. Parameters appropriate to a C.W.
machine of ~ 240 Mev (conversion of Harwell 110-inch
synchro-cyclotron) and to a F.M. machine of ~ 3 Gev
are given by way of illustration. The use of pole-face
windings is also mentioned.

In Appendix I, the possibility of using a °hybrid’
cyclotron-synchrotron machine for energies ~ 6 Gev
is discussed very tentatively.

2. Particle dynamics

2.1 Magnet field law

The angular velocity w (= v/r) of a particle in a cyclotron
is given by the well known equation

eB
W= —
m

where m = m,/(1 - % and B = v/c = wr/c

For constant frequency (C.W.) operation the field law
required is therefore

L € R

where eB; = myw and r, = c/w. The corresponding
value of the field index ‘n’ is

 RORIR(CR
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The vertical motion is therfore unstable, and for the
(stable) radial motion the number of free oscillations per
orbit revolution is given by

Qr =~ = (2)

Kerst, Symon et al. have shown that the vertical instability
may be overcome by application of spiral ridge fields,
and that, to a first order, the radial focusing is unaffected.
Consequently there will be dangerous linear resonances
at energies equal to integral multiples of half the rest energy.
In addition, there are the well known coupled and non-
linear resonances.

2.2 Radial and vertical stability - linear theory

The Lorentz equations of motion for a particle in a
time-invariant magnetic field are, in cylindrical coordinates:

d . . . .
I (mr) - mrf? = erQ Bz - ezBo
d

a (mz)

= e'rBe - eréBr 3)
Also, for particles with the same energy

dz2 + r2d0® + dr? = vade? @)

Since time does not enter explicitly in these equations,
it is convenient to use 0 as the independent variable, giving

d?r er dz

. _r=—|rB,-—=B

a6~ " my [r ST ":I

d?z e [dr ‘B - )
e _ 2= _r

dez  mv [d@ 0 r]

in which it is assumed that

1 dr\2 1 /dz\? <1
— (= —( — <
12 d@) P r? (d@

Following Kerst, Symon et al. we assume the field in the
median plane of the magnet to be

k
B, = B, (ﬂ) [1 -+ & sin (N 6-K In L)] (6)
r Iy

For constant k and K, this field leads to “scaled dynam-
ics”, i.e. Q; and Qy are independent of particle momen-
tum. In applying the field to the spiral ridge cyclotron,
both k and K will vary with momentum, being determined
by the type of operation (C.W. or F.M.) and the degree
of vertical focusing required.

Substituting (6) in (5) the equations of motion become

dzx

Cx — _x2FK i _
a0 X x2* k[l + §sin (N 0 - K Inx)]

d dx. M
a@——kaNcos (N@—Klnx)de

2 | i
+ x &iXk[] + 8s1n(N9—KlnX)]}

where r; is now defined in terms of the momentum of the
particle by

er; By = —mv (8)

and x, 7 are the normalised parameters r/r;, z/r; respec-
tively.

The closed orbit

The closed orbit can now be obtained by expanding the
radial equation about the normalised radius.

Substituting x = 1 + £ )

and retaining only linear terms, this leads to the inhomoge-
neous equation

EL[04+ K+ SAsin(NO-p]E=-3sin N0
(10)

where

K
A? = (2 + k)? + K? tanx=m (11)

An accurate series solution can be found for the periodic
solution of this equation by a variety of methods. For
the machines at present under consideration only the
first few terms are important and can readily be obtained
by iteration.

Rewriting (10) as
EL (1 +KE=-3sinNO-[SAsin(NO-] §
and ignoring the second term on the RHS gives

g = Ssin N O
TTN2-(1 4+ k)

Substitution of this in the second term of the RHS,
and solving again for the periodic solution, gives

- SsinN 0 32 A 'll:cos(ZNG—X)‘l_cos X]
PTNz-(1+k) N—(1+k) 2L4N2-(1+k) 1+k
(12)

In this expression for the closed orbit, the first term
predominates and is a sufficiently good approximation
for most purposes in obtaining design data. The third
term is independent of 0 and therefore indicates a shift
in the mean radius of the closed orbit from r = r;. This
means that the angular frequency of a particle of given
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momentum is slightly higher than it would be if there
were no flutter, and a slight correction of the mean field
value will be required.
Radial stability
Substituting
x=1+

FEM®) + o 13)

in (7), and retaining only linear terms, gives

(14+%k) + (2+k)3 sin NO — 3K cos NO =3
FE[+0 @tk (+3sinNO) | |

1~ 8KcosN0‘—(2—|—k)8KcosN6[ °

[- K2 sin NO ]

(14

o+

—

In this approximation we have retained a term in £p which
has a significant effect on the focusing. A term in E? has
been ignored since its principal effect is to alter the mean
orbit radius slightly.

Examination of the order of magnitude of the termsin
(14) suggests that, for preliminary design work, many
can be ignored. Using the first term in (12) for the closed
orbit, equation (14) reduces to

. S2K 2

1 -——— - 3K =0
e+ {( +k) N (0] 3K cos N@} e

(15a)
for small angle spiral (K/N — o0), or
(I +k) 2 + k) N2 @2 + k)

1+k

+{( B a7 M ()

X 9 sin NO}p*O

(15b)

for radial ridges (K = 0). These equations may both be
transformed into the general Mathieu form

16
3 ¢ (16)
from which the mode number p is obtained to a good
approximation by

— 7q3 . —
cos p. = cos (my/a) - ————— sin(my/a) (17)
44/a (1-a)
where p. = 2nQ/N
When p <7 the above approximation reduces to the
‘smooth approximation’ used by other workers.®) For
small angle spirals

N2
@~ t30

= (1+k) (1 + 382K2)

— 1 + k for large N (18)
where (1+k) =~ (E/E,)* in a C.W. cyclotron.

When p = 7, the accurate formula relating a to q is

2
a=1—q—%—|—.... (19)

Comparing this with the approximate solution obtained
from (17) indicates that (17) is a good approximation for
q < 1.0 for values of p. < .

For the case of Hill’s equation

d¢ 0=0 (20)

it can be shown that the general form of (16) is

f f f () £()

X cos { Valr—29; - 2¢,) }d%d% 20

COS (L = COS m™/a +

where f ({) is periodic in the interval = and has zero mean
value.

Vertical stability

The equation of vertical motion is obtained by expanding
about the closed orbit x = 1 + &, and retaining only
linear terms.

Equation (7) then reduces to

i~ dg .
n+ (SNcosNG)aé—k(H—851nN6)+8KcosN0 =0

+ £ K23 sin NO + (2k + 1) K 3 cos N6
1 —k(k + 1) (1 + 3 sin NO)

(22)

When (12) is substituted for the closed orbit, this reduces
to a Hill equation and can be solved by the methods of the
previous section. Again many terms can be ignored.
Retaining the most important, and using the first order
term for the closed orbit, reduces (22) to

" o k- _82N2—

K [ 2ANE — (14K)]

32K2
+m+3KcosN9]n—0 (23)

For the “smooth approximation” we have

K2
n k)]+ NG (24)

82(N2+ Kz)
2[N2 — (1

Q2= —k+

This is sufficiently accurate for most purposes, because
Q, = 0 near the centre of the cyclotron and cannot become
greater than Q, = 1.0 elsewhere in order to avoid disastrous
integral resonances.
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2.3 Linear and non-linear resonances

These have been studied experimentally by other workers
in connection with A. G. synchrotrons. The cyclotron
differs in that the ‘working point’ moves during the accelera-
tion cycle, and one or more resonances may have to be
crossed. Reference has already been made to the half-
integral radial resonance at Q; = 1.5, and to the integral
resonance at Q, = 2. It may be shown (see Appendices II
and III) that the Q, = 1.5 resonance may be passed by
careful design and construction but that the Q, = 2 reson-
ance would be disastrous.

The Q, = 1.5 resonance is caused, in general, by a third
harmonic error in the field-gradient (note that when N =
2Q, = 3 the resonance coincides with the intrinsic g =
7 stop-band). Similarly the Q, = 2 resonance is asso-
ciated with a second harmonic error in field amplitude
(coinciding with p. = 7w when N = 4). 1Itis equally impor-
tant that Q, should not cross half-integral or integral
resonances. Since Q, is fixed by the choice of flutter
depth and is zero at the machine centre, the field tolerance
must be such that

0 Q<1

at least, and preferably Q, < 0.5.
The working point must therefore lie in the region

1 <<Q < 1S
0 < Qv<05

if half-integral resonances cannot be crossed, or, since it is
almost certain that integral resonances cannot be crossed,
in the extreme case

1<<Q <2
0 < Q<1

Inside this region there are also the linear coupled reson-

ances at
Qr“”Qszs Qr_Qv:],

of which the former produces a stop band, and in the case
of synchrotrons is considered to be more serious than the
latter. For the cyclotron, the vertical aperture is small
and the vertical focusing weak, and it is likely that both
these resonances are serious.

There are also non-linear resonances. Because of the
non-linear nature of the fields, some are intrinsic and exist
with or without machine errors. The quadratic non-
linear resonance occurs at . = 2 7/3, or Q = N/3, and
the coupled resonances occur when

Isz"‘Qr:O [Qv+2Qr:N

lev‘,“Qr:N le_er:O

The second pair does not occur when the magnet is sym-
metrical about the median plane.

The cubic non-linear resonances occur at p. = 2 7/4, or
Q = N/4, and the coupled resonances when

3, - Q;=O,N (3Q, - Qy=0O,N [2Q, -2Q,=0
3, +Q:=N 13Q,+Q,=N |12Q,+2Q:=N

Only the last pair occurs in a symetrical magnet.

If there are machine errors, non-linear resonances will
also occur whenever N in the above formulae is an integer.
In the absence of errors, N = number of periods round
the machine.

Fig. 1a. 4 Ridge magnet

o

1.5 Qr —= 20

-
o

Fig. 1b. 8 Ridge magnet
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Figure 1(a) gives a (Qy, Q,) diagram of the above-
mentioned resonances for the case N = number of periods
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Fig. 2. Radial ridges

N €2
N -S’ " )h’ ”
< S
" <
6} <] w,'z‘l’» B k
. g
(@) Gv=0 =
4
2 . L . .
1.0 12 1.4 1.6 1.8 2.0
E/Eo
N
(b) ar="%

Fig. 3. Spiral ridges

= 4 (a 4 ridge magnet), in so far as they lie within the
extreme limits 0 << Q, << 1, 1 < Q, < 2. Figure 1(b)
gives similar data for an 8-ridge machine. Intrinsic
resonances are shown as full lines, ‘error’ resonances as
dotted lines.

3. Design data for C.W. cyclotrons

Figures 2 and 3 show radial mode number, u. (= 27
Q,/N), and Q; as functions of energy and ridge number
for Q, = 0, V5. More accurate formulae were used than
those given above, but the difference is not significant and
is likely to be of the same order of magnitude as some
non-linear terms which have been ignored. Figure 2 is
plotted for radial ridges and figure 3 for ridges of flutter
8 = 0.1 (approximating to the limit of ’tight spirals’ at
high energies). Figure 4 gives more extensive data for
3 =0.1.

2.0

Loz
2|2

0.8 1.0

r/"o

N=3

Fig. 4a.

The graphs are mostly self-explanatory, but attention
should be drawn to the following features :

(@) For radial ridges (K = 0) we have

szﬁ—k‘l‘ij:]—(gz 8“

For limitting vertical focusing (Q, = 0)

- [(E)]

That is, 8 = 1.0 for (E/E,)* = 1.5: above this energy,
negative fields are required in alternate sectors. Similarly,
for Q, = 14, we have § = 1.0 for (E/E,)? = 1.25.

(b) ForlargeN,and pr < 1

E
Q (1 R%k ==

(o]
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Fig. 4b. N =4

As m-mode is approached, this simple formula under-
estimates Q;. For example, at m-mode, Q, = N/2 and
hence, according to the simple formulae, the corresponding
energy is NE,/2. Inactual fact the t-mode limit is reached
very much earlier than this, as the curves show.

(c) At the centre of the machine, Q; = 1 and increases
with energy, the first half-integral resonance being reached
at Q, = 1.5, and the first integral resonance at Q, = 2.
As already mentioned, it is shown in Appendices II and III
that the half-integral resonance may be passed with careful
design and construction, but that the integral resonance
would be disastrous. For N >4, this Qr = 2 limit
falls below -mode. Note that the limiting energies are
less with radial ridges than with tight spirals.

2.0

8K
N

1.0

Fig. 4dc. N =20

2.0
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N

1.5
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° 0.2 0.4 0.6 0.8 1.0
Voo

Fig. 4d. N =38

(d) For N = 3, Q. = 1.5 coincides with the w-mode
limit, and falls well below E/E, = 1.5. Computations on
the N.P.L. digital computer have confirmed that the
maximum energy obtainable with N = 3 is (200 4- 10)
Mev for protons.

(¢) For N = 4 it is important to notice that an intrinsic
non-linear resonance occurs at Q. = */;. Thus the
‘working point’ should start at Q; = 1.0, Q, = 0 and finish
at Q; = */5, Q, ~ 4. Computations on the digital com-
puter confirm that this limits the energy to about 250 Mev

2.0

1.5
5K
N

1.0

0.5

0 N : . N
0.2 0.4 0.6 0.8 1.0
r/"o

a Qu=0 d Qr+Qv =2 gQr=11/3
va:VQ e Qr =1+Qy hQr:11/2
c Q= f Qr=2Qy i Qr=2

Fig. 4de. N=o
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for protons, but the limit may extend down to 240 Mev
for large amplitudes (p ~ 0.01) of radial oscillation.
More computations are required to confirm this. *

(f) If Nis increased to 8, Q = 2 corresponds to p. = /2,
and all intrinsic non-linear resonances lie outside the
possible working region (see figures 1(b) and 4(d)). This
would suggest that N = 8 is the best choice for a high
energy machine. However, as the ridges converge towards
the centre of the machine it becomes increasingly difficult,
in practice, to produce the necessary flutter fields, and this
trouble is more serious for large N. One solution might
be to use 4 ridges at the centre, increasing to 8 at some
intermediate radius before Q; reaches the intrinsic resonance

at Qr = /s

4. Frequency and field tolerances in C.W. cyclotrons

The above discussion has how shown how resonance phe-
nomena limit the maximum energy obtainable in a C.W.
cyclotron. In practice the problem of R.F. phase slip
may prove to be the limiting factor in some cases, since
a strictly fixed frequency machine has no phase stability.

The phase equation for a particle in a C.W. cyclotron is

dE

eV, .
6= —2—7;0 sin (0 - w¢t) (25)

which can be written as
d . Vv
— (mr0 - efrBdr) AL sin (0 — wrt) (26)
dt 2r

For an FFAG cyclotron, B refers to the mean field and r
to the mean orbit radius of the particle.

Multiplying the second equation by w¢ and integrating
with respect to (0 — wrt) gives

Y
E - wr (erzB—efrBdr) = —%COSCP -+ const.
T
@7
where we have put ¢ for (6 — wrt).

This is an exact equation relating phase to radial position
(i.e. particle energy) applicable to any C.W. cyclotron.

4.1 Analysis neglecting effects of flutter fields

For the C.W. field law (1), and with wf = w, = ¢/r,,
the phase of the particle remains constant. If the frequency
wr is not equal to the cyclotron frequency then for the
above field law

V
El:l _ (i)i:l = -8 ¢ -+ const. (28)
Wo 27

For a phase slip of 180°, the tolerance on frequency is,
therefore,

Aw eV, 1
— 2 2(E-E) =
[0} T ( 0 Rm 29

where R is now the number of turns. For example, for
an energy of 250 Mev with 250 Kev per turn,

Ao _ 1
&) 103w

If, on the other hand, the frequency is correct but there
is a uniform fractional error in the field law, i.e.

a+e9
UL - (rfrg)P1

then substituting in (27) we get

(30)

-2 B2 1
Eol:l—{—1——]/2—cof[er2B—efrBdr]—

2 2
ro Bo

eV,
- — CO0S ¢ - const.
27

(€1

To first order this gives

— eV
E 1_91 —EO\/I—-BZF.‘:——JCOSCP‘FCO“SL
, 27

(32)

where w, = c/rq.
with ws = wy,

Thus for a phase slip of less than =,

eV, 1
c 0 -
mEy 1 - /1 -2
For example, for § = 0.6, V = 250 Kev/turn

1 1
40007 0.2 8007

e <

If the frequency is adjusted so that Aw/w = &, then for
a phase slip less than 7

2V, I

€ 7B,? [34

1
' 1 ted, —_—
For the example quoted, < 2607

4.2 Phase slip due to field flutter

It was shown earlier (see equation (12)) that the mean
orbit radius depends on the flutter field. For a sinusoidal

* Further computations have shown that the Qr = 4/3 resonance limits the amplitude of radial stabili?y to very small values over a
considerable range in energy. For example, at 200 Mev with a flutter factor of +209%, the radial motion becomes unstable

for p > 0.015.
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field the incremental change in mean orbit radius is

Ar 3 2+ k
n [INy—-(1+K] 2(1+k)

(33)

For example, for k < 15 (250 Mev approx.) N = 4,
o =0.1, E - 1
r, 2000

Thus, if the usual mean field law is taken, then according
to the previous section this error would cause serious
phase slip. It can be corrected, however, by changing
the applied frequency.

Defining r; as before by mv = er; B;, where B; is the
mean field, the particle frequency is

v

- — 34
@ ry + Ar G4
For C.W. conditions,
1 =— =mw(l +—)
1 Iy
__ome [ Ar 1
w?r,? Ve r; w’ry? (35)
where it has been assumed that Ar/r; < I, and A r/r,
<1 =F
2p32
. Ar 1 .
Since o . - pe is almost constant for 3 < 0.6, then
) —

the phase slip can be corrected by a fractional change in
the magnetic field or frequency.

5. Frequency modulation

We have seen that with fixed frequency operation,
although it may be possible with care to traverse the
Q, = 1.5 resonance (at ~ 450 Mev proton energy for
large N), the integral resonance at Q; = 2 (~ 900 Mev)
appears to be an impassable barrier. Therefore it is
necessary for high energies to use a frequency modulated
accelerating system. Furthermore the problem of phase
slip may call for a degree of frequency modulation well
below the energy at which radial resonance difficulties
occur. We can consider a variety of possible high energy
machines :

(i) fixed frequency and C.W. field law to Q, = L.5,
or 2.0, followed by a frequency modulation programme
appropriate to a field with constant “k” to maintain Q, =
1.5 or 2.

(ii) a slight variation of the C.W. field law, with a
corresponding frequency modulation, up to Q; = 1.5 or 2,
followed by a constant “k” field as before.

The problem is to decide which particular arrangement
gives the best beam duty cycle, consistent with realisable
tolerances on field and frequency.

5.1 Phase equation, trapping range, and duty cycle

The analysis of Bohm and Foldy® can be used initially.
Phase grouping in the initial turns ensures that the starting
phase for a machine with frequency modulation applied
from the centre is 90° (the accelerating voltage being defined
as V_ sin ¢). A parameter K is defined by

-K — =— (36)

where the subscript s refers to the synchronous particle.
The resulting form of the phase equation is

E(E‘f’)—- Y sing s 37)
at \ar k) = 2z NI (

2
@ + (% o K
2r  Eg
for small deviations from ¢, and for (Es/w2K) effectively

constant during a period of oscillation. From (38) we
obtain, for small amplitudes of oscillation,

Y
eVK cos
frequency of phase oscillation w, = oy (_____cps)
2ntE,

or

cos <ps) (@-9) =0 (33)

(39)
adiabatic variation of amplitude

2 Ya
O =q- cps~[ SIS ] (40)

V, cos o5 E®

Useful further definitions of K are :

Key. .k _1f 1 _ E_o’)
(I +Kkp2 p*\l+k E?
For a conventional synchro-cyclotron, the field near the
centre may be defined as

(1 L WV
0 - 2 > —_— (1)52

K is virtually constant, and might be of the order of 2 near
the centre. In a spiral ridge cyclotron, where Q; > 1,
the C.W. field law has K = 0, and is parabolic near the
centre with negative ‘h’.

Bohm and Foldy give the range of acceptance in terms
of a frequency range

V Ko %
Aws = Z[e °F R (o> cps):l 41

where F; (¢, ¢s) = €08 @y + €Os @5 —
and where @, = starting phase.

(1t — s — o) sin @y,
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For a machine with frequency modulation from the centre,
the condition must also be applied that particles do not
return to the source :

V Ko
Amszz[‘?—;}z&] L 42)
S

where L cannot be expressed simply : for the standard
condition of ¢, = 90° it has a maximum value of 0.57 for
s ~ 30°.

In usual synchro-cyclotron practice, matters are com-
plicated by lack of exact matching of the frequency law
to the field law, and for a substantially linear law of
frequency against time Aws has some immediate but
possibly misleading meaning. In these considerations
however Aws has no immediate significance and it is much
more valuable to define the trapping range in terms of
total energy.

V,Es V2
AE =2 [e = Fi (9 tps):l (43)

Y
[eVoEs] 44)

We define the duty cycle as —T— where

A T = time during which particles are trapped
T = total accelerating time.

. . . dw
If the trapping range is sufficiently small for @ to be
effectively constant, then

_ 4t Np-2r__AE

dt
AT = — Ao —_—
dw dE; ws (eV, sin @)

(45)
If & does not change appreciably during acceleration, then

AT AE

— ~ —— where E
T Em - EO; "

= final total energy.

The trapping range is proportional to V%, so that if
V, is fixed throughout acceleration the final mean current
is also proportional to V,%. If it is possible to increase
V, at larger radii, where the majority of the acceleration
occurs, then there will be a linear improvement in mean
current. However, if the ion source is “space charge”
rather than “temperature” limited, increased extraction
can be expected with higher dee voltage. There is some
evidence, at least from the Harwell and Liverpool synchro-
cyclotrons, that the space charge limited law of Iec V ' may
apply for voltages up to 5 or 10 Kv. In this case, then,
the final mean current could rise as rapidly as V 2

Magnitude of trapping range in a synchrocyclotron

For an ideal synchro-cyclotron producing, say, 200 Mev,
with

= 10 Kev (i.e.5 kV dee voltage, e V sin 95 = 5 Kev)
K = 1 (Uniform field)
then AE ~ 2 Mev

In practice, with the field falling with radius, K is of the
order of 2, in which case AE ~ 1.4 Mev. Under these
conditions, a mean current of about 1pa is obtained. For
a spiral ridge machine of 2 Gev or more, it is necessary
to improve the current extracted from the source or to
reduce K in ordre to obtain the 1pa or so which is desired.

5.2 Minimum K values in spiral-ridge machines

We shall refer to two limiting machines, each of which
has the C.W. field law (1) up to some radius r;, and a power
law field (constant k) thereafter. It is convenient to express
these field laws in terms of E/E, = v, giving

B = Boy for vy < v,
k

_ Y 2(1 + k
B~BoY(Y —1) (W or v, < v < ym
k=y?*-1 J
The two limiting machines are designated M, and M, :
M; B=Boyuptoy =1y, =15k=125Q =15
M, B=Byyuptoy=1v, =20,k=3, Qr=20
Clearly, from the point of view of magnet economics,
and depth of frequency modulation, we should work as
close as possible to either M; or M, depending upon our
confidence of success in passing the Q, == 1.5 resonance.

For M; and M,, K is zero up to y = 1.5 and v = 2,
respectively, and then rises according to

2

K—1-_K _x
I +ky*-1

Determination of the acceptance conditions of these
limiting machines, where the transition from aperiodic
to periodic phase motion is rapid, would be most suitably
attempted with the help of an analogue computer. How-
ever, a simple approach can be made if frequency modula-
tion is applied from the beginning.

0.5

Koo = 0,445

¥

Fig. 5. K vs v for M, and M, type machines
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A number of possible cases can be treated analytically;
we use figure 5 for illustration. K must not fall below
the limiting curves of M; or M, if the limiting resonance
is to be avoided.

The machines considered are for
Ym = 4 (final energy ~ 3 Gev).

M,;(a) K must be = 0.4
M,(a) K must be = 0.2

Phase damping will occur throughout.

(a) K constant throughout.

(b)) K constant but non-zero until the limiting K curve
is reached. A minimum value of K can be chosen such
that the phase damping over the constant K region is
just sufficient to cancel the subsequent growth of oscil-
lation over the limiting K curve.

M,(b) Ko~ 0.2

M(b) K,~ 0.1

(¢) K varying so as to achieve adiabatically a constant
trapping range in energy (A E).

From (43), K = K,y for V,and F; fixed.
(d) K varying so as to achieve adiabatically a constant
amplitude of phase oscillation.

2
From (40), K = Koy (&> for constant V, cos @s.
Ws

(The subscript “o” refers to the centre of the machine.)
Since any field law which we choose must either follow

2
or fall below the C.W.law we know that (92 increases
Ws

. 2K . -
with . Then T must be positive, so that a minimum

value of K, can be chosen such that the resulting (K, v)
curve is tangential to the limiting (K, ) curve.

5.3 Computed data

The frequency and field laws and the approximate
trapping ranges for the various possible machines can be
calculated from the specified values of K, by integration
using (36), since in all the interesting cases K is a separable
function of w and E.

The trapping ranges for the “d” types machines are :

Mg K, = 0.104 A E ~ 20 Mev
Mg K, = 0.043 A E ~ 30 Mev

for a dee voltage of 50 Kv (50 Kev per turn with ¢@s =
30°).

Thus the duty cycles for such machines (for ~ 3 Gev)
are comparable with that of the “idealised” synchro-
cyclotron, but whereas the synchro-cyclotron has a small
amount of phase damping, the Miq and M,4q machines
have none until v = 2.08 and 3.02 respectively.

The depths of frequency modulation required for 3 Gev
are :

M, 34% M, 9.5%
Mg 449, Mg 16%
Mib 47% Map 19%
Mia 4% Maza 32%

There is clearly much at stake for the R.F. system in
passing the Q; = 1.5 resonance.

. B r
Figures 6 and 7 show — versus —, where Bp, and rp
B I'm
are the common values of field and radius for y = 4. The
field plots illustrate the saving in total flux, in machines
for ~ 3 Gev, achieved passing Q; = 1.5.

Machine Description Trapp ing Field
region tolerances
Ma K constant = 0.4 10.2 Mev 0.4%
K constant = 0.2 UP o
M;b to 14, integral res. 14.4 Mev 0.28%
K, =103 constant o
Myd phase osc, amplitude ~ 20 Mev 02%

W“Tv’
3

0.2 0.4 0.6 0.8 1.0

r/rl'ﬂ

Fig. 6. Field vs radius for M, type machines

5.4 Field tolerances

The use of small K values demands great attention both
to tolerances and to fundamental design problems such
as that of calculated and true orbital times for the scalloped
closed orbits.

As an illustration of the magnitude of the problem, for
a machine with K, = 0.1, at 20 Mev which is the accept-
ance energy range and about half the energy for a complete
phase oscillation,

éE = 0.018
B

(o]

For a machine with K = 0,

AB
at 20 Mev B = 0.020

(o)
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Thus at 20 Mev the difference between a fixed frequency
machine and one which is frequency modulated is 0.2%;
in terms of the central field.

. e Trapping Field
Machine Description region tolerances
M,a K constant =0.2 14.42 Mev 0.28%
K constant = 0.1 UP o/
M,b to k=3 20.4 Mev 0.29%;
Ko =0.43. constant
M.,d phase oc* amplitude 30.3 Mev 0.13%
to integral resonance
1.0
0.8
B
Bm
0.6
0.4
M
o2 " Ma N::} Mpa
0
0.2 0.4 0.6 0.8 1.0
7

Fig. 7. Field vs radius for M, type machines

5.5 Machines with fixed frequency centres

Although phase slip errors due to errors in field distri-
bution are serious and demand high accelerating voltages
there are many reasons for pursuing machines M; and M,.

In machines M,q and M,q:

K = Ko (%)2Y

dow .
— 1s a constant.
dt

Looking at Aw and AE as numerical quantities (excluding
F, or L) we find that Ae is independent of vy whilst AE is

. Ws
proportional only to —.
G

dt
Hence AT = — Aw
doo independent of
independent of +.
2n__AE ’ !

ws eV, sin ¢

It therefore seems highly probable that machines such
as M; and M, would initially try to trap a large range of
particles as K rises from zero, but would continuously
spill particles from the potential well as K increases until
a range Aw or AE consistent with K is reached. Since
particles with “large” amplitudes of phase oscillation are
most likely to be lost due to machine errors we are not
very much concerned about whether we choose machines
of type ¢ or d for this comparison. We initially choose
type d rather than c¢ because of the greater simplicity
of its field and frequency laws. It has constant amplitude
of “small” phase oscillations making use of the variation
w572, This damping term due to decreasing frequency
of phase oscillation clearly does not apply for the limiting
“large” amplitudes and consequently machines M, and
M, might be a better choice. In machines M; and M,
however the potential well is filled not at o, for M4 and
M,q but at a new w, = w; corresponding to v = 1.5 or
2, with a consequent increase in trapping time. It can
therefore be argued that for machines M;and M,one should
use machines of type d for this trapping range analogy.

The behaviour of F; or L introduces complications.
If the varying frequency is applied to the whole of the
R.F. system the initial phase for trapping purposes is no
longer fixed at 90°, and is subject to phase slip except for
the reference (or centre of trapping range) particle. Conse-
quently the factor F; varies over the trapping range.
If the R.F. system is physically divided into fixed and
variable sections again F will vary over the trapping
range since the relative phase of the two sections can only
be fixed for the reference particle. Fortunately or un-
fortunately the trapping ranges are likely to be sufficiently
small for this effect to be unimportant but for AE ~ 50-100
Mev it would be serious. Some improvement in trapping
can be achieved by bringing ¢, to ¢ (in theory a factor

\/7 for any value of ¢g) either by phase slip or phase
difference, depending upon the choice of R.F. system.

More specific calculations of overall trapping efficiency
demand more detailed specification of machine parameters,
but it appears that the duty cycle might not differ very
much from that of an all—F.M. machine using the mini-
mum permissible value of K at the centre.

5.6 Effect of phase motion on passage through resonances

From the figures presented in Appendix III it appears
that the Q, = 1.5 resonance may be expected to produce
a stop band occupying about 100 turns for 50 Kev energy
gain per turn, and that it might be traversed with careful
shimming. However, if the frequency modulated part
of the acceleration embraces this region, a particle executing
phase oscillation can spend a very much longer time in the
resonance region than a synchronous particle.

In machine M,q4 for example, at Q, = 1.5, a complete
phase oscillation occupies a time equivalent to 1700 revo-
lutions. The worst case would obviously occur for a particle
having ¢ = ¢ = 0 at the centre of the stop band. It would
spend about 300 turns within the stop band with disastrous
consequences.
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More detailed analysis is required for specific machines
but sufficient has already been done to indicate yet again
the desirability of a machine with fixed frequency operation
until Qr = 1.5 has been passed or at least until ¢, can be
slipped from 90° to ®s before starting the F.M. cycle.

6. Notes on magnet design

6.1 Production of flutter fields by pole-face ridges

As a first attempt to assess this problem, we make three
major simplifications :

(i) reduce the problem to two dimensions,

(i) assume iron of infinite permeability,
(iii) consider a single harmonic—i.e. sinusoidal flutter.
In Cartesian co-ordinates, we consider the field

B = B, [1 + §sin (Z”TX)] (46)

in the plane z = 0.
Or, in terms of a magnetic potential U,
1 aU

. /21X
E}—a; =1+ Jsin (T) 47)

The appropriate solution of V> U = 0 is

EIO%L; =1 4+ 3sin (Z—T;\—X) cosh (ZLXZ) 48)

% —z+ ﬁ 3 sin (2%") sinh (zl;) 49)

Plotting equipotentials from (49) for a sufficiently small
value of U = Uj gives results of the form illustrated by the
full-line curves in figure 8. The lower branch of the curves
(the continuous curve) represents a possible magnet pole
profile. The equipotential U = — U, (not shown)
defines the corresponding magnet pole at negative z. The
effective mean gap, Gm between these two poles is

2U,

G = B, (50)

Plotting equipotentials from (49) for a sufficiently large
value of U = U, gives results of the form illustrated by the

u=U U=U, U=

POSSIRBLE
PROFILE

=
n
o

Fig. 8. Equipotentials

1.0 T

0.5

FORBIDDEN VALUES

0.05
ALLOWED VALUES
0.02 i
0.01 " . " s .
005 0. 0.2 Q.5 10 2.0 5.0 100

Gm/A

Fig.9. Limit of flutters produced by pole-face ridges

dotted curves in figure 8; these clearly do not represent
suitable pole profiles.

It is of practical interest to determine the greatest
value of G which yields continuous equipotentials of the
U = U, type. This is readily shown to be

Grmasx = %: [cosh—1 (%) - vW] 1)

which is plotted in figure 9, where points to the right
of the curve cannot be realised by pole-face ridging.

The ‘““available gap’’, g, between the lips of the magnet
ridges, is also of practical importance; it is related to the
mean gap G by

G S sinh (ng/%)
g

=1
T e

(52)

For g ~ A/ this approximates to the obvious form G/g =~
[ +3 - (53)

6.2 Limitations of pole-face ridges in cyclotrons

The above considerations imply severe limitations on
the possible magnet gap and ridge parameters of a spiral
ridge cyclotron.

An approximation of the expression for Q,, given as (24)
in Section 2.2 of this paper, may be written, when N, >
k+1,

82 82 KZ
Qv ~ -k + ey T
K
Putting 80> = 2 (k + Q,?), and expressing N in terms of

the ridge wavelengths A, A, as defined in figure 10, we may
write
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_ 2 r
No ~
N A
fank = —
" K
o CIRCLE OF
RADIUS r
Au -
CONTOURS
OF PEAK FIELD

Fig. 10. Definition of spifal parameters

d\2 z
or 26 o Sog[lJr (8_0)] (54)

For given 8, we may superpose on figure 9 a series of
“vertical focusing”’ curves computed from (54) for various
ratios G/Ao. This procedure is illustrated in figure 11,
where the dotted curves correspond to the special case

80=1-

Remembering that points to the right of the curve
marked Gp,/A cannot be realised, figure 11 demonstrates
how, for given 8o, an upper limit for G/A», may be deter-
mined. Thus for 8o = 1, we find G/x < 0.12. If G is
made significantly less than this upper limit, a range of
practicable values of § and A becomes available; generally
a small J is to be referred in order to keep the available

Fig. 11.
with ridge limitations

Comparison of focusing requirements

gap g as large as possible. Detailed computations of
permissible limits and optimum values of § have been made,
but the results will not be given here.

The main results of the above considerations are sum-
marised in figure 12. The maximum permissible G for
given focusing conditions 8o and A, may be deduced from
the curve which gives (3o G/Ao)max as a function of J_;
note that (,G/A )max — 0.124 as 30— . The corres-
ponding unique values of § are also plotted, and — 0.286
as 8o — «. For 8, << 0.1, the unique § value is o, i.e.
radial ridges permit the greatest G.

1.0
{1 05
1 0.3
8,6 0.2 8
Ao ’
0.1
1 0.05
0.006 0.03
0.004 [ { 0.02
0.002 . \ . . . .
0.005 0.01 0.02 0.05 01 02 05 10
8,

Fig. 12. Limiting ridge parameters for cyclotrons

It is of interest to note that if we assume that the mean
field B, at any radius r in a cyclotron, is inversely propor-
tional to the mean gap G, then for a C.W. cyclotron
with Qv = 0,

30G/ho = constant.

6.3 Experimental programme

There is no apparent reason for insisting on sinusoidal
flutter. At the limit of rectangular flutter waveform,
the effective ““ 32’ is increased by a factor 2 as compared
with a sinusoidal flutter waveform of the same peak to
peak amplitude.

Experiments have been initiated on rectangular ridges;
no detailed results will be presented here, but the main
conclusion so far is that it appears possible to achieve
values of mean gap G ~ 259, greater than those predicted
by the simple theory described above. This holds true
for fields at least up to 19 kilogauss mean. The correspond-
ing improvement in available gap “g’’, between the ridge
peaks, diminishes with increasing Bo, but is still significant
at 19 kilogauss mean.
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Fig. 13. Harwell Cyclotron - C.W. conversion N = 4

6.4 Pole face windings

The production of flutter fields entirely by pole face
windings has been studied theoretically; details will not
be reported here. The powers required in typical applica-
tions (see next section) are generally very high.

7. Applications
7.1 Conversion of the Harwell 110-inch synchro-cyclotron

We are working on the possibility of converting the pre-
sent synchro-cyclotron to C.W. operation using spiral
ridges. The present energy of the machine is 175 Mev
(protons) but we wish to increase this to perhaps 240 Mev
by increasing the field at the outer edge to over 19,000 gauss.

From the data given in section 3 it follows that N = 4
is the best choice for this machine. Assuming that the
flutter fields are to be produced by pole-face ridges, the
permissible magnet gap has been investigated on the basis
of section 6.2 above. Values of the “3,”” required at any
radius r may be derived from relations already given :

32 =20k + Q). k= (1 -B)hLr=Prg

Values corresponding to Qv = 0 are shown by the dotted
curve in figure 13.

Values of the maximum 3, obtainable at any radius r
may be deduced from the (3, G/Ao)max curve of figure 12.
The full-line curves in figure 13 are labelled according
to the assumed values of mean gap G (incm) atr = 125 cm;
it is assumed that, elsewhere, G varies as 1/B.

Comparison of the “required”” and ‘‘obtainable” S0
curves in figure 13 shows that the required focusing condi-
tions are most readily achieved at large radii. There
is always a central region where vertical defocusing is
unavoidable if the C.W. field variation (1) is followed.
For example, for G = 15 cm. at r = 125 cm. this region
extends to r ~ 25 cm (~ 7 Mev). This region can be
reduced only by reducing G. It should be emphasized
that the 2-dimensional theory on which the curves are
based is particularly optimistic at small radii.

Production of the flutter fields by pole-face windings,
assuming similar values, would require at least 200-400 kW
of power per pole face. Again a central region of defocus-

ing would remain. We have concluded that, for our pur-
poses, iron ridges are to be preferred. However, pole-face
windings to correct (and possibly to increase) the S values
will be incorporated.

Further investigation, both theoretical and experimental,
of the problem of the machine centre is planned. Prelimin-
ary theoretical estimates indicate that a uniform mean
field should not cause serious phase slip up to 25 turns
(or 5 Mev at 250 Kv per turn), and this field does not cause
defocusing. An exact C.W. mean field, with no flutter,
produces disastrous defocusing in 25 turns.

7.2 A 3 Gev spiral ridge cyclotron

Possible parameters for a 3 Gev proton cyclotron are:
N = 8, possibly reducing to 4 at small radii.
Proton energy 3 Gev (kinetic) at rm = 8 metres, Bm =
16,000 gauss.
C.W., or near C.W., operation for r <{ 6 metres, constant
k’ operation thereafter.

Magnet steel weight ~ 12,000 tons.

Figure 14 gives the appropriate curves of do ‘required’
and obtainable, derived from section 6.2 above. Each
3o ‘obtainable’ curve is labelled according to the value
of the product N x (G att = rm). For N = 8 it appears
that G must be less than ~ 11 cm. at r = rm. For N =8,
G = 11 cm. the central region of defocusing extends to
r ~ 2 metres (~ 40 Mev), but this region may be reduced
by reducing G or N. Reduction of N to 4 for r < 4.4
metres is permissible (see section 3), the defocusing region
then being confined to r ~ 50 cm (~ 2 Mev).

Possible methods of increasing the magnet gap signific-
antly must be considered. First, by accepting a smaller
value Bm and making rm > 8 metres, G may be increased
in proportion to rm. The limit to this process clearly
lies in the size and weight of the magnet structure. Pro-
duction of the flutter fields by pole-face windings, assuming
similar gaps to be left available for ‘dee’ structures as in
the case of pole-face ridges, would require ~ a few MW of
power per pole face (independently of the choice of Bm
and rm). Going to larger gaps, the power required in-
creases (initially) roughly as (gap).?

24
8o OBTAINABLE T
2.0 WITH
8
e WA
&, REQUIRED
1.2 °FOR Qy =0
0.8
0.4 |

1 2 3 4 5 6 7 8
r (METERS)

Fig. 14. 3 Gev cyclotron
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The above remarks serve to indicate the orders of magni-
tude involved in a 3 Gev cyclotron design. Much detailed
work remains to be done before the most practical and
economical design can be specified.

8. Conclusions

From considerations of particle dynamics, magnet
problems and frequency modulation, as summarised in this
paper, it appears likely that a spiral ridge cyclotron for
~ 3 Gev would be feasible. By accepting close tolerances
on field and frequency laws, a mean current of a few micro-
amperes might be achieved as in existing synchro-cyclotrons
operating at a few hundred Mev, on account of the possi-
bility of extending the effective trapping range. A high
dee voltage would be an advantage, in extracting more
ions from the source, in driving quickly through the Q: =
1.5 resonance, and, in the case of a machine with a fixed
frequency centre, in reducing random phase slip due to
field errors. Certainly it would be desirable to traverse
the Qr = 1.5 resonance in a machine for ~ 3 Gev, on
account of the great saving in magnet steel which could be
realised. :

Much detailed work remains to be done before a com-
plete practical design can be specified ; some of the problems
are fundamental, and can best be tackled with the help
of electron analogue accelerators. Other problems are
mechanical, such as the problems of assembling the large
magnet and accelerating electrodes.

However, many of the most severe problems are avoided
in a C.W. machine for 200-250 Mev such as the proposed
conversion of cour 110-inch synchro-cyclotron.

Appendix I : Hybrid machines for high energies

For our purposes it appears that the economic limit
for a cyclotron would be reached at about 3-3.5 Gev.
A 6 Gev cyclotron would require at least 30,000 tons of
steel | An alternative possibly would be a ‘hybrid’
machine, using

(a) A spiral ridge cyclotron for, say, 2 Gev, but using
relatively low magnetic fields so that its extreme radius
is roughly that of the Bevatron (i.e. ~ 50 feet).

(b) Surrounding this, and concentric with it, an A.C.
annular-gap magnet into which particles can pass freely
around the whole 360° of their orbits. This magnet to be
pulsed up to ~ 15 kilogauss.

General features

1. Continuity of particle dynamics

Qr, Qv must remain constant, or nearly constant, during
the transition between the cyclotron and a synchrotron
portions, otherwise disastrous resonances will occur.
Therefore spiral ridges must be used on the A.C. magnet
poles, and the machine must have a fixed working point
during and beyond the transition. (It is pointed out in
the main paper that a spiral ridge cyclotron should have
a fixed working point beyond 800 Mev or so.)

2. There would be severe field-matching problems at the
Cross-over.

3. The magnet and vacuum chamber would be very
large, with severe mechanical problems.

4. The intensity would be high-—good injection con-
ditions.

5. It would be possible, in principle, to make a machine
of this kind with C.G. focusing in both parts. However,
in order to avoid serious resonances in the cyclotron
part it would be necessary to work with 0 < n < 0.2,
and continuity demands the same conditions in the syn-
chrotron part. The particle dynamics would then be
simple, but the requirement of small n would make for
severe tolerances on field gradient in the synchrotron
portion for a 6 Gev machine. Moreover, it is doubtful
whether the synchrotron oscillations could be confined in a
reasonable aperture in the synchrotron portion.

Table of possible parameters for 6 Gev.

Magnet weight (cyclotron portion) 15,000 tons

Magnet weight (synchrotron portion) < 1,000 tons
Stored energy (synchrotron portion) ~ 2.5 Megajoules
Pulse repetition rate 30 p.p.s.

Mean beam current ~ 0.5 pa.

Appendix II: Passage through an integral resonance

Integral resonances are caused by errors in field amplitude,
which for A.G. synchrotrons are usually analysed in terms
of misalignments of magnet sections. For cyclotrons,
a more convenient way is to analyse the errors in terms of
their field harmonics. Resonant build-up occurs when
one of these harmonics has the same periodicity as
the free-oscillation. The effects of the other harmonics
are relatively unimpotant and can be ignored. For exam-
ple, at the Q = 2 resonance only the second harmonic
error in field amplitude is important. However, since
this harmonic is of a lower order than the periodicity of the
machine, a “smoothed’ approximation can be used to
represent the particle motion. Passage through an integral
resonance can then be studied by solving

¢ + Q2%p = csin SO €))
in which ¢ is the relative amplitude A B/B of the harmonic
error and Q is assumed to vary with particle energy.

Resonance occurs when Q = S. If Q is fixed at this value
the amplitude of oscillation builds up linearly according to

= - 0cos QO @
2s

that is, the build-up per revolution is

e r/Q

where r is the mean orbit radius. Since the Q = 2 reson-
ance will occur at a radius of a few metres, this means
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that the build-up is of the order of several centimetres
in 10 turns for ¢ = 10-3.

The amplitude of the forced oscillation of resonance is

€ . € .
p= Qz—_§25m Sezz—sA—Qsm S0 3)

with a “build-up time*’ (number of turns) of */,AQ. Serious

. . |
build-up will therefore occur if ——— = 10 turns. For a

2AQ
C.W. machine, Qr = E/E,, and hence the increment of Q
per turn is €V/E, where V is the voltage gain per turn.
Equating the transit time to the build-up time, we get

nQ 1
eV/E, 2AQ
Q =4 (eV/Eo)*
OT\ No. of turns =  (Eo/eV)* @

In order to cross the resonance in ~ 10 turns it would
therefore be necessary to accelerate at the rate of several
Mev per turn.

We shall now carry out a more accurate analysis to con-
firm this conclusion. Since the width of the resonance
is confined to a narrow region near Q = S, we assume that
Q varies linearly in this region and is represented by

Q=S+7¢6 )
_da
where { = ) 6)

Substituting in (1), we have to find a particular integral
of the inhomogeneous equation

d2
d—ez—I-sz:ssinSe @)

Applying Green’s theorem, we get

0
ngf sinSO1sin{/Qde‘de01 }del ®

Since the build-up occurs near 6 = 0, the total build-up
can be obtained by taking infinite limits for the range
of integration. The above solution will then represent
an oscillation of zero amplitude initially, building up to
some finite amplitude in passing through the resonance.

Substituting (5) for Q,

p=Csiand6—Dcoszd6

{ee)
whereC=%/ sinS6Hcos (SO + 1C062)do

[ee]

€ g T ‘n 28
—_ = /22 | sin — —sin | — - = 10
2Q 7 [sm 2 s1n<}4 C>] (10)

®

o]

-9/ .

IR V52 OO .
— ZQV_C_.[COS4 cos(4 c)] (11

The amplitude of the oscillation is therefore

sinSOHsin(SO+ 1202)do

3 € 27'5‘ 28 %
2 2 A Vimidd _ —_ 12
(C2 +D? =3 C[z 2cosc} (12)

The cosine term depends critically on &, since this is a small
quantity. The mean value of the amplitude, averaging
over g, is

o (o)}

s -5 (@&

Thus the build-up is of the same order of magnitude as
predicted crudely above.

For example, with Q = 2, r; = 300 cms, Eo = 103 Meyv,
V = 200 kV, € = 10, the induced amplitude is 47 cms.

1 (13)

Appendix III: Passage through half-integral resonances

A technique similar to that of Appendix II can be used.
We now take

6 +[Q + esinSOlp =0 (9]

in which the inperturbed motion is represented by a
«smoothed’’ approximation, whereas the perturbation
¢ sin SO corresponds to a harmonic error in field gradient,
of lower order than the magnet periodicity. In particular,
we are interested in the resonance at Q = 115, S = 3,
(Q=15/2).

From the theory of Mathieu equations, the mode number
for constant Q and small ¢ near the resonance is

v=31i[(2) - o] H @

where v corresponds to Q when ¢ is zero. That is, there
is a stop band of width AQ = 4-¢/28, in the region where
the phase change of the oscillation per period of the
harmonic perturbation is 7. It should be noted that a
stop band would also occur at Q = 115, S = 1 where the
phase change per period is 3m. However, the width is of
lower order than that for S = 3, and provided the first
harmonic is reasonably small it should not cause serious
build up.

For S = 3, the exponential blow-up is

o [[(5) - @y ] a @
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integrated through the stop band. For a C.W. machine,
Qr = E/E, so that

er _ eV
d9  2nE,

where V is the voltage gain per turn.
gives

Substituting in (3)

252

2 o2
= exp {E— £ E} )

p — (1—t2)5’2 dt
-1

2 2
=2« Q)

For example, for V = 50 Kv/turn, E, = 103 Mev, S = 3

e <14y

where ¢ is to be interpreted as the amplitude of a third
harmonic error in the field gradient.

The above theory underestimates the blow-up, since it
does not take into account the beat phenomena outside
the stop band. At the edge of the stop band, for example,
the perturbation is exactly in resonance with the oscillation,
and would cause a linear increase in amplitude if the particle
remained there. To take this into account it is necessary
to carry out a second order perturbation theory with vary-
ing Q. This has not yet been done, but we shall now carry
out the perturbation theory to first order.

We write (1) in the form
p+ Q% = —cpsin SO ©6)

and regard the R.H.S. as a small order perturbation.
In the absence of the perturbation the oscillation is

p=CSin[de6—l—o’] %)

Substituting this in the R.H.S. of (6) we get

§+sz:—€2—c[cos{S6—de6—a}
—cos{ SO + deﬁ—cH ®)

where the first term in the R.H.S. is in resonance with the
oscillation at Q = S/2, and the second term at Q =

Near the resonances of interest here, Q = S/2, only the
first term is of importance. Applying Green’s theorem
as before the incremental change produced by this per-

turbation is

AC =

eC r°®
_272 _Oocos{sel_deel-a}x
% sin{ / Qdo— / Qds, }de1 ©)

where Q = S/2 + {0

dQ eV

Solving and substituting = 9 = nE’
TE

we find for the

amplitude of the induced oscillation :

2E,
R o

In order to avoid serious build-up,

<< (=) an

Comparison with (5) shows that this is of the same order
of magnitude. Since this theory takes into account the
resonance phenomenon but, to this approximation, would
not predict a stop band it is likely that the above formulae
give roughly the correct order of magnitude for the toler-
ance.

Appendix IV : Passage through vertical linear resonances.

This is likely to present the same order of difficulty
as passage through radial resonances. The formulae
developed above still apply, provided ¢ is taken to mean

dov
de -’

Qv dQv ir_
We have { = ® — dr  do
Also Q:* ~ ( )

E

’ 1 —(—)
dh E — id_Qf — _* E,

ANCANE 99 T dQr a6 ) 2nE,

d 1 E
Substituting, { = —— 4 ( 0) >E
0

4 )B

The quantity { has now been related to the machine
parameters for vertical motion, and the previous formulae
can be used. However, the variation of Qv with radius
must be known, and at the time of writing we have no
values for this.
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1I. 6-7 GEV MACHINES

1. Introduction

Many problems remain to be solved before a 3 Gev
cyclotron, as outlined in Part I of this paper, can be
designed in detail. We have studied several other possible
accelerators with the object of achieving a more modest
improvement in intensity in a shorter time. We thought it
wise, in view of the smaller intensity, to aim for a somewhat
higher energy.

2. AG.

An A.G. proton synchrotron for an energy about 6 Gev,
with similar tolerances to those of the machines under con-
struction by CERN and Brookhaven, would have a peak
magnetic stored energy of about 2 megajoules. Although
the capacitor bank would be a major enterprise, it would
be possible to resonate the magnet windings for operation
at 10-30 p.p.s. A machine of this kind was tentatively
proposed by H. L. Anderson, with the object of obtaining
a mean current higher than that of the Bevatron. We have
considered the overall particle dynamics of such a machine,
and have concluded that the synchrotron oscillations
could be accomodated within the vacuum chamber even
at 50 p.p.s. operation with acceleration on the 6th harmonic.
The maximum amplitude would be about 4 cm. and the
radial aperture 12 cm. with the magnet biased so that
injection occurs at about 6° after the minimum magnetic
field. However, it seems likely that only a few turns
could be accommodated at injection, and in any case
multiturn injection is limited in time since B varies so rapid-
ly around 6°. The mean intensity would then be perhaps
two or three times the present yield of the Bevatron, for the
same injector current. There would be severe R.F.
problems in achieving high repetition rates; the energy
gain per unit length of donut for 20 p.p.s. would be 10 times
that in the CERN machine. Tracking at this high rate
would also be difficult.

We conclude that this machine does not offer the facilities
which we require, unless we assume that a radically
improved system of injection can be devised, applicable to
a machine of high repetition rate.

synchrotrons

3. Adaptations of conventional machines for 6-7 Gev

The object is to preserve the long injection time, over
many revolutions, of machines of the Cosmotron and
Bevatron type, but to reduce the steel weight and peak
stored energy of the magnet. A higher repetition rate is
then possible. We have considered two methods of
approach, namely a “double synchrotron’ and a spiral
ridge synchrotron.

3.1 Double synchrotron *

Two A.C. magnets are used. The first has an aperture
roughly the same as the Bevatron, but protons are acceler-

ated only to ~ 1 Gev (~ 3 kilogauss) so that the stored
energy is only ~ 4% of that of the Bevatron. The particles
are then made to pass into a second magnet, adjacent and
concentric, around the whole 360° of their orbits, and are
accelerated to full energy at about 15 kilogauss. The
space consumed by the beam has been reduced by the damp-
ing of the oscillations, and the aperture of the second
magnet may be made smaller than the first. The stored
energy of the second magnet might be ~ 109 of that of the
Bevatron. The energy (and field) at which cross-over
occurs may be chosen to minimise the total stored energy
of the two magnets. Since the betatron oscillations are
damped (as B-%) from approximately 4 times the injection
energy, and the synchrotron oscillations are damped from
the beginning of the acceleration as 3! and antidamped as
(B)%, a choice of the optimum system involves a choice
of injection energy and initial rate of rise of the magnetic
field. The choice of operating conditions is also compli-
cated by the effects of gas scattering.

1
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Fig. 1. Double synchrotron magnet profile

Magnet

Figure 1 is a diagrammatic outline of a possible magnet
structure. The rough outside dimensions shown are
considered to be maxima; they might be considerably
reduced in practice. The steel weight would be below
5,000 tons. A critical point is the amount of mutual
coupling which can be tolerated between the two magnet
systems. The effects are

(i) Coupled voltages in the two power supplies. These

are thought to be not very serious.

(i) The coupling is such that one magnet coil sends
negative flux through the gap of the other. The consequent
mutual influence on remanent fields could be troublesome.

(iii) Increase in stored energies.

Figure 1 shows no special arrangements for assisting the
cross-over problem; it is necessary, of course, to preserve
the field configuration between the stability limits during

* Dr. G. Salvini has drawn our attention to his paper suggesting essentially the same idea .
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TO CURRENT SHEETS

Fig.2a. Field matching by an ideal distribution of coils and
magnet poles

cross-over (e.g. 0.8 > n > 0.5). Two highly idealised
arrangements are indicated in Figure 2, (a) and (b). The
first of these aggravates the mutual coupling problem;
both would reduce the amount of correction needed from
correcting windings.

Injection energy

There might be two advantages in reducing the injection
energy to 5 Mev :

(i) Since the betatron damping would start from a
lower value of the magnetic field, it would be possible to
choose a magnet combination with lower total stored
energy.

(ii) Since the 3.5 Mev Van de Graaff injector at Brook-
haven has performed reliably at a peak current of about
3 ma, whereas the 10 Mev linear accelerator at Berkeley
has, so far, given no more than 300 pa, it may be possible
to obtain a higher intensity than the present Berkeley value
by using 5 Mev injection, which is within the range of
feasible Van de Graaff generators. Moreover, the focusing
of the Van de Graaff beam is better, and gives a smaller
initial betatron amplitude.

However, from other points of view 10 Mev is a better
injection energy. Gas scattering is obviously less serious
at a given working pressure, the required range of frequency
modulation is less and the effects of remanent fields are
smaller. In a new linear accelerator, grid focusing could
be discarded in favour of A.G. lenses, certainly if a lower
accelerating rate or longer wavelength were used, and this
would increase the injected current. A final choice would
depend upon the degree of confidence with which injector
currents could be specified for each type of machine, and
upon the lowest gas pressure attainable reliably in the
vacuum system.

There is evidence from Berkeley that a much longer
effective injection time can be achieved with the Bevatron
by reducing the initial rate of rise of magnetic field. The
effects of such a reduction of B upon the gas scattering loss
must be considered, and this again is influenced by injection
energy.

Gas scattering

Although in practice the output of the three existing
proton synchrotrons appears to vary with pressure in a

manner consistent with multiple scattering theory, the
observed pressure for a loss of about 109 seem to be too
low a factor between two and three when the scattering is
assumed to be entirely due to air. The fault does not
appear to lie in the theory, although loss from single large
angle scattering is not negligible when the total loss is
small; for the Cosmotron and the Bevatron, when the loss
from multiple scattering is 109, the additional loss from
single scattering is about 39%;.

Plots of beam intensity versus vertical aperture are given
in figure 3, for the Bevatron and the Birmingham machine.
The pressure is corrected by the factor two or three men-
tioned above. The agreement between theory and experi-
ment is then tolerable, except for the sharpness of the
cut-off. However, for conditions leading to very large
loss, the probability distribution of amplitudes due to
multiple scattering will have its maximum very close to the
wall of the vacuum chamber, and consequently at this
point the probability of further loss by mean square
multiple scattering may be less than that of a final single
scattering straight to the wall. This phenomenon should
cause a sharper cut-off, as is observed.

It appears from these considerations that the observed
minimum useful vertical aperture in the existing machines
may well be explained mainly by gas scattering, with a minor
contribution from median plane and similar errors. Riddi-
ford published similar arguments in 1951.

The discrepancy of a factor 2-3 between theory and experi-
ment may be due to the presence of additional gases and
vapours. Pump oil vapours contain molecules with as
many as 40 carbon atoms, and the term X(Z2N) in the gas
scattering formula is important; a small partial pressure
due to heavy organic molecules could contribute largely
to this term.

If we may assume that the minimum vertical aperture
of machines like the Cosmotron and the Bevatron is mainly
determined by gas scattering then in considering future
machines we may consider the following expression to be
virtually invariant, for a given gas pressure :

Q2A2( 1 —-%)2Ti V)
R (1 + o)?

Fig. 2b. Field matching by an ideal configuration of magnet
poles
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Fig. 3a. P(x) is calculated using multiple scatt. theory but
includes a correction for single scattering
where Q = number of vertical oscillations/turn
A = vertical aperture
a = initial vertical amplitude, due to divergence
of the injected beam
T; = injection energy
eV = energy gain per turn
R, = equilibrium sector radius
« total length of straight sections

ZTCRO
Repetition rate

With the stored energy envisaged for a double machine,
it should be possible to achieve a repetition rate of 1-1.5
pulses per second. The power supplied would have to
deliver a total of about 70 MVA to the two sections of
magnet, assuming a rise time of ~ 0.2 second in each
section. The acceleration rate would then be lower in the
first (low energy) section of the magnet, in about the ratio
1:7. A large range of B would be required in the low energy
section, to preserve a long injection time.

Intensity

The object would be to achieve an increase over the pre-
sent mean intensity of the Bevatron by a factor 100. In the
example considered, this factor would be made up of a
factor 10 in repetition rate and a factor 10 in injected current.
The factor 10 in injected current could come from the use
of a Van de Graaff generator or an improved linear acceler-
ator with, possibly, the use of a slower rate of rise of mag-
netic field at injection.

Problems

The main problems are associated with

(i) field matching at cross-over, and the corresponding
acceleration programme.

(ii) magnet power supplies with varying B in one or
possibly both, sections. The use of capacitors for energy
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Fig. 3b. The Birmingham figures are for three different
values of pressure and time after injection

storage is not ruled out, at least for the low energy section.
A varying B could then be realised by D.C. biassing.
With alternator-ignitron supplies, it would be necessary
to consider saturable reactors and/or voltage control by
ignitron timing to give the desired B programme.

3.2 Spiral ridge synchrotron

In a machine with spiral ridge focusing, the frequency
of the radial oscillations is almost unaffected by the
ridges whereas the frequency of the vertical oscillations is
increased. In principle, therefore, we can design a synchro-
tron which has the same radial aperture and injection
conditions as the Bevatron, but with stronger vertical
focusing and a smaller vertical aperture. The stored
energy in the magnet is proportionately reduced, and we
may operate at a higher repetition rate.

We have begun studies of such a system, and have found
that for a field which has the same power law index as the
Bevatron (k = —0.6, or n = 0.6) the radial oscillations
have the same frequency as in the Bevatron, and are
stable for amplitudes up to 2 feet, whereas the strength
of vertical focusing has been increased by a factor 4.
The machine considered has 24 ridges at an angle of /1,
radian to a circle concentric with the magnet units, and
the depth of flutter is 4 25%. The radial oscillations
extend over four spiral pitches.

Computations

The equations of motion are represented by
d2
d—e’:-x — _XCHO[ [+ 3sin (N0 - K Inx)]

d* ki1 ! ;
W+x(+)|:—kll+85m(N6—Klnx) +

+ KScos(NO—Klnx)] n=20
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where x is the normlised radius and 7% is the normalised
vertical displacement; only linear terms in v are included
in the second equation.

Orbits were computed for N = 12, § = ¥/,, k = 0.6 and
K/N = 12. For a mean radius of 50 feet a displacement
0of 0.04 from the mean radius x = 1 represents an amplitude
of oscillation of 2 feet. Violent vertical instability was
evident for this case, caused by coupling between radial
and vertical oscillation. For small radial oscillations,

2K2
Q% = -k + e or Qy ~ 3 in this case, and
_Q_ T
A S

However, for large radial oscillations, the particle crosses
the ridges at appreciably smaller angles on its outward
excursions, and with the parameters chosen the mode
number p. increases beyond  causing exponential instability.

When N was increased to 24, keeping the other para-
meters as before, both radial and vertical oscillations were
found to be stable and all features of the orbits have been
explained by an approximate theory.

Theory

For the small k value chosen the radial equation can be
simplified to

¢ + (1 + kp = - 3 sin (N6 - Kp) )
inwhichx =1 + p

Certain small order non-linear terms have been ignored
in the approximation but these do not affect the major
conclusions. An approximate solution of (1) is

p=Acos (Qf + &) + = sm/Qd6 @)

Q= N-Kp
where |~ N + KA Q:sin (Q0 + ¢)
[ Qr=+/1+k

. ZTC T ..
The mode number is . = = 12 this is «/9,

and for N = 24 it is «t/18.

This solution proved bad for a computed case in which
Qr=1.0,A > 002, N = 12, § = 1/,, k = 0. However,
by changing k to — 0.6, i.e. Qr = ?/;, the above solution
was a good approximation for both N = 12 and N = 24
for A < 0.04.

There is a high frequency modulation, in both amplitude
and frequency, because of the mean variation in the orbit.

The equation for the vertical oscillation can also be
simplified to

7 + [k + 3K cos (N6 - Kp) v = 0 3

Substituting for p from (2), we have

cos (NO — Kp) = cos [/Qd0~ E—?sinfﬂde] ~
o~ cosf Qdo -+ %?sinzfﬁd()

where it is assumed that the high frequency ripple is small.

Equation (3), thus becomes

1 I: k—l—s SInzde0+8Kcoszd6:|-r]—0

Since the vertical oscillation frequency is high compared
with the radial oscillation, then according to the smooth
approximation the vertical frequency is given by

N2K?
Q2

in which Q varies with the radial oscillation, and

V):ﬁ[]—!————cosfﬁd()]

with 3 + v&7j = 0.

That is, from adiabatic theory,

Bcosfvde
3K

Comparison with computed orbits shows that this is a
good representation of the dynamics. The mean motion
varies in frequency according to v; for N = 24, A = 0.04,
0 = 1/4, k = — 0.6, K/N = 12, the extreme limits of

2
v are from 2.4 to 4.5, or uy = XY varies from 0.157 to

Q
0.55m.

For the case where N = 12, the variation takes v beyond
7 and explains the vertical blow-up observed in the com-
puted orbits for this case.

The modulation in amplitude of the mean motion is
predicted by the term in v=%. The final term in (4)
agrees very well with the high frequency vertical ripple
observed in the computed orbits. Like the radial ripple,
there is again both frequency and amplitude modulation;
the radial ripple is in quadrature with the vertical ripple.

Resonances

In the theory advantage was taken of the fact that the
vertical oscillation frequency was high compared with the
radial frequency. Thus Q can be regarded as an effective N
value which varies slowly with the radial oscillation.
With Q < N (increasing radial motion) the instantaneous
value of v increases, and there is danger of the w-mode
being reached. This occurs when
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a=1—q
a=—$—2|:—k + %zg]
qzﬁzéSK
That is,
55[_1( —l—ii—g::l: I—ZSQ—E
For k>~ 0, % = 0.366
Q= N-KAQ,
i]—f<0.366 I:l - _K,;&:r

=12

ZIR

3K
For example, N - 3,8 = 1/4,

Qr=23,k=-06 A =004

.-. N must be > 17 to avoid reaching w-mode during
part of the radial oscillation.

For N = 24, the maximum value of . in the above exam-
ple is 7/2.

Although the m-mode blow-up is disastrous from a
practical point of view it should not be supposed that the
motion is unbounded. Unbounded motion will occur
only if stop bands are predicted when the correct value
of Qisused. For N = 24, we can simplify by using the
smooth approximation, i.e. we regard

. 2K?
7+ |:—k+8Q2:|v]:0

as a Hill equation periodic in the interval 0 < Q.6 < 2,
where

€ = N + KAQ:sin (Q:9 + ).
Expanding € to first order we have

. 32K? f 2KAQ-r
N+ I:—k + NT 11—

Resonances occur for small A when

CPKH: S
R

sin (Q:0 + ¢) }] =20

For the examples quoted above, Qr = 2/3 and hence stop-
bands will be placed at 1/3 intervals in Qv. When § =~

K
0 and % = 3 the closest stop-band occurs for S = 9

The effect of this on the dynamics has not yet been examined,
but it is a high-order Mathieu function stop-band and
may be less serious than linear resonances.

Practical Aspects

Figure 4 is a diagrammatic section of a possible magnet
The effective aperture would be 5”7 x 48”, and the stored
energy at 15 kilogauss would be about 20 megajoules for
a 6-7 Gev machine. It might be possible to reduce the
stored energy somewhat, by using saturable pole tips as
shown diagrammatically in this figure, on taking advantage
of the damping of the radial oscillations. The magnet
weight, corresponding to the full 20 megajoules stored
energy and no saturable pole tips, would be about 5,000
tons; a lower weight would result from the use of saturable
pole tips.
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Fig.4. Spiral ridge synchrotron magnet profile

With 20 megajoules, a power supply of 50 MVA would
give a rise time of about 0.8 second. The repetition rate
of such a machine would be about 35 ppm., or, with some
contribution from saturable pole tips, perhaps 60 ppm.

Other features, such as injection conditions and pro-
gramming of B, would be rather similar to the double
synchrotron.

In contrast to the double synchrotron, it should be noted
that the spiral ridge synchrotron does not depend for its
operation upon the damping of the vertical oscillations.

In both machines, the main aim is to reduce considerably
the stored energy in the magnet without introducing very
tight tolerances. This saving can be used either to cheapen
the power supplies or to obtain a higher repetition rate.
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