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Abstract 
The behaviour of the beam in storage rings and accelerators is significantly 

influenced by synchrobetatron resonances. They are generally considered to be 
caused by the non-compensated chromaticity (i.e. by the momentum dependence of the 
betatron frequency). In this approach, the synchrobetatron resonances vanish if 
the chromaticity goes to zero. 

However, in this paper it is shown that in the presence of transverse (i.e. 
normal to the equilibrium orbit) electric or magnetic fields oscillating with an 
integer multiple of the revolution frequency (ω=q∙ωo), synchrobetatron resonances νx,z + nνs = m do arise at zero chromaticity. The resonance strength is proportional to Jn(2πℓ/λ), where Jn is the n-th order Bessel function, ℓ is the bunch length, λ is the wavelength of the HF field. Thus these resonances are severe in 
high energy storage rings (SPEAR II, DORIS, VEPP-4, PEP) in which νs is large (0.1) and ℓ/λ 1. 

The results obtained give an explanation of the chromaticity-independent synchrobetatron 
sidebands of the integer resonances, observed in SPEAR II with the 
orbit distortion in the RF cavities taken into account. A simple method for compensation 
of such resonances is suggested. The tolerable orbit distortions in the 
RF cavities of VEPP-4 are estimated. 
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In many accelerators and storage rings, synchrobetatron resonances (SBR) have 
been observed experimentally. They are known to significantly influence beam 
behaviour, its size and lifetime (see for example references 1) to 4). The main 
reason for these resonances is the energy dependence of betatron tune, i.e. 
chromaticity. However, the chromaticity can be compensated by sextupole corrections. 
Therefore, we will concentrate on other reasons resulting in the occurrence of 
SBR. 
The most detailed study will be devoted to the case where there are transverse 
time-dependent electric or magnetic fields on the equilibrium orbit, which 
may occur if the orbit is distorted in the accelerating RF cavities. As it is 
shown below, the strength of the νx,z + nνs = m SBR is then proportional to 
Jn(2πℓ/λ), where Jn is the n-th order Bessel function, ℓ is the longitudinal 
oscillation amplitude, λ is the RF wavelength. Thus these resonances are 
severe for high energy electron storage rings such as SPEAR II, DORIS, VEPP-4, 
PEP and PETRA, where νs is rather high (0.1) and ℓ/λ 0.5. The estimates on 
orbit distortion tolerance in VEPP-4 are presented. 

The results obtained may give an explanation of the SBR at zero chromaticity 
as those observed in SPEAR II. 

A simple method to cure the resonances due to this mechanism is suggested. 

1. Introductory notes on chromaticity-dependent SBR 
Originally, the treatment of SBR accounted only for the chromaticity (i.e. 

dependence of the betatron tune on the energy of the particle)5). In the 
presence of the chromaticity the betatron oscillations appear to be frequency-modulated 
at the synchrotron frequency due to particle energy oscillations in a 
storage ring. The frequency modulation (FM) results in the appearance of side-bands 
in the betatron oscillation spectrum at frequencies ν = νx,z + nνs. The 
amplitude of the n-th side-band (and also the strength of the SBR at 

νx,z + nvs = m) is proportional to Jn(ξx,z), where ξx,z = 2π Δνx,z/νs, 
Δνx,z = ∂νx,z/∂Ε ·ε; Δνx,z is the FM amplitude, ε is the amplitude of the 

energy oscillations. 

It must be noted that if the chromaticity is not compensated the SBR side-bands 
appear around all 'machine' resonances kxνx + kzνz = m, because here the 
betatron frequencies are modulated and the strengths of the SBR satellites in this 
approximation are determined by the chromaticity value and must therefore vanish 
if the chromaticity is compensated. 
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Nevertheless, in SPEAR II, SBR sidebands at νx,z - nνs = 5 have been 
observed which are independent of the chromaticity in a wide range 
(E ∂ν/∂E = 0 - 10) but strongly dependent on orbit distortions. This fact gives 
rise to a study of SBR at zero chromaticity. 

2. SBR sidebands due to transverse components of the accelerating RF fields 

Let us consider the particle motion in a storage ring in the presence of 
transverse (i.e. normal to the equilibrium orbit) fields which oscillate at the 
frequency ω = νdωo, where ωo is the revolution frequency of the equilibrium 
particle. The revolution time Τ of a particle depends on its energy and 
therefore oscillates with respect to the equilibrium value Τo with the synchrotron 
frequency. Hence the driving force acting on the particle is phase-modulated at 
the synchrotron oscillation frequency. The phase modulation gives rise to side-bands 
at frequencies ν = νd + nνs in the spectrum of the driving force and therefore 
SBR arise. 

Note that in contrast to the case of SBR with ∂νx,z/∂E ≠ 0 where synchrotron 
oscillations enrich the spectrum of betatron oscillation, here the spectrum of 
the driving force is enriched. 

Let us write down the linearized equation of betatron oscillations taking 
into account radiation damping 

d2z + 2uz(s) dz + [gz(s) + u'z(s)] z = fz(s)eiωt (1) ds2 + 2uz(s) ds + [gz(s) + u'z(s)] z = fz(s)eiωt (1) 

where s is the azimuth, gz(s) is the rigidity, uz(s) = 1 dErad uz(s) = 2Eo ds is the radiation 
damping rate and 

fz(s) = e [Ez(s) - Hx(s)], (2) fz(s) = Eo 
[Ez(s) - Hx(s)], (2) 

here Εz, Ηx are the field components, Eo is the equilibrium energy, e is the 
particle's charge. Here and below we assume the motion to be ultrarelativistic: 
γo ≡ Εo/mc2 >> 1. 

Because of the synchrotron oscillations: 

Φ ≡ ωot = θ + Φo sin νsθ, (3) 
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where θ ≡ S/R and Φo is the amplitude of the phase oscillations, we obtain: 

ωt = νdθ + κ sin νsθ (4) 

κ = νdΦo, 

i.e. phase modulation of the driving force. 
Let us consider the vicinity of the resonance 

± νz + νd + nνs + k = Δ/2π (Δ << 1), 

where Δ is the detuning. Leaving out non-resonant terms and transforming 
to 'slow' variables (betatron amplitude and phase) we obtain an equation for the 
stationary amplitude: 

Az(s) = wz(s) |Ck| Jn(κ) (5) Az(s) = wz(s) (γz2 + Δ2)½ Jn(κ) (5) 

Ck = 
2π 

fz(s) wz(s) exp[i(±xz(s)-k s )] ds (6) Ck = 
∫ 

fz(s) wz(s) exp[i(±xz(s)-k s )] ds (6) Ck = 
∫ 

fz(s) wz(s) exp[i(±xz(s)-k R )] ds (6) Ck = 

ο 

fz(s) wz(s) exp[i(±xz(s)-k R )] ds (6) 

where ωz =√βz is the modulus and Xz is the phase of the Floquet function, and 
γz is the radiation damping decrement per turn. 

It is convenient to express γz in terms of the radiation energy loss per 
turn 

γz = 
euo cos Φs 

(7) γz = 2Eo (7) 

Here Uo is the peak RF voltage and Φs is the equilibrium phase. If the driving 
force is concentrated in δ-function at the azimuth so, equ. (5) yields 

Az(s) = wz(s) wz(so) 
( ) d J n(x) 

(8) Az(s) = wz(s) wz(so) Uo cos Φs (1+δ2)½ (8) 

where d is effective length of the domain in which the fields are concentrated, and δ ≡ Δ/γz. 
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In all electron storage rings there are accelerating structures that have 
longitudinal electric fields varying quickly in time. If the equilibrium orbit 
crosses the accelerating structure at an angle with respect to its electric axis, 
then a transverse component of the electric field arises which drives a SBR at 

νx,z + nνs = m, because in this case νd = q, q is the harmonic number of the 
accelerating RF voltage. Now 

= 
Uo sin αz = d sin αz 

where αz is the projection of the angle between the orbit and the RF cavity axis on 
the plane of the vertical betatron oscillations. 
Because of the relation Φo = ℓ/, where ℓ is an amplitude of the longitudinal 
oscillations, rewriting q/ = 2π/λ, where λ is the acceleration field wavelength, 
we obtain from equ. (8): 

Az(s) = wz(s) wz(s) 
Jn(2πℓ/λ) sin αz (9) Az(s) = wz(s) wz(s) (1 + δ2)½ cos Φs (9) 

Horizontal SBR at νx + nνs = m may be considered in a similar way by replacing γz by γx = Gxγz where Gx is the dimensionless damping partition number (Gx + Gs = 3 ) : 

Ax(s) = wx(s) wx(so) 
Jn(2πℓ/λ) sin αx (10) Ax(s) = wx(s) wx(so) Gx(1 + δ2)½ cos Φs (10) 

The above consideration does not account for higher harmonics in synchrotron 
oscillations due to their nonlinearity. To take this into account, equ. (3) 
is rewritten in the form: 

Φ = θ + Φo sin νsθ + 
∞ 
Φk sin kνsθ (11) Φ = θ + Φo sin νsθ + Σ Φk sin kνsθ (11) Φ = θ + Φo sin νsθ + 

k=2 
Φk sin kνsθ (11) 

Hence the nonlinearity of the synchrotron oscillations can be included by 
introducing a numerical factor bn into equs. (9) and (10). In the table below 
values of bn are presented for several sidebands for the case where cos Φs « 1, and 
the RF voltage is assumed to be sinusoidal (with Jn(x) 1 

( x )n in equ. (11) n! ( 2 )n in equ. (11) 
as x ≤ 0.5): 

|η| 1 2 3 4 5 6 

bn 1 1 9/8 3/2 75/32 135/32 
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3. SBR sidebands due to dispersion in cavities 
It has been shown in ref. 7 that a non-zero dispersion function η 

(and/or its derivative η') in the accelerating structure can also give rise to 
SBR. Since the reason of excitation of SBR in this case and in the case 
considered above is the same (i.e. the particle's trajectory changes with respect 
to the instantaneous off-energy orbit), equs. (9) and (10) can be readily generalized 
for η,η' ≠ 0 by substitution 

sin α x , z → [(sin αx,z - η'x,z + 
β'x,z 

ηx,z)2 + 
η2x,z ]½ (11) sin α x , z → [(sin αx,z - η'x,z + 2βx,z ηx,z)2 + β2x,z ]

½ (11) 

Note that for a perfect ring geometry ηz,η'z ≡ 0 and SBR at νz + nνs = m can only 
be excited by the equilibrium orbit distortions in RF cavities (αz ≠ 0). 

4. Estimates of SBR in VEPP-4 
In the storage ring VEPP-4 design, the non-zero dispersion ηx and η'x in 

the cavities will result in a noticeable increase of the horizontal beam size 
at SBR νx-nνs = 10. Thus, for n = 4, the horizontal beam size will be increased 
by a factor of 2. A vertical angle αz 10-2 between the cavity axis and the 
orbit will increase the vertical beam size at SBR νz - 4νs = 10 by the same 
factor. 

5. Cure for SBR at zero chromaticity 
However, SBR excitation at zero chromaticity can be compensated. As one 

can see from equs. (5), (6), it is sufficient to use two RF correctors for each 
lateral degree of freedom (x and z). 

As the simplest corrector deflection plates can be used which give transverse 
electric and magnetic fields. To cure the SBR excitation the plates 
should be fed by an RF voltage at an integer multiple of the revolution frequency 
and with appropriate amplitude and phase. 
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