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Stokes’ Theorem, in the fashion of the Generalised Cauchy Theorem. Consequently, the Op-
tical Theorem can be related to the Berry Phase, showing how the imaginary part of arbitrary
one-loop Feynman amplitudes can be interpreted as the flux of a complex 2-form.
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1. Introduction

Unitarity and geometric phases are two ubiquitous properties of physical systems. The Berry
phase is the phase acquired by a system when it is subjected to a cyclic evolution, resulting only
from the geometrical properties of the path traversed in the parameter space because of anholonomy
[1, 2]. Unitarity represents the probability conservation in particle scattering processes described
by the unitary scattering operator, S. The relation, S = 1+ i T , between the S-operator and the
transition operator, T , leads to the Optical Theorem, −i(T − T †) = T †T . The matrix elements
of this equation between initial and final states are expressed, in perturbation theory, in terms of
Feynman diagrams. The evaluation of the right hand side requires the insertion of a complete
set of intermediate states. Therefore, since −i(T − T †) = 2 ImT , the Optical Theorem yields
the computation of the imaginary part of Feynman integrals from a sum of contributions from all
possible intermediate states.

The Cutkosky-Veltman rules, implementing the unitarity conditions, allow the calculation of
the discontinuity across a branch cut of an arbitrary Feynman amplitude, which corresponds to its
imaginary part [3]. Accordingly, the imaginary part of a given Feynman integral can be computed
by evaluating the phase-space integral obtained by cutting two internal particles, which amounts to
applying the on-shell conditions and replacing their propagators by the corresponding δ -function,
(p2−m2+ i0)−1→ (2πi) δ (+)(p2−m2). In later studies the problem of finding the discontinuity of
a Feynman integral associated to a singularity was addressed in the language of homology theory
and differential forms [4].

More recently multi-particle cuts have been combined with the use of complex momenta for
on-shell internal particles into very efficient techniques, by-now known as unitarity-based methods,
to compute scattering amplitudes for arbitrary processes. These methods exploit two general prop-
erties of scattering amplitudes like analyticity, granting that amplitudes are determined by their own
singularity-structure, and unitarity, granting that the residues at the singular points factorize into
products of simpler amplitudes. Unitarity and analyticity become tools for the quantitative determi-
naton of one-loop amplitudes [5] when merged with the existence of an underlying representation
of amplitudes as a combination of basic scalar one-loop functions [6]. These functions, known as
Master Integrals (MI’s), are n-point one-loop integrals, In (1≤ n≤ 4), with trivial numerator, equal
to 1, characterised by external momenta and internal masses present in the denominator. In general,
the fulfillment of multiple-cut conditions requires loop momenta with complex components. Since
the loop momentum has four components, the effect of the cut-conditions is to fix some of them
according to the number of the cuts. Any quadruple-cut [11] fixes the loop-momentum completly,
yielding the algebraic determination of the coefficients of In,(n ≥ 4); the coefficient of 3-point
functions, I3, are extracted from triple-cut [12, 13, 14, 15, 16, 17]; the evaluation of double-cut
[18, 19, 20, 14, 21, 16, 22, 23, 17] is necessary for extracting the coefficient of 2-point functions,
I2; and finally, in processes involving massive particles, the coefficients of 1-point functions, I1, are
detected by single-cut [16, 24, 25]. In cases where fewer than four denominators are cut, the loop
momentum is not frozen: the free-components are left over as phase-space integration variables.

In [26, 27], I introduced a novel efficient method for the analytic evaluation of the coefficients
of one-loop 2-point functions via double-cuts. Spun-off from the spinor-integration technique [18,
19, 20], that method is an application of Stokes’ Theorem. Due to a special decomposition of the
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loop-momentum, the double-cut phase-space integral is written as parametric integration of rational
function in two complex-conjugated variables. By applying Stokes’ Theorem, the integration is
carried on in two simple steps: an indefinite integration in one variable, followed by Cauchy’s
Residue Theorem in the conjugated one.

The coefficients of the 2-point scalar functions, being proportional to the rational term of
the double-cut, can be directly extracted from the indefinite integration by Hermite Polynomial
Reduction.

2. Double-Cut

The two-particle Lorentz invariant phase-space (LIPS) in the K2-channel is defined as,∫
d4

Φ =
∫

d4`1 δ
(+)(`2

1−m2
1) δ

(+)((`1−K)2−m2
2) , (2.1)

where Kµ is the total momentum across the cut. We introduce a suitable parametrization for `µ

1
[26, 20], in terms of four massless momenta, which is a solution of the two on-shell conditions,
`2

1 = m2
1 and (`1−K)2 = m2

2,

`
µ

1 =
1−2ρ

1+ zz̄

(
pµ + zz̄ qµ + z ε

µ

++ z̄ ε
µ

−

)
+ρKµ , (2.2)

where pµ and qµ are two massless momenta with the requirements,

pµ +qµ = Kµ , p2 = q2 = 0 , 2 p ·q = 2 p ·K = 2 q ·K ≡ K2 ; (2.3)

the vectors ε
µ

+ and ε
µ

− are orthogonal to both pµ and qµ , with the following properties 1,

ε
2
+ = ε

2
− = 0 = ε± · p = ε± ·q , 2 ε+ · ε− =−K2 . (2.4)

The pseudo-threshold ρ = (K2 + m2
1 −m2

2 −
√

λ )/(2K2) , with λ = (K2)2 + (m2
1)

2 + (m2
2)

2 −
2K2m2

1− 2K2m2
2− 2m2

1m2
2 , depends only on the kinematics. The complex conjugated variables

z and z̄ parametrize the degrees of freedom left over by the cut-conditions. Because of (2.2), the
LIPS in (2.1) reduces to the remarkable expression,∫

d4
Φ = (1−2ρ)

∫∫ dz∧dz̄
(1+ zz̄)2 . (2.5)

The double-cut of a generic n-point amplitude in the K2-channel is defined as

∆≡
∫

d4
Φ Atree

L (`1) Atree
R (`1) , (2.6)

where Atree
L,R are the tree-level amplitudes sitting at the two sides of the cut, see Fig.1. By using (2.5)

for the LIPS, and (2.2) for the loop-momentum `
µ

1 , one has,

∆ = (1−2ρ)
∫∫

dz∧dz̄
Atree

L (z, z̄) Atree
R (z, z̄)

(1+ zz̄)2 , (2.7)

1In terms of spinor variables that are associated to massless momenta, we can define pµ = (1/2)〈p|γµ |p] and
qµ = (1/2)〈q|γµ |q], hence ε

µ

+ = (1/2)〈q|γµ |p] and ε
µ

− = (1/2)〈p|γµ |q].
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Figure 1: Double-cut of one-loop amplitude in the K2-channel.

where the tree-amplitudes Atree
L and Atree

R are rational in z and z̄. Since ρ is independent of z and z̄, its
presence in the integrand is understood. By applying a special version of the so called Generalised
Cauchy Formula also known as the Cauchy-Pompeiu Formula [28], one can write the two-fold
integration in z- and z̄-variables appearing in Eq.(2.7) simply as a convolution of an unbounded
z̄-integral and a contour z-integral2 [26],

∆ = (1−2ρ)
∮

dz
∫

dz̄
Atree

L (z, z̄) Atree
R (z, z̄)

(1+ zz̄)2 , (2.8)

where the product Atree
L Atree

R is a rational function of z and z̄, and the integration contour has to
be chosen as enclosing all the complex z-poles. The equivalence of Eq.(2.7) and Eq.(2.8) is due to
Stokes’ Theorem [26]. Accordingly, the double-cut ∆ in (2.7) is the flux of a 2-form, corresponding
to an integral over the complex tangent bundle of the Riemann sphere3, where the curvature 2-form
is defined as Ω = 1/(1+ |z|2)2 dz∧dz̄ .

2.1 Coefficient of the 2-point function

The formula in Eq.(2.8) can be intrgrated straightforwardly in two steps. To begin with the
integration, we find a primitive with respect to z̄, say F , by keeping z as independent variable,

F(z, z̄) =
∫

dz̄
Atree

L (z, z̄) Atree
R (z, z̄)

(1+ zz̄)2 , (2.9)

so that ∆ becomes,

∆ = (1−2ρ)
∮

dz F(z, z̄) . (2.10)

Since F is the primitive of a rational function, its general form can only contain two types of terms:
a rational term and a logarithimc one,

F(z, z̄) = F rat(z, z̄)+F log(z, z̄) . (2.11)

The coefficient of a 2-point function in the K2-channel will appear in ∆rat, namely the result of the
Residue Theorem in z applied only to F rat. The choice of p and q specified in Eqs.(2.3) grants
that there exists a pole at z = 0 associated to the 2-point function in the K2-channel, I2(K2); while

2The roles of z and z̄ can be equivalently exchanged.
3In [26] it has been shown that the double-cut of the scalar 2-point function, ∆I2 =

∫
d4Φ amounts to the integral∫∫

Ω =−2πi. This result corresponds to the integration of the first Chern class, (i/π)
∫∫

Ω = 2.
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the reduction of higher-point functions that have I2(K2) as subdiagram can generate poles at finite
z-values. The Residue Theorem has to be applied by reading all the residues in z, and substituting
the corresponding complex-conjugate values where z̄ appears. Since it can be shown [26] that the
double-cut of the 2-point scalar function in the K2-channel amounts to ∆I2 = −2πi (1− 2ρ), the
coefficient of the 2-point function can be finally extracted from the ratio,

c2 =
∆rat

∆I2
=−

(
Resz=0 F rat(z, z̄)+Resz6=0 F rat(z, z̄)

)
, (2.12)

which will depend on ρ .
Recently, the method just described has been succesfully applied to the completion of the

analytic calculation of the one-loop virtual corrections to H +2jets via gluon fusion [29, 30].4

3. Optical Theorem and Berry’s Phase

In [27] the following observation was made. In the double-cut integral (2.7), we did not
make any assumptions on the tree-level amplitudes sewn along the cut, thus providing a general
framework to the integration method developed in [26]. If we now choose Atree

L = A∗,tree
m→2 , that is

the conjugate scattering amplitude of a process m→ 2, and Atree
R = Atree

n→2, that is the amplitude of a
process n→ 2, then ∆ reads,

∆ =
∫

d4
Φ A∗,tree

m→2 Atree
n→2 =−i

[
Aone−loop

n→m −A∗,one−loop
m→n

]
= 2 Im

{
Aone−loop

n→m

}
, (3.1)

which is the definition of the two-particle discontinuity of the one-loop amplitude Aone−loop
n→m across

the branch cut in the K2-channel, corresponding to the field-theoretic version of the Optical The-
orem for one-loop Feynman amplitudes. On the other side, because of Stokes’ Theorem in (2.7,
2.8), one has,

∆ = (1−2ρ)
∫∫

dz∧dz̄
A∗,tree

m→2 Atree
n→2

(1+ zz̄)2 = (1−2ρ)
∮

dz
∫

dz̄
A∗,tree

m→2 Atree
n→2

(1+ zz̄)2 , (3.2)

which provides a geometrical interpretation of the imaginary part of one-loop scattering amplitudes,
as a flux of a complex 2-form through a surface bounded by the contour of the z-integral (the
contour should enclose all the poles in z exposed in the integrand after the integration in z̄ [26]).

Given the equivalence of (3.1) and (3.2), a correspondence between the imaginary part of
scattering amplitudes and the anholonomy of Berry’s phase does emerge, since the latter is indeed
defined as the flux of a 2-form in presence of curved space [1, 2]. In this context, one could establish
a parallel description between the Aharonov-Böhm (AB) effect [31] and the double-cut of one-loop
Feynman integrals. Accordingly, let us follow the evolution in Fig.1 from the left to the right. The
two particles produced in the AL-scattering, going around the loop and initiating the AR-process, at
the AR-interaction point would experience a phase-shift due to the non-trivial geometry in effective
momentum space induced by the on-shell conditions. As in the AB-effect, the anholonomy phase-
shift is a consequence of Stokes’ Theorem, and here it corresponds to the imaginary part of the
one-loop Feynman amplitude.

4See also S. Badger, and C. Williams in these proceedings.
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