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ABSTRACT: ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) exper-
iment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions
at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers
of silicon detectors with three different technologies; inthe outward direction: two layers of pixel
detectors, two layers each of drift, and strip detectors. The number of parameters to be determined
in the spatial alignment of the 2198 sensor modules of the ITSis about 13,000. The target align-
ment precision is well below 10µm in some cases (pixels). The sources of alignment information
include survey measurements, and the reconstructed tracksfrom cosmic rays and from proton-
proton collisions. The main track-based alignment method uses the Millepede global approach.
An iterative local method was developed and used as well. We present the results obtained for the
ITS alignment using about 105 charged tracks from cosmic rays that have been collected during
summer 2008, with the ALICE solenoidal magnet switched off.
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1 Introduction

The ALICE experiment [1] will study nucleus-nucleus, proton-proton and proton-nucleus colli-
sions at the CERN Large Hadron Collider (LHC). The main physics goal of the experiment is to
investigate the properties of strongly-interacting matter in the conditions of high energy density
(> 10 GeV/fm3) and high temperature (>∼ 0.2 GeV), expected to be reached in central Pb-Pb colli-
sions at

√
sNN = 5.5 TeV. Under these conditions, according to lattice QCD calculations, quark con-

finement into colourless hadrons should be removed and a deconfined Quark-Gluon Plasma should
be formed [2]. In the past two decades, experiments at CERN-SPS (

√
sNN = 17.3 GeV) and BNL-

RHIC (
√

sNN = 200 GeV) have gathered ample evidence for the formation of this state of matter [3].
The ALICE experimental apparatus, shown in figure1, consists of a central barrel, a forward

muon spectrometer and a set of small detectors in the forwardregions for trigger and other func-
tions. The coverage of the central barrel detectors allows the tracking of particles emitted within a
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Figure 1. General layout of the ALICE experiment [1].

pseudo-rapidity range|η |< 0.9 over the full azimuth. The central barrel is surrounded by the large
L3 magnet that provides a field B= 0.5 T.

The ITS (Inner Tracking System) is a cylindrically-shaped silicon tracker that surrounds the
interaction region. It consists of six layers, with radii between 3.9 cm and 43.0 cm, covering the
pseudo-rapidity range|η | < 0.9. The two innermost layers are equipped with Silicon Pixel De-
tectors (SPD), the two intermediate layers contain SiliconDrift Detectors (SDD), while Silicon
Strip Detectors (SSD) are used on the two outermost layers. The main task of the ITS is to pro-
vide precise track and vertex reconstruction close to the interaction point. In particular, the ITS
was designed with the aim to improve the position, angle, andmomentum resolution for tracks
reconstructed in the Time Projection Chamber (TPC), to identify the secondary vertices from the
decay of hyperons and heavy flavoured hadrons, to reconstruct the interaction vertex with a reso-
lution better than 100µm, and to recover particles that are missed by the TPC due to acceptance
limitations (very low momentum particles not reaching the TPC and very high momentum ones
propagating along the 10% inactive area between adjacent TPC chambers).

The measurement of charm and beauty hadron production in Pb-Pb collisions at the LHC is
one of the main items of the ALICE physics program, because itwill allow to investigate the mech-
anisms of heavy-quark propagation and hadronization in thelarge, hot and dense medium formed
in high-energy heavy-ion collisions and it will serve as a reference for the study of the effects of the
medium on quarkonia states [4]. To measure the separation, from the interaction vertex, of the de-
cay vertices of heavy flavoured hadrons, which have mean proper decay lengthscτ ∼ 100–500µm,
requires a resolution on the track impact parameter (distance of closest approach to the vertex) well
below 100µm. This requirement is met by the ITS. The design position resolution in the plane
transverse to the beam line for charged-pion tracks reconstructed in the TPC and in the ITS is ex-
pected to be approximately 10µm+53 µm/(pt

√
sinθ ), wherept is the transverse momentum in
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Figure 2. Layout of the ITS (left) and orientation of the ALICE global(middle) and ITS-module local (right)
reference systems. The global reference system has indeed its origin in the middle of the ITS, so that thez
direction coincides with the beam line.

GeV/c andθ is the polar angle with respect to the beam line [4]. The ITS is made of thousands
of separate modules, whose position is different from the ideal due to the limitations associated
with the assembly and integration of the different components, and the forces these components
experience. In order to achieve the required high precisionon the track parameters, the relative
position (location and orientation) of every module needs to be determined precisely. We refer to
the procedure used to determine the modules relative position as alignment. The ITS alignment
procedure starts from the positioning survey measurementsperformed during the assembly, and
is refined using tracks from cosmic-ray muons and from particles produced in LHC pp collisions.
Two independent methods, based on tracks-to-measured-points residuals minimization, are con-
sidered. The first method uses the Millepede approach [5], where a global fit to all residuals is
performed, extracting all the alignment parameters simultaneously. The second method performs
a (local) minimization for each single module and accounts for correlations between modules by
iterating the procedure until convergence is reached.

In this article, we present the alignment methods for the ITSand the results obtained using the
cosmic-data sample collected during summer 2008 with B= 0 (a small data set with B= ±0.5 T
was also collected; we used it for a few specific validation checks). In section2 we describe in
detail the ITS detector layout and in section3 we discuss the strategy adopted for the alignment.
In section4 we describe the 2008 sample of cosmic-muon data. These data were used to validate
the available survey measurements (section5) and to apply the track-based alignment algorithms:
the Millepede method (section6) and a local method that we are developing (section7). We draw
conclusions in section8.
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Table 1. Characteristics of the six ITS layers.

Number Active Area Material
Layer Type r [cm] ±z [cm] of per module Resolution budget

modules rϕ × z [mm2] rϕ × z [µm2] X/X0 [%]

1 pixel 3.9 14.1 80 12.8×70.7 12×100 1.14
2 pixel 7.6 14.1 160 12.8×70.7 12×100 1.14
3 drift 15.0 22.2 84 70.17×75.26 35×25 1.13
4 drift 23.9 29.7 176 70.17×75.26 35×25 1.26
5 strip 38.0 43.1 748 73×40 20×830 0.83
6 strip 43.0 48.9 950 73×40 20×830 0.86

2 ITS detector layout

The geometrical layout of the ITS layers is shown in the left-hand panel of figure2, as it is im-
plemented in the ALICE simulation and reconstruction software framework (AliRoot [6]). The
ALICE global reference system has thez axis on the beam line, thex axis in the LHC (horizontal)
plane, pointing to the centre of the accelerator, and they axis pointing upward. The axis of the ITS
barrel coincides with thezaxis. The module local reference system (figure2, right) is defined with
thexloc andzloc axes on the sensor plane and with thezloc axis in the same direction as the global
z axis. The localx direction is approximately equivalent to the globalrϕ . The alignment degrees
of freedom of the module are translations inxloc, yloc, zloc, and rotations by anglesψloc, θloc, ϕloc,
about thexloc, yloc, zloc axes, respectively.1

The ITS geometry in AliRoot is described in full detail, downto the level of all mechani-
cal structures and single electronic components, using theROOT [7] geometrical modeler. This
detailed geometry is used in Monte Carlo simulations and in the track reconstruction procedures,
thereby accounting for the exact position of the sensor modules and of all the passive material that
determine particle scattering and energy loss.

The geometrical parameters of the layers (radial position,length along beam axis, number of
modules, spatial resolution, and material budget) are summarized in table1. The material budget
reported in the table takes into account theφ -averaged material (including the sensors, electronics,
cabling, support structures, and cooling) associated withradial paths through each layer. Another
1.30% of radiation length comes from the thermal shields andsupports installed between SPD
and SDD barrels and between SDD and SSD barrels, thus making the total material budget for
perpendicular tracks equal to 7.66% ofX0.

In the following, the features of each of the three sub-detectors (SPD, SDD and SSD) that are
relevant for alignment issues are described (for more details see [1]).

2.1 Silicon Pixel Detector (SPD)

The basic building block of the ALICE SPD is a module consisting of a two-dimensional sensor
matrix of reverse-biased silicon detector diodes bump-bonded to 5 front-end chips. The sensor
matrix consists of 256× 160 cells, each measuring 50µm (rϕ) by 425µm (z).

1The alignment transformation can be expressed equivalently in terms of the local or global coordinates.
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Figure 3. SPD drawings. Left: the SPD barrel and the beam pipe (radiusin mm). Right: a Carbon Fibre
Support Sector.

Two modules are mounted together along thez direction to form a 141.6 mm long half-stave.
Two mirrored half-staves are attached, head-to-head alongthezdirection, to a carbon-fibre support
sector, which also provides cooling. Each sector (see figure3, right) supports six staves: two on the
inner layer and four on the outer layer. The sensors are mounted in such a way that there is a 2%
overlap between the active regions inrϕ , but along z there is a gap between each two consecutive
sensors. Five sectors are then mounted together to form a half-barrel and finally the two (top and
bottom) half-barrels are mounted around the beam pipe to close the full barrel (shown in the left-
hand side of figure3), which is actually composed of 10 sectors. In total, the SPDincludes 60
staves, consisting of 240 modules with 1200 readout chips for a total of 9.8×106 cells.

The spatial precision of the SPD sensor is determined by the pixel cell size, the track inci-
dence angle on the detector, and by the threshold applied in the readout electronics. The values of
resolution alongrϕ andzextracted from beam tests are 12 and 100µm, respectively.

2.2 Silicon Drift Detector (SDD)

The basic building block of the ALICE SDD [8] is a module divided into two drift regions where
electrons move in opposite directions under a drift field of≈ 500 V/cm (see figure4, right), with
hybrids housing the front-end electronics on either side. The SDD modules are mounted on linear
structures called ladders. There are 14 ladders with six modules each on the inner SDD layer (layer
3), and 22 ladders with eight modules each on the outer SDD layer (layer 4). Modules and ladders
are assembled to have an overlap of the sensitive areas larger than 580µm in bothrϕ andz direc-
tions, so as to provide full angular coverage over the pseudo-rapidity range|η |< 0.9 (figure4, left).

The modules are attached to the ladder space frame and have their anode rows parallel to the
ladder axis (z). The ladders are mounted on a support structure made of two cones and four support
rings to form the two cylindrical layers [9]. The support rings are mechanically fixed to the cones
and bear ruby spheres, used as a reference for the ladder positioning as well as for the geometrical
survey of the module positions in the ladder reference system.

– 5 –
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Figure 4. Left: scheme of the SDD layers. Right: scheme of a SDD module, where the drift direction is
parallel to thexloc coordinate. Units are millimeters.

Figure 5. View of one SSD ladder (from layer 5) as described in the AliRoot geometry.

Thez coordinate is reconstructed from the centroid of the collected charge along the anodes.
The position along the drift coordinate (xloc ≈ rϕ) is reconstructed starting from the measured drift
time with respect to the trigger time. An unbiased reconstruction of thexloc coordinate requires
therefore to know with good precision the drift velocity andthe time-zero (t0), which is the mea-
sured drift time for particles with zero drift distance. Thedrift velocity depends on temperature (as
T−2.4) and it is therefore sensitive to temperature gradients in the SDD volume and to temperature
variations with time. Hence, it is important to calibrate this parameter frequently during the data
taking. Three rows of 33 MOS charge injectors are implanted at known distances from the collec-
tion anodes in each of the two drift regions of a SDD module [10] for this purpose, as sketched
in figure4 (right). Finally, a correction for non-uniformity of the drift field (due to non-linearities
in the voltage divider and, for a few modules, also due to significant inhomogeneities in dopant
concentration) has to be applied. This correction is extracted from measurements of the systematic
deviations between charge injection position and reconstructed coordinates that was performed on
all the 260 SDD modules with an infrared laser [11].

The spatial precision of the SDD detectors, as obtained during beam tests of full-size proto-
types, is on average 35µm along the drift directionxloc and 25µm for the anode coordinatezloc.

2.3 Silicon Strip Detector (SSD)

The basic building block of the ALICE SSD is a module composedof one double-sided strip
detector connected to two hybrids hosting the front-end electronics. Each sensor has 768 strips on
each side with a pitch of 95µm. The stereo angle is 35 mrad, which is a compromise between
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stereo view and reduction of ambiguities resulting from high particle densities. The strips are
almost parallel to the beam axis (z-direction), to provide the best resolution in therϕ direction.

The modules are assembled on ladders of the same design as those supporting the SDD [9].
A view of the SSD ladder is shown in figure5. The innermost SSD layer (layer 5) is composed
of 34 ladders, each of them being a linear array of 22 modules along the beam direction. Layer 6
(the outermost ITS layer) consists of 38 ladders, each made of 25 modules. In order to obtain full
pseudo-rapidity coverage, the modules are mounted on the ladders with small overlaps between
successive modules, that are staggered by 600µm in the radial direction. The 72 ladders, carrying
a total of 1698 modules, are mounted on support cones in two cylinders. Carbon fiber is lightweight
(to minimize the interactions) and at the same time it is a stiff material allowing to minimize the
bending due to gravity, which is expected to give shifts of atmost 50µm, for the modules at the
centre of the lateral ladders of the outer SSD layer.

For each layer, neighbouring ladders are mounted at one of two slightly different radii (∆r =

6 mm) such that full azimuthal coverage is obtained. The acceptance overlaps, present both along
z and rϕ , amount to 2% of the SSD sensor surface. The positions of the sensors with respect to
reference points on the ladder were measured during the detector construction phase, as well as the
ones of the ladders with respect to the support cones.

The spatial resolution of the SSD system is determined by the95 µm pitch of the sensor
readout strips and the charge-sharing between those strips. Without making use of the analogue
information the r.m.s spatial resolution is 27µm. Beam tests [12] have shown that a spatial resolu-
tion of better than 20µm in the rϕ direction can be obtained by analyzing the charge distribution
within each cluster. In the direction along the beam, the spatial resolution is of about 830µm.

The SSD gain calibration has two components: overall calibration of ADC values to energy
loss and relative calibration of the P and N sides. This charge matching is a strong point of double
sided silicon sensors and helps to remove fake clusters. Both the overall and relative calibration
are obtained from the data. Since the signal-to-noise ratiois larger than 20, the detection efficiency
does not depend much on the details of the gain calibration.

3 Alignment target and strategy

For silicon tracking detectors, the typical target of the alignment procedures is to achieve a level
of precision and accuracy such that the resolution on the reconstructed track parameters (in par-
ticular, the impact parameter and the curvature, which measures the transverse momentum) is not
degraded significantly with respect to the resolution expected in case of the ideal geometry without
misalignment. For the ALICE ITS, this maximum acceptable degradation has been conventionally
set to 20% (a similar target is adopted also for the ATLAS Inner Detector [13]). The resolutions
on the track impact parameter and curvature are both proportional to the space point resolution, in
the limit of negligible multiple scattering effect (large momentum). If the residual misalignment is
assumed to be equivalent to random gaussian spreads in the six alignment parameters of the sensor
modules, on which space points are measured, a 20% degradation in the effective space point res-
olution (hence 20% degradation of the track parameters in the large momentum limit) is obtained
when the misalignment spread in a given direction is

√
120%2−100%2 ≈ 70% of the intrinsic

sensor resolution along that direction. With reference to the intrinsic precisions listed in table1,
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the target residual misalignment spreads in the local coordinates on the sensor plane are: for SPD,
8 µm in xloc and 70µm in zloc; for SDD, 25µm in xloc and 18µm in zloc; for SSD, 14µm in
xloc and 500µm in zloc. Note that these spreads represent effective alignment spreads, including
the significant effect of theθloc angle (rotation about the axis normal to the sensor plane) onthe
spatial resolution. In any case, these target numbers are only an indication of the precision that is
required to reach an acceptable alignment quality. We will aim at getting even closer to the design
performance expected in case of ideal geometry.

The other alignment parameters (yloc, ψloc, ϕloc) describe movements of the modules mainly
in the radial direction. These have a small impact on the effective resolution, for tracks with a
small angle with respect to the normal to the module plane, a typical case for tracks coming from
the interaction region. However, they are related to the so-calledweak modes: correlated misalign-
ments of the different modules that do not affect the reconstructed tracks fit quality (χ2), but bias
systematically the track parameters. A typical example is radial expansion or compression of all
the layers, which biases the measured track curvature, hence the momentum estimate. Correlated
misalignments for the parameters on the sensor plane (xloc, zloc, θloc) can determine weak modes
as well. These misalignments are, by definition, difficult todetermine with tracks from collisions,
but can be addressed using physical observables [14] (e.g. looking for shift in invariant masses of
reconstructed decay particles) and cosmic-ray tracks. These offer a unique possibility to correlate
modules that are never correlated when using tracks from theinteraction region, and they offer a
broad range of track-to-module-plane incidence angles that help to constrain also theyloc, ψloc and
ϕloc parameters, thus improving the sensitivity to weak modes.

As already mentioned in the introduction, the sources of alignment information that we use
are the survey measurements and the reconstructed space points from cosmic-ray and collision
particles. These points are the input for the software alignment methods, based on global or local
minimization of the residuals.

The general strategy for the ITS first alignment starts with the validation of the construction
survey measurements of the SSD detector with cosmic-ray tracks and continues with the software
alignment of the SPD and the SSD detectors, which also uses cosmic-ray tracks, collected without
magnetic field. The initial alignment is more robust if performed with straight tracks (no field),
which help to avoid possible biases that can be introduced when working with curved tracks (e.g.
radial layer compression/expansion). Then, the already aligned SPD and SSD are used to confirm
and refine the initial time-zero calibration of SDD, obtained with SDD standalone methods. These
first steps are described in this report, which presents the status of the ITS alignment before the
start of the LHC with proton-proton collisions.

The next step will be, after the validation of the SDD survey measurements with cosmic-ray
tracks, the alignment of the full detector (SPD, SDD, SSD) with tracks from cosmic rays and,
mainly, from proton-proton collisions collected with magnetic field B= 0 and B= 0.5 T. In
particular, the data with magnetic field switched on will allow us to study the track quality and
precision as a function of the measured track momentum, thusseparating the detector resolution
and residual misalignment from multiple scattering. The tracks from collisions will provide a
uniform coverage of the detector modules and will also be used to routinely monitor the quality
of the alignment during data taking, and refine the corrections if needed. The last step will be
the relative alignment of the ITS and the TPC with tracks, when both detectors will be internally
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aligned and calibrated. In addition, the relative movementof the ITS with respect to the TPC is
being monitored, and to some extent measured, using a dedicated system based on lasers, mirrors
and cameras [15].

4 Cosmic-ray run 2008: data taking and reconstruction

During the 2008 cosmic run, extending from June to October, about 105 events with reconstructed
tracks in the ITS were collected. In order to simplify the first alignment round, the solenoidal
magnetic field was switched off during most of this data taking period. The status of the three ITS
sub-detectors during the data taking is summarized in the following paragraph (for more details
on the sub-detectors commissioning, see refs. [16–18]). The corresponding status during the first
LHC runs with proton-proton collisions is given in ref. [19].

For the SPD, 212 out of 240 modules (88%) were active. Noisy pixels, corresponding to less
than 0.15% of the total number of pixels, were masked out, andthe information was stored in the
Offline Conditions Database (OCDB) to be used in the offline reconstruction. For the SDD, 246 out
of 260 modules (95%) participated in the data acquisition. The baseline, gain and noise for each
of the 133,000 anodes were measured every 24 hours by means ofdedicated calibration runs that
allowed us also to tag noisy (≈ 0.5%) and dead (1%) channels. The drift velocities were measured
with dedicated injector runs collected every 6 hours, stored in the OCDB and successively used in
the reconstruction. For the SSD, 1477 out of 1698 modules (87%) were active. The fraction of bad
strips was≈ 1.5%. The normalized difference in P- and N-charge had a FWHM of11%. The gains
proved to be stable during the data taking.

The events to be used for the ITS alignment were collected with a trigger provided by the pixel
detectors (SPD). The SPD FastOR trigger [1] is based on a programmable hit pattern recognition
system (on FPGA) at the level of individual readout chips (1200 in total, each reading a sensor area
of about 1.4× 1.4 cm2). This trigger system allows for a flexible selection of events of interest,
for example high-multiplicity proton-proton collisions,foreseen to be studied in the scope of the
ALICE physics program. For the 2008 cosmic run, the trigger logic consisted of selecting events
with at least one hit on the upper half of the outer SPD layer (r ≈ 7 cm) and at least one on
the lower half of the same layer. This trigger condition enhances significantly the probability of
selecting events in which a cosmic muon, coming from above (the dominant component of the
cosmic-ray particles reaching the ALICE cavern placed below ≈ 30 m of molasse), traverses the
full ITS detector. This FastOR trigger is very efficient (more than 99%) and has purity (fraction of
events with a reconstructed track having points in both SPD layers) reaching about 30–40%, limited
mainly by the radius of the inner layer (≈ 4 cm) because the trigger assures only the passage of a
particle through the outer layer (≈ 7 cm). For the FastOR trigger, typically 77% of the chips (i.e.
about 90% of the active modules) could be configured and used.The trigger rate was about 0.18 Hz.

The following procedure, fully integrated in the AliRoot framework [6], is used for track
reconstruction. After the cluster finding in the ITS (hereafter, we will refer to the clusters as
“points”), a pseudo primary vertex is created using three aligned points in two consecutive layers
(starting the search from the SPD). Track reconstruction isthen performed using the ITS standalone
tracker (as described in [4, 20]), which finds tracks in the outward direction, from the innermost
SPD layer to the outermost SSD layer, using the previously found pseudo primary vertex as its seed;
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Figure 6. (colour online) A clean cosmic event reconstructed in the ITS (left), as visualized in the ALICE
event display. The zoom on the SPD (right) shows an “extra” point in one of therϕ acceptance overlaps of
the outer layer.

all found tracks are then refitted using the standard Kalman-filter fit procedure as implemented in
the default ITS tracker. During the track refit stage, when the already identified ITS points are used
in the Kalman-filter fit in the inward direction, in order to obtain the track parameters estimate at
the (pseudo) vertex, “extra” points are searched for in the ITS module overlaps. For each layer, a
search road for these overlap points in the neighbouring modules is defined with a size of about
seven times the current track position error. Currently, the “extra” points are not used to update the
track parameters, so they can be exploited as a powerful toolto evaluate the ITS alignment quality.

A clean cosmic event consists of two separate tracks, one “incoming” in the top part of the ITS
and one “outgoing” in the bottom part. Their matching at the reference median plane (y = 0) can
be used as another alignment quality check. These two track halves are merged together in a single
array of track points, which is the single-event input for the track-based alignment algorithms. A
typical event of this type, as visualized in the ALICE event display, is shown in figure6.

The uncorrected zenith-azimuth 2D distribution of the (merged) tracks with at least eight
points in the ITS is shown in figure7, where the azimuth angle is defined in a horizontal plane
starting from the positive side of thez global axis. The modulations in the azimuthal dependence
of the observed flux are due to the presence of inhomogeneities in the molasse above the ALICE
cavern, mainly the presence of two access shafts. These are seen as the structures at zenith angle
≈ 30◦ and azimuth≈ 180◦ (large shaft) and≈ 270◦ (small shaft). On top of these structures, the
effect of the SPD outer layer geometrical acceptance is visible: the azimuthal directions perpendic-
ular to thezaxis (around 90◦ and 270◦) have larger acceptance in the zenith angle.

The main limitation of the usage of cosmic-ray tracks for thealignment of a cylindrical detec-
tor like the ITS is that the occupancy of the side modules (zenith angles approaching 90◦) is small,
especially for the external layers [21]. In the case of the SSD outer layer, which has the smallest
fractional coverage, about 75% of the ladders are covered. This is due to the small size of the trig-
gering detector (SPD), the dominance of small zenith anglesfor cosmic-ray particles and the cut on
the track-to-module incidence angle (> 30◦) that we apply to reject large and elongated clusters.
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Figure 7. (colour online) Uncorrected distribution of the zenith-azimuth angles of the cosmic tracks recon-
structed in the ITS.

5 Validation of the survey measurements with cosmic-ray tracks

The SDD and SSD were surveyed during the assembling phase using a measuring machine. The
survey, very similar for the two detectors, was carried out in two stages: the measurement of the
positions of the modules on the ladders and the measurement of the positions of the ladder end
points on the support cone.

In the first stage, for SDD for example [22], the three-dimensional positions of six reference
markers engraved on the detector surface were measured for each module with respect to ruby
reference spheres fixed to the support structure. The precision of the measuring machine was 5µm
in the coordinates on the ladder plane and about 10µm in the direction orthogonal to the plane.
The deviations of the reference marker coordinates on the plane with respect to design positions
showed an average value of 1µm and a r.m.s. of 20µm. In the second stage, the positions of
the ladder end points with respect to the cone support structure were measured with a precision
of about 10µm. However, for the outer SSD layer, the supports were dismounted and remounted
after the survey; the precision of the remounting procedureis estimated to be around 20µm in the
rϕ direction [1].

In the following we describe the results for the validation of the SSD survey measurements
with cosmic-ray data. The validation of the SDD survey will be performed after completion of the
detector calibration.

5.1 Double points in SSD module overlaps

As already mentioned, the modules are mounted with a small (2mm) overlap for both the longi-
tudinal (z, modules on the same ladder) and transverse directions (rϕ , adjacent ladders). These
overlaps allow us to verify the relative position of neighbouring modules using double points pro-
duced by the same particle on the two modules. Since the two points are very close in space and
the amount of material crossed by the particle between the two points is very limited, multiple
scattering can be neglected.
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straight-line tracks defined from two points on layer 6 and the corresponding points on layer 5. In both cases,
gaussian fits to the distributions with survey applied are shown (in right-hand panel the fit range is±2σ , i.e.
[−60 µm,+60 µm]).

We define the distance∆xloc between the two points in the localx direction on the module plane
(≈ rϕ) by projecting, along the track direction, the point of one of the two modules on the other
module plane. Figure8 (left) shows the∆xloc distribution with and without the survey corrections,
for both SSD layers (it was verified that the distributions for the two layers are compatible [21,
23]) . When the survey corrections are applied, the spread of the distributions, obtained from a
gaussian fit, isσ ≈ 25.5 µm. This arises from the combined spread of the two points, thus the
corresponding effective position resolution for a single point is estimated to be smaller by a factor
1/
√

2, i.e.≈ 18 µm, which is compatible with the expected intrinsic spatial resolution of about
20 µm. This indicates that the residual misalignment after applying the survey is negligible with
respect to the intrinsic spatial resolution. This validation procedure was confirmed using Monte
Carlo simulations of cosmic muons in the detector without misalignment, which give a spread in
∆xloc of about 25µm, in agreement with that obtained from the data.

5.2 Track-to-point residuals in SSD

Another test that was performed uses two points in the outer SSD layer to define a straight track
(no magnetic field) and inspects the residuals between points on the inner layer and the track. The
residuals are calculated using the position along the trackcorresponding to the minimum of the
weighted (dimensionless) distance to the point.2 Figure8 (right) shows the distribution of therϕ
residuals between tracks through layer 6 and points on layer5. The distribution exhibits significant

2The different expected resolutions inrϕ andz have been taken into account in the calculation of the distance of
closest approach by dividing the deviations by the expecteduncertainties, i.e. making use of a dimensionless distance
measure.
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non-gaussian tails, due to multiple scattering of low-momentum particles. The effect of multiple
scattering on the residuals was analytically estimated to be of about 300µm for p = 0.5 GeV/c
and to be negligible forp >∼ 7 GeV/c. This is roughly compatible with the observed distributionof
residuals. The width of the central part of the distributionis quantified by performing a gaussian fit
truncated at 2σ , that givesσrϕ = 29 µm. The spread contains a contribution from the uncertainty
in the track trajectory due to the uncertainties in the points on the outer layer. Assuming the same
resolution on the outer and inner layers and taking into account the geometry of the detector, the
effective single point resolution spread is 1/

√
1.902 times the overall spread [23], that is 21µm.

This spread is larger than the effective resolution of about18 µm that is extracted from the double
points in module overlaps. This difference could be partly due to the multiple scattering, relevant
for this analysis and negligible for the overlaps analysis,but we can not rule out that additional
misalignments with a r.m.s. up to about 15µm are present in the SSD. The mean residual is also
non-zero,(3.7±0.4) µm, which suggests that residual shifts at the 5–10µm level could be present.
These misalignments would have to be at the ladder level to becompatible with the result from the
study with sensor module overlaps.

The same analysis was performed for the residuals in thezdirection [21, 23], not shown here.
The distributions without and with survey were found to be compatible and the corresponding
effective single point resolution was found to be compatible with the expected intrinsic resolution
of about 800µm. This indicates that the residual misalignment inz is much smaller than the
intrinsic SSD resolution.

A third method that was used to verify the SSD survey consisted in performing tracking with
pairs of points (2 points on layer 5 and two points on layer 6 ortwo sets of points on layer 5 and
6), and comparing the track parameters of both track segments. The conclusion from this method
is consistent with the results from the track-to-point method. For details see [23].

6 ITS alignment with Millepede

In general, the task of the track-based alignment algorithms is determining the set of geometry
parameters that minimize the globalχ2 of the track-to-point residuals:

χ2
global = ∑

modules, tracks

~δ T
t,p V−1

t,p
~δt,p . (6.1)

In this expression, the sum runs over all the detector modules and all the tracks in a given data set;
~δt,p =~rt −~rp is the residual between the data point~rp and the reconstructed track extrapolation~rt

to the module plane;Vt,p is the covariance matrix of the residual. Note that, in general, the re-
constructed tracks themselves depend on the assumed geometry parameters. This section describes
how this minimization problem is treated by Millepede [5, 24] — the main algorithm used for ITS
alignment — and presents the first alignment results obtained with cosmic-ray data.

6.1 General principles of the Millepede algorithm

Millepede belongs to theglobal least-squares minimizationtype of algorithms, which aim at de-
termining simultaneously all the parameters that minimizethe globalχ2 in eq. (6.1). It assumes
that, for each of the local coordinates, the residual of a given trackt to a specific measured point
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p can be represented in a linearized form asδt,p = ~a · ∂δt,p/∂~a+ ~αt · ∂δt,p/∂ ~αt , where~a is the
set of global parameters describing the alignment of the detector (three translations and three ro-
tations per module) and~αt is the set of local parameters of the track. The corresponding χ2

global

equation forn tracks withν local parameters per track and formmodules with 6 global parameters
(N = 6m total global parameters) leads to a huge set ofN+ν n normal equations. The idea behind
the Millepede method is to consider the local~α parameters as nuisance parameters that are elimi-
nated using the Banachiewicz identity [25] for partitioned matrices. This allows to build explicitly
only the set ofN normal equations for the global parameters. If needed, linear constraints on the
global parameters can be added using the Lagrange multipliers. Historically, two versions, Mille-
pede and Millepede II, were released. The first one was performing the calculation of the residuals,
the derivatives and the final matrix elements as well as the extraction of the exact solution in one
single step, keeping all necessary information in computermemory. The large memory and CPU
time needed to extract the exact solution of aN×N matrix equation effectively limited its use to
N < 10,000 global (alignment) parameters. This limitation was removed in the second version,
Millepede II, which builds the matrices (optionally) in sparse format, to save memory space, and
solves them using advanced iterative methods, much faster than the exact methods.

6.2 Millepede for the ALICE ITS

Following the development of Millepede, ALICE had its own implementation of both versions,
hereafter indicated as MP and MPII, within the AliRoot framework [6]. Both consist of a detector
independent solver class, responsible for building and solving the matrix equations, and a class
interfacing the former to specific detectors. While MP closely follows the original algorithm [5],
MPII has a number of extensions. In addition to the MinRes matrix equation solution algorithm
offered by the original Millepede II, the more general FGMRES [26] method was added, as well as
the powerful ILU(k) matrix preconditioners [27]. All the results shown in this work are obtained
with MPII.

The track-to-point residuals, used to construct the globalχ2, are calculated using a parametric
straight line~r(t) = ~a+~bt or helix~r(t) = {ax + r cos(t + ϕ0),ay + r sin(t + ϕ0),az + bzt} track
model, depending on the presence of the magnetic field. The full error matrix of the measured
points is accounted for in the track fit, while multiple scattering is ignored, since it has no systematic
effect on the residuals.

Special attention was paid to the possibility to account forthe complex hierarchy of the
alignable volumes of the ITS, in general leading to better description of the material budget distri-
bution after alignment. This is achieved by defining explicit parent-daughter relationships between
the volumes corresponding to mechanical degrees of freedomin the ITS. The alignment is per-
formed simultaneously for the volumes on all levels of the hierarchy, e.g. for the SPD the correc-
tions are obtained in a single step for the sectors, the half-staves within the sectors and the modules
within the half-staves. Obviously, this leads to a degeneracy of the possible solutions, which should
be removed by an appropriate set of constraints. We implemented the possibility to constrain either
the mean or the median of the corrections for the daughter volumes of any parent volume. While
the former can be applied via Lagrange multipliers directlyat the minimization stage, the latter,
being non-analytical, is applied after the Millepede minimization in a special post-processing step.
The relative movementδ of volumes for which the survey data is available (e.g. SDD and SSD
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Figure 9. (colour online) Left: example of Millepede residuals in the local reference frame of the SPD
modules before and after the alignment. Right: the corrections to theϕloc angle obtained in the hierarchical
SPD alignment with Millepede.

modules) can be restricted to be within the declared survey precisionσsurvey by adding a set of
gaussian constraintsδ 2/σ2

survey to the globalχ2.

We report here two example figures to illustrate the bare output results from Millepede II for
the alignment of the SPD detector (in this case), while the analysis of the alignment quality will be
presented in the next section. The left-hand panel of figure9 shows an example of the residuals in
SPD (in the local reference frame of the modules) before and after alignment. The right-hand panel
of figure9 shows the obtained corrections for theϕloc angle (rotation of the volume with respect to
its zloc axis), indicating that the largest misalignments are at thelevel of the half-staves with respect
to the carbon fiber support sectors.

6.3 Results on alignment quality

The SPD detector was first aligned using 5× 104 cosmic-ray tracks, with two points in the inner
layer and two points in the outer layer, collected in 2008 with the magnetic field switched off.
As described in the previous section, the hierarchical alignment procedure consisted in: aligning
the ten sectors with respect to each other, the twelve half-staves of each sector with respect to the
sector, and the two modules of each half-stave with respect to the half-stave.

The following two observables are mainly used to check the quality of the obtained alignment:
the top half-track to bottom half-track matching at the plane y = 0, and the track-to-point distance
for the “extra” points in the acceptance overlaps.

For the first observable, the cosmic-ray track is split into the two track segments that cross
the upper (y > 0) and lower (y < 0) halves of the ITS barrel, and the parameters of the two seg-
ments are compared aty = 0. The main variable is∆xy|y=0, the track-to-track distance aty = 0 in
the (x,y) plane transverse to beam line. This observable, that is accessible only with cosmic-ray
tracks, provides a direct measurement of the resolution on the track transverse impact parameter
d0; namely:σ∆xy|y=0

(pt) =
√

2σd0(pt). Since the data used for the current analysis were collected
without magnetic field, they do not allow us to directly assess thed0 resolution (this will be the
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Figure 10. Left: distribution of∆xy|y=0 for SPD only, before and after alignment. Right: distribution∆xy|y=0

for track segments reconstructed in the upper and lower parts of SPD+SSD layers; each track segment is
required to have four assigned points; SSD survey and Millepede alignment corrections are applied. In both
cases, the distributions are produced from the sample of events used to obtain the alignment corrections.

subject of a future work). However, also without a momentum measurement,∆xy|y=0 is a powerful
indicator of the alignment quality, as we show in the following.

Figure10 (left) shows the distribution of∆xy|y=0 for SPD, without and with the alignment
corrections. The two track segments are required to have a point in each of the SPD layers and
to pass, in the transverse plane, within 1 cm from the origin (this cut selects tracks with a similar
topology to those produced in collisions and rejects tracksthat have small incidence angles on
the inner layer modules). A gaussian fit to the distribution in the range[−100 µm,+100 µm]

gives a centroid compatible with zero and a spreadσ ≈ 50 µm. For comparison, a spread of
38 µm is obtained from a Monte Carlo simulation, with the ideal geometry of the ITS (without
misalignment), of cosmic muons generated according to the momentum spectrum measured by
the ALICE TPC in cosmic runs with magnetic field. When only theSPD detector is used and the
tracks are straight lines (no magnetic field), the spread of the∆xy|y=0 distribution can be related in a
simple way to the effective spatial resolutionσspatial, which includes the intrinsic sensor resolution
and of the residual misalignment. For tracks passing close to the beam line (as in our case, with the
cut at 1 cm), we have:

σ2
∆xy|y=0

≈ 2
(r2

SPD1σ2
spatial,SPD1+ r2

SPD2σ2
spatial,SPD2)

(rSPD1− rSPD2)2 ≈ 2
r2
SPD1+ r2

SPD2

(rSPD1− rSPD2)2 σ2
spatial, (6.2)

where the inner and outer SPD layers are indicated as SPD1 andSPD2, respectively. This relation
neglects the effect of multiple scattering in the pixels andin the beam pipe, which is certainly one
of the reasons why the∆xy|y=0 distribution is not gaussian outside the central region, most likely
populated by the high-momentum component of the cosmic muons. Using the fit result,σ∆xy|y=0

≈
50µm, obtained in the central region[−100µm,+100µm], we estimate the valueσspatial≈ 14µm,
not far from the intrinsic resolution of about 11µm extracted from the simulation. However, a
precise estimation of the effective spatial resolution with this method requires the measurement of
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the track momentum, to account properly for the multiple scattering contribution. The statistics
collected in 2008 with magnetic field did not allow a momentum-differential analysis.

The next step in the alignment procedure is the inclusion of the SSD detector. As shown
in section5, the survey measurements already provide a very precise alignment, with residual
misalignment levels of less than 5µm for modules on the ladder and of about 20µm for ladders.
Because of the limited available statistics (≈ 2× 104 tracks with four points in SPD and four
points in SSD), the expected level of alignment obtained with Millepede on single SSD modules is
significantly worse than the level reached with the survey measurements. For this reason, Millepede
was used only to align the whole SPD barrel with respect to theSSD barrel and to optimize the
positioning of large sets of SSD modules, namely the upper and lower halves of layers 5 and 6.
For this last step, the improvement on the global positioning of the SSD layers was verified by
comparing the position and direction of the pairs of SSD-only track segments built using: two
points in the upper and two in the lower half-barrel (upper-lower configuration) or two points in
the inner and two in the outer layer (inner-outer configuration). Before the alignment (only the
survey corrections applied), the mean of∆xy|y=0 is (120± 7) µm and(−1.8± 0.6) µm for the
upper-lower and inner-outer configurations, respectively. After the alignment, it is(−5± 6) µm
and(0.5±0.6) µm, respectively, that is, compatible with zero for both configurations.

The right-hand panel of figure10shows the distribution of∆xy|y=0 for pairs of track segments,
each reconstructed with two points in SPD and two in SSD, i.e.the merged cosmic-ray track has
eight points in SPD+SSD. It can be seen that, when the SSD survey and the Millepede alignment
are applied, the distribution is centred at zero and very narrow (FWHM ≈ 60 µm), but it shows
non-gaussian tails, most likely due to multiple scattering. A more precise alignment of the SSD
using high-momentum tracks will be performed with the 2009 cosmic-ray and proton-proton data.

The second alignment quality observable is the∆xloc distance between points in the region
where there is an acceptance overlap between two modules of the same layer. Because of the
short radial distance between the two overlapping modules (a few mm), the effect of multiple
scattering is negligible. However, in order to relate the spread of∆xloc to the effective resolution,
the dependence of the intrinsic sensor resolution on the track-to-module incidence angle has to be
accounted for. In particular, for SPD, due to the geometrical layout of the detector (figure3, left),
the track-to-module incidence angles in the transverse plane are in general not equal to 90◦ and
they are very different for two adjacent overlapping modules crossed by the same track. If∆xloc is
defined as described in section5, the error on∆xloc can be related to the effective spatial resolution
of the two points,σspatial, as:

σ2
∆xloc

= σ2
spatial(α2)+ σ2

spatial(α1)cos2(ϕ12) (6.3)

where the 1 and 2 subscripts indicate the two overlapping points, αi is the incidence angle of the
track on the module plane, andϕ12 is the relative angle between the two module planes, which is
18◦ and 9◦ on the inner and outer SPD layer, respectively. Note that, for SSD overlaps on the same
ladder, we haveα1 = α2 ≃ 90◦ andϕ12 = 0; therefore,σ∆xloc =

√
2σspatial, which is the relation we

used in section5.
We start by showing, in figure11 (left), the track-to-point distance∆xloc for the SPD “extra”

points in the transverse plane, before and after the Millepede alignment. The extra points are not
used in the alignment procedure. The spread of the distribution is σ ≈ 18 µm, to be compared to
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residual misalignment. See text for details.

σ ≈ 15 µm from a Monte Carlo simulation with ideal geometry. An analysis of the∆xloc distance
as a function of theα incidence angle has been performed: five windows on the sum (α1 + α2)
of the incidence angles on the two overlapping modules have been considered. These windows
define increasing ranges of incidence angles from 0◦ to 50◦. Figure11 (right) shows the spread
of the ∆xloc distribution for the different incidence angle selections: a clear dependence of the
spread (hence of the spatial resolution) on the incidence angle can be seen. This dependence was
already observed in SPD test beam measurements [28, 29], which were used to tune the detector
response simulation in the AliRoot software. In the same figure, Monte Carlo simulation results
are reported for comparison: simulation with ideal geometry (open circles) and with a misaligned
geometry obtained using a random gaussian residual misalignment (dashed lines: misalignments
with σ = 7 µm and three different seeds; dotted line: misalignments with σ = 10 µm). The 2008
data are well described by the simulation with a random residual misalignment withσ ≈ 7 µm.
However, this conclusion is based on the assumption that theintrinsic resolution is the same in
the real detector and in the simulation. Since the intrinsicresolution can slightly vary depending
on the working conditions of the detector (e.g. the settingsused for the bias voltage and for the
threshold), the value of 7µm for the residual misalignment should be taken only as an indication.
Furthermore, this is an equivalent random misalignment, while the real misalignments are likely
non-gaussian and to some extent correlated among differentmodules.

The robustness of the obtained results was tested by dividing the data sample in two parts
and using every second track to align the SPD and the others tocheck the alignment quality. The
corresponding∆xy|y=0 distribution is presented in the left-hand panel of figure12: the distribution
is centred at zero and has the sameσ ≈ 50 µm as in the case of aligning with all tracks.

Finally, the data with the 0.5 T magnetic field switched on (a few thousand events collected
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at the end of the 2008 cosmic run) were used to perform dedicated checks to evaluate a possible
effect of the field on the alignment. The alignment corrections extracted from data with B= 0 were
applied to data with B= ±0.5 T and alignment quality was verified using both the extra points
method and the track-to-point residuals method. The distributions of the track-to-point distance for
extra points in SPD acceptance overlaps for B= 0, +0.5 T and−0.5 T data were found to have
compatible widths (σ [µm]: 18.3±0.5, 17.8±2.3, 18.4±1.8, respectively) [21]. Another check
was performed using the track-to-point residuals, calculated by fitting the tracks in the SSD layers
and the outer SPD layer and evaluating the residuals in the inner SPD layer. In figure12 (right) the
comparison between the residuals without magnetic field, with +0.5 T, and with−0.5 T is shown.
Also in this case, the distributions without field and with the two field polarities are compatible.

6.4 Prospects for inclusion of SDD in the Millepede procedure

The alignment of the SDD detectors for thexloc coordinate (reconstructed from the drift time) is
complicated by the interplay between the geometrical misalignment and the calibration of drift ve-
locity andt0 (defined in section2.2). The t0 parameter accounts for the delays between the time
when a particle crosses the detector and the time when the front-end chips receive the trigger signal.
Two methods have been developed in order to obtain a first estimate of thet0 parameter. The first,
and simpler, method consists in extracting thet0 from the minimum measured drift time on a large
statistics of reconstructed SDD points. The sharp rising part of the distribution of measured drift
times is fitted with an error function. Thet0 value is then calculated from the fit parameters. The
second method measures thet0 from the distributions of residuals along the drift direction (xloc) be-
tween tracks fitted in SPD and SSD layers and the corresponding points reconstructed in the SDD.
These distributions, in case of miscalibratedt0, show two opposite-signed peaks corresponding to
the two separated drift regions of each SDD module, where electrons move in opposite directions
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Figure 13. SDD calibration and alignment. Left: distribution of track-to-point residuals in the two drift
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survey. Right: residuals along the drift coordinate for oneSDD module as a function of drift coordinate after
Millepede alignment with only geometrical parameters and with geometrical+calibration parameters.

(see figure4, right). Thet0 can be calculated from the distance of the two peaks and the drift
velocity. This second procedure has the advantage of requiring smaller statistics, because it profits
from all the reconstructed tracks, with the drawback of relying on SDD calibration parameters (the
drift velocity and possibly the correction maps). Moreover, being based on track reconstruction, it
might be biased by SPD and/or SSD misalignments.

Depending on the available statistics, thet0 determination with these two methods can be done
at the level of SDD barrel, SDD ladders or SDD modules. Thet0 parameter needs actually to be cal-
ibrated individually for each of the 260 SDD modules, because of differences in the overall length
of the cables connecting the DAQ cards and the front-end electronics. In particular, a significant
difference is expected between modules of the A (z > 0) and C sides (z < 0), due to the≈ 6 m
difference in the length of the optical fibres connecting theITS ladders to the DAQ cards. With the
first 2000 tracks, it is possible to determine thet0 from track-to-point residuals for 4 sub-samples
of modules, i.e. separating sensors connected to sides A andC of layers 3 and 4. An example of
residual distributions for the left and right drift sides ofthe modules of layer 4 side C is shown in
figure 13. The Millepede alignment corrections for SPD and SSD are applied in this case, and it
has been checked that, if they are not applied, the centroid positions in this figure are not affected
significantly, while the spread of the distributions increases, as it could be expected. A difference
of 25 ns between sides A and C of each SDD layer has been observed, in agreement with the 6 m
difference in fibre lengths (the propagation time of light inoptical fibres is 4.89 ns/m). With larger
statistics (35,000 tracks), it is possible to extract thet0 for each half-ladder, which requires produc-
ing 36(ladders)×2(A/C sides) pairs of histograms like the ones shown in figure13 (left). Further
cable-length differences, which introducet0 difference, exist at the level of individual half ladders
and at the level of individual modules. These differences are of the order of 1.5 m (7 ns) and 20 cm
(< 1 ns) respectively, but have not been measured in detail yet,because of the limited size and
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coverage of the cosmic-ray tracks data sample. It should be noted that given the≈ 6.5 µm/ns of
drift velocity, a bias of 1 ns on thet0 can lead to a significant effect on the reconstructed position
along the drift coordinatexloc.

After a first calibration with these methods, a refinement of thet0 determination is obtained by
running the Millepede minimization with thet0 as a free global parameter for each of the 260 SDD
modules. Similarly, the drift velocity is considered as a free parameter for those SDD modules
(about 35%) with mal-functioning injectors. For these modules a single value of drift velocity
is extracted for the full data sample analyzed, thus neglecting the possible dependence of drift
velocity on time due to temperature instabilities. However, this is not a major concern since the
drift velocity was observed to be remarkably stable during the data taking [17]. This allows to
assess at the same time geometrical alignment and calibration parameters of the SDD detectors.
About 500 tracks are required to align and calibrate a singleSDD module. An example is shown
for a specific SDD module in the right-hand panel of figure13, where thexloc residuals along
the drift direction are shown as a function ofxloc. The result obtained using only the geometrical
rotations and translations as free parameters in the Millepede minimization is shown by the circle
markers. The clear systematic shift between the two drift regions (xloc < 0 andxloc > 0) is due to
both miscalibratedt0 and biased drift velocity (this is a module with non-workinginjectors). These
systematic effects are no longer present when also the calibration parameters are fitted by Millepede
(square markers). It should be pointed out that the width of the SDD residual distributions shown
in figure 13 does not correspond to the expected resolution on SDD pointsalong drift coordinate
because of jitter between the time when the muon crosses the detectors and the SPD FastOR trigger,
which has an integration time of 100 ns. For the about 100 SDD modules with highest occupancy,
the statistics collected in the 2008 cosmic run allowed to check the reliability of the calibration
parameters (t0 and drift velocity) extracted with Millepede by comparing the values obtained from
independent analyses of two sub-samples of tracks. From this study, a precision of 0.025 µm/ns
for the drift velocity and 10 ns fort0 was estimated. It should be noted that these precisions are
limited by the available statistics as well as by the triggerjitter effect mentioned above.

7 SPD alignment with an iterative local method

We developed an alignment method that performs a (local) minimization for each single mod-
ule and accounts for correlations between modules by iterating the procedure until convergence
is reached. A similar approach is considered by both the CMS and ATLAS experiments [30–32].
The main difference between this method and the Millepede algorithm is that only in the latter
the correlations between the alignment parameters of all modules are explicitly taken into account.
Conversely, the local module-by-module algorithm assumesthat the misalignments of the modules
crossed by a given track are uncorrelated and performs the minimization of the residuals indepen-
dently for each module. The comparison of the alignment parameters from this method and from
Millepede would provide a further validation of the resultsachieved with the Millepede.

In the local method we minimize, module-by-module, the following localχ2 function of the
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alignment parameters of a single module:

χ2
local(~atra,Arot) = ∑

tracks

~δ T
t,p V−1

t,p
~δt,p

= ∑
tracks

(~rt −Arot~rp−~atra)
T (Vt +Vp)

−1(~rt −Arot~rp−~atra) . (7.1)

Here, the sum runs over the tracks passing through the module,~rp is the position of the measured
point on the module while~rt is the crossing point on the module plane of the trackt fitted with
all points but~rp. Vt andVp are the covariance matrices of the crossing point and of the measured
point, respectively. The six alignment parameters enter this formula in the vector~atra, the alignment
correction for the position of the centre of the module, and in the rotation matrixArot, the alignment
correction for the orientation of the plane of the module. The alignment correction is supposed to
be small so that the rotation matrix can be approximated as the unity matrix plus a matrix linear
in the angles. In this way, theχ2

local is a quadratic expression of the alignment parameters and the
minimization can be performed by simple inversion. Theχ2

local function in eq. (7.1) can be written
in the same way also for a set of modules considered as a rigid block. The track parameters are not
affected by the misalignment of the module under study, because the track point on this module
is not used in the fit, while the positions of the crossing points are affected, because the tracks are
propagated to the plane of the module defined in the ideal geometry. This is taken into account by
adding a large error along the track direction to the covariance matrix of the crossing point.

Given that this is a local method, it is expected to work best if two conditions are fulfilled:
the correlation between the misalignments of different modules is small and the tracks used to
align a given module cross several other modules. In order tolimit the bias that can be introduced
by modules with low statistics, for which the second condition is normally not met, we align the
modules following a sequence of decreasing number of points. To reduce the residual correlation
between the alignment parameters obtained for the different modules, we iterate the procedure
until the parameters converge. Simulation studies with misalignments of the order of 100µm have
shown that the convergence is reached after about 10 iterations.

For the ITS alignment using the 2008 cosmic-ray data, we aligned only the SPD modules
using this method. Like for Millepede, we adopted a hierarchical approach. Given the excellent
precision of the SSD survey measurements, we used these two layers as a reference. We aligned
as a first step the whole SPD barrel with respect to the SSD, then the two half-barrels with respect
to the SSD, then the SPD sectors with respect to the SSD. In thelast step, we used SPD and
SSD points to fit the tracks and we aligned the individual sensor modules of the SPD. Figure14
shows the top-bottom track-to-track∆xy|y=0 distribution obtained using only the SPD points (left-
hand panel) and the track-to-point∆xloc for the double points in acceptance overlaps (right-hand
panel), after alignment. Both distributions are compatible (mean and sigma from a gaussian fit)
with the corresponding distributions after Millepede alignment. This is an important independent
verification of the Millepede results. Since the two methodsare in many aspects independent,
comparing the two sets of alignment parameters could provide a check for the presence of possible
systematic trends. Figure15shows the correlation of the inner SPD layer parameter values obtained
with the iterative method and those obtained with Millepede. A correction was applied to account
for a possible global roto-translation of the whole ITS, which does not affect the quality of the
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Figure 15. Correlation between the alignment parameters obtained from Millepede (horizontal axis) and the
iterative method (vertical axis), for the inner SPD layer modules. Modules with more (less) than 500 points
are represented by the closed (open) markers.

alignment and can be different for the two methods. The closed (open) markers represent the
modules with more (less) than 500 track points. Most of the modules are clustered along the
diagonal lines where the parameters from the two methods areexactly the same. There are some
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outlier modules, that are far from the ideal result. However, these outliers mostly correspond to
modules with low statistics (open markers) at the sides of the SPD barrel.

8 Conclusions

The results on the first alignment of the ALICE Inner TrackingSystem with cosmic-ray tracks,
collected in 2008 in the absence of magnetic field, have been presented.

The initial step of the alignment procedure consisted of thevalidation of the survey measure-
ments for the Silicon Strip Detector (SSD). The three methods applied for this purpose indicate
that the residual misalignment spread for modules on ladders is less than 5µm, i.e. negligible with
respect to the intrinsic resolution of this detector in the most precise direction, while the residual
misalignment spread for the ladders with respect to the support cones amounts to about 15µm.

The procedure continues with track-based software alignment performing residuals minimiza-
tion. We presented the results obtained with a sample of about 105 cosmic-ray tracks, reconstructed
in events selected by the FastOR trigger of the Silicon PixelDetector (SPD). We mainly use the
Millepede algorithm, which minimizes a globalχ2 of residuals for all alignable volumes and a
large set of tracks.

We start from the SPD, which is aligned in a hierarchical approach, from the largest mechanical
structures (10 support sectors) to the 240 single sensor modules. About 90% of the latter were active
during the 2008 cosmic run, and about 85% had enough space points (> 50) to perform alignment.
Then, we align the SPD barrel with respect to the SSD barrel. The SSD coverage provided by the
cosmic-ray tracks is insufficient to align the SSD at the level of ladders, especially for the ladders
close to the horizontal planey= 0. Therefore, for the time being we only align the SSD at the level
of large sets of ladders.

The two intermediate ITS layers, the Silicon Drift Detectors (SDD), represent a special case,
because the reconstruction of one of the two local coordinates requires dedicated calibration pro-
cedures (drift velocity and drift time zero extraction), which are closely related to the alignment.
Indeed, one of the approaches that we are developing for the time zero calibration is based on the
analysis of track residuals in a standalone procedure, initially, and then directly within the Mille-
pede algorithm. Once these procedures are stable and robust, the SDD will be included in the
standard alignment chain. For all six layers, the completion of the alignment for all modules will
require tracks from proton-proton collisions; a few 106 events (collected in a few days) should
allow us to reach a uniform alignment level, close to the target, over the entire detector.

We use mainly two observables to assess the quality of the obtained alignment: the matching
of the two half-tracks produced by a cosmic-ray particle in the upper and lower halves of the ITS
barrel, and the residuals between double points produced inthe geometrical overlaps between ad-
jacent modules. For the SPD, both observables indicate an effective space point resolution of about
14 µm in the most precise direction, only 25% worse than the resolution of about 11µm extracted
from the Monte Carlo simulation without misalignments. In addition, the measured incidence angle
dependence of the spread of the double points residuals is well reproduced by Monte Carlo simu-
lations that include random residual misalignments with a gaussian sigma of about 7µm. Further
confidence on the robustness of the results is provided, to some extent, by the cross-checks we per-
formed using a small data set with magnetic field switched on and, mainly, by the comparison of the
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Millepede results to those from a second, independent, alignment method. This second method,
which iteratively minimizes a set of local module-by-module χ2 functions, yields, compared to
Millepede, a similar alignment quality and a quite compatible set of alignment corrections.

Using the present data set with magnetic field off, since the track momenta are not known,
the multiple scattering effect, which is certainly not negligible, cannot be disentangled from the
residual misalignment effect. Therefore, a more conclusive statement on the SPD residual mis-
alignment will be possible only after the analysis of cosmic-ray data collected with magnetic field
switched on. The same applies for combined tracking with SPD, SDD and SSD points: in this case,
the momentum-differential analysis of the transverse distance between the two half-tracks (upper
and lower half-barrels) will allow us to measure the track transverse impact parameter resolution,
which is a key performance figure in view of the ALICE heavy flavour physics program.
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A. Tauro40, M. Tavlet40, G. Tejeda Muñoz84, A. Telesca40, C. Terrevoli5, J. Thäder43 ii,
R. Tieulent62, D. Tlusty81, A. Toia40, T. Tolyhy18, C. Torcato de Matos40, H. Torii 45,
G. Torralba 43, L. Toscano102, F. Tosello102, A. Tournaire73 xxxv, T. Traczyk108, P. Tribedy55,
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89 Commissariat à l’Energie Atomique, IRFU, Saclay, France
90 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Universit`a and Sezione INFN, Salerno, Italy
91 California Polytechnic State University, San Luis Obispo,California, United States
92 Departamento de Fı́sica de Partı́culas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela,

Spain
93 Universidade de São Paulo (USP), São Paulo, Brazil
94 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
95 Department of Physics, Sejong University, Seoul, South Korea
96 Yonsei University, Seoul, South Korea
97 Technical University of Split FESB, Split, Croatia
98 V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
99 Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
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