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Abstract
Projectile-Coulomb excitation of Xe isotopes has been performed at ANL us-
ing the Gammasphere array for the detection ofγ-rays. The one-quadrupole
phonon2+

1,ms mixed-symmetry state (MSS) has been traced in the stable N=80
isotones down to134Xe. First, the data on absoluteE2 andM1 transition rates
quantify the amount ofF -spin symmetry in these nuclei and provide a new
local measure for thepn-QQ interaction. Second, the evolution of the2+

1,ms

state has been studied along the sequence of stable even-even 124−134Xe iso-
topes that are considered to form a shape transition path from vibrational nuclei
with vibrational U(5) symmetry near N=82 toγ-softly deformed shapes with
almost O(6) symmetry. Third, our data on more than 50 absoluteE2 transition
rates between off-yrast low-spin states of124,126Xe enable us to quantitatively
test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is
more strongly broken in the A=130 mass region than previously thought. The
data will be discussed.

1 Introduction

Proton-neutron (pn) mixed-symmetry states (MSSs) are important sources of information on the effective
proton-neutron interaction in collective nuclei. Their excitation energies are directly related to the proton-
neutron interaction in the nuclear valence shell. This factis obvious in the interacting boson model
where the excitation energies of MSSs determine the strength of the Majorana interaction to which pn
symmetric states at the yrast line are insensitive [1,2]. Investigation of the proton-neutron interaction in
the valence shell is an important subject of contemporary nuclear structure physics. Its evolution with
neutron number represents a key-issue for future studies with intense beams of neutron-rich radioactive
nuclides.

Vibrational nuclei exhibit a one-quadrupole phonon excitation as the lowest-lying state of mixed
pn symmetry,i.e the 2+

1,ms state. Its close relation to the2+
1 state is evident in theQ-phonon scheme

[3], where the wave functions of the one-quadrupole phonon excitations are well approximated by the
expressions

|2+
1 〉 ≃ Qs |0+

1 〉 = [Qπ + Qν ] |0+
1 〉 (1)

|2+
1,ms〉 ≃ Qm |0+

1 〉 = N

[
Qπ

Nπ
− Qν

Nν

]
|0+

1 〉 (2)

whereQπ,ν (Nπ,ν) denote the proton and neutron quadrupole operators (boson numbers), N=Nπ + Nν ,
and |0+

1 〉 is the (in general highly correlated) ground state of a collective even-even nucleus. Despite
its fundamental role in nuclear structure, the2+

1,ms state has only recently been studied systematically,
e.g., [4–8]. The dominant fragments of the one-phonon2+

1,ms state are observed at about 2 MeV excitation
energy. Due to their isovector character, MSSs decay rapidly by dipole transitions and are very short
lived, typically a few tens of femtoseconds. LargeM1 matrix elements of≈ 1 µN are in fact the



unique signatures for MSSs and, thus, lifetime informationis needed for making safe assignments of
mixed symmetry. A review article on the status of experimental information on mixed symmetry states
in vibrational nuclei has recently been published [9].

Projectile-Coulomb excitation has been established as a powerful method for the identification and
investigation of one-phonon MSSs [5]. We have recently begun a research programme on the2+

1,ms state
at ANL with the nucleus138Ce as a case study [8]. Crucial influence of sub-shell closures on mixed-
symmetry structures was first observed [8,10], which sensitively tests the effective proton-neutron inter-
action in microscopic valence shell models [11]. The one-phonon2+

1,ms state of136Ce has been identified
from similar Coulomb excitation experiments at Gammasphere. A short description of our experimental
method for probing the mixed-symmetry character of low-lying collective states of vibrational nuclei is
given in the next section. Our results concerning theN = 80 isotonic chain will be presented in sec-
tion 3. The evolution of the one-phonon2+

1,ms in the U(5)→O(6) transition phase,i.e from spherical to
γ-softly deformed nuclei in the stable even-even Xe isotopicchain are presented in section 4. Section 5
deals with our unexpected finding of severe O(6) symmetry breaking in the A=130 mass region as briefly
discussed for the case of124Xe.

2 Experimental method

The experiments have been performed at Argonne National Laboratory. The superconducting ATLAS
accelerator provided the Xenon ion beams with energies corresponding to∼ 85 % of the Coulomb barrier
for a reaction on12C nuclei. The beam intensity amounted typically to∼ 1pnA. The beam was impinging
on a stationary carbon target of thickness 1 mg/cm2. Light target ions were chosen in order to favor the
one-step Coulomb excitation process over multi-step processes for ease of data evaluation. Theγ-rays
emitted by Coulomb-excited states of the beam nuclei were detected in the Gammasphere array which
consisted of∼ 100 high purity Compton suppressed Germanium detectors arranged in 16 rings [12,13].
An event was defined by aγ-ray of multiplicity 1 or higher. Two corrections had to be done in order to
get the total single spectra displayed on the left side of Fig. 1, namely the Doppler correction (recoiling
velocity ∼ 6%) and the background subtraction (difference between the"in-beam" spectrum and the
"off-beam" spectrum scaled to eliminate the 1461 keV40K line).

The experimentalγ-ray spectra are dominated by the decays of low-spin states,such as2+ or
3− states, that are predominantly populated by one-step Coulomb excitation from the ground state. For
each state observed we measured the excitation cross section relative to that of the2+

1 state with an
accuracy of 1 - 0.1 %. By calculating the Coulomb excitation cross sections for each excited state with
the multiple-Coulomb excitation code CLX and fitting them toour experimental data (normalized to the
2+
1 state), we deduced the electromagnetic matrix elements corresponding to each transition of the excited

states. The crucial multipole mixing ratios of the2+ → 2+
1 transitions were obtained fromγ-ray angular

distributions if sufficient statistics have been obtained.A possible largeB(M1) value, signature of the
MSS, is then easily derived from the data. For a further description of this method, the reader is referred
to Refs. [8, 9]. This experimental technique of projectile-Coulomb excitation on a light target inside
the Gammasphere array at ANL has been applied by us to 12 nuclei up to now: 136,138Ce, 124−134Xe,
148,154Sm,96Ru and94Mo. The experimental set up was very similar for all of these experiments and the
subsequent data analysis was essentially identical.

3 Results for the N=80 isotones

In the stable N=80 isotones the2+
1 state decreases in energy with increasing proton number. This is

understood as an increase of collectivity with increasing number valence particles. In contrast, the2+
1,ms

state increases in energy (see Fig. 1, right-hand side). Thus, the separation between the two one-phonon
levels becomes larger as a function of the product of valenceparticle pairsNπNν [14,15].

According to the two-state mixing scheme outlined in Ref. [16], a fit was performed to the energy
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Fig. 1: Left: Background-subtracted and Doppler-corrected singlesγ-ray spectrum summed over all Ge detectors
of the Gammasphere array at ANL after Coulomb excitation of134Xe on a carbon target.Right: Fit of the2+

1,ms

and2+

1 level energies in the N=80 isotones shown as filled circles and squares, respectively. The lines labeled
ǫπ andǫν represent the unperturbed energy of the proton and neutron excitation, respectively. The experimental
energies of the2+

1 states in the corresponding N=82 isotones are given as diamonds. Tentative2+ states of132Te
are shown as asterisks. From Ref. [14].

splitting of the observed2+
1 and2+

1,ms states. This scheme assumes that the observed2+
1 and2+

1,ms states
arise from a mixing of fundamental2+ proton (with energyǫπ) and neutron (with energyǫν) quadrupole
excitations. In this scheme [16], the interaction between the two states results from the proton-neutron
quadrupole-quadrupole interactionV QQ

pn = κ QpQn and, thus, it can serve us as a sensitive measure for
this quantity. Its dependence on the number of valence-particles can be parametrized asV QQ

pn (Nπ, Nν) =
β
√

NπNν in leading order for predominantly spherical nuclei.

The matrix to be diagonalized in this two-state mixing scheme then becomes:

H =

[
ǫπ Vpn

Vpn ǫν

]
=⇒ HDiag =

[
E(2+

1 ) 0
0 E(2+

1,ms)

]

with eigenvalues:

E(2+
1 ) =

ǫπ + ǫν

2
−

√
1

4
(ǫπ − ǫν)2 + β2NπNν and (3)

E(2+
1,ms) =

ǫπ + ǫν

2
+

√
1

4
(ǫπ − ǫν)2 + β2NπNν (4)

as shown on the right of Fig.1 by thick curves. The energy for the neutron excitation,ǫν , is taken
to be constant for theN = 80 isotones, and is fixed equal to the energy of the2+

1 state of130Sn,
ǫν(Nν = 1) = E2+

1

(13050 Sn80) = 1221 keV. The2+
1 states in the neighboring semi-magic N=82 isotones

increase in energy almost linearly with valence proton number, as can be seen in Fig. 1. Consequently,
the energy of the proton excitation,ǫπ, was linearly parametrized for the N=80 isotones by the expression
ǫπ = a + b(Nπ − 1) in a leading order approximation inNπ. Herea was again fixed to be equal to the
energy of the2+

1 state of the neutron-closed shell nucleus134Te,a = ǫπ(Nπ = 1) = E2+

1

(13452 Te82) =

1279 keV. The free parameters b andβ were then fitted to the data on the energies of the observed
one-phonon states,2+

1 and2+
1,ms. The resulting values for the parameters wereb = 0.23(4) MeV, and

β = 0.35(1) MeV [14].

A fit to the excitation energies of the2+
1 states of even-even Te, Xe, Ba, Ce nuclei for neutron

numbers60 ≤ N ≤ 80 in Ref. [16], indicated a value ofβ = 0.365 MeV, a result quite close to the value
derived here locally using nuclei withN = 80 only, considering now the excitation energies of both, the
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2+
1 and2+

1,ms states. Making use of the fitted value ofβ = 0.35(1) MeV as derived in the present study
and using the expression ofβ as derived from Eq. (3.4) of Ref. [16], a rather precise valueof the local
strengthκ of the proton-neutron quadrupole-quadrupole residual interaction can be derived. Considering
the limit j → ∞ (κ = − 5

12β), which is a good approximation for the largej values 7/2, 11/2 that are
relevant in this mass region (see Fig. 2 and Table II in Ref. [17]), a value ofκ = 0.15(1) MeV results
from our data which again is in agreement with the previous estimate from Ref. [16]. This agreement
documents the sensitivity of the2+

1,ms state to the localV QQ
pn in the valence shell.

4 Evolution of the one-phonon mixed-symmetry 2
+

1,ms
state in even-even Xe isotopes

The Interacting Boson Model enables one to classify the nuclei according to the dynamical symmetries
of the IBM Hamiltonian. Three symmetries are most relevant for the description of excited states of
quadrupole-collective nuclei: U(5) for vibrational nuclei [18], SU(3) for axially deformed nuclei [19],
and O(6) for deformed nuclei with soft triaxiallity [20]. Inthe A=130 mass region, the Xenon isotopes
can exhibit excitation spectra close to the O(6) symmetry. After some theoretical investigations [21–25],
it was concluded that the Xenon isotopes should lie in a transitional region from U(5)- to an O(6)-like
structure as the neutron number decreases from the closed shell N =82. This was later supported by
Casten and von Brentano [26] who presented evidence for an extensive region of nuclei nearA =130
resembling the O(6) symmetry. The evolution of the one-quadrupole phonon 2+1,ms with F -spin value
F = Fmax − 1 in a U(5)-O(6) transition is still unknown and has been investigated via the projectile-
Coulomb excitation method. Some information on our experiments on124,126,128,130,132,134Xe can be
found in the previous section 2.
The data enable us to deduce the2+ → 2+

1 M1 transition strength distribution up to an excitation en-
ergy of about 2.2 MeV (see Table 1 and Fig. 2. The excited 2+ states that dominate thisM1 strength
distribution are considered as fragments of the2+

1,ms state. We observe that the detectedB(M1) strength
decreases while the number of valence neutrons decreases (i.e., while the numbers of neutron hole pairs
or neutron bosons increase). Simultaneously, the nuclear collectivity increases and the corresponding ex-
citation energy,E(2+

1,ms), goes up. Apparently, the energy of the one-quadrupole phonon MSS increases
with increasing number of valence bosons. The same behavioris clearly observed for the N=80 isotones,
too [14, 29]. This increase in energy of a MSS with increasingvalence boson number was already ob-
served for the1+ two-quadrupole phonon excitation in Ref. [30]. A quantitative understanding of this
phenomenon is still missing. The simultaneous decrease of theB(M1; 2+

1,ms → 2+
1 ) is not understood,

either. Perhaps the fragmentation of the 2+
1,ms mode increases with increasing energy and increasing

valence space such that smaller shares of the total2+
1,ms → 2+

1 M1 transition strength can be detected
experimentally. This hypothesis may explain the disappearance of any detectable fragments of MSSs
below 2.3 MeV and 2.1 MeV for124Xe and126Xe, respectively.

Isotope MSS Energy B(M1; 2+i,ms → 2+
1 ) Literature Reference

[keV] µ2
N µ2

N
124Xe no MSS below 2.3 MeV
126Xe no MSS below 2.1 MeV
128Xe 2+

4 2127 0.04(1) 0.07(2) [27]
130Xe 2+

4 2150 0.16(5)
132Xe 2+

3 1986 0.22(6) 0.29 [28]
134Xe 2+

3 1947 0.30(2)

Table 1: Absolute strengthsB(M1; 2+

1,ms → 2+

1 ) found in the even-even Xe isotopes.
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5 O(6) symmetry breaking in 124Xe

Observation of the O(6) symmetry in nuclei has first been reported in the case of196Pt [31]. This claim
was based on energy level pattern and E2 decay branching ratios that closely follow the O(6) selections
rules. It was later on supported by absoluteB(E2) values [32]. Another, even more extensive region of
O(6)-candidate nuclei is found in the Xe-Ba-Ce region [26] around mass numberA = 130. For example,
it has been shown that the low-spin structures of the nuclei128Xe [33], 126Xe [34] and 124Xe [35]
manifest O(5)-like arrangements of energy levels andE2 branching ratios corresponding closely to the
expectations for theσ = N family of O(6). Consequently, the nuclei from the Xe-Ba-Ce region have
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been interpreted [26,33–35,37] as being located in the vicinity of the O(6) symmetry. On the other hand
the nuclei from the Pt region and from the Xe-Ba-Ce region exhibit two systematical deviations from
the exact O(6) limit, in particular, the smaller than expected energy staggering in the quasi-γ bands and
theτ -compression effect [26]. These deviations from the exact O(6) symmetry can be accounted for by
adding perturbative terms to the O(6) Hamiltonian [38]. This improves the description of the low-lying
states withσ = N . It has been assumed that the small perturbations preserve the O(6) symmetry to a
large extent but it was clear thatE2 rates are needed for a stringent test of O(6) symmetry [39]. However,
crucial information on absoluteE2 transition strengths is scarce [34, 37, 40] for nuclei in theA ≈ 130
region. It does not exist at all for transitions between off-yrast states belonging toτ ≥ 3, 4 andσ < N
multiplets. Thus, due to the lack of experimental data, the crucial quantitative test of the goodness of
O(6) symmetry in the Xe-Ba region has not been performed to date. Thanks to the powerful detector
systems at ANL available for the study of projectile-Coulomb excitation described in section 2, we have
been able to measure absoluteE2 strengths between off-yrast low-spin states of the open-shell, stable,
even-even Xe-isotopes. AbsoluteB(E2) values, particularly for the two first members of theσ = N −2
family enable us [36] to test and quantify the presence or breaking of O(6) symmetry. We discuss here
the example of124Xe. An sd-IBM-1 fit has been made as done in [35] and compared with the data as
shown on Fig. 3.

The qualitative analysis of the selection rules shows that the new experimental data on the absoluteE2
strengths of124Xe agree to a large extend with the∆τ = ±1 selection rules but they are in severe conflict
with the∆σ = ±0 selection rules. This fact leads to the hypothesis that in124Xe the O(5) symmetry is
predominantly preserved while the O(6) symmetry is broken.

In order to investigate to what extent the O(6) symmetry breaks down in124Xe we used the present
sd-IBM calculation from [35] for a symmetry analysis of the wave functions. We have projected the wave
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Fig. 4: Squared amplitudes of the components with different (σ, τ ) values of the 0+1,2,3 (a) and the 2+1,2,3,4 (b)
sd-IBM-1 wave functions. From Ref. [36].
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functions of the first few 0+ and 2+ IBM states to the O(6) basis|Jπ(σ, τ) >. These results are presented
in Fig. 4. Neitherτ nor σ are perfect quantum numbers, of course. However, theτ quantum number is
usually quite well preserved which indicates that O(5) is a valid symmetry of124Xe. The components
with “correct” τ quantum number exhaust about 70% or more of the total wave functions. The small
admixtures with differentτs are such that the O(5) selection rules remain mostly undisturbed.

The σ quantum number is, at most, an approximate quantum number. Even the ground state
contains only 54.5% ofσ = N = 8. For the states which were thought to belong to theσ = N − 2
representation, the 0+ and the 2+ , theσ quantum number is completely diluted. In fact, the components
with σ = 6 account only for 25.9 % and 10.2 % of the total wave functions of these IBM states (see Fig.
3). While the IBM is very well suited to describe theγ-soft nuclei in theA ≈ 130 mass region, we must
conclude [36] that the nucleus124Xe cannot be considered as a good example for O(6) symmetry. This
conclusion is based on the new data on absolute E2 transitionrates. The same analysis has been done
for 126Xe with a similar conclusion eventhough it appeared that theO(6) symmetry-breaking was “less”
pronounced as in124Xe.

6 Conclusion

Projectile-Coulomb excitation on a light target is a very powerful tool for populating quadrupole-collective
low-spin states of heavy nuclei. This experimental method is well suited to study the lowest lying mixed-
symmetry state2+

1,ms of vibrational nuclei. As a part of our research programme atANL we have applied
this technique to explore the evolution of MSSs in theA ≈ 130 mass region in order to better understand
the pn valence shell interactions in vibrational nuclei. Itwas possible to obtain more than 50 absolute
E2 transition strengths in the even-even124−134Xe chain [14, 36, 41, 42]. As a result, the strength of
the quadrupole-quadrupole proton-neutron residual interaction in the N=80 even-even stable isotones
has been derived (κ = 0.15(1)), the one-quadrupole phonon2+

1,ms has been identified and tracked in
the even-even124−134Xe isotopic chain, and an unexpected O(6) symmetry-breaking was discovered (as
well as quantified) in124,126Xe.
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