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Abstract We present the achievements of the last years
of the experimental and theoretical groups working on
hadronic cross section measurements at the low-energy
e+e− colliders in Beijing, Frascati, Ithaca, Novosibirsk,
Stanford and Tsukuba and on τ decays. We sketch the
prospects in these fields for the years to come. We emphasise
the status and the precision of the Monte Carlo generators
used to analyse the hadronic cross section measurements
obtained as well with energy scans as with radiative return,
to determine luminosities and τ decays. The radiative cor-
rections fully or approximately implemented in the various
codes and the contribution of the vacuum polarisation are
discussed.
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1 Introduction

The systematic comparison of Standard Model (SM) pre-
dictions with precise experimental data served in the last
decades as an invaluable tool to test the theory at the quan-
tum level. It has also provided stringent constraints on “new
physics” scenarios. The (so far) remarkable agreement be-
tween the measurements of the electroweak observables
and their SM predictions is a striking experimental con-
firmation of the theory, even if there are a few observ-
ables where the agreement is not so satisfactory. On the
other hand, the Higgs boson has not yet been observed, and
there are clear phenomenological facts (dark matter, matter-
antimatter asymmetry in the universe) as well as strong the-
oretical arguments hinting at the presence of physics beyond
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the SM. New colliders, like the LHC or a future e+e− Inter-
national Linear Collider (ILC), will hopefully answer many
questions, offering at the same time great physics potential
and a new challenge to provide even more precise theoretical
predictions.

Precision tests of the Standard Model require an appro-
priate inclusion of higher-order effects and the knowledge
of very precise input parameters. One of the basic input pa-
rameters is the fine-structure constant α, determined from
the anomalous magnetic moment of the electron with an
impressive accuracy of 0.37 parts per billion (ppb) [1] re-
lying on the validity of perturbative QED [2]. However,
physics at nonzero squared momentum transfer q2 is ac-
tually described by an effective electromagnetic coupling
α(q2) rather than by the low-energy constant α itself. The
shift of the fine-structure constant from the Thomson limit to
high energy involves low-energy non-perturbative hadronic
effects which spoil this precision. In particular, the effective
fine-structure constant at the scale MZ , α(M2

Z) = α/[1 −
Δα(M2

Z)], plays a crucial role in basic EW radiative correc-
tions of the SM. An important example is the EW mixing
parameter sin2 θ , related to α, the Fermi coupling constant
GF and MZ via the Sirlin relation [3–5]

sin2 θS cos2 θS = πα√
2GFM

2
Z(1 −ΔrS)

, (1)

where the subscript S identifies the renormalisation scheme.
ΔrS incorporates the universal correction Δα(M2

Z), large
contributions that depend quadratically on the top-quark
mass mt [6] (which led to its indirect determination before
this quark was discovered), plus all remaining quantum ef-
fects. In the SM, ΔrS depends on various physical parame-
ters, including MH , the mass of the Higgs boson. As this
is the only relevant unknown parameter in the SM, impor-
tant indirect bounds on this missing ingredient can be set
by comparing the calculated quantity in (1) with the ex-
perimental value of sin2 θS (e.g. the effective EW mixing
angle sin2 θ

lept
eff measured at LEP and SLC from the on-

resonance asymmetries) once Δα(M2
Z) and other experi-

mental inputs like mt are provided. It is important to note
that an error of δΔα(M2

Z) = 35 × 10−5 [7] in the effec-
tive electromagnetic coupling constant dominates the uncer-
tainty of the theoretical prediction of sin2 θ

lept
eff , inducing an

error δ(sin2 θ
lept
eff ) ∼ 12 × 10−5 (which is comparable with

the experimental value δ(sin2 θ
lept
eff )

EXP = 16 × 10−5 deter-
mined by LEP-I and SLD [8, 9]) and affecting the upper
bound for MH [8–10]. Moreover, as measurements of the
effective EW mixing angle at a future linear collider may
improve its precision by one order of magnitude, a much
smaller value of δΔα(M2

Z) will be required (see below). It
is therefore crucial to assess all viable options to further re-
duce this uncertainty.

The shift Δα(M2
Z) can be split in two parts: Δα(M2

Z) =
Δαlep(M

2
Z) + Δα

(5)
had(M

2
Z). The leptonic contribution is

calculable in perturbation theory and known up to three-
loop accuracy: Δαlep(M

2
Z) = 3149.7686 × 10−5 [11]. The

hadronic contribution Δα
(5)
had(M

2
Z) of the five light quarks

(u, d , s, c, and b) can be computed from hadronic e+e−
annihilation data via the dispersion relation [12]

Δα
(5)
had

(
M2

Z

) = −
(
αM2

Z

3π

)
Re

∫ ∞

m2
π

ds
R(s)

s(s −M2
Z − iε)

, (2)

where R(s) = σ 0
had(s)/(4πα

2/3s) and σ 0
had(s) is the total

cross section for e+e− annihilation into any hadronic states,
with vacuum polarisation and initial-state QED corrections
subtracted off. The current accuracy of this dispersion in-
tegral is of the order of 1%, dominated by the error of the
hadronic cross section measurements in the energy region
below a few GeV [7, 13–23].

Table 1 (from Ref. [16]) shows that an uncertainty
δΔα

(5)
had ∼ 5 × 10−5, needed for precision physics at a future

linear collider, requires the measurement of the hadronic
cross section with a precision of O(1%) from threshold up
to the Υ peak.

Like the effective fine-structure constant at the scale MZ ,
the SM determination of the anomalous magnetic moment
of the muon aμ is presently limited by the evaluation of the
hadronic vacuum-polarisation effects, which cannot be com-
puted perturbatively at low energies. However, using analyt-
icity and unitarity, it was shown long ago that this term can
be computed from hadronic e+e− annihilation data via the
dispersion integral [24]:

aHLO
μ = 1

4π3

∫ ∞

m2
π

ds K(s)σ 0(s)

= α2

3π2

∫ ∞

m2
π

ds K(s)R(s)/s. (3)

The kernel function K(s) decreases monotonically with in-
creasing s. This integral is similar to the one entering the
evaluation of the hadronic contribution Δα

(5)
had(M

2
Z) in (2).

Here, however, the weight function in the integrand gives a
stronger weight to low-energy data. A recent compilation of

Table 1 Values of the uncertainties δΔα(5)had (first column) and the er-
rors induced by these uncertainties on the theoretical SM prediction for
sin2 θ

lept
eff (second column). The third column indicates the correspond-

ing requirements for the R measurement. From Ref. [16]

δΔα
(5)
had × 105 δ(sin2 θ

lept
eff )× 105 Request on R

22 7.9 Present

7 2.5 δR/R ∼ 1% up to J/ψ

5 1.8 δR/R ∼ 1% up to Υ
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e+e− data gives [25]:

aHLO
μ = (695.5 ± 4.1)× 10−10. (4)

Similar values are obtained by other groups [23, 26–28].
By adding this contribution to the rest of the SM contribu-

tions, a recent update of the SM prediction of aμ, which uses
the hadronic light-by-light result from [29] gives [25, 30]:
aSM
μ = 116591834(49) × 10−11. The difference between

the experimental average [31], a
exp
μ = 116592080(63) ×

10−11 and the SM prediction is then Δaμ = a
exp
μ − aSM

μ =
+246(80) × 10−11, i.e. 3.1 standard deviations (adding all
errors in quadrature). Slightly higher discrepancies are ob-
tained in Refs. [23, 27, 28]. As in the case of α(M2

Z), the
uncertainty of the theoretical evaluation of aSM

μ is still domi-
nated by the hadronic contribution at low energies, and a re-
duction of the uncertainty is necessary in order to match the
increased precision of the proposed muon g-2 experiments
at FNAL [32] and J-PARC [33].

The precise determination of the hadronic cross sections
(accuracy �1%) requires an excellent control of higher-
order effects like Radiative Corrections (RC) and the non-
perturbative hadronic contribution to the running of α (i.e.
the vacuum polarisation, VP) in Monte Carlo (MC) pro-
grams used for the analysis of the data. Particularly in the
last years, the increasing precision reached on the exper-
imental side at the e+e− colliders (VEPP-2M, DAΦNE,
BEPC, PEP-II and KEKB) led to the development of ded-
icated high-precision theoretical tools: BabaYaga (and its
successor BabaYaga@NLO) for the measurement of the
luminosity, MCGPJ for the simulation of the exclusive
QED channels, and PHOKHARA for the simulation of
the process with Initial State Radiation (ISR) e+e− →
hadrons + γ , are examples of MC generators which include
NLO corrections with per mill accuracy. In parallel to these
efforts, well-tested codes such as BHWIDE (developed for
LEP/SLC colliders) were adopted.

Theoretical accuracies of these generators were esti-
mated, whenever possible, by evaluating missing higher-
order contributions. From this point of view, the great pro-
gress in the calculation of two-loop corrections to the Bha-
bha scattering cross section was essential to establish the
high theoretical accuracy of the existing generators for the
luminosity measurement. However, usually only analytical
or semi-analytical estimates of missing terms exist which
don’t take into account realistic experimental cuts. In ad-
dition, MC event generators include different parameterisa-
tions for the VP which affect the prediction (and the preci-
sion) of the cross sections and also the RC are usually im-
plemented differently.

These arguments evidently imply the importance of com-
parisons of MC generators with a common set of input pa-
rameters and experimental cuts. Such tuned comparisons,

which started in the LEP era, are a key step for the vali-
dation of the generators, since they allow one to check that
the details entering the complex structure of the generators
are under control and free of possible bugs. This was the
main motivation for the “Working Group on Radiative Cor-
rections and Monte Carlo Generators for Low Energies”
(Radio MontecarLow), which was formed a few years ago
bringing together experts (theorists and experimentalists)
working in the field of low-energy e+e− physics and partly
also the τ community.

In addition to tuned comparisons, technical details of the
MC generators, recent progress (like new calculations) and
remaining open issues were also discussed in regular meet-
ings.

This report is a summary of all these efforts: it provides
a self-contained and up-to-date description of the progress
which occurred in the last years towards precision hadronic
physics at low energies, together with new results like com-
parisons and estimates of high-order effects (e.g. of the pion
pair correction to the Bhabha process) in the presence of re-
alistic experimental cuts.

The report is divided into five sections: Sects. 2, 3 and 4
are devoted to the status of the MC tools for Luminosity, the
R-scan and Initial State Radiation (ISR).

Tau spectral functions of hadronic decays are also used to
estimate aHLO

μ , since they can be related to e+e− annihilation
cross section via isospin symmetry [34–37]. The substantial
difference between the e+e−—and τ -based determinations
of aHLO

μ , even if isospin violation corrections are taken into
account, shows that further common theoretical and experi-
mental efforts are necessary to understand this phenomenon.
In Sect. 5 the experimental status and MC tools for tau de-
cays are discussed. The recent improvements of the genera-
tors TAUOLA and PHOTOS are discussed and prospects for
further developments are sketched.

Section 6 discusses vacuum polarisation at low energies,
which is a key ingredient for the high-precision determina-
tion of the hadronic cross section, focussing on the descrip-
tion and comparison of available parameterisations. Finally,
Sect. 7 contains a brief summary of the report.

2 Luminosity

The present section addresses the most important experi-
mental and theoretical issues involved in the precision deter-
mination of the luminosity at meson factories. The luminos-
ity is the key ingredient underlying all the measurements and
studies of the physics processes discussed in the other sec-
tions. Particular emphasis is put on the theoretical accuracy
inherent to the event generators used in the experimental
analyses, in comparison with the most advanced perturbative
calculations and experimental precision requirements. The
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effort done during the activity of the working group to per-
form tuned comparisons between the predictions of the most
accurate programs is described in detail. New calculations,
leading to an update of the theoretical error associated with
the prediction of the luminosity cross section, are also pre-
sented. The aim of the section is to provide a self-contained
and up-to-date description of the progress occurred during
the last few years towards high-precision luminosity moni-
toring at flavour factories, as well as of the still open issues
necessary for future advances.

The structure of the section is as follows. After an intro-
duction on the motivation for precision luminosity measure-
ments at meson factories (Sect. 2.1), the leading-order (LO)
cross sections of the two QED processes of major interest,
i.e. Bhabha scattering and photon pair production, are pre-
sented in Sect. 2.2, together with the formulae for the next-
to-leading-order (NLO) photonic corrections to the above
processes. The remarkable progress on the calculation of
next-to-next-leading-order (NNLO) QED corrections to the
Bhabha cross section, as occurred in the last few years, is re-
viewed in Sect. 2.3. In particular, this section presents new
exact results on lepton and hadron pair corrections, taking
into account realistic event selection criteria. Section 2.4 is
devoted to the description of the theoretical methods used
in the Monte Carlo (MC) generators for the simulation of
multiple photon radiation. The matching of such contribu-
tions with NLO corrections is also described in Sect. 2.4.
The main features of the MC programs used by the experi-
mental collaborations are summarised in Sect. 2.5. Numeri-
cal results for the radiative corrections implemented into the
MC generators are shown in Sect. 2.6 for both the Bhabha
process and two-photon production. Tuned comparisons be-
tween the predictions of the most precise generators are pre-
sented and discussed in detail in Sect. 2.7, considering the
Bhabha process at different centre-of-mass (c.m.) energies
and with realistic experimental cuts. The theoretical accu-
racy presently reached by the luminosity tools is addressed
in Sect. 2.8, where the most important sources of uncer-
tainty are discussed quantitatively. The estimate of the to-
tal error affecting the calculation of the Bhabha cross sec-
tion is given, as the main conclusion of the present work, in
Sect. 2.9, updating and improving the robustness of results
available in the literature. Some remaining open issues are
discussed in Sect. 2.9 as well.

2.1 Motivation

The luminosity of a collider is the normalisation constant be-
tween the event rate and the cross section of a given process.
For an accurate measurement of the cross section of an
electron–positron (e+e−) annihilation process, the precise
knowledge of the collider luminosity is mandatory.

The luminosity depends on three factors: beam–beam
crossing frequency, beam currents and the beam overlap area

in the crossing region. However, the last quantity is difficult
to determine accurately from the collider optics. Thus, ex-
periments prefer to determine the luminosity by the count-
ing rate of well selected events whose cross section is known
with good accuracy, using the formula [38]

∫
L dt = N

εσ
, (5)

where N is the number of events of the chosen reference
process, ε the experimental selection efficiency and σ the
theoretical cross section of the reference process. Therefore,
the total luminosity error will be given by the sum in quadra-
ture of the fractional experimental and theoretical uncertain-
ties.

Since the advent of low luminosity e+e− colliders, a
great effort was devoted to obtain good precision in the
cross section of electromagnetic processes, extending the pi-
oneering work of the earlier days [12]. At the e+e− col-
liders operating in the c.m. energy range 1 GeV <

√
s <

3 GeV, such as ACO at Orsay, VEPP-II at Novosibirsk and
Adone at Frascati, the luminosity measurement was based
on Bhabha scattering [39, 40] with final-state electrons and
positrons detected at small angles, or single and double
bremsstrahlung processes [41], thanks to their high statis-
tics. The electromagnetic cross sections scale as 1/s, while
elastic e+e− scattering has a steep dependence on the po-
lar angle, ∼1/θ3, thus providing a high rate for small values
of θ .

Also at high energy, accelerators running in the ’90s
around the Z pole to perform precision tests of the Standard
Model (SM), such as LEP at CERN and SLC at Stanford, the
experiments used small-angle Bhabha scattering events as a
luminosity monitoring process. Indeed, for the very forward
angular acceptances considered by the LEP/SLC collabora-
tions, the Bhabha process is dominated by the electromag-
netic interaction and, therefore, calculable, at least in prin-
ciple, with very high accuracy. At the end of the LEP and
SLC operation, a total (experimental plus theoretical) preci-
sion of one per mill (or better) was achieved [42–48], thanks
to the work of different theoretical groups and the excellent
performance of precision luminometers.

At current low- and intermediate-energy high-luminosity
meson factories, the small polar angle region is difficult to
access due to the presence of the low-beta insertions close to
the beam crossing region, while wide-angle Bhabha scatter-
ing produces a large counting rate and can be exploited for
a precise measurement of the luminosity.

Therefore, also in this latter case of e± scattered at large
angles, e.g. larger than 55◦ for the KLOE experiment [38]
running at DAΦNE in Frascati, and larger than 40◦ for the
CLEO-c experiment [49] running at CESR in Cornell, the
main advantages of Bhabha scattering are preserved:
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1. large statistics. For example at DAΦNE, a statistical er-
ror δL/L ∼ 0.3% is reached in about two hours of data
taking, even at the lowest luminosities;

2. high accuracy for the calculated cross section;
3. clean event topology of the signal and small amount of

background.

In (5) the cross section is usually evaluated by insert-
ing event generators, which include radiative corrections at
a high level of precision, into the MC code simulating the
detector response. The code has to be developed to repro-
duce the detector performance (geometrical acceptance, re-
construction efficiency and resolution of the measured quan-
tities) to a high level of confidence.

In most cases the major sources of the systematic errors
of the luminosity measurement are differences of efficien-
cies and resolutions between data and MC.

In the case of KLOE, the largest experimental error of
the luminosity measurement is due to a different polar angle
resolution between data and MC which is observed at the
edges of the accepted interval for Bhabha scattering events.
Figure 1 shows a comparison between large-angle Bhabha
KLOE data and MC, at left for the polar angle and at right
for the acollinearity ζ = |θe+ + θe− − 180◦|. One observes
a very good agreement between data and MC, but also dif-
ferences (of about 0.3%) at the sharp interval edges. The
analysis cut, ζ < 9◦, applied to the acollinearity distribution
is very far from the bulk of the distribution and does not
introduce noteworthy systematic errors.

Also in the CLEO-c luminosity measurement with Bhabha
scattering events, the detector modelling is the main source
of experimental error. In particular, uncertainties include
those due to finding and reconstruction of the electron
shower, in part due to the nature of the electron shower,
as well as the steep e± polar angle distribution.

The luminosity measured with Bhabha scattering events
is often checked by using other QED processes, such as
e+e− → μ+μ− or e+e− → γ γ . In KLOE, the luminosity
measured with e+e− → γ γ events differs by 0.3% from the
one determined from Bhabha events. In CLEO-c, e+e− →

μ+μ− events are also used, and the luminosity determined
from γ γ (μ+μ−) is found to be 2.1% (0.6%) larger than
that from Bhabha events. Figure 2 shows the CLEO-c data
for the polar angle distributions of all three processes, com-
pared with the corresponding MC predictions. The three
QED processes are also used by the BaBar experiment at
the PEP-II collider, Stanford, yielding a luminosity determi-
nation with an error of about 1% [50]. Large-angle Bhabha
scattering is the normalisation process adopted by the CMD-
2 and SND collaborations at VEPP-2M, Novosibirsk, while
both BES at BEPC in Beijing and Belle at KEKB in Tsukuba
measure luminosity using the processes e+e− → e+e− and
e+e− → γ γ with the final-state particles detected at wide
polar angles and an experimental accuracy of a few per cent.
However, BES-III aims at reaching an error of a few per mill
in their luminosity measurement in the near future [51].

The need of precision, namely better than 1%, and possi-
bly redundant measurements of the collider luminosity is of
utmost importance to perform accurate measurements of the
e+e− → hadrons cross sections, which are the key ingredi-
ent for evaluating the hadronic contribution to the running
of the electromagnetic coupling constant α and the muon
anomaly g − 2.

2.2 LO cross sections and NLO corrections

As remarked in Sect. 2.1, the processes of interest for the lu-
minosity measurement at meson factories are Bhabha scat-
tering and electron–positron annihilation into two photons
and muon pairs. Here we present the LO formulae for the
cross section of the processes e+e− → e+e− and e+e− →
γ γ , as well as the QED corrections to their cross sections in
the NLO approximation of perturbation theory. The reaction
e+e− → μ+μ− is discussed in Sect. 3.

2.2.1 LO cross sections

For the Bhabha scattering process

e−(p−)+ e+(p+)→ e−(p′−)+ e+(p′+) (6)

Fig. 1 Comparison between
large-angle Bhabha KLOE data
(points) and MC (histogram)
distributions for the e± polar
angle θ (left) and for the
acollinearity,
ζ = |θe+ + θe− − 180◦| (right),
where the flight direction of the
e± is given by the position of
clusters in the calorimeter. In
each case, MC and data
histograms are normalised to
unity. From [38]
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at Born level with simple one-photon exchange (see Fig. 3)
the differential cross section reads

dσBhabha
0

dΩ−
= α2

4s

(
3 + c2

1 − c

)2

+O

(
m2
e

s

)
, (7)

where

s = (p− + p+)2, c = cos θ−. (8)

Fig. 2 Distributions of CLEO-c
√
s = 3.774 GeV data (circles) and

MC simulations (histograms) for the polar angle of the positive lepton
(upper two plots) in e+e− and μ+μ− events, and for the mean value of
| cos θγ | of the two photons in γ γ events (lower panel). MC histograms
are normalised to the number of data events. From [49]

Fig. 3 LO Feynman diagrams for the Bhabha process in QED, corre-
sponding to s-channel annihilation and t -channel scattering

The angle θ− is defined between the initial and final elec-
tron three-momenta, dΩ− = dφ−d cos θ−, and φ− is the az-
imuthal angle of the outgoing electron. The small mass cor-
rection terms suppressed by the ratio m2

e/s are negligible for
the energy range and the angular acceptances which are of
interest here.

At meson factories the Bhabha scattering cross section
is largely dominated by t-channel photon exchange, fol-
lowed by s–t interference and s-channel annihilation. Fur-
thermore, Z-boson exchange contributions and other elec-
troweak effects are suppressed at least by a factor s/M2

Z .
In particular, for large-angle Bhabha scattering with a c.m.
energy

√
s = 1 GeV the Z boson contribution amounts to

about −1×10−5. For
√
s = 3 GeV it amounts to −1×10−4

and −1 × 10−3 for
√
s = 10 GeV. So only at B factories

the electroweak effects should be taken into account at tree
level, when aiming at a per mill precision level.

The LO differential cross section of the two-photon anni-
hilation channel (see Fig. 4)

e+(p+)+ e−(p−)→ γ (q1)+ γ (q2)

can be obtained by a crossing relation from the Comp-
ton scattering cross section computed by Brown and Feyn-
man [52]. It reads

dσγγ

0

dΩ1
= α2

s

(
1 + c2

1

1 − c2
1

)
+O

(
m2
e

s

)
, (9)

where dΩ1 denotes the differential solid angle of the first
photon. It is assumed that both final photons are registered
in a detector and that their polar angles with respect to the
initial beam directions are not small (θ1,2 � me/E, where
E is the beam energy).

2.2.2 NLO corrections

The complete set of NLO radiative corrections, emerging at
O(α) of perturbation theory, to Bhabha scattering and two-
photon annihilation can be split into gauge-invariant subsets:
QED corrections, due to emission of real photons off the
charged leptons and exchange of virtual photons between
them, and purely weak contributions arising from the elec-
troweak sector of the SM.

Fig. 4 LO Feynman diagrams for the process e+e− → γ γ
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The complete O(α) QED corrections to Bhabha scatter-
ing are known since a long time [53, 54]. The first com-
plete NLO prediction in the electroweak SM was performed
in [55], followed by [56] and several others. At NNLO, the
leading virtual weak corrections from the top quark were
derived first in [57] and are available in the fitting programs
ZFITTER [58, 59] and TOPAZ0 [60–62], extensively used
by the experimentalists for the extraction of the electroweak
parameters at LEP/SLC. The weak NNLO corrections in the
SM are also known for the ρ-parameter [63–79] and the
weak mixing angle [80–85], as well as corrections from Su-
dakov logarithms [86–93]. Both NLO and NNLO weak ef-
fects are negligible at low energies and are not implemented
yet in numerical packages for Bhabha scattering at meson
factories. In pure QED, the situation is considerably differ-
ent due to the remarkable progress made on NNLO correc-
tions in recent years, as emphasised and discussed in detail
in Sect. 2.3.

As usual, the photonic corrections can be split into two
parts according to their kinematics. The first part preserves
the Born-like kinematics and contains the effects due to
one-loop amplitudes (virtual corrections) and single soft-
photon emission. Examples of Feynman diagrams giving
rise to such corrections are represented in Fig. 5. The en-
ergy of a soft photon is assumed not to exceed an energy
ΔE, where E is the beam energy and the auxiliary parame-
ter Δ 	 1 should be chosen in such a way that the validity
of the soft-photon approximation is guaranteed. The second
contribution is due to hard-photon emission, i.e. to single
bremsstrahlung with photon energy above ΔE and corre-
sponds to the radiative process e+e− → e+e−γ .

Following [94, 95], the soft plus virtual (SV) correction
can be cast into the form

dσBhabha
B+S+V

dΩ−
= dσBhabha

0

dΩ−

{
1 + 2α

π
(L− 1)

[
2 lnΔ+ 3

2

]

− 8α

π
ln

(
ctg

θ

2

)
lnΔ+ α

π
KBhabha

SV

}
, (10)

where the factor KBhabha
SV is given by

KBhabha
SV = −1 − 2Li2

(
sin2 θ

2

)
+ 2Li2

(
cos2 θ

2

)

+ 1

(3 + c2)2

[
π2

3

(
2c4 − 3c3 − 15c

)

Fig. 5 Examples of Feynman diagrams for real and virtual NLO QED
initial-state corrections to the s-channel contribution of the Bhabha
process

+ 2
(
2c4 − 3c3 + 9c2 + 3c+ 21

)
ln2

(
sin

θ

2

)

− 4
(
c4 + c2 − 2c

)
ln2

(
cos

θ

2

)

− 4
(
c3 + 4c2 + 5c+ 6

)
ln2

(
tg
θ

2

)

+ 2
(
c3 − 3c2 + 7c− 5

)
ln

(
cos

θ

2

)

+ 2
(
3c3 + 9c2 + 5c+ 31

)
ln

(
sin

θ

2

)]
, (11)

and depends on the scattering angle, due to the contribution
from initial–final-state interference and box diagrams (see
Fig. 6). It is worth noticing that the SV correction contains a
leading logarithmic (LL) part enhanced by the collinear log-
arithm L = ln(s/m2

e). Among the virtual corrections there
is also a numerically important effect due to vacuum polar-
isation in the photon propagator. Its contribution is omitted
in (11) but can be taken into account in the standard way
by insertion of the resummed vacuum-polarisation operators
in the photon propagators of the Born-level Bhabha ampli-
tudes.

The differential cross section of the single hard brems-
strahlung process

e+(p+)+ e−(p−)→ e+(p′+)+ e−(p′−)+ γ (k)

for scattering angles up to corrections of order me/E reads

dσBhabha
hard = α3

2π2s
Reēγ dΓeēγ ,

dΓeēγ = d3p′+d3p′−d3k

ε′+ε′−k0
δ(4)(p+ + p− − p′+ − p′− − k),

Reēγ = WT

4
− m2

e

(χ ′+)2

(
s

t
+ t

s
+ 1

)2

− m2
e

(χ ′−)2

(
s

t1
+ t1

s
+ 1

)2

− m2
e

χ2+

(
s1

t
+ t

s1
+ 1

)2

− m2
e

χ2−

(
s1

t1
+ t1

s1
+ 1

)2

, (12)

where

W = s

χ+χ−
+ s1

χ ′+χ ′−
− t1

χ ′+χ+
− t

χ ′−χ−
+ u

χ ′+χ−

Fig. 6 Feynman diagrams for the NLO QED box corrections to the
s-channel contribution of the Bhabha process
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+ u1

χ ′−χ+
,

T = ss1(s
2 + s2

1)+ t t1(t
2 + t21 )+ uu1(u

2 + u2
1)

ss1t t1
,

and the invariants are defined as

s1 = 2p′−p′+, t = −2p−p′−, t1 = −2p+p′+,

u= −2p−p′+, u1 = −2p+p′−, χ± = kp±,

χ ′± = kp′±.

NLO QED radiative corrections to the two-photon anni-
hilation channel were obtained in [96–99], while weak cor-
rections were computed in [100].

In the one-loop approximation the part of the differential
cross section with the Born-like kinematics reads

dσγγ

B+S+V

dΩ1

= dσγγ

0

dΩ1

{

1 + α

π

[
(L− 1)

(
2 lnΔ+ 3

2

)
+K

γγ

SV

]}

,

K
γγ

SV = π2

3
+ 1 − c2

1

2(1 + c2
1)

[(
1 + 3

2

1 + c1

1 − c1

)
ln

1 − c1

2

+
(

1 + 1 − c1

1 + c1
+ 1

2

1 + c1

1 − c1

)
ln2 1 − c1

2

+ (c1 → −c1)

]
,

c1 = cos θ1, θ1 = q̂1p−. (13)

In addition, the three-photon production process

e+(p+)+ e−(p−)→ γ (q1)+ γ (q2)+ γ (q3)

must be included. Its cross section is given by

dσ e+e−→3γ = α3

8π2s
R3γ dΓ3γ ,

R3γ = s
χ2

3 + (χ ′
3)

2

χ1χ2χ
′
1χ

′
2

− 2m2
e

[
χ2

1 + χ2
2

χ1χ2(χ
′
3)

2
+ (χ ′

1)
2 + (χ ′

2)
2

χ ′
1χ

′
2χ

2
3

]

+ (cyclic permutations),

dΓ3γ = d3q1d3q2d3q3

q0
1q

0
2q

0
3

δ(4)(p+ + p− − q1 − q2 − q3),

(14)

where

χi = qip−, χ ′
i = qip+, i = 1,2,3.

The process has to be treated as a radiative correction to
the two-photon production. The energy of the third pho-
ton should exceed the soft-photon energy threshold ΔE. In
practice, the tree photon contribution, as well as the radia-
tive Bhabha process e+e− → e+e−γ , should be simulated
with the help of a MC event generator in order to take into
account the proper experimental criteria of a given event se-
lection.

In addition to the corrections discussed above, also the ef-
fect of vacuum polarisation, due to the insertion of fermion
loops inside the photon propagators, must be included in the
precise calculation of the Bhabha scattering cross section.
Its theoretical treatment, which faces the non-trivial prob-
lem of the non-perturbative contribution due to hadrons, is
addressed in detail in Sect. 6. However, numerical results for
such a correction are presented in Sects. 2.6 and 2.8.

In Fig. 7 the cross sections of the Bhabha and two-photon
production processes in LO and NLO approximation are
shown as a function of the c.m. energy between

√
s 
 2mπ

and
√
s 
 10 GeV (upper panel). The results were obtained

imposing the following cuts for the Bhabha process:

θmin± = 45◦, θmax± = 135◦,

Emin± = 0.3
√
s, ξmax = 10◦,

(15)

where θ
min,max
± are the angular acceptance cuts, Emin± are

the minimum energy thresholds for the detection of the
final-state electron/positron and ξmax is the maximum e+e−
acollinearity. For the photon pair-production processes we

Fig. 7 Cross sections of the processes e+e− → e+e− and
e+e− → γ γ in LO and NLO approximation as a function of the c.m.
energy at meson factories (upper panel). In the lower panel, the rela-
tive contribution due to the NLO QED corrections (in per cent) to the
two processes is shown
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used correspondingly:

θmin
γ = 45◦, θmax

γ = 135◦,

Emin
γ = 0.3

√
s, ξmax = 10◦,

(16)

where, as in (15), θmin,max
γ are the angular acceptance cuts,

Emin
γ is the minimum energy threshold for the detection of

at least two photons and ξmax is the maximum acollinear-
ity between the most energetic and next-to-most energetic
photon.

The cross sections display the typical 1/s QED behav-
iour. The relative effect of NLO corrections is shown in the
lower panel. It can be seen that the NLO corrections are
largely negative and increase with increasing c.m. energy,
because of the growing importance of the collinear loga-
rithm L = ln(s/m2

e). The corrections to e+e− → γ γ are
about one half of those to Bhabha scattering, because of the
absence of final-state radiation effects in photon pair pro-
duction.

2.3 NNLO corrections
to the Bhabha scattering cross section

Beyond the NLO corrections discussed in the previous sec-
tion, in recent years a significant effort was devoted to the
calculation of the perturbative corrections to the Bhabha
process at NNLO in QED.

The calculation of the full NNLO corrections to the
Bhabha scattering cross section requires three types of in-
gredients: (i) the two-loop matrix elements for the e+e− →
e+e− process; (ii) the one-loop matrix elements for the
e+e− → e+e−γ process, both in the case in which the addi-
tional photon is soft or hard; (iii) the tree-level matrix el-
ements for e+e− → e+e−γ γ , with two soft or two hard
photons, or one soft and one hard photon. Also the process
e+e− → e+e−e+e−, with one of the two e+e− pairs re-
maining undetected, contributes to the Bhabha signature at
NNLO. Depending on the kinematics, other final states like,
e.g., e+e−μ+μ− or those with hadrons are also possible.

The advent of new calculational techniques and a deeper
understanding of the IR structure of unbroken gauge theo-
ries, such as QED or QCD, made the calculation of the com-
plete set of two-loop QED corrections possible. The history
of this calculation will be presented in Sect. 2.3.1.

Some remarks on the one-loop matrix elements with
three particles in the final state are in order now. The dia-
grams involving the emission of a soft photon are known
and they were included in the calculations of the two-loop
matrix elements, in order to remove the IR soft divergences.
However, although the contributions due to a hard collinear
photon are taken into account in logarithmic accuracy by the
MC generators, a full calculation of the diagrams involving
a hard photon in a general phase–space configuration is still

missing. In Sect. 2.3.2, we shall comment on the possible
strategies which can be adopted in order to calculate these
corrections.1

As a general comment, it must be noticed that the fixed-
order corrections calculated up to NNLO are taken into ac-
count at the LL, and, partially, next-to-leading-log (NLL)
level in the most precise MC generators, which include, as
will be discussed in Sects. 2.4 and 2.5, the logarithmically
enhanced contributions of soft and collinear photons at all
orders in perturbation theory.

Concerning the tree-level graphs with four particles in the
final state, the production of a soft e+e− pair was consid-
ered in the literature by the authors of [102] by following
the evaluation of pair production [103, 104] within the cal-
culation of the O(α2L) single-logarithmic accurate small-
angle Bhabha cross section [43], and it is included in the
two-loop calculation (see Sect. 2.3.1). New results on lepton
and hadron pair corrections, which are at present approxi-
mately included in the available Bhabha codes, are presented
in Sect. 2.3.3.

2.3.1 Virtual corrections for the e+e− → e+e− process

The calculation of the virtual two-loop QED corrections to
the Bhabha scattering differential cross section was carried
out in the last 10 years. This calculation was made possi-
ble by an improvement of the techniques employed in the
evaluation of multi-loop Feynman diagrams. An essential
tool used to manage the calculation is the Laporta algorithm
[105–108], which enables one to reduce a generic combina-
tion of dimensionally-regularised scalar integrals to a com-
bination of a small set of independent integrals called the
“Master Integrals” (MIs) of the problem under considera-
tion. The calculation of the MIs is then pursued by means of
a variety of methods. Particularly important are the differ-
ential equations method [109–115] and the Mellin–Barnes
techniques [116–125]. Both methods proved to be very use-
ful in the evaluation of virtual corrections to Bhabha scatter-
ing because they are especially effective in problems with a
small number of different kinematic parameters. They both
allow one to obtain an analytic expression for the integrals,
which must be written in terms of a suitable functional basis.
A basis which was extensively employed in the calculation
of multi-loop Feynman diagrams of the type discussed here
is represented by the Harmonic Polylogarithms [126–134]
and their generalisations. Another fundamental achievement
which enabled one to complete the calculation of the QED
two-loop corrections was an improved understanding of the
IR structure of QED. In particular, the relation between the

1As emphasised in Sects. 2.8 and 2.9, the complete calculation of this
class of corrections became available [101] during the completion of
the present work.
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collinear logarithms in which the electron mass me plays the
role of a natural cut-off and the corresponding poles in the
dimensionally-regularised massless theory was extensively
investigated in [135–138].

The first complete diagrammatic calculation of the two-
loop QED virtual corrections to Bhabha scattering can be
found in [139]. However, this result was obtained in the fully
massless approximation (me = 0) by employing dimen-
sional regularisation (DR) to regulate both soft and collinear
divergences. Today, the complete set of two-loop corrections
to Bhabha scattering in pure QED have been evaluated using
me as a collinear regulator, as required in order to include
these fixed-order calculations in available Monte Carlo event
generators. The Feynman diagrams involved in the calcula-
tion can be divided in three gauge-independent sets: (i) dia-
grams without fermion loops (“photonic” diagrams), (ii) di-
agrams involving a closed electron loop, and (iii) diagrams
involving a closed loop of hadrons or a fermion heavier than
the electron. Some of the diagrams belonging to the afore-
mentioned sets are shown in Figs. 8–11. These three sets are
discussed in more detail below.

Fig. 8 Some of the diagrams belonging to the class of the “photonic”
NNLO corrections to the Bhabha scattering differential cross section.
The additional photons in the final state are soft

Fig. 9 Some of the diagrams belonging to the class of the “electron
loop” NNLO corrections. The additional photons or electron–positron
pair in the final state are soft

Photonic corrections A large part of the NNLO photonic
corrections can be evaluated in a closed analytic form, re-
taining the full dependence on me [140], by using the La-
porta algorithm for the reduction of the Feynman diagrams
to a combination of MIs, and then the differential equations
method for their analytic evaluation. With this technique it
is possible to calculate, for instance, the NNLO corrections
to the form factors [141–144]. However, a calculation of
the two-loop photonic boxes retaining the full dependence
on me seems to be beyond the reach of this method. This
is due to the fact that the number of MIs belonging to the
same topology is, in some cases, large. Therefore, one must
solve analytically large systems of first-order ordinary lin-
ear differential equations; this is not possible in general. Al-
ternatively, in order to calculate the different MIs involved,
one could use the Mellin–Barnes techniques, as shown in
[122, 123, 144–147], or a combination of both methods. The
calculation is very complicated and a full result is not avail-
able yet.2 However, the full dependence on me is not phe-

Fig. 10 Some of the diagrams belonging to the class of the “heavy
fermion” NNLO corrections. The additional photons in the final state
are soft

Fig. 11 Some of the diagrams belonging to the class of the “hadronic”
corrections. The additional photons in the final state are soft

2For the planar double box diagrams, all the MIs are known [145] for
small me , while the MIs for the non-planar double box diagrams are
not completed.
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nomenologically relevant. In fact, the physical problem ex-
hibits a well defined mass hierarchy. The mass of the elec-
tron is always very small compared to the other kinematic
invariants and can be safely neglected everywhere, with the
exception of the terms in which it acts as a collinear regula-
tor. The ratio of the photonic NNLO corrections to the Born
cross section is given by

dσ (2,PH)

dσ (Born)
=

(
α

π

)2 2∑

i=0

δ(PH,i)(Le)
i +O

(
m2
e

s
,
m2
e

t

)
, (17)

where Le = ln (s/m2
e) and the coefficients δ(PH,i) contain in-

frared logarithms and are functions of the scattering angle θ .
The approximation given by (17) is sufficient for a phe-
nomenological description of the process.3 The coefficients
of the double and single collinear logarithm in (17), δ(PH,2)

and δ(PH,1), were obtained in [148, 149]. However, the pre-
cision required for luminosity measurements at e+e− col-
liders demands the calculation of the non-logarithmic coef-
ficient, δ(PH,0). The latter was obtained in [135, 136] by re-
constructing the differential cross section in the s �m2

e �= 0
limit from the dimensionally-regularised massless approx-
imation [139]. The main idea of the method developed in
[135, 136] is outlined below: As far as the leading term in
the small electron mass expansion is considered, the differ-
ence between the massive and the dimensionally-regularised
massless Bhabha scattering can be viewed as a difference
between two regularisation schemes for the infrared diver-
gences. With the known massless two-loop result at hand,
the calculation of the massive one is reduced to construct-
ing the infrared matching term which relates the two above
mentioned regularisation schemes. To perform the matching
an auxiliary amplitude is constructed, which has the same
structure of the infrared singularities but is sufficiently sim-
ple to be evaluated at least at the leading order in the small
mass expansion. The particular form of the auxiliary ampli-
tude is dictated by the general theory of infrared singularities
in QED and involves the exponent of the one-loop correc-
tion as well as the two-loop corrections to the logarithm of
the electron form factor. The difference between the full and
the auxiliary amplitudes is infrared finite. It can be evalu-
ated by using dimensional regularisation for each amplitude
and then taking the limit of four space–time dimensions. The
infrared divergences, which induce the asymptotic depen-
dence of the virtual corrections on the electron and photon
masses, are absorbed into the auxiliary amplitude while the
technically most nontrivial calculation of the full amplitude

3It can be shown that the terms suppressed by a positive power of m2
e/s

do not play any phenomenological role already at very low c.m. en-
ergies,

√
s ∼ 10 MeV. Moreover, the terms m2

e/t (or m2
e/u) become

important in the extremely forward (backward) region, unreachable for
the experimental setup.

is performed in the massless approximation. The matching
of the massive and massless results is then necessary only
for the auxiliary amplitude and is straightforward. Thus the
two-loop massless result for the scattering amplitude along
with the two-loop massive electron form factor [150] are
sufficient to obtain the two-loop photonic correction to the
differential cross section in the small electron mass limit.

A method based on a similar principle was subsequently
developed in [137, 138]; the authors of [138] confirmed the
result of [135, 136] for the NNLO photonic corrections to
the Bhabha scattering differential cross section.

Electron loop corrections The NNLO electron loop cor-
rections arise from the interference of two-loop Feynman
diagrams with the tree-level amplitude as well as from the
interference of one-loop diagrams, as long as one of the
diagrams contributing to each term involves a closed elec-
tron loop. This set of corrections presents a single two-loop
box topology and is therefore technically less challenging
to evaluate with respect to the photonic correction set. The
calculation of the electron loop corrections was completed
a few years ago [151–154]; the final result retains the full
dependence of the differential cross section on the elec-
tron mass me . The MIs involved in the calculation were
identified by means of the Laporta algorithm and evaluated
with the differential equation method. As expected, after UV
renormalisation the differential cross section contained only
residual IR poles which were removed by adding the con-
tribution of the soft-photon emission diagrams. The result-
ing NNLO differential cross section could be conveniently
written in terms of 1- and 2-dimensional Harmonic Poly-
logarithms (HPLs) of maximum weight three. Expanding
the cross section in the limit s, |t | � m2

e , the ratio of the
NNLO corrections to the Born cross section can be written
as in (17):

dσ (2,EL)

dσ (Born)
=

(
α

π

)2 3∑

i=0

δ(EL,i)(Le)
i +O

(
m2
e

s
,
m2
e

t

)
. (18)

Note that the series now contains a cubic collinear loga-
rithm. This logarithm appears, with an opposite sign, in the
corrections due to the production of an electron–positron
pair (the soft-pair production was considered in [102]).
When the two contributions are considered together in the
full NNLO, the cubic collinear logarithms cancel. There-
fore, the physical cross section includes at most a double
logarithm, as in (17).

The explicit expression of all the coefficients δ(EL,i), ob-
tained by expanding the results of [151–153], was confirmed
by two different groups [138, 154]. In [138] the small elec-
tron mass expansion was performed within the soft-collinear
effective theory (SCET) framework, while the analysis in
[154] employed the asymptotic expansion of the MIs.
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Heavy-flavor and hadronic corrections Finally, we con-
sider the corrections originating from two-loop Feynman di-
agrams involving a heavy-flavour fermion loop.4 Since this
set of corrections involves one more mass scale with respect
to the corrections analysed in the previous sections, a direct
diagrammatic calculation is in principle a more challeng-
ing task. Recently, in [138] the authors applied their tech-
nique based on SCET to Bhabha scattering and obtained
the heavy-flavour NNLO corrections in the limit in which
s, |t |, |u| � m2

f � m2
e , where m2

f is the mass of the heavy
fermion running in the loop. Their result was very soon con-
firmed in [154] by means of a method based on the asymp-
totic expansion of Mellin–Barnes representations of the MIs
involved in the calculation. However, the results obtained
in the approximation s, |t |, |u| � m2

f � m2
e cannot be ap-

plied to the case in which
√
s < mf (as in the case of a tau

loop at
√
s ∼ 1 GeV), and they apply only to a relatively

narrow angular region perpendicular to the beam direction
when

√
s is not very much larger than mf (as in the case

of top-quark loops at the ILC). It was therefore necessary to
calculate the heavy-flavour corrections to Bhabha scattering
assuming only that the electron mass is much smaller than
the other scales in the process, but retaining the full depen-
dence on the heavy mass, s, |t |, |u|,m2

f �m2
e .

The calculation was carried out in two different ways: in
[155, 156] it was done analytically, while in [157, 158] it
was done numerically with dispersion relations.

The technical problem of the diagrammatic calculation of
Feynman integrals with four scales can be simplified by con-
sidering carefully, once more, the structure of the collinear
singularities of the heavy-flavour corrections. The ratio of
the NNLO heavy-flavour corrections to the Born cross sec-
tion is given by

dσ (2,HF)

dσ (Born)
=

(
α

π

)2 1∑

i=0

δ(HF,i)(Le)
i +O

(
m2
e

s
,
m2
e

t

)
, (19)

where now the coefficients δ(i) are functions of the scat-
tering angle θ and, in general, of the mass of the heavy
fermions involved in the virtual corrections. It is possible
to prove that, in a physical gauge, all the collinear singulari-
ties factorise and can be absorbed in the external field renor-
malisation [159]. This observation has two consequences
in the case at hand. The first one is that box diagrams
are free of collinear divergences in a physical gauge; since
the sum of all boxes forms a gauge independent block, it
can be concluded that the sum of all box diagrams is free
of collinear divergences in any gauge. The second conse-
quence is that the single collinear logarithm in (19) arises

4Here by “heavy flavour” we mean a muon or a τ -lepton, as well as a
heavy quark, like the top, the b- or the c-quark, depending on the c.m.
energy range that we are considering.

from vertex corrections only. Moreover, if one chooses on-
shell UV renormalisation conditions, the irreducible two-
loop vertex graphs are free of collinear singularities. There-
fore, among all the two-loop diagrams contributing to the
NNLO heavy-flavour corrections to Bhabha scattering, only
the reducible vertex corrections are logarithmically diver-
gent in the me → 0 limit.5 The latter are easily evaluated
even if they depend on two different masses. By exploit-
ing these two facts, one can obtain the NNLO heavy-flavour
corrections to the Bhabha scattering differential cross sec-
tion assuming only that s, |t |, |u|,m2

f � m2
e . In particular,

one can set me = 0 from the beginning in all the two-loop
diagrams with the exception of the reducible ones. This pro-
cedure allows one to effectively eliminate one mass scale
from the two-loop boxes, so that these graphs can be evalu-
ated with the techniques already employed in the diagram-
matic calculation of the electron loop corrections.6 In the
case in which the heavy-flavour fermion is a quark, it is
straightforward to modify the calculation of the two-loop
self-energy diagrams to obtain the mixed QED-QCD cor-
rections to Bhabha scattering [156].

An alternative approach to the calculation of the heavy-
flavour corrections to Bhabha scattering is based on disper-
sion relations. This method also applies to hadronic cor-
rections. The hadronic and heavy fermion corrections to
the Bhabha-scattering cross section can be obtained by ap-
propriately inserting the renormalised irreducible photon
vacuum-polarisation function Π in the photon propagator:

gμν

q2 + iδ
→ gμα

q2 + iδ

(
q2gαβ − qαqβ

)
Π

(
q2) gβν

q2 + iδ
. (20)

The vacuum polarisation Π can be represented by a once-
subtracted dispersion integral [12],

Π
(
q2) = −q2

π

∫ ∞

4M2
dz

ImΠ(z)

z

1

q2 − z+ iδ
. (21)

The contributions to Π may then be determined from a
(properly normalised) production cross section by the op-
tical theorem [163],

ImΠhad(z)= −α

3
R(z). (22)

In this way, the hadronic vacuum polarisation may be ob-
tained from the experimental data for R:

R(z)= σ 0
had(z)

(4πα2)/(3z)
, (23)

where σ 0
had(z) ≡ σ({e+e− → γ � → hadrons}; z). In the

low-energy region the inclusive experimental data may be

5Additional collinear logarithms arise also from the interference of
one-loop diagrams in which at least one vertex is present.
6The necessary MIs can be found in [156, 160–162].
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used [35, 164]. Around a narrow hadronic resonance with
mass Mres and width Γ e+e−

res one may use the relation

Rres(z)= 9π

α2
MresΓ

e+e−
res δ

(
z−M2

res

)
, (24)

and in the remaining regions the perturbative QCD predic-
tion [165]. Contributions to Π arising from leptons and
heavy quarks with mass mf , charge Qf and colour Cf can
be computed directly in perturbation theory. In the lowest
order it reads

Rf (z;mf )=Q2
f Cf

(
1 + 2

m2
f

z

)
√

1 − 4
m2
f

z
. (25)

As a result of the above formulas, the massless photon prop-
agator gets replaced by a massive propagator, whose effec-
tive mass z is subsequently integrated over:

gμν

q2 + iδ
→ α

3π

∫ ∞

4M2

dzRtot(z)

z(q2 − z+ iδ)

(
gμν − qμqν

q2 + iδ

)
,

(26)

where Rtot(z) contains hadronic and leptonic contributions.
For self-energy corrections to Bhabha scattering at one-

loop order, the dispersion relation approach was first em-
ployed in [166]. Two-loop applications of this technique,
prior to Bhabha scattering, are the evaluation of the hadronic
vertex correction [167] and of two-loop hadronic corrections
to the lifetime of the muon [168]. The approach was also ap-
plied to the evaluation of the two-loop form factors in QED
in [169–171].

The fermionic and hadronic corrections to Bhabha scat-
tering at one-loop accuracy come only from the self-energy
diagram; see for details Sect. 6. At two-loop level there are
reducible and irreducible self-energy contributions, vertices
and boxes. The reducible corrections are easily treated. For
the evaluation of the irreducible two-loop diagrams, it is ad-
vantageous that they are one-loop diagrams with self-energy
insertions because the application of the dispersion tech-
nique as described here is possible.

The kernel function for the irreducible two-loop vertex
was derived in [167] and verified e.g. in [158]. The three
kernel functions for the two-loop box functions were first
obtained in [157, 158, 172] and verified in [173]. A complete
collection of all the relevant formulae may be found in [158],
and the corresponding Fortran code bhbhnnlohf is pub-
licly available at the web page [174] www-zeuthen.desy.de/
theory/research/bhabha/.

In [158], the dependence of the various heavy fermion
NNLO corrections on ln(s/m2

f ) for s, |t |, |u| � m2
f was

studied. The irreducible vertex behaves (before a combina-
tion with real pair emission terms) like ln3(s/m2

f ) [167],
while the sum of the various infrared divergent diagrams as

a whole behaves like ln(s/m2
f ) ln(s/m2

e). This is in accor-
dance with (19), but the limit plays no effective role at the
energies studied here.

As a result of the efforts of recent years we now have
at least two completely independent calculations for all the
non-photonic virtual two-loop contributions. The net result,
as a ratio of the NNLO corrections to the Born cross section
in per mill, is shown in Fig. 12 for KLOE and in Fig. 13
for BaBar/Belle.7 While the non-photonic corrections stay
at one per mill or less for KLOE, they reach a few per mill
at the BaBar/Belle energy range. The NNLO photonic cor-
rections are the dominant contributions and amount to some

Fig. 12 Two-loop photonic and non-photonic corrections to Bhabha
scattering at

√
s = 1.02 GeV, normalised to the QED tree-level cross

section, as a function of the electron polar angle; no cuts; the parame-
terisations of Rhad from [175] and [35, 164, 165] are very close to each
other

Fig. 13 Two-loop photonic and non-photonic corrections to Bhabha
scattering at

√
s = 10.56 GeV, normalised to the QED tree-level cross

section, as a function of the electron polar angle; no cuts; the parame-
terisations of Rhad is from [175]

7The pure self-energy corrections deserve a special discussion and are
thus omitted in the plots.

http://www-zeuthen.desy.de/theory/research/bhabha/
http://www-zeuthen.desy.de/theory/research/bhabha/
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per mill, both at φ and B factories. However, as already em-
phasised, the bulk of both photonic and non-photonic cor-
rections is incorporated into the generators used by the ex-
perimental collaborations. Hence, the consistent comparison
between the results of NNLO calculations and the MC pre-
dictions at the same perturbative level enables one to assess
the theoretical accuracy of the luminosity tools, as will be
discussed quantitatively in Sect. 2.8.

2.3.2 Fixed-order calculation of the hard-photon emission
at one loop

The one-loop matrix element for the process e+e− →
e+e−γ is one of the contributions to the complete set of
NNLO corrections to Bhabha scattering. Its evaluation re-
quires the nontrivial computation of one-loop tensor inte-
grals associated with pentagon diagrams.

According to the standard Passarino–Veltman (PV) ap-
proach [176], one-loop tensor integrals can be expressed in
terms of MIs with trivial numerators that are independent
of the loop variable, each multiplied by a Lorentz structure
depending only on combinations of the external momenta
and the metric tensor. The achievement of the complete PV-
reduction amounts to solving a nontrivial system of equa-
tions. Due to its size, it is reasonable to replace the analytic
techniques by numerical tools. It is difficult to implement
the PV-reduction numerically, since it gives rise to Gram de-
terminants. The latter naturally arise in the procedure of in-
verting a system and they can vanish at special phase–space
points. This fact requires a proper modification of the reduc-
tion algorithm [177–183]. A viable solution for the complete
algebraic reduction of tensor-pentagon (and tensor-hexagon)
integrals was formulated in [184–186], by exploiting the al-
gebra of signed minors [187]. In this approach the cancella-
tion of powers of inverse Gram determinants was performed
recently in [188, 189].

Alternatively, the computation of the one-loop five-point
amplitude e+e− → e+e−γ can be performed by using
generalised-unitarity cutting rules (see [190] for a detailed
compilation of references). In the following we propose
two ways to achieve the result, via an analytical and via a
semi-numerical method. The application of generalised cut-
ting rules as an on-shell method of calculation is based on
two fundamental properties of scattering amplitudes: (i) an-
alyticity, according to which any amplitude is determined
by its singularity structure [163, 191–194]; and (ii) uni-
tarity, according to which the residues at the singularities
are determined by products of simpler amplitudes. Turning
these properties into a tool for computing scattering ampli-
tudes is possible because of the underlying representation of
the amplitude in terms of Feynman integrals and their PV-
reduction, which grants the existence of a representation of
any one-loop amplitudes as linear combination of MIs, each

multiplied by a rational coefficient. In the case of e+e− →
e+e−γ , pentagon-integrals may be expressed, through PV-
reduction, by a linear combination of 17 MIs (including
3 boxes, 8 triangles, 5 bubbles and 1 tadpole). Since the re-
quired MIs are analytically known [179, 185, 195–199], the
determination of their coefficients is needed for reconstruct-
ing the amplitude as a whole. Matching the generalised cuts
of the amplitude with the cuts of the MIs provides an effi-
cient way to extract their (rational) coefficients from the am-
plitude itself. In general the fulfilment of multiple-cut con-
ditions requires loop momenta with complex components.
The effect of the cut conditions is to freeze some or all of
its components, depending on the number of the cuts. With
the quadruple-cut [200] the loop momentum is completely
frozen, yielding the algebraic determination of the coeffi-
cients of n-point functions with n≥ 4. In cases where fewer
than four denominators are cut, like triple-cut [201–203],
double-cut [202, 204–208] and single-cut [209], the loop
momentum is not frozen: the free components are left over
as phase–space integration variables.

For each multiple-cut, the evaluation of the phase–space
integral would generate, in general, logarithms and a non-
logarithmic term. The coefficient of a given n-point MI
finally appears in the non-logarithmic term of the corre-
sponding n-particle cut, where all the internal lines are on-
shell (while the logarithms correspond to the cuts of higher-
point MIs which share that same cut). Therefore all the co-
efficients of MIs can be determined in a top-down algo-
rithm, starting from the quadruple-cuts for the extraction of
the four-point coefficients, and following with the triple-,
double- and single-cuts for the coefficients of three-, two-
and one-point, respectively. The coefficient of an n-point MI
(n ≥ 2) can also be obtained by specialising the generating
formulas given in [210] for general one-loop amplitudes to
the case at hands.

Instead of the analytic evaluation of the multiple-cut
phase–space integrals, it is worth considering the feasi-
bility of computing the process e+e− → e+e−γ with a
semi-numerical technique by now known as OPP-reduction
[211, 212], based on the decomposition of the numerator of
any one-loop integrand in terms of its denominators [213–
216]. Within this approach the coefficients of the MIs can
be found simply by solving a system of numerical equa-
tions, avoiding any explicit integration. The OPP-reduction
algorithm exploits the polynomial structures of the integrand
when evaluated at values of the loop-momentum fulfilling
multiple cut-conditions: (i) for each n-point MI one con-
siders the n-particle cut obtained by setting all the prop-
agating lines on-shell; (ii) such a cut is associated with a
polynomial in terms of the free components of the loop-
momentum, which corresponds to the numerator of the in-
tegrand evaluated at the solution of the on-shell conditions;
(iii) the constant-term of that polynomial is the coefficient
of the MI.
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Hence the difficult task of evaluating one-loop Feynman
integrals is reduced to the much simpler problem of polyno-
mial fitting, recently optimised by using a projection tech-
nique based on the Discrete Fourier Transform [217].

In general the result of a dimensional-regulated ampli-
tude in the 4-dimensional limit, with D (= 4 − 2ε) the reg-
ulating parameter, is expected to contain (poly)logarithms,
often referred to as the cut-constructible term, and a pure
rational term. In a later paper [218], which completed the
OPP-method, the rising of the rational term was attributed
to two potential sources (of UV-divergent integrals): one,
defined as R1, due to the D-dimensional completion of
the 4-dimensional contribution of the numerator; a second
one, called R2, due to the (−2ε)-dimensional algebra of
Dirac-matrices. Therefore in the OPP-approach the calcula-
tion of the one-loop amplitude e+e− → e+e−γ can proceed
through two computational stages:

1. the coefficients of the MIs that are responsible both for
the cut-constructible and for the R1-rational terms can
be determined by applying the OPP-reduction discussed
above [211, 212, 217];

2. the R2-rational term can be computed by using addi-
tional tree-level-like diagrammatic rules, very much re-
sembling the computation of the counter terms needed
for the renormalisation of UV-divergences [218].

The numerical influence of the radiative loop diagrams,
including the pentagon diagrams, is expected not to be par-
ticularly large. However, the calculation of such corrections
would greatly help to assess the physical precision of exist-
ing luminosity programs.8

2.3.3 Pair corrections

As was mentioned in the paragraph on virtual heavy-flavour
and hadronic corrections of Sect. 2.3.1, these virtual correc-
tions have to be combined with real corrections in order to
get physically sensible results. The virtual NNLO electron,
muon, tau and pion corrections have to be combined with the
emission of real electron, muon, tau and pion pairs, respec-
tively. The real pair-production cross sections are finite, but
cut dependent. We consider here the pion pair production as
it is the dominant part of the hadronic corrections and can
serve as an estimate of the role of the whole set of hadronic
corrections. The description of all relevant hadronic contri-
butions is a much more involved task and will not be cov-
ered in this review. As was first explicitly shown for Bhabha
scattering in [102] for electron pairs, and also discussed

8As already remarked, the exact calculation of one-loop corrections
to hard-photon emission in Bhabha scattering became available [101]
during the completion of the report, exactly according to the methods
described in the present section.

in [158], there appear exact cancellations of terms of the or-
der ln3(s/m2

e) or ln3(s/m2
f ), so that the leading terms are at

most of order ln2(s/m2
e), ln2(s/m2

f ).
In Table 2 we show NNLO lepton and pion pair con-

tributions with typical kinematical cuts for the KLOE and
BaBar experiments. Besides contributions from unresolved
pair emissions σpairs, we also add unresolved real hard-
photon emission contributions σh. The corrections σpairs

from fermions have been calculated with the Fortran pack-
age HELAC-PHEGAS [219–222], the real pion corrections
with EKHARA [223, 224], the NNLO hard-photonic cor-
rections σh with a program [225] based on the generator
BHAGEN-1PH [226]. The latter depend, technically, on the
soft-photon cut-off Emin

γ = ω. After adding up with σv+s ,
the sum of the two σv+s+h is independent of that; in fact
here we use ω/Ebeam = 10−4. In order to cover also pion
pair corrections σv+s is determined with an updated version
of the Fortran package bhbhnnlohf [158, 174]. The cuts ap-
plied in Table 2 for the KLOE experiment are

–
√
s = 1.02 GeV,

– Emin = 0.4 GeV,
– 55◦ < θ± < 125◦,
– ξmax = 9◦,

and for the BaBar experiment

–
√
s = 10.56 GeV,

– | cos(θ±)| < 0.7 and | cos(θ+)| < 0.65 or | cos(θ−)| <
0.65,

– |p+|/Ebeam > 0.75 and |p−|/Ebeam > 0.5 or |p−|/Ebeam >

0.75 and |p+|/Ebeam > 0.5,

Table 2 The NNLO lepton and pion pair corrections to the Bhabha
scattering Born cross section σB : virtual corrections σv , soft and hard
real photon emissions σs, σh, and pair emission contributions σpairs.
The total pair correction cross sections are obtained from the sum
σs+v+h + σpairs. All cross sections, according to the cuts given in the
text, are given in nanobarns

σB σh σv+s σv+s+h σpairs

Electron pair corrections

KLOE 529.469 9.502 −11.567 −2.065 0.271

BaBar 6.744 0.246 −0.271 −0.025 0.017

Muon pair corrections

KLOE 529.469 1.494 −1.736 −0.241 –

BaBar 6.744 0.091 −0.095 −0.004 0.0005

Tau pair corrections

KLOE 529.469 0.020 −0.023 −0.003 –

BaBar 6.744 0.016 −0.017 −0.0007 < 10−7

Pion pair corrections

KLOE 529.469 1.174 −1.360 −0.186 –

BaBar 6.744 0.062 −0.065 −0.003 0.00003
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– ξ3d
max = 30◦.

Here Emin is the energy threshold for the final-state elec-
tron/positron, θ± are the electron/positron polar angles and
ξmax is the maximum allowed polar angle acollinearity:

ξ = ∣∣θ+ + θ− − 180◦∣∣, (27)

and ξ3d
max is the maximum allowed three dimensional acol-

linearity:

ξ3d =
∣∣∣∣arccos

(
p+ · p−
|p−||p+|

)
× 180◦

π
− 180◦

∣∣∣∣. (28)

For e+e− → e+e−μ+μ−, cuts are applied only to the e+e−
pair. In the case of e+e− → e+e−e+e−, all possible e±e∓
combinations are checked and if at least one pair fulfils the
cuts the event is accepted.

At KLOE the electron pair corrections contribute about
3 × 10−3 and at BaBar about 1 × 10−3, while all the other
contributions of pair production are even smaller. Like in
small-angle Bhabha scattering at LEP/SLC the pair correc-
tions [227] are largely dominated by the electron pair con-
tribution.

2.4 Multiple photon effects and matching
with NLO corrections

2.4.1 Universal methods
for leading logarithmic corrections

From inspection of (10) and (13) for the SV NLO QED cor-
rections to the cross section of the Bhabha scattering and
e+e− → γ γ process, it can be seen that large logarithms
L= ln(s/m2

e), due to collinear photon emission, are present.
Similar large logarithmic terms arise after integration of the
hard-photon contributions from the kinematical domains of
photon emission at small angles with respect to charged par-
ticles. For the energy range of meson factories the loga-
rithm is large numerically, i.e. L∼ 15 at the φ factories and
L∼ 20 at the B factories, and the corresponding terms give
the bulk of the total radiative correction. These contribu-
tions represent also the dominant part of the NNLO effects
discussed in Sect. 2.3. Therefore, to achieve the required
theoretical accuracy, the logarithmically enhanced contribu-
tions due to emission of soft and collinear photons must
be taken into account at all orders in perturbation theory.
The methods for the calculation of higher-order (HO) QED
corrections on the basis of the generators employed nowa-
days at flavour factories were already widely and success-
fully used in the 90s at LEP/SLC for electroweak tests of
the SM. They were adopted for the calculation of both the
small-angle Bhabha scattering cross section (necessary for
the high-precision luminosity measurement) and Z-boson
observables. Hence, the theory accounting for the control of

HO QED corrections at meson factories can be considered
particularly robust, having passed the very stringent tests of
the LEP/SLC era.

The most popular and standard methods to keep mul-
tiple photon effects under control are the QED Structure
Function (SF) approach [228–231] and Yennie–Frautschi–
Suura (YFS) exponentiation [232]. The former is used in
all the versions of the generator BabaYaga [233–235] and
MCGPJ [236] (albeit according to different realisations),
while the latter is the theoretical recipe adopted in BH-
WIDE [237]. Actually, analytical QED SFs D(x,Q2), valid
in the strictly collinear approximation, are implemented
in MCGPJ, whereas BabaYaga is based on a MC Parton
Shower (PS) algorithm to reconstruct D(x,Q2) numeri-
cally.

The structure function approach Let us consider the an-
nihilation process e−e+ → X, where X is some given fi-
nal state and σ0(s) its LO cross section. Initial-state (IS)
QED radiative corrections can be described according to
the following picture. Before arriving at the annihilation
point, the incoming electron (positron) of four-momentum
p−(+) radiates real and virtual photons. These photons,
due to the dynamical features of QED, are mainly radi-
ated along the direction of motion of the radiating par-
ticles, and their effect is mainly to reduce the original
four-momentum of the incoming electron (positron) to
x1(2)p−(+). After this pre-emission, the hard scattering
process e−(x1p−)e+(x2p+) → X takes place, at a reduced
squared c.m. energy ŝ = x1x2s. The resulting cross section,
corrected for IS QED radiation, can be represented in the
form [228–230]

σ(s)=
∫ 1

0
dx1 dx2D(x1, s)D(x2, s)σ0(x1x2s)Θ(cuts),

(29)

where D(x, s) is the electron SF, representing the probabil-
ity that an incoming electron (positron) radiates a collinear
photon, retaining a fraction x of its original momentum at
the energy scale Q2 = s, and Θ(cuts) stands for a rejection
algorithm taking care of experimental cuts. When consider-
ing photonic radiation only the non-singlet part of the SF is
of interest. If the running of the QED coupling constant is
neglected, the non-singlet part of the SF is the solution of
the following Renormalisation Group (RG) equation, anal-
ogous to the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi
(DGLAP) equation of QCD [238–240]:

s
∂

∂s
D(x, s)= α

2π

∫ 1

x

dz

z
P+(z)D

(
x

z
, s

)
, (30)

where P+(z) is the regularised Altarelli–Parisi (AP) split-
ting function for the process electron → electron + photon,
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given by

P+(z)= P(z)− δ(1 − z)

∫ 1

0
dx P (x),

P (z)= 1 + z2

1 − z
.

(31)

Equation (30) can be also transformed into an integral equa-
tion, subject to the boundary conditionD(x,m2

e)= δ(1−x):

D(x, s)= δ(1−x)+ α

2π

∫ s

m2
e

dQ2

Q2

∫ 1

x

dz

z
P+(z)D

(
x

z
,Q2

)
.

(32)

Equation (32) can be solved exactly by means of numer-
ical methods, such as the inverse Mellin transform method.
However, this derivation of D(x, s) turns out be problem-
atic in view of phenomenological applications. Therefore,
approximate (but very accurate) analytical representations
of the solution of the evolution equation are of major in-
terest for practical purposes. This type of solution was the
one typically adopted in the context of LEP/SLC phenom-
enology. A first analytical solution can be obtained in the
soft-photon approximation, i.e. in the limit x 
 1. This so-
lution, also known as Gribov–Lipatov (GL) approximation,
exponentiates the large logarithmic contributions of infrared
and collinear origin at all perturbative orders, but it does not
take into account hard-photon (collinear) effects. This draw-
back can be overcome by solving the evolution equation it-
eratively. At the n-th step of the iteration, one obtains the
O(αn) contribution to the SF for any value of x. By com-
bining the GL solution with the iterative one, in which the
soft-photon part has been eliminated in order to avoid dou-
ble counting, one can build a hybrid solution of the evolution
equation. It exploits all the positive features of the two kinds
of solutions and is not affected by the limitations intrinsic
to each of them. Two classes of hybrid solutions, namely
the additive and factorised ones, are known in the litera-
ture, and both were adopted for applications to LEP/SLC
precision physics. A typical additive solution, where the GL
approximation DGL(x, s) is supplemented by finite-order
terms present in the iterative solution, is given by [241]

DA(x, s)=
3∑

i=0

d
(i)
A (x, s),

d
(0)
A (x, s)= exp

[ 1
2β

( 3
4 − γE

)]

Γ
(
1 + 1

2β
)

1

2
β(1 − x)

1
2β−1,

d
(1)
A (x, s)= −1

4
β(1 + x),

d
(2)
A (x, s)= 1

32
β2

[
(1 + x)

(−4 ln(1 − x)+ 3 lnx
)

− 4
lnx

1 − x
− 5 − x

]
,

d
(3)
A (x, s)= 1

384
β3

{
(1 + x)

[
18ζ(2)− 6Li2(x) (33)

− 12 ln2(1 − x)
]

+ 1

1 − x

[
−3

2

(
1 + 8x + 3x2) lnx

+ 1

2

(
1 + 7x2) ln2 x − 12

(
1 + x2) lnx ln(1 − x)

− 6(x + 5)(1 − x) ln(1 − x)

− 1

4

(
39 − 24x − 15x2)

]}
,

where Γ is the Euler gamma-function, γE ≈ 0.5772 the
Euler–Mascheroni constant, ζ the Riemann ζ -function and
β is the large collinear factor

β = 2α

π

[
ln

(
s

m2
e

)
− 1

]
. (34)

Explicit examples of factorised solutions, which are ob-
tained by multiplying the GL solution by finite-order terms
in such a way that, order by order, the iterative contributions
are exactly recovered, can be found in [242]. For the calcu-
lation of HO corrections with a per mill accuracy analytical
SFs in additive and factorised form containing up to O(α3)

finite-order terms are sufficient and in excellent agreement.
They also agree with an accuracy much better than 0.1 with
the exact numerical solution of the QED evolution equation.
Explicit solutions up to the fifth order in α were calculated
in [243, 244].

The RG method described above was applied in [245]
for the treatment of LL QED radiative corrections to various
processes of interest for physics at meson factories. Such a
formulation was later implemented in the generator MCGPJ.
For example, according to [245], the Bhabha scattering cross
section, accounting for LL terms in all orders, O(αnLn),
n= 1,2, . . . , of perturbation theory, is given by

dσBhabha
LLA =

∑

a,b,c,d=e±,γ

∫ 1

z̄1

dz1

∫ 1

z̄2

dz2 D
str
ae−(z1)D

str
be+(z2)

× dσab→cd
0 (z1, z2)

×
∫ 1

ȳ1

dy1

Y1
D

frg
e−c

(
y1

Y1

)∫ 1

ȳ2

dy2

Y2
D

frg
e+d

(
y2

Y2

)

+O

(
α2L,α

m2
e

s

)
. (35)

Here dσab→cd
0 (z1, z2) is the differential LO cross section of

the process ab → cd , with energy fractions of the incoming
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particles being scaled by factors z1 and z2 with respect to
the initial electron and positron, respectively. In the notation
of [245], the electron SF Dstr

ab(z) is distinguished from the

electron fragmentation function Dfrg
ab (z) to point out the role

played by IS radiation (described by Dstr
ab(z)) with respect to

the one due to final-state radiation (described by D
frg
ab (z)).

However, because of their probabilistic meaning, the elec-
tron structure and fragmentation functions coincide. In (35)
the quantities Y1,2 are the energy fractions of particles c and
d with respect to the beam energy. Explicit expressions for
Y1,2 = Y1,2(z1, z2, cos θ) and other details on the kinematics
can be found in [245]. The lower limits of the integrals, z̄1,2

and ȳ1,2, should be defined according to the experimental
conditions of particle detection and kinematical constraints.
For the case of the e+e− → γ γ process one has to change
the master formula (35) by picking up the two-photon final
state. Formally this can be done by just choosing the proper
fragmentation functions, Dfrg

γ c and D
frg
γ d .

The photonic part of the non-singlet electron structure
(fragmentation) function in O(αnLn) considered in [245]
reads

D
NS,γ
ee (z)= δ(1 − z)+

n∑

i=1

(
α

2π
(L− 1)

)i 1

i!
[
P (0)
ee (z)

]⊗i
,

Dγ e(z)= α

2π
(L− 1)Pγ e(z)+O

(
α2L2),

Deγ (z)= α

2π
LPeγ (z)+O

(
α2L2),

P (0)
ee (z)=

[
1 + z2

1 − z

]

+

= lim
Δ→0

{
δ(1 − z)

(
2 lnΔ+ 3

2

)

+Θ(1 − z−Δ)
1 + z2

1 − z

}
,

[
P (0)
ee (z)

]⊗i =
∫ 1

z

dt

t
P (i−1)
ee (t)P (0)

ee

(
z

t

)
,

Pγ e(z)= z2 + (1 − z)2, Peγ (z)= 1 + (1 − z)2

z
.

(36)

Starting from the second order in α there appear also non-
singlet and singlet e+e− pair contributions to the structure
function:

DNS,e+e−
ee (z)= 1

3

(
α

2π
L

)2

P (1)
ee (z)+O

(
α3L3),

DS,e+e−
ee (z)= 1

2!
(
α

2π
L

)2

R(z)+O
(
α3L3),

R(z)= Peγ ⊗ Pγe(z)

= 1 − z

3z

(
4 + 7z+ 4z2) + 2(1 + z) ln z.

(37)

Note that radiation of a real pair, i.e. appearance of addi-
tional electrons and positrons in the final state, require the
application of nontrivial conditions of experimental particle
registration. Unambiguously, that can be done only within a
MC event generator based on four-particle matrix elements,
as already discussed in Sect. 2.3.

In the same way as in QCD, the LL cross sections depend
on the choice of the factorisation scale Q2 in the argument of
the large logarithm L= ln(Q2/m2

e), which is not fixed a pri-
ori by the theory. However, the scale should be taken of the
order of the characteristic energy transfer in the process un-
der consideration. Typical choices are Q2 = s, Q2 = −t and
Q2 = st/u. The first one is good for annihilation channels
like e+e− → μ+μ−, the second one is optimal for small-
angle Bhabha scattering where the t-channel exchange dom-
inates, see [246]. The last choice allows one to exponenti-
ate the leading contribution due to initial–final-state interfer-
ence [247] and is particularly suited for large-angle Bhabha
scattering in QED. The option Q2 = st/u is adopted in all
the versions of the generator BabaYaga. Reduction of the
scale dependence can be achieved by taking into account
next-to-leading corrections in O(αnLn−1), next-to-next-to-
leading ones in O(αnLn−2) etc.

The parton shower algorithm The PS algorithm is a
method for providing a MC iterative solution of the evo-
lution equation and, at the same time, for generating the
four-momenta of the electron and photon at a given step of
the iteration. It was developed within the context of QCD
and later applied in QED too.

In order to implement the algorithm, it is first necessary
to assume the existence of an upper limit for the energy frac-
tion x in such a way that the AP splitting function is regu-
larised by writing

P+(z)= θ(x+ − z)P (z)− δ(1 − z)

∫ x+

0
dx P (x). (38)

Of course, in the limit x+ → 1, (38) recovers the usual defi-
nition of the AP splitting function given in (31). By inserting
the modified AP vertex into (30), one obtains

s
∂

∂s
D(x, s) = α

2π

∫ x+

x

dz

z
P (z)D

(
x

z
, s

)

− α

2π
D(x, s)

∫ x+

x

dzP (z). (39)

Separating the variables and introducing the Sudakov form
factor

Π(s1, s2)= exp

[
− α

2π

∫ s1

s2

ds′

s′

∫ x+

0
dzP (z)

]
, (40)

which is the probability that the electron evolves from virtu-
ality −s2 to −s1 without emitting photons of energy fraction
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larger than 1 − x+ ≡ ε (ε 	 1), (39) can be recast into the
integral form

D(x, s) = Π
(
s,m2

e

)
D

(
x,m2

e

)

+ α

2π

∫ s

m2
e

ds′

s′
Π(s, s′)

∫ x+

x

dz

z
P (z)D

(
x

z
, s′

)
.

(41)

The formal iterative solution of (41) can be represented by
the infinite series

D(x, s) =
∞∑

n=0

n∏

i=1

{∫ si−1

m2
e

dsi
si
Π(si−1, si)

× α

2π

∫ x+

x/(z1···zi−1)

dzi
zi

P (zi)

}
Π

(
sn,m

2
e

)

×D

(
x

z1 · · · zn ,m
2
e

)
. (42)

The particular form of (42) allows us to exploit a MC
method for building the solution iteratively. The steps of the
algorithm are as follows:

1— set Q2 = m2
e , and fix x = 1 according to the boundary

condition D(x,m2
e)= δ(1 − x);

2— generate a random number ξ in the interval [0,1];
3— if ξ <Π(s,Q2) stop the evolution; otherwise
4— computeQ′2 as solution of the equation ξ =Π(Q′2,Q2);
5— generate a random number z according to the probabil-

ity density P(z) in the interval [0, x+];
6— substitute x → xz and Q2 →Q′2; go to 2.

The x distribution of the electron SF as obtained by
means of the PS algorithm and a numerical solution (based
on the inverse Mellin transform method) of the QED evolu-
tion equation is shown in Fig. 14. Perfect agreement is seen.
Once D(x, s) has been reconstructed by the algorithm, the
master formula of (29) can be used for the calculation of LL
corrections to the cross section of interest. This cross section
must be independent of the soft–hard photon separator ε in
the limit of small values for ε. This can be clearly seen in
Fig. 15, where the QED corrected Bhabha cross section as a
function of the fictitious parameter ε is shown for DAΦNE
energies with the cuts of (15), but for an angular acceptance
θ± of 55◦ ÷ 125◦. The cross section reaches a plateau for ε
smaller than 10−4.

The main advantage of the PS algorithm with respect to
the analytical solutions of the electron evolution is the pos-
sibility of going beyond the strictly collinear approximation
and generating transverse momentum p⊥ of electrons and
photons at each branching. In fact, the kinematics of the
branching process e(p)→ e′(p′)+ γ (q) can be written as

p = (E,0,pz),

Fig. 14 Comparison for the x distribution of the electron SF as ob-
tained by means of a numerical solution of the QED evolution equation
(solid line) and the PS algorithm (histogram). From [233]

Fig. 15 QED corrected Bhabha cross section at DAΦNE as a function
of the infrared regulator ε of the PS approach, according to the setup
of (15). The error bars correspond to 1σ MC errors. From [235]

p′ = (zE,p⊥,p′
z), (43)

q = (
(1 − z)E,−p⊥, qz

)
.

Once the variables p2, p′2 and z are generated by the PS
algorithm, the on-shell condition q2 = 0, together with the
longitudinal momentum conservation, allows one to obtain
an expression for the p⊥ variable:

p2⊥ = (1 − z)
(
zp2 − p′2), (44)

valid at first order in p2/E2 	 1, p2⊥/E2 	 1.
However, due to the approximations inherent to (44), this

PS approach can lead to an incorrect behaviour of the re-
construction of the exclusive photon kinematics. First of all,
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since within the PS algorithm the generation of p′2 and z

are independent, it can happen that in some branchings the
p2⊥ as given by (44) is negative. In order to avoid this prob-
lem, the introduction of any kinematical cut on the p2 or z
generation (or the regeneration of the whole event) would
prevent the correct reconstruction of the SF x distribution,
which is important for a precise cross section calculation.
Furthermore, in the PS scheme, each fermion produces its
photon cascade independently of the other ones, missing the
effects due to the interference of radiation coming from dif-
ferent charged particles. As far as inclusive cross sections
(i.e. cross sections with no cuts imposed on the generated
photons) are concerned, these effects are largely integrated
out. However, as shown in [248], they become important
when more exclusive variables distributions are considered.

The first problem can be overcome by choosing the gen-
erated p⊥ of the photons different from (44). For example,
one can choose to extract the photon cosϑγ according to the
universal leading poles 1/p · k present in the matrix element
for photon emission. Namely, one can generate cosϑγ as

cosϑγ ∝ 1

1 − β cosϑγ
, (45)

where β is the speed of the emitting particle. In this way,
photon energy and angle are generated independently, dif-
ferent from (44). The nice feature of this prescription is that
p2⊥ = E2

γ sin2 ϑγ is always well defined, and the x distribu-
tion reproduces exactly the SF, because no further kinemat-
ical cuts have to be imposed to avoid unphysical events. At
this stage, the PS is used only to generate the energies and
multiplicity of the photons. The problem of including the
radiation interference is still unsolved, because the variables
of photons emitted by a fermion are still uncorrelated with
those of the other charged particles. The issue of including
photon interference can be successfully worked out looking
at the YFS formula [232]:

dσn ≈ dσ0
e2n

n!
n∏

l=1

d3kl
(2π)32k0

l

N∑

i,j=1

ηiηj
−pi · pj

(pi · kl)(pj · kl) .

(46)

It gives the differential cross section dσn for the emission
of n photons, whose momenta are k1, . . . , kn, from a kernel
process described by dσ0 and involving N fermions, whose
momenta are p1, . . . , pN . In (46) ηi is a charge factor, which
is +1 for incoming e− or outgoing e+ and −1 for incoming
e+ or outgoing e−. Note that (46) is valid in the soft limit
(ki → 0). The important point is that it also accounts for co-
herence effects. From the YFS formula it is straightforward

to read out the angular spectrum of the lth photon:

cosϑl ∝ −
N∑

i,j=1

ηiηj
1 − βiβj cosϑij

(1 − βi cosϑil)(1 − βj cosϑjl)
. (47)

It is worth noticing that in the LL prescription the same
quantity can be written as

cosϑl ∝
N∑

i=1

1

1 − βi cosϑil
, (48)

whose terms are of course contained in (47).
In order to consider also coherence effects in the angular

distribution of the photons, one can generate cosϑγ accord-
ing to (47), rather than to (48). This recipe [248] is adopted
in BabaYaga v3.5 and BabaYaga@NLO.

Yennie–Frautschi–Suura exponentiation The YFS expo-
nentiation procedure, implemented in the code BHWIDE,
is a technique for summing up all the infrared (IR) singu-
larities present in any process accompanied by photonic ra-
diation [232]. It is inherently exclusive, i.e. all the summa-
tions of the IR singular contributions are done before any
phase–space integration over the virtual or real photon four-
momenta are performed. The method was mainly developed
by Jadach, Ward and collaborators to realise precision MC
tools. In the following, the general ideas underlying the pro-
cedure are summarised.

Let us consider the scattering process e+(p1)e
−(p2) →

f1(q1) · · ·fn(qn), where f1(q1) · · ·fn(qn) represents a given
arbitrary final state, and let M0 be its tree-level matrix el-
ement. By using standard Feynman-diagram techniques, it
is possible to show that the same process, when accompa-
nied by l additional real photons radiated by the IS parti-
cles, and under the assumption that the l additional photons
are soft, i.e. their energy is much smaller that any energy
scale involved in the process, can be described by the fac-
torised matrix element built up by the LO one, M0, times
the product of l eikonal currents, namely

M 
 M0

l∏

i=1

[
e

(
εi(ki) · p2

ki · p2
− εi(ki) · p1

ki · p1

)]
, (49)

where e is the electron charge, ki are the momenta of the
photons and εi(ki) their polarisation vectors. Taking the
square of the matrix element in (49) and multiplying by
the proper flux factor and the Lorentz-invariant phase–space
volume, the cross section for the process e+(p1)e

−(p2) →
f1(q1) · · ·fn(qn)+ l real photons can be written as

dσ (l)
r = dσ0

1

l!
l∏

i=1

[
kidkid cosϑidϕi

1

2(2π)3

×
∑

εi

e2
(
εi(ki) · p2

ki · p2
− εi(ki) · p1

ki · p1

)2]
. (50)
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By summing over the number of final-state photons, one ob-
tains the cross section for the original process accompanied
by an arbitrary number of real photons, namely

dσ (∞)
r =

∞∑

l=0

dσ (l)
r

= dσ0 exp

[
kdkd cosϑ dϕ

1

2(2π)3

×
∑

ε

e2
(
ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2]
. (51)

Equation (51), being limited to real radiation only, is IR
divergent once the phase–space integrations are performed
down to zero photon energy. This problem, as is well known,
finds its solution in the matching between real and virtual
photonic radiation. Equation (51) already shows the key fea-
ture of exclusive exponentiation, i.e. summing up all the per-
turbative contributions before performing any phase–space
integration.

In order to get meaningful radiative corrections it is nec-
essary to consider, besides IS real photon corrections, also
IS virtual-photon corrections, i.e. the corrections due to ad-
ditional internal photon lines connecting the IS electron and
positron. For a vertex-type amplitude, the result can be writ-
ten as

MV1 = −i
e2

(2π)4

∫
d4k

1

k2 + iε
v̄(p1)γ

μ −(p/1 + k/)+m

2p1 · k + k2 + iε

× Γ
(p/2 + k/)+m

2p2 · k + k2 + iε
γμu(p2), (52)

where Γ stands for the Dirac structure of the LO process, in
such a way that M0 = v̄(p1)Γ u(p2). The soft-photon part
of the amplitude can be extracted by taking kμ 
 0 in all
the numerators. In this approximation, the amplitude of (52)
becomes

MV1 = M0 × V,

V = 2iα

(2π)3

∫
d4k

4p1 · p2

(2p1 · k + k2 + iε)(2p2 · k + k2 + iε)

× 1

k2 + iε
. (53)

It can be seen that, as in the real case, the IR virtual correc-
tion factorises off the LO matrix element so that it is uni-
versal, i.e. independent of the details of the process under
consideration, and divergent in the IR portion of the phase
space.

The correction given by n soft virtual photons can be seen
to factorise with an additional factor 1/n!, namely

MVn = M0 × 1

n!V
n, (54)

so that by summing over all the additional soft virtual pho-
tons one obtains

MV = M0 × exp[V ]. (55)

As already noticed both the real and virtual factors are
IR divergent. In order to obtain meaningful expressions one
has to adopt some regularisation procedure. One possibility
is to give the photon a (small) mass λ and to modify (50)
and (53) accordingly. Once all the expressions are properly
regularised, one can write down a YFS master formula that
takes into account real and virtual photonic corrections to
the LO process. In virtue of the factorisation properties dis-
cussed above, the master formula can be obtained from (51)
with the substitution dσ0 → dσ0| exp(V )|2, i.e.

dσ = dσ0
∣∣exp(V )

∣∣2 exp

[
k dk d cosϑ dϕ

1

2(2π)3

×
∑

ε

e2
(
ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2]
. (56)

As a last step it is possible to analytically perform the IR
cancellation between virtual and very soft real photons. Ac-
tually, since very soft real photons do not affect the kinemat-
ics of the process, the real photon exponent can be split into
a contribution coming from photons with energy less than
a cut-off kmin plus a contribution from photons with energy
above it. The first contribution can be integrated over all its
phase space and can then be combined with the virtual expo-
nent. After this step it is possible to remove the regularising
photon mass by taking the limit λ→ 0, so that (56) becomes

dσ = dσ0 exp(Y ) exp

[
k dk dΘ (k − kmin) cosϑ dϕ

1

2(2π)3

×
∑

ε

e2
(
ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2]
, (57)

where Y is given by

Y = 2V +
∫

k dk dΘ (kmin − k) cosϑ dϕ
1

2(2π)3

×
∑

ε

e2
(
ε(k) · p2

k · p2
− ε(k) · p1

k · p1

)2

. (58)

The explicit form of Y can be derived by performing all the
details of the calculation, and reads

Y = β ln
kmin

E
+ δYFS,

δYFS = 1

4
β + α

π

(
π2

3
− 1

2

)
. (59)
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2.4.2 Matching NLO and higher-order corrections

As will be shown numerically in Sect. 2.6, NLO correc-
tions must be combined with multiple photon emission ef-
fects to achieve a theoretical accuracy at the per mill level.
This combination, technically known as matching, is a fun-
damental ingredient of the most precise generators used for
luminosity monitoring, i.e. BabaYaga@NLO, BHWIDE and
MCGPJ. Although the matching is implemented accord-
ing to different theoretical details, some general aspects are
common to all the recipes and must be emphasised:

1. It is possible to match NLO and HO corrections consis-
tently, avoiding double counting of LL contributions at
order α and preserving the advantages of resummation
of soft and collinear effects beyond O(α).

2. The convolution of NLO corrections with HO terms al-
lows us to include the dominant part of NNLO correc-
tions, given by infrared-enhanced α2L sub-leading con-
tributions. This was argued and demonstrated analyti-
cally and numerically in [44] through comparison with
the available O(α2) corrections to s-channel processes
and t-channel Bhabha scattering. Such an aspect of the
matching procedure is crucial to settle the theoretical ac-
curacy of the generators by means of explicit compar-
isons with the exact NNLO perturbative corrections dis-
cussed in Sect. 2.3, and will be addressed in Sect. 2.8.

3. BabaYaga@NLO and BHWIDE implement a fully fac-
torised matching recipe, while MCGPJ includes some
terms in additive form, as will be visible in the formu-
lae reported below.

In the following we summarise the basic features of the
matching procedure as implemented in the codes MCGPJ,
BabaYaga@NLO and BHWIDE.

The matching approach realised in the MC event gener-
ator MCGPJ was developed in [236]. In particular, Bhabha
scattering with complete O(α) and HO LL photonic correc-
tions can written as

dσ e+e−→e+e−(γ )

dΩ−

=
∫ 1

z̄1

dz1

∫ 1

z̄2

dz2 D
NS,γ
ee (z1)D

NS,γ
ee (z2)

× dσ̂Bhabha
0 (z1, z2)

dΩ−

(
1 + α

π
KSV

)
Θ(cuts)

×
∫ Y1

yth

dy1

Y1

∫ Y2

yth

dy2

Y2
D

NS,γ
ee

(
y1

Y1

)
D

NS,γ
ee

(
y2

Y2

)

+ α

π

∫ 1

Δ

dx

x

{[(
1 − x + x2

2

)
ln
θ2

0 (1 − x)2

4
+ x2

2

]

× 2
dσBhabha

0

dΩ−
+

[(
1 − x + x2

2

)
ln
θ2

0

4
+ x2

2

]

×
[

dσ̂Bhabha
0 (1 − x,1)

dΩ−
+ dσ̂Bhabha

0 (1,1 − x)

dΩ−

]}

×Θ(cuts)

− α2

4s

(
3 + c2

1 − c

)2 8α

π
ln

(
ctg

θ

2

)
ln
Δε

ε

+ α3

2π2s

∫

k0>Δε
θi>θ0

WT

4
Θ(cuts)

dΓeēγ
dΩ−

. (60)

Here the step functions Θ(cuts) stand for the particular cuts
applied. The auxiliary parameter θ0 defines cones around the
directions of the motion of the charged particles in which the
emission of hard photons is approximated by the factorised
form by convolution of collinear radiation factors [249] with
the Born cross section. The dependence on the parameters
Δ and θ0 cancels out in the sum with the last term of (60),
where the photon energy and emission angles with respect to
all charged particles are limited from below (k0 >Δε, θi >

θ0). Taking into account vacuum polarisation, the Born level
Bhabha cross section with reduced energies of the incoming
electron and positron can be cast in the form

dσ̂Bhabha
0 (z1, z2)

dΩ−

= 4α2

sa2

{
1

|1 −Π(t̂)|2
a2 + z2

2(1 + c)2

2z2
1(1 − c)2

+ 1

|1 −Π(ŝ)|2
z2

1(1 − c)2 + z2
2(1 + c)2

2a2

− Re
1

(1 −Π(t̂))(1 −Π(ŝ))∗
z2

2(1 + c)2

az1(1 − c)

}
dΩ−,

ŝ = z1z2s, t̂ = − sz2
1z2(1 − c)

z1 + z2 − (z1 − z2)c
, (61)

where Π(Q2) is the photon self-energy correction. Note that
in the cross section above the cosine of the scattering angle,
c, is given for the original c.m. reference frame of the col-
liding beams.

For the two-photon production channel, a similar repre-
sentation is used in MCGPJ:

dσ e+e−→γ γ (γ )

=
∫ 1

z̄1

dz1 D
NS,γ
ee (z1)

×
∫ 1

z̄2

dz2 D
NS,γ
ee (z2)dσ̂ γ γ

0 (z1, z2)

(
1 + α

π
K

γγ

SV

)

+ α

π

∫ 1

Δ

dx

x

[(
1 − x + x2

2

)
ln
θ2

0

4
+ x2

2

]

× [
dσ̂0(1 − x,1)+ dσ̂0(1,1 − x)

]
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+ 1

3

4α3

π2s2

∫
zi≥Δ

π−θ0≥θi≥θ0

dΓ3γ

×
[

z2
3(1 + c2

3)

z2
1z

2
2(1 − c2

1)(1 − c2
2)

+ two cyclic permutations

]
,

zi = q0
i

ε
, ci = cos θi, θi = p̂−qi , (62)

where the cross section with reduced energies has the form

dσ̂ γ γ

0 (z1, z2)

dΩ1
= 2α2

z1z2s

z2
1(1 − c1)

2 + z2
2(1 + c1)

2

(1 − c2
1)(z1 + z2 + (z2 − z1)c1)2

,

and the factor 1/3 in the last term of (62) takes into account
the identity of the final-state photons. The sum of the last
two terms does not depend on Δ and θ0.

Concerning BabaYaga@NLO, the matching starts from
the observation that (29) for the QED corrected all-order
cross section can be rewritten in terms of the PS ingredients
as

dσ∞
LL =Π

(
Q2, ε

) ∞∑

n=0

1

n! |Mn,LL|2 dΦn. (63)

By construction, the expansion of (63) at O(α) does not co-
incide with the exact O(α) result. In fact

dσα
LL =

[
1 − α

2π
I+ ln

Q2

m2

]
|M0|2 dΦ0 + |M1,LL|2 dΦ1

≡ [1 +Cα,LL]|M0|2 dΦ0 + |M1,LL|2 dΦ1, (64)

where I+ ≡ ∫ 1−ε

0 P(z)dz, whereas the exact NLO cross sec-
tion can always be cast in the form

dσα = [1 +Cα]|M0|2 dΦ0 + |M1|2 dΦ1. (65)

The coefficients Cα contain the complete O(α) virtual and
soft-bremsstrahlung corrections in units of the squared Born
amplitude, and |M1|2 is the exact squared matrix element
with the emission of one hard photon. We remark that Cα,LL

has the same logarithmic structure as Cα and that |M1,LL|2
has the same singular behaviour as |M1|2.

In order to match the LL and NLO calculations, the fol-
lowing correction factors, which are by construction infrared
safe and free of collinear logarithms, are introduced:

FSV = 1+(Cα−Cα,LL), FH = 1+ |M1|2 − |M1,LL|2
|M1,LL|2 .

(66)

With them the exact O(α) cross section can be expressed,
up to terms of O(α2), in terms of its LL approximation as

dσα = FSV(1 +Cα,LL)|M0|2 dΦ0 + FH |M1,LL|2 dΦ1.

(67)

Driven by (67), (63) can be improved by writing the re-
summed matched cross section as

dσ∞
matched = FSVΠ

(
Q2, ε

) ∞∑

n=0

1

n!

(
n∏

i=0

FH,i

)

|Mn,LL|2 dΦn.

(68)

The correction factors FH,i follow from the definition (66)
for each photon emission. The O(α) expansion of (68) now
coincides with the exact NLO cross section of (65), and all
HO LL contributions are the same as in (63). This formula-
tion is implemented in BabaYaga@NLO for both Bhabha
scattering and photon pair production, using, of course,
the appropriate SV and hard bremsstrahlung formulae. This
matching formulation has also been applied to the study of
Drell–Yan-like processes, by combining the complete O(α)

electroweak corrections with QED shower evolution in the
generator HORACE [250–253].

As far as BHWIDE is concerned, this MC event generator
realises the process

e+(p1)+ e−(q1)

−→ e+(p2)+ e−(q2)+ γ1(k1)+ · · · + γn(kn) (69)

via the YFS exponentiated cross section formula

dσ = e2αReB+2αB̃
∞∑

n=0

1

n!
∫ n∏

j=1

d3kj

k0
j

∫
d4y

(2π)4

× e
iy(p1+q1−p2−q2−∑

j kj )+D

× β̄n(k1, . . . , kn)
d3p2 d3q2

p0
2q

0
2

, (70)

where the real infrared function B̃ and the virtual infrared
function B are given in [237]. Here we note the usual con-
nections

2αB̃ =
∫ k≤Kmax d3k

k0
S̃(k),

D =
∫

d3k
S̃(k)

k0

(
e−iy·k − θ(Kmax − k)

)
(71)

for the standard YFS infrared real emission factor

S̃(k)= α

4π2

[
QfQf ′

(
p1

p1 · k − q1

q1 · k
)2

+ · · ·
]
, (72)

and where Qf is the electric charge of f in units of the
positron charge. In (72) the “· · · ” represent the remaining
terms in S̃(k), obtained from the given one by respective
of Qf , p1, Qf ′ , q1 with corresponding values for the other
pairs of the external charged legs according to the YFS pre-
scription of Ref. [232, 254] (wherein due attention is taken
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to obtain the correct relative sign of each of the terms in S̃(k)
according to this latter prescription). The explicit represen-
tation is given by

2αReB(p1, q1,p2, q2)+ 2αB̃(p1, q1,p2, q2; km)
=R1(p1, q1; km)+R1(p2, q2; km)+R2(p1,p2; km)

+R2(q1, q2; km)−R2(p1, q2; km)−R2(q1,p2; km),
(73)

with

R1(p, q; km)=R2(p, q; km)+
(
α

π

)
π2

2
(74)

and

R2(p, q; km) = α

π

{(
ln

2pq

m2
e

− 1

)
ln

k2
m

p0q0
+ 1

2
ln

2pq

m2
e

− 1

2
ln2 p

0

q0
− 1

4
ln2 (Δ+ δ)2

4p0q0

− 1

4
ln2 (Δ− δ)2

4p0q0
− Re Li2

(
Δ+ω

Δ+ δ

)

− Re Li2

(
Δ+ω

Δ− δ

)
− Re Li2

(
Δ−ω

Δ+ δ

)

− Re Li2

(
Δ−ω

Δ− δ

)
+ π2

3
− 1

}
, (75)

where Δ= √
2pq + (p0 − q0)2, ω = p0 + q0, δ = p0 − q0,

and km is a soft-photon cut-off in the c.m. system (Esoft
γ <

km 	Ebeam).
The YFS hard-photon residuals β̄i in (70), i = 0,1, to

O(α) are given exactly in Ref. [237] for BHWIDE. There-
fore this event generator calculates the YFS exponentiated
exact O(α) cross section for e+e− → e+e− + n(γ ) with
multiple initial, initial–final- and final-state radiation, using
a corresponding MC realisation of (70) in the wide angle
regime. The library for O(α) electroweak corrections, rele-
vant for higher energies, is taken from [95, 255].

The result (70) is an exact rearrangement of the loop ex-
pansion for the respective cross section and is independent
of the dummy parameter Kmax. To derive this, one may pro-
ceed as follows. Let the amplitude for the emission of n real
photons in the Bhabha process be

M(n) =
∑

!

M
(n)
! , (76)

where M
(n)
! is the contribution to M(n) from Feynman di-

agrams with ! virtual loops. The key result in the YFS the-
ory of Ref. [232, 254] on virtual corrections is that we may

rewrite (76) as the exact representation

M(n) = eαB
∞∑

j=0

m(n)
j , (77)

where we have defined

αB =
∫

d4k

(k2 − λ2 + iε)
S(k), (78)

with the virtual infrared emission factor given by

S(k) = −iα

8π2

∑

i′<j
Zi′θi′Zjθj

×
(

(2p̄i′θi′ − k)μ

k2 − 2kp̄i′θi′ + iε
+ (2p̄j θj + k)μ

k2 + 2kp̄j θj + iε

)2

.

(79)

Here, λ is an infrared regulator mass, and following Refs.
[232, 254] we identify the sign of the j -th external line
charge here as Zj = Qj and θj = +(−) for outgoing (in-
coming) 4-momentum p̄j , so that here p̄1 = p1, p̄2 = q1,
p̄3 = p2, p̄4 = q2, Z1 = +1, θ1 = −, Z2 = −1, θ2 = −,
Z3 = +1, θ3 = +, Z4 = −1, θ4 = +. The amplitudes {m(n)

j }
are free of all virtual infrared divergences.

Using the result (77) for M(n), we get the attendant dif-
ferential cross section by the standard methods as

dσ̂ n = e2αReB

n!
∫ n∏

l=1

d3kl

(k2
l + λ2)1/2

× ρ̄(n)(p1, q1,p2, q2, k1, . . . , kn)
d3p2d3q2

p0
2q

0
2

× δ(4)

(

p1 + q1 − p2 − q2 −
n∑

i=1

ki

)

, (80)

where we have defined

ρ̄(n)(p1, q1,p2, q2, k1, . . . , kn)=
∑

spin

∣∣∣∣∣

∞∑

j=0

m(n)
j

∣∣∣∣∣

2

, (81)

in the incoming e+e− c.m. system. Here we have absorbed
the remaining kinematical factors for the initial-state flux
and spin averaging into the normalisation of the amplitudes
M(n) for pedagogical reasons, so that the ρ̄(n) are averaged
over initial spins and summed over final spins. We then use
the key result of Ref. [232, 254] on real corrections to write
the exact result

ρ̄(n)(p1, q1,p2, q2, k1, . . . , kn)

=
n∏

i=1

S̃(ki)β̄0 + · · ·
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+
n∑

i=1

S̃(ki)β̄n−1(k1, . . . , ki−1, ki+1, . . . , kn)

+ β̄n(k1, . . . , kn), (82)

where the hard-photon residuals β̄j are determined recur-
sively [232, 254] and are free of all virtual and all real in-
frared singularities to all orders in α. Introducing the result
(82) into (80) and summing over the number of real photons
n leads directly to master formula (70). We see that it allows
for exact exclusive treatment of hard-photonic effects on an
event-by-event basis.

2.5 Monte Carlo generators

To measure the luminosity, event generators, rather than
analytical calculations, are mandatory to provide theoreti-
cal results of real experimental interest. The software tools
used in early measurements of the luminosity at flavour
factories (and sometimes still used in recent experimental
publications) include generators such as BHAGENF [256],
BabaYaga v3.5 [234] and BKQED [257, 258]. These MC
programs, however, are based either on a fixed NLO calcu-
lation (such as BHAGENF and BKQED) or include correc-
tions to all orders in perturbation theory, but in the LL ap-
proximation only (like BabaYaga v3.5). Therefore the pre-
cision of these codes can be estimated to lie in the range
0.5÷1%, depending on the adopted experimental cuts.

The increasing precision reached on the experimental
side during the last years led to the development of new
dedicated theoretical tools, such as BabaYaga@NLO and
MCGPJ, and the adoption of already well-tested codes, like
BHWIDE, the latter extensively used at the high-energy
LEP/SLC colliders for the simulation of the large-angle
Bhabha process. As already emphasised in Sect. 2.4.2, all
these three codes include NLO corrections in combination
with multiple photon contributions and have, therefore, a
precision tag of ∼0.1%. As described in the following, the
experiments typically use more than one generator, to keep
the luminosity theoretical error under control through the
comparison of independent predictions.

A list of the MC tools used in the luminosity measure-
ment at meson factories is given in Table 3, which sum-
marises the main ingredients of their formulation for radia-
tive corrections and the estimate of their theoretical accu-
racy.

The basic theoretical and phenomenological features of
the different generators are summarised in the following.

1. BabaYaga v3.5—It is a MC generator developed by the
Pavia group at the start of the DAΦNE operation using
a QED PS approach for the treatment of LL QED cor-
rections to luminosity processes and later improved to
account for the interference of radiation emitted by dif-
ferent charged legs in the generation of the momenta of

Table 3 MC generators used for luminosity monitoring at meson fac-
tories

Generator Theory Accuracy

BabaYaga v3.5 Parton Shower ∼0.5÷1%

BabaYaga@NLO O(α)+ PS ∼0.1%

BHAGENF O(α) ∼1%

BHWIDE O(α)YFS ∼0.5% (LEP1)

BKQED O(α) ∼1%

MCGPJ O(α)+ SF <0.2%

the final-state particles. The main drawback of BabaYaga
v3.5 is the absence of O(α) non-logarithmic contribu-
tions, resulting in a theoretical precision of ∼0.5% for
large-angle Bhabha scattering and of about 1% for γ γ
and μ+μ− final states. It is used by the CLEO-c collabo-
ration for the study of all the three luminosity processes.

2. BabaYaga@NLO—It is the presently released version of
BabaYaga, based on the matching of exact O(α) cor-
rections with QED PS, as described in Sect. 2.4.2. The
accuracy of the current version is estimated to be at
the 0.1% level for large-angle Bhabha scattering, two-
photon and μ+μ−9 production. It is presently used by
the KLOE and BaBar collaborations, and under con-
sideration by the BES-III experiment. Like BabaYaga
v3.5, BabaYaga@NLO is available at the web page
of the Pavia phenomenology group www.pv.infn.it/~
hepcomplex/babayaga.html.

3. BHAGENF/BKQED—BKQED is the event generator
developed by Berends and Kleiss and based on the clas-
sical exact NLO calculations of [257, 258] for all QED
processes. It was intensively used at LEP to perform tests
of QED through the analysis of the e+e− → γ γ process
and is adopted by the BaBar collaboration for the sim-
ulation of the same reaction. BHAGENF is a code re-
alised by Drago and Venanzoni at the beginning of the
DAΦNE operation to simulate Bhabha events, adapting
the calculations of [257] to include the contribution of the
φ resonance. Both generators lack the effect of HO cor-
rections and, as such, have a precision accuracy of about
1%. The BHAGENF code is available at the web address
www.lnf.infn.it/~graziano/bhagenf/bhabha.html.

4. BHWIDE—It is a MC code realised in Krakow-Knox-
wille at the time of the LEP/SLC operation and described
in [237]. In this generator exact O(α) corrections are
matched with the resummation of the infrared virtual
and real photon contributions through the YFS exclu-
sive exponentiation approach. According to the authors

9At present, finite mass effects in the virtual corrections to e+e− →
μ+μ−, which should be included for precision simulations at the φ

factories, are not included in BabaYaga@NLO.

http://www.pv.infn.it/~hepcomplex/babayaga.html
http://www.pv.infn.it/~hepcomplex/babayaga.html
http://www.lnf.infn.it/~graziano/bhagenf/bhabha.html
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the precision is estimated to be about 0.5% for c.m. ener-
gies around the Z resonance. This accuracy estimate was
derived through detailed comparisons of the BHWIDE
predictions with those of other LEP tools in the pres-
ence of the full set of NLO corrections, including purely
weak corrections. However, since the latter are phenom-
enologically unimportant at e+e− accelerators of moder-
ately high energies and since the QED theoretical ingre-
dients of BHWIDE are very similar to the formulation of
both BabaYaga@NLO and MCGPJ, one can argue that
the accuracy of BHWIDE for physics at flavour facto-
ries is at the level of 0.1%. It is adopted by the KLOE,
BaBar and BES collaborations. The code is available at
placzek.home.cern.ch/placzek/bhwide/.

5. MCGPJ—It is the generator developed by the Dubna–
Novosibirsk collaboration and used at the VEPP-2M
collider. This program includes exact O(α) corrections
supplemented with HO LL contributions related to the
emission of collinear photon jets and taken into account
through analytical QED collinear SF, as described in
Sect. 2.4.2. The theoretical precision is estimated to be
better than 0.2%. The generator is available at the web
address cmd.inp.nsk.su/~sibid/.

It is worth noticing that the theoretical uncertainty of the
most accurate generators based on the matching of exact
NLO with LL resummation starts at the level of O(α2) NNL
contributions, as far as photonic corrections are concerned.
Other sources of error affecting their physical precision are
discussed in detail in Sect. 2.8.

2.6 Numerical results

Before showing the results which enable us to settle the tech-
nical and theoretical accuracy of the generators, it is worth
discussing the impact of various sources of radiative correc-
tions implemented in the programs used in the experimental
analysis. This allows one to understand which corrections
are strictly necessary to achieve a precision at the per mill
level for both the calculation of integrated cross sections and
the simulation of more exclusive distributions.

2.6.1 Integrated cross sections

The first set of phenomenological results about radiative cor-
rections refer to the Bhabha cross section, as obtained by
means of the code BabaYaga@NLO, according to differ-
ent perturbative and precision levels. In Table 4 we show
the values for the Born cross section σ0, the O(α) PS and
exact cross section, σ PS

α and σNLO
α , respectively, as well as

the LL PS cross section σ PS and the matched cross section
σmatched. Furthermore, the cross section in the presence of
the vacuum-polarisation correction, σVP

0 , is also shown. The
results correspond to the c.m. energies

√
s = 1,4,10 GeV

and were obtained with the selection criteria of (15), but for
an angular acceptance of 55◦ ≤ θ± ≤ 125◦ resembling real-
istic data taking at meson factories. One should keep in mind
that the cuts of (15) tend to single out quasi-elastic Bhabha
events and that the energy of final-state electron/positron
corresponds to a so-called “bare” event selection (i.e. with-
out photon recombination), which corresponds to what is
done in practice at flavour factories. In particular the rather
stringent energy and acollinearity cuts enhance the impact of
soft and collinear radiation with respect to a more inclusive
setup.

From these cross section values, it is possible to calculate
the relative effect of various corrections, namely the con-
tribution of vacuum polarisation and exact O(α) QED cor-
rections, of non-logarithmic (NLL) terms entering the O(α)

cross section, of HO corrections in the O(α) matched PS
scheme, and finally of NNL effects beyond order α largely
dominated by O(α2L) contributions. The above corrections
are shown in Table 5 in per cent and can be derived from
the cross section results of Table 4 with the following defin-
itions:

δVP ≡ σVP
0 − σ0

σ0
, δα ≡ σNLO − σ0

σ0
,

δNLL
α ≡ σNLO − σ PS

α

σNLO
, δHO ≡ σmatched − σNLO

σNLO
,

δα2L ≡ σmatched − σNLO − σ PS + σ PS
α

σNLO
.

Table 4 Bhabha cross section (in nb) at meson factories according to
different precision levels and using the cuts of (15), but with an angular
acceptance of 55◦ ≤ θ± ≤ 125◦. The numbers in parentheses are 1σ
MC errors
√
s(GeV) 1.02 4 10

σ0 529.4631(2) 44.9619(1) 5.5026(2)

σVP
0 542.657(6) 46.9659(1) 5.85526(3)

σNLO 451.523(6) 37.1654(6) 4.4256(2)

σ PS
α 454.503(6) 37.4186(6) 4.4565(1)

σmatched 455.858(5) 37.6731(4) 4.5046(3)

σ PS 458.437(4) 37.8862(4) 4.5301(2)

Table 5 Relative size of different sources of corrections (in per cent)
to the large-angle Bhabha cross section for typical selection cuts at φ,
τ -charm and B factories
√
s(GeV) 1.02 4. 10.

δα −14.73 −17.32 −19.57

δNLL
α −0.66 −0.68 −0.70

δHO 0.97 1.35 1.79

δα2L 0.09 0.09 0.11

δVP 2.43 4.46 6.03

http://placzek.home.cern.ch/placzek/bhwide/
http://cmd.inp.nsk.su/~sibid/
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From Table 5 it can be seen that O(α) corrections de-
crease the Bhabha cross section by about 15÷17% at the
φ and τ -charm factories, and by about 20% at the B facto-
ries. Within the full set of O(α) corrections, non-logarithmic
terms are of the order of 0.5%, as expected almost indepen-
dent of the c.m. energy, and with a mild dependence on the
angular acceptance cuts due to box and interference contri-
butions. The effect of HO corrections due to multiple pho-
ton emission is about 1% at the φ and τ -charm factories
and reaches about 2% at the B factories. The contribution
of (approximate) O(α2L) corrections is at the 0.1% level,
while vacuum polarisation increases the cross section by
about 2% around 1 GeV, and by about 5% and 6% at 4 GeV
and 10 GeV, respectively. Concerning the latter correction
the non-perturbative hadronic contribution to the running
of α was parameterised in terms of the HADR5N routine
[18, 259, 260] included in BabaYaga@NLO both in the LO
and NLO diagrams. We have checked that the results ob-
tained for the vacuum-polarisation correction in terms of the
parametrisation [164] agree at the 10−4 level with those ob-
tained with HADR5N, as shown in detail in Sect. 2.8. Those
routines return a data driven error, thus affecting the theoret-
ical precision of the calculation of the Bhabha cross section
as will be discussed in Sect. 2.9.

Analogous results for the size of radiative corrections
to the process e+e− → γ γ are given in Table 6 [261].
They were obtained using BabaYaga@NLO, according to
the experimental cuts of (16) for the c.m. energies

√
s =

1,3,10 GeV.
The numerical errors coming from the MC integration are

not shown in Table 5 because they are beyond the quoted
digits. From Table 5 it can be seen that the exact O(α) cor-
rections lower the Born cross section by about 5.9% (at the
φ resonance), 7.0% (at

√
s = 3 GeV) and 8.2% (at the Υ

resonance). The effect due to O(αnLn) (with n ≥ 2) terms
is quantified by the contribution δHO, which is a positive cor-
rection of about 0.2% (at the φ resonance), 0.4% (τ -charm
factories) and 0.5% (at the Υ resonance), and therefore im-
portant in the light of the per mill accuracy aimed at. On

Table 6 Photon pair-production cross sections (in nb) at different ac-
curacy levels and relative corrections (in per cent) for the setup of (16)
and the c.m. energies

√
s = 1,3,10 GeV

√
s (GeV) 1 3 10

σ0 137.53 15.281 1.3753

σNLO 129.45 14.211 1.2620

σ PS
α 128.55 14.111 1.2529

σmatched 129.77 14.263 1.2685

σ PS 128.92 14.169 1.2597

δα −5.87 −7.00 −8.24

δNLL
α 0.70 0.71 0.73

δHO 0.24 0.37 0.51

the other hand, also next-to-leading O(α) corrections, quan-
tified by the contribution δNLL

α , are necessary at the preci-
sion level of 0.1%, since their contribution is of about 0.7%
almost independent of the c.m. energy. To further corrobo-
rate the precision reached in the cross section calculation of
e+e− → γ γ , we also evaluated the effect due to the most
important sub-leading O(α2) photonic corrections given by
order α2L contributions. It turns out that the effect due to
O(α2L) corrections does not exceed the 0.05% level. Ob-
viously, the contribution of vacuum polarisation is absent in
γ γ production. This is an advantage for particularly precise
predictions, as the uncertainty associated with the hadronic
part of vacuum polarisation does not affect the cross section
calculation.

2.6.2 Distributions

Besides the integrated cross section, various differential
cross sections are used by the experimentalists to moni-
tor the collider luminosity. In Figs. 16 and 17 we show
two distributions which are particularly sensitive to the de-
tails of photon radiation, i.e. the e+e− invariant mass and
acollinearity distribution, in order to quantify the size of
NLO and HO corrections. The distributions are obtained
according to the exact O(α) calculation and with the two
BabaYaga versions, BabaYaga v3.5 and BabaYaga@NLO.
From Figs. 16 and 17 it can be clearly seen that multiple
photon corrections introduce significant deviations with re-
spect to an O(α) simulation, especially in the hard tails of
the distributions where they amount to several per cent. To
make the contribution of exact O(α) non-logarithmic terms
clearly visible, the inset shows the relative differences be-
tween the predictions of BabaYaga v3.5 (denoted as OLD)
and BabaYaga@NLO (denoted as NEW). Actually, as dis-
cussed in Sect. 2.4.2, these differences mainly come from

Fig. 16 Invariant mass distribution of the Bhabha process at KLOE,
according to BabaYaga v3.5 (OLD), BabaYaga@NLO (NEW) and an
exact NLO calculation. The inset shows the relative effect of NLO
non-logarithmically enhanced corrections, given by the difference of
BabaYaga v3.5 and BabaYaga@NLO predictions. From [235]
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Fig. 17 Acollinearity distribution of the Bhabha process at KLOE,
according to BabaYaga v3.5 (OLD) and BabaYaga@NLO (NEW).
The inset shows the relative effect of NLO non-logarithmically en-
hanced corrections, given by the difference of BabaYaga v3.5 and
BabaYaga@NLO predictions. From [235]

non-logarithmic NLO contributions and to a smaller extent
from O(α2L) terms. Their effect is flat and at the level of
0.5% for the acollinearity distribution, while they reach the
several per cent level in the hard tail of the invariant mass
distribution.

It is also worth noticing that LL radiative corrections be-
yond α2 can be quite important for accurate simulations, at
least when considering differential distributions. This means
that even with a complete NNLO calculation at hand it
would be desirable to match such corrections with the re-
summation of all the remaining LL effects. In Fig. 18, the
relative effect of HO corrections beyond α2 dominated by
the α3 contributions (dashed line) is shown in comparison
with that of the α2 corrections (solid line) on the acollinear-
ity distribution for the Bhabha process at DAΦNE. As
can be seen, the α3 effect can be as large as 10% in the
phase–space region of soft-photon emission, corresponding
to small acollinearity angles with almost back-to-back final-
state fermions.

Fig. 18 Relative effect of HO corrections α2L2 and αnLn (n ≥ 3) to
the acollinearity distribution of the Bhabha process at KLOE. From
[235]

Concerning the process e+e− → γ γ we show in Fig. 19
the energy distribution of the most energetic photon, while
the acollinearity distribution of the two most energetic pho-
tons is represented in Fig. 20. The distributions refer to ex-
act O(α) corrections matched with the PS algorithm (solid
line), to the exact NLO calculation (dashed line) and to all-
order pure PS predictions of BabaYaga v3.5 (dashed-dotted
line). In the inset of each plot, the relative effect due to mul-
tiple photon contributions (δHO) and non-logarithmic terms

Fig. 19 Energy distribution of the most energetic photon in the process
e+e− → γ γ , according to the PS matched with O(α) corrections de-
noted as exp (solid line), the exact O(α) calculation (dashed line)
and the pure all-order PS as in BabaYaga v3.5 (dashed-dotted line).
lnset: relative effect (in per cent) of multiple photon corrections (solid
line) and of non-logarithmic contributions of the matched PS algorithm
(dashed line). From [261]

Fig. 20 Acollinearity distribution for the process e+e− → γ γ , ac-
cording to the PS matched with O(α) corrections denoted as exp (solid
line), the exact O(α) calculation (dashed line) and the pure all-order PS
as in BabaYaga v3.5 (dashed-dotted line). lnset: relative effect (in per
cent) of multiple photon corrections (solid line) and of non-logarithmic
contributions of the matched PS algorithm (dashed line). From [261]
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entering the improved PS algorithm (δNLL
α ) is also shown,

according to the definitions given in (83).
For the energy distribution of the most energetic pho-

ton particularly pronounced effects due to exponentiation
are present. In the statistically dominant region, HO cor-
rections reduce the O(α) distribution by about 20%, while
they give rise to a significant hard tail close to the energy
threshold of 0.3

√
s as a consequence of the higher photon

multiplicity of the resummed calculation with respect to the
fixed-order NLO prediction. Needless to say, the relative ef-
fect of multiple photon corrections below about 0.46 GeV
not shown in the inset is finite but huge. This representation
with the inset was chosen to make also the contribution of
O(α) non-logarithmic terms visible, which otherwise would
be hardly seen in comparison with the multiple photon cor-
rections. Concerning the acollinearity distribution, the con-
tribution of higher-order corrections is positive and of about
10% for quasi-back-to-back photon events, whereas it is
negative and decreasing from ∼−30% to ∼−10% for in-
creasing acollinearity values. As far as the contributions of
non-logarithmic effects dominated by next-to-leading O(α)

corrections are concerned, they contribute at the level of sev-
eral per mill for the acollinearity distribution, while they lie
in the range of several per cent for the energy distribution.

As a whole, the results of the present section emphasise
that, for a 0.1% theoretical precision in the calculation of
both the cross sections and distributions, both exact O(α)

and HO photonic corrections are necessary, as well as the
running of α.

2.7 Tuned comparisons

The typical procedure followed in the literature to establish
the technical precision of the theoretical tools is to perform
tuned comparisons between the predictions of independent
programs using the same set of input parameters and experi-
mental cuts. This strategy was initiated in the 90s during the
CERN workshops for precision physics at LEP and is still
in use when considering processes of interest for physics at
hadron colliders demanding particularly accurate theoretical
calculations. The tuning procedure is a key step in the vali-
dation of generators, because it allows one to check that the
different details entering the complex structure of the gener-
ators, e.g. the implementation of radiative corrections, event
selection routines, MC integration and event generation, are
under control, and to fix possible mistakes.

The tuned comparisons discussed in the following were
performed switching off the vacuum-polarisation correction
to the Bhabha scattering cross section. Actually, the gen-
erators implement the non-perturbative hadronic contribu-
tion to the running of α according to different parameter-
isations, which differently affect the cross section predic-
tion (see Sect. 6 for discussion). Hence, this simplification

is introduced to avoid possible bias in the interpretation of
the results and allows one to disentangle the effect of pure
QED corrections. Also, in order to provide useful results for
the experiments, the comparisons take into account realistic
event selection cuts.

The present section is a merge of results available in the
literature [235] with those of new studies. The results refer
to the Bhabha process at the energies of φ, τ -charm and B

factories. No tuned comparisons for the two-photon produc-
tion process have been carried out.

2.7.1 φ and τ -charm factories

First we show comparisons between BabaYaga@NLO and
BHWIDE according to the KLOE selection cuts of (15),
considering also the angular range 20◦ ≤ ϑ± ≤ 160◦ for
cross section results. The predictions of the two codes are
reported in Table 7 for the two acceptance cuts together
with their relative deviations. As can be seen the agree-
ment is excellent, the relative deviations being well below
the 0.1%. Comparisons between BabaYaga@NLO and BH-
WIDE at the level of differential distributions are given in
Figs. 21 and 22 where the inset shows the relative devia-
tions between the predictions of the two codes. As can be
seen there is very good agreement between the two gener-
ators, and the predicted distributions appear at a first sight
almost indistinguishable. Looking in more detail, there is
a relative difference of a few per mill for the acollinearity
distribution (Fig. 22) and of a few per cent for the invari-
ant mass (Fig. 21), but only in the very hard tails, where the
fluctuations observed are due to limited MC statistics. These
configurations however give a negligible contribution to the
integrated cross section, a factor 103÷104 smaller than that
around the very dominant peak regions. In fact these differ-
ences on differential distributions translate into agreement
on the cross section values well below the one per mill, as
shown in Table 7.

Similar tuned comparisons were performed between the
results of BabaYaga@NLO, BHWIDE and MCGPJ in the
presence of cuts modelling the event selection criteria of the
CMD-2 experiment at the VEPP-2M collider, for a c.m. en-

Table 7 Cross section predictions [nb] of BabaYaga@NLO and BH-
WIDE for the Bhabha cross section corresponding to two different an-
gular acceptances, for the KLOE experiment at DAΦNE, and their rel-
ative differences (in per cent)

Angular acceptance BabaYaga@NLO BHWIDE δ(%)

20◦÷160◦ 6086.6(1) 6086.3(2) 0.005

55◦÷125◦ 455.85(1) 455.73(1) 0.030
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Fig. 21 Invariant mass distribution of the Bhabha process accord-
ing to BHWIDE and BabaYaga@NLO, for the KLOE experiment at
DAΦNE, and relative differences of the program predictions (inset).
From [235]

Fig. 22 Acollinearity distribution of the Bhabha process accord-
ing to BHWIDE and BabaYaga@NLO, for the KLOE experiment at
DAΦNE, and relative differences of the program predictions (inset).
From [235]

ergy of
√
s = 900 MeV. The cuts used in this case are

|θ− + θ+ − π | ≤Δθ,

1.1 ≤ (θ+ − θ− + π)/2 ≤ π − 1.1,

||φ− + φ+| − π | ≤ 0.15,

p− sin(θ−)≥ 90 MeV,

p+ sin(θ+)≥ 90 MeV,

(p− + p+)/2 ≥ 90 MeV,

(83)

where θ−, θ+ are the electron/positron polar angles, respec-
tively, φ± their azimuthal angles, and p± the moduli of their
three-momenta. Δθ stands for an acollinearity cut.

Figure 23 shows the relative differences between the re-
sults of BHWIDE and MCGPJ according to the criteria of
(83), as a function of the acollinearity cut Δθ . The rela-
tive deviations between the results of BabaYaga@NLO and
MCGPJ for the same cuts are given in Fig. 24. It can be
seen that the predictions of the three generators lie within a

Fig. 23 Relative differences between BHWIDE and MCGPJ Bhabha
cross sections as a function of the acollinearity cut, for the CMD-2
experiment at VEPP-2M

Fig. 24 Relative differences between BabaYaga@NLO and MCGPJ
Bhabha cross sections as a function of the acollinearity cut, for the
CMD-2 experiment at VEPP-2M

0.2% band with differences of ∼0.3% for extreme values of
the acollinearity cut. This agreement can be considered sat-
isfactory since for the acollinearity cut of real experimental
interest (Δθ ≈ 0.2 rad) the generators agree within one per
mill.

A number of comparisons were also performed for a c.m.
energy of 3.5 GeV relevant to the experiments at τ -charm
factories. An example is given in Table 8 where the predic-
tions of BabaYaga@NLO and MCGPJ are compared, using
cuts similar to those of (83) and for an acollinearity cut of
Δθ = 0.25 rad. The agreement between the two codes is be-
low one per mill. Comparisons between the two codes were
also done at the level of differential cross sections, show-
ing satisfactory agreement in the statistically relevant phase–
space regions. Preliminary results [262] for a c.m. energy on
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Table 8 Cross section predictions [nb] of BabaYaga@NLO and
MCGPJ for the Bhabha cross section at τ -charm factories (

√
s =

3.5 GeV) and their relative difference (in per cent)

BabaYaga@NLO MCGPJ δ (%)

35.20(2) 35.181(5) 0.06

top of the J/Ψ resonance show good agreement between
BabaYaga@NLO and BHWIDE predictions too.

2.7.2 B factories

Concerning the B factories, a considerable effort was done
to establish the level of agreement between the genera-
tors BabaYaga@NLO and BHWIDE in comparison with
BabaYaga v3.5 too. This study made use of the realistic lu-
minosity cuts quoted in Sect. 2.3.3 for the BaBar experi-
ment. The cross sections predicted by BabaYaga@NLO and
BHWIDE are shown in Table 9, together with the corre-
sponding relative differences as a function of the considered
angular range. The latter are also shown in Fig. 25, where the
1σ numerical error due to MC statistics is also quoted. As
can be seen, the two codes agree nicely, the predictions for
the central value being in general in agreement at the 0.1%
level or statistically compatible whenever a two to three per
mill difference is present.

To further investigate how the two generators compare
with each other a number of differential cross sections were
studied. The results of this study are shown in Figs. 26
and 27 for the distribution of the electron energy and the
polar angle, respectively, and in Fig. 28 for the acollinear-
ity. For both the energy and scattering angle distribution, the
two programs agree within the statistical errors showing de-
viations below 0.5%. For the acollinearity dependence of the
cross section, BabaYaga@NLO and BHWIDE agree within
∼1%. Therefore, the level of the agreement between the two
codes around 10 GeV is the same as that observed at the φ
factories.

Table 9 Cross section predictions [nb] of BabaYaga@NLO and BH-
WIDE for the Bhabha cross section as a function of the angular selec-
tion cuts for the BaBar experiment at PEP-II and absolute value of their
relative differences (in per cent)

angular range (c.m.s.) BabaYaga@NLO BHWIDE |δ (%)|

15◦÷165◦ 119.5(1) 119.53(8) 0.025

30◦÷150◦ 24.17(2) 24.22(2) 0.207

40◦÷140◦ 11.67(3) 11.660(8) 0.086

50◦÷130◦ 6.31(3) 6.289(4) 0.332

60◦÷120◦ 1.928(2) 1.931(3) 0.141

70◦÷110◦ 3.554(6) 3.549(3) 0.155

80◦÷100◦ 0.824(2) 0.822(1) 0.243

Fig. 25 Relative differences between BabaYaga@NLO and BHWIDE
Bhabha cross sections as a function of the angular acceptance cut for
the BaBar experiment at PEP-II. From [50]

The main conclusions emerging from the tuned compar-
isons discussed in the present section can be summarised as
follows:

– The predictions for the Bhabha cross section of the
most precise tools, i.e. BabaYaga@NLO, BHWIDE and
MCGPJ, generally agree within 0.1%. If (slightly) lar-
ger differences are present they show up for particu-
larly tight cuts or are due to limited MC statistics. When
statistically meaningful discrepancies are observed they
can be ascribed to the different theoretical recipes for
the treatment of radiative corrections and their techni-
cal implementation. For example, as already emphasised,
BabaYaga@NLO and BHWIDE adopt a fully factorised
prescription for the matching of NLO and HO corrections,
whereas MCGPJ implement some pieces of the radiative
corrections in additive form. This can give rise to discrep-
ancies between the programs’ predictions, especially in
the presence of tight cuts enhancing the effect of soft ra-
diation. Furthermore, different choices are adopted in the
generators for the scale entering the collinear logarithms
in HO corrections beyond O(α), which are another possi-
ble source of the observed differences. To go beyond the
present situation, a further nontrivial effort should be done
by comparing, for instance, the programs in the presence
of NLO corrections only (technical test) and by analysing
their different treatment of the exponentiation of soft and
collinear logarithms. This would certainly shed light on
the origin of the (small) discrepancies still registered at
present.

– Also the distributions predicted by the generators agree
well, with relative differences below the 1% level. Slight-
ly larger discrepancies are only seen in sparsely populated
phase–space regions corresponding to very hard-photon
emission which do not influence the luminosity measure-
ment noticeably.
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Fig. 26 Electron energy
distributions according to
BHWIDE, BabaYaga@NLO
and BabaYaga v3.5 for the
BaBar experiment at PEP-II and
relative differences of the
predictions of the programs.
From [50]

Fig. 27 Electron polar angle
distributions according to
BHWIDE, BabaYaga@NLO
and BabaYaga v3.5 for the
BaBar experiment at PEP-II and
relative differences of the
predictions of the programs.
From [50]
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Fig. 28 Acollinearity
distributions according to
BHWIDE, BabaYaga@NLO
and BabaYaga v3.5 for the
BaBar experiment at PEP-II and
relative differences of the
predictions of the programs.
From [50]

2.8 Theoretical accuracy

As discussed in Sect. 2.1, the total luminosity error crucially
depends on the theoretical accuracy of the MC programs
used by the experimentalists. As emphasised in Sect. 2.5,
some of these generators like BHAGENF, BabaYaga v3.5
and BKQED miss theoretical ingredients which are unavoid-
able for cross section calculations with a precision at the per
mill level. Therefore, they are inadequate for a highly accu-
rate luminosity determination. BabaYaga@NLO, BHWIDE
and MCGPJ include, however, both NLO and multiple pho-
ton corrections, and their accuracy aims at a precision tag of
0.1%. But also these generators are affected by uncertainties
which must be carefully considered in the light of the very
stringent criteria of per mill accuracy. The most important
components of the theoretical error of BabaYaga@NLO,
BHWIDE and MCGPJ are mainly due to approximate or
partially included pieces of radiative corrections and come
from the following sources:

1. The non-perturbative hadronic contributions to the run-
ning of α. It can be reliably evaluated only using the
data of the hadron cross section at low energies. Hence,
the vacuum-polarisation correction receives a data driven
error which affects in turn the prediction of the Bhabha
cross section, as emphasised in Sect. 6.

2. The complete set of O(α2) QED corrections. In spite
of the impressive progress in this area, as reviewed in

Sect. 2.3, an important piece of NNLO corrections, i.e.
the exact NLO SV QED corrections to the single hard
bremsstrahlung process e+e− → e+e−γ , is still missing
for the full s + t Bhabha process.10 However, partial re-
sults obtained for t-channel small-angle Bhabha scatter-
ing [47, 263] and large-angle annihilation processes are
available [264, 265].

3. The O(α2) contribution due to real and virtual (lepton
and hadron) pairs. The virtual contributions originate
from the NNLO electron, heavy-flavour and hadronic
loop corrections discussed in Sect. 2.3, while the real cor-
rections are due to the conversion of an external photon
into pairs. The latter, as discussed in Sect. 2.3.3, gives
rise to a final state with four particles, two of which to
be considered as undetected to contribute to the Bhabha
signature.

The uncertainty relative to the first point can be esti-
mated by using the routines available in the literature for
the calculation of the non-perturbative hadronic contribu-
tion Δα

(5)
hadr(q

2) to the running α. Actually these routines

return, in addition to Δα
(5)
hadr(q

2), an error δhadr on its value.

10As already remarked and further discussed in the following, the com-
plete calculation of the NLO corrections to hard-photon emission in
Bhabha scattering was performed during the completion of this report
[101].
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Therefore an estimate of the induced error can be sim-
ply obtained by computing the Bhabha cross section with
Δα

(5)
hadr(q

2) ± δhadr and taking the difference as the theo-
retical uncertainty due to the hadronic contribution to vac-
uum polarisation. In Table 10, the Bhabha cross sections,
as obtained in the presence of the vacuum-polarisation cor-
rection according to the parameterisations of [18, 259, 260]
(denoted as J) and of [164] (denoted as HMNT), respec-
tively, are shown for φ, τ -charm and B factories. The ap-
plied angular cuts refer to the typically adopted acceptance
55◦ ≤ θ± ≤ 125◦.

From Table 10 it can be seen that the two treatments of
Δα

(5)
hadr(q

2) induce effects on the Bhabha cross section in
very good agreement, the relative differences between the
central values being 0.05% (φ factories), 0.005% (τ -charm
factories) and 0.02% (B factories). This can be understood
in terms of the dominance of t-channel exchange for large-
angle Bhabha scattering at meson factories. Indeed, the two
routines provide results in excellent agreement for space-
like momenta, as we explicitly checked, whereas differences
in the predictions show up for time-like momenta which,
however, contribute only marginally to the Bhabha cross
section. Also the spread between the minimum/maximum
values and the central one as returned by the two routines
agrees rather well, also a consequence of the dominance of
t-channel exchange. This spread amounts to a few units in
10−4 and is presented in detail in Table 11 in the next sec-
tion.

Concerning the second point a general strategy to evalu-
ate the size of missing NNLO corrections consists in deriv-
ing a cross section expansion up to O(α2) from the theoret-
ical formulation implemented in the generator of interest. It
can be cast in general into the following form

σα2 = σα2

SV + σα2

SV,H + σα2

HH, (84)

where in principle each of the O(α2) contributions is af-
fected by an uncertainty to be properly estimated. In (84)
the first contribution is the cross section including O(α2)

Table 10 Bhabha scattering cross section in the presence of the
vacuum-polarisation correction, according to [18, 259, 260] (J)
and [164] (HMNT), at meson factories. The notation J−/HMNT−,
J/HMNT and J+/HMNT+ indicates minimum, central and maximum
value of the two parametrisations

Parametrisation φ τ -charm B

J− 542.662(4) 46.9600(1) 5.85364(2)

J 542.662(4) 46.9658(1) 5.85529(2)

J+ 542.662(4) 46.9715(1) 5.85693(2)

HMNT− 542.500(5) 46.9580(1) 5.85496(1)

HMNT 542.391(5) 46.9638(1) 5.85621(1)

HMNT+ 542.283(5) 46.9697(1) 5.85746(2)

SV corrections, whose uncertainty can be evaluated through
a comparison with some of the available NNLO calculations
reviewed in Sect. 2.3. In particular, in [235] the σα2

SV of the
BabaYaga@NLO generator was compared with the calcula-
tion of photonic corrections by Penin [135, 136] and the cal-
culations by Bonciani et al. [140, 141, 151–153] who com-
puted two-loop fermionic corrections (in the one-family ap-
proximation NF = 1) with finite mass terms and the addition
of soft bremsstrahlung and real pair contributions.11 The re-
sults of such comparisons are shown in Figs. 29 and 30 for
realistic cuts at the φ factories. In Fig. 29 δσ is the differ-
ence between σα2

SV of BabaYaga@NLO and the cross sec-
tions of the two O(α2) calculations, denoted as photonic
(Penin) and NF = 1 (Bonciani et al.), as a function of the
logarithm of the infrared regulator ε. It can be seen that
the differences are given by flat functions, demonstrating
that such differences are infrared safe, as expected, a con-
sequence of the universality and factorisation properties of
the infrared divergences. In Fig. 30, δσ is shown as a func-
tion of the logarithm of a fictitious electron mass and for
a fixed value of ε = 10−5. Since the difference with the
calculation by Penin is given by a straight line, this indi-
cates that the soft plus virtual two-loop photonic corrections
missing in BabaYaga@NLO are O(α2L) contributions, as
already remarked. On the other hand, the difference with the
calculation by Bonciani et al. is fitted by a quadratic func-
tion, showing that the electron two-loop effects missing in
BabaYaga@NLO are of the order of α2L2. However, it is
important to emphasise that, as shown in detail in [235], the

Fig. 29 Absolute differences (in nb) between the σα2

SV prediction of
BabaYaga@NLO and the NNLO calculations of the photonic cor-
rections [135, 136] (photonic) and of the electron loop corrections
[140, 141, 151–153] (NF = 1) as a function of the infrared regulator
ε for typical KLOE cuts. From [235]

11To provide meaningful results, the contribution of the vacuum po-
larisation was switched off in BabaYaga@NLO to compare with the
calculation by Penin consistently. For the same reason the real soft and
some pieces of virtual electron pair corrections were neglected in the
comparison with the calculation by Bonciani et al.
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Fig. 30 Absolute differences (in nb) between the σα2

SV prediction of
BabaYaga@NLO and the NNLO calculations of the photonic cor-
rections [135, 136] (photonic) and of the electron loop corrections
[140, 141, 151–153] (NF = 1) as a function of a fictitious electron
mass for typical KLOE cuts. From [235]

sum of the relative differences with the two O(α2) calcula-
tions does not exceed the 2 × 10−4 level for experiments at
φ and B factories.

The second term in (84) is the cross section containing
the one-loop corrections to single hard-photon emission, and
its uncertainty can be estimated by relying on partial re-
sults existing in the literature. Actually the exact perturba-
tive expression of σα2

SV,H is not yet available for full s + t

Bhabha scattering, but using the results valid for small-
angle Bhabha scattering [47, 263] and large-angle annihi-
lation processes [264, 265] the relative uncertainty of the
theoretical tools in the calculation of σα2

SV,H can be conser-
vatively estimated to be at the level of 0.05%. Indeed the
papers [47, 263–265] show that a YFS matching of NLO
and HO corrections gives SV one-loop results for the t-
channel process e+e− → e+e−γ and s-channel annihilation
e+e− → f f̄ γ (f = fermion) differing from the exact per-
turbative calculations by a few units in 10−4 at most. This
conclusion also holds when photon energy cuts are varied.
It is worth noting that during the completion of the present
work a complete calculation of the NLO QED corrections to
hard bremsstrahlung emission in full s+ t Bhabha scattering
appeared in the literature [101], along the lines described in
Sect. 2.3.2. Explicit comparisons between the results of such
an exact calculation with the predictions of the most accu-
rate MC tools according to the typical luminosity cuts used
at meson factories would be worthwhile to make the present
error estimate related to the calculation of σα2

SV,H more ro-
bust.

The third contribution in (84) is the double hard brem-
sstrahlung cross section whose uncertainty can be directly
evaluated by explicit comparison with the exact e+e− →
e+e−γ γ cross section. It was shown in [235] that the differ-
ences between σα2

HH as in BabaYaga@NLO and the matrix
element calculation, which exactly describes the contribu-

tion of two hard photons, are really negligible, being at the
10−5 level.

The relative effect due to lepton (e,μ, τ ) and hadron (π )
pairs has been numerically analysed in Sect. 2.3.3, in the
presence of realistic selection cuts. This evaluation makes
use of the complete NNLO virtual corrections combined
with an exact matrix element calculation of the four-particle
production processes. It supersedes previous approximate
estimates which underestimated the impact of those correc-
tions. According to this new evaluation, the pair contribu-
tion, dominated by the electron pair correction, amounts to
about 0.3% for KLOE and 0.1% for BaBar. These contri-
butions are partially included in the BabaYaga@NLO code,
as well as in other generators, through the insertion of the
vacuum-polarisation correction in the NLO diagrams, and
detailed comparisons between the exact calculation and the
BabaYaga@NLO predictions are in progress [266].

2.9 Conclusions and open issues

During the last few years a remarkable progress occurred in
reducing the error of the luminosity measurements at flavour
factories.

Dedicated event generators like BabaYaga@NLO and
MCGPJ were developed in 2006 to provide predictions for
the cross section of the large-angle Bhabha process, as well
as for other QED reactions of interest, with a theoretical ac-
curacy at the level of 0.1%. In parallel, codes well known
since the time of the LEP/SLC operation, such as BHWIDE,
were extensively used by the experimentalists in data analy-
ses. All these MC programs include, albeit according to dif-
ferent formulations, exact O(α) QED corrections matched
with LL contributions describing multiple photon emission.
Such ingredients, together with the vacuum-polarisation cor-
rection, are strictly necessary to achieve a physical precision
down to the per mill level. Indeed, when considering typi-
cal selection, cuts the NLO photonic corrections amount to
about 15÷20%, vacuum polarisation contributes at the sev-
eral per cent level and HO effects lie between 1÷2%.

The generators mentioned are, however, affected by an
uncertainty due to HO effects neglected in their formulation,
such as light pair corrections or exact perturbative contribu-
tions present in NNLO calculations. From this point of view
the great progress in the calculation of two-loop corrections
to the Bhabha scattering cross section was essential to estab-
lish the theoretical accuracy of the existing generators and
will be crucial if an improvement of the precision below the
one per mill level will be required.

A particular effort was done to compare the predictions
of the generators consistently, in order to assess the technical
precision obtained by the implementation of radiative cor-
rections and related computational details. These compar-
isons were performed in the presence of realistic event se-
lection criteria and at different c.m. energies. For the KLOE
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and CMD-2 experiments around the φ-resonance, where the
statistics of Bhabha events is the highest and the experi-
mental luminosity error at a few per mill level, the cross
section results of BabaYaga@NLO, BHWIDE and MCGPJ
agree within ∼0.1%. If (slightly) larger discrepancies are
observed, they show up only for particularly tight cuts or ex-
clusive distributions in specific phase–space regions which
do not influence the luminosity determination. Very similar
results were obtained for τ -charm and B factories. The main
conclusion of the work on tuned comparisons is that the
technical precision of MC programs is well under control,
the discrepancies being due to different details in the treat-
ment of the same sources of radiative corrections and their
technical implementation. For example, BabaYaga@NLO
and BHWIDE adopt a fully factorised prescription for the
matching of NLO and HO corrections, whereas MCGPJ im-
plement some radiative corrections pieces in additive form.
This can give rise to some discrepancies between their pre-
dictions, especially in the presence of tight cuts enhancing
the effect of soft radiation. Furthermore, different choices
are adopted in the generators for the energy scale in the treat-
ment of HO corrections beyond O(α), which are another
possible source of the observed differences. To go beyond
the present situation, a further, nontrivial effort should be
done by comparing, for instance, the programs in the pres-
ence of NLO corrections only (technical test) and for the
specific effect due to the exponentiation of soft and collinear
logarithms. This would certainly shed light on the origin of
the (minor) discrepancies still registered at present.

On the theoretical side, a new exact evaluation of lepton
and hadron pair corrections to the Bhabha scattering cross
section was carried out, taking into account realistic cuts.
This calculation provides results in substantial agreement
with estimates based on singlet SF but supersedes previous
evaluations in the soft-photon approximation. The results of
the new exact calculation were preliminarily compared with
the predictions of BabaYaga@NLO, which includes the bulk
of such corrections (due to reducible contributions) through
the insertion of the vacuum-polarisation correction in the
NLO diagrams, but neglects the effect of real pair radiation
and two-loop form factors. It turns out that the error induced
by the approximate treatment of pair corrections amounts
to a few units in 10−4, both at KLOE and BaBar. Further
work is in progress to arrive at a more solid and quantita-
tive error estimate for these corrections when considering
other selection criteria and c.m. energies too [266]. Also, the
contribution induced by the uncertainty related to the non-
perturbative contribution to the running of α was revisited,
making use of and comparing the two independent parame-
terisations derived in [18, 259, 260] and [164].

A summary of the different sources of theoretical error
and their relative impact on the Bhabha cross section is given
in Table 11. In Table 11, |δerr

VP| is the error induced by the

hadronic component of the vacuum polarisation, |δerr
pairs| the

error due to missing pair corrections, |δerr
SV| the uncertainty

coming from SV NNLO corrections, |δerr
HH| the uncertainty

in the calculation of the double hard bremsstrahlung process
and |δerr

SV,H| the error estimate for one-loop corrections to
single hard bremsstrahlung. As can be seen, pair corrections
and exact NLO corrections to e+e− → e+e−γ are the dom-
inant sources of error.

The total theoretical uncertainty as obtained by summing
the different contributions linearly is 0.12÷0.14% at the φ

factories, 0.18% at the τ -charm factories and 0.11 ÷ 0.12%
at the B factories. As can be seen from Table 11, the slightly
larger uncertainty at the τ -charm factories is mainly due to
the pair contribution error, which is presently based on a
very preliminary evaluation and for which a deeper analysis
is ongoing [266]. The total uncertainty is slightly affected
by the particular choice of the routine for the calculation of
Δα

(5)
hadr(q

2), since the two parameterisations considered here
give rise to similar errors, with the exception of the φ facto-
ries for which the two recipes return uncertainties differing
by 2 × 10−4. However the “parametric” error induced by
the hadronic contribution to the vacuum polarisation may
become a relevant source of uncertainty when considering
predictions for a c.m. energy on top of and closely around
very narrow resonances. For such a specific situation of in-
terest, for instance for the BES experiment, the appropriate
treatment of the running α in the calculation of the Bhabha
cross section should be scrutinised deeper because of the
differences observed between the predictions for Δα(5)hadr(q

2)

obtained by means of the different parametrisation routines
available (see Sect. 6 for a more detailed discussion).

Although the theoretical uncertainty quoted in Table 11
could be put on firmer ground thanks to further studies in
progress, it appears to be quite robust and sufficient for
present and planned precision luminosity measurements at
meson factories, where the experimental error currently is
about a factor of two or three larger. Adopting the strategy
followed during the LEP/SLC operation one could arrive at a

Table 11 Summary of different sources of theoretical uncertainty for
the most precise generators used for luminosity measurements and the
corresponding total theoretical errors for the calculation of the large-
angle Bhabha cross section at meson factories

Source of error (%) φ τ -charm B

|δerr
VP| [18, 259, 260] 0.00 0.01 0.03

|δerr
VP| [164] 0.02 0.01 0.02

|δerr
SV| 0.02 0.02 0.02

|δerr
HH| 0.00 0.00 0.00

|δerr
SV,H| 0.05 0.05 0.05

|δerr
pairs| 0.05 0.1 0.02

|δerr
total| 0.12÷0.14 0.18 0.11÷0.12
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more aggressive error estimate by summing the relative con-
tributions in quadrature. However, for the time being, this
does not seem to be necessary in the light of the current ex-
perimental errors.

In conclusion, the precision presently reached by large-
angle Bhabha programs used in the luminosity measurement
at meson factories is comparable with that achieved about
ten years ago for luminosity monitoring through small-angle
Bhabha scattering at LEP/SLC.

Some issues are still left open. In the context of tuned
comparisons, no effort was done to compare the available
codes for the process of photon pair production. Since it
contributes relevantly to the luminosity determination and
as precise predictions for its cross section can be obtained
by means of the codes BabaYaga@NLO and MCGPJ, this
work should be definitely carried out. This would lead to a
better understanding of the luminosity on the experimental
side. In the framework of new theoretical advances, an eval-
uation of NNLO contributions to the process e+e− → γ γ

would be worthwhile to better assess the precision of the
generators which, for the time being, do not include such
corrections exactly. More importantly, the exact one-loop
corrections to the radiative process e+e− → e+e−γ should
be calculated going beyond the partial results scattered in the
literature (and referring to selection criteria valid for high-
energy e+e− colliders) or limited to the soft-photon approx-
imation.12 Furthermore, to get a better control of the the-
oretical uncertainty in the sector of NNLO corrections to
Bhabha scattering, the radiative Bhabha process at one-loop
should be evaluated taking into account the typical exper-
imental cuts used at meson factories. Incidentally this cal-
culation would be also of interest for other studies at e+e−
colliders of moderately high energy, such as the search for
new physics phenomena (e.g. dark matter candidates), for
which radiative Bhabha scattering is a very important back-
ground.

3 R measurement from energy scan

In this section we will consider some theoretical and exper-
imental aspects of the direct R measurement and related
quantities in experiments with energy scan. As discussed
in the Introduction, the cross section of e+e− annihilation
into hadrons is involved in evaluations of various problems

12As already remarked in Sect. 2.8, during the completion of the
present work a complete calculation of the NLO QED corrections to
hard bremsstrahlung emission in full s + t Bhabha scattering was per-
formed in [101]. However, explicit comparisons between the predic-
tions of this new calculation and the corresponding results of the most
precise luminosity tools are still missing and would be needed to better
assess the theoretical error induced by such contributions in the calcu-
lation of the luminosity cross section.

of particle physics and, in particular, in the definition of
the hadronic contribution to vacuum polarisation, which is
crucial for the precision tests of the Standard Model and
searches for new physics.

The ratio of the radiation-corrected hadronic cross sec-
tions to the cross section for muon pair production, calcu-
lated in the lowest order, is usually denoted as (see (23))

R ≡R(s)= σ 0
had(s)

4πα2/(3s)
. (85)

In the numerator of (85) one has to use the so-called un-
dressed hadronic cross section which does not include
vacuum-polarisation corrections.

The value of R has been measured in many experiments
in different energy regions from the pion pair-production
threshold up to the Z mass. Practically all electron–positron
colliders contributed to the global data set on the hadronic
annihilation cross section [267]. The value of R extracted
from the experimental data is then widely used for various
QCD tests as well as for the calculation of dispersion inte-
grals. At high energies and away from resonances, the ex-
perimentally determined values of R are in good agreement
with predictions of perturbative QCD, confirming, in partic-
ular, the hypothesis of three colour degrees of freedom for
quarks. On the other hand, for the low-energy range the di-
rect R measurement [267, 268] at experiments with energy
scan is necessary.13 Matching between the two regions is
performed at energies of a few GeV, where both approaches
for the determination of R are in fair agreement.

For the best possible compilation of R(s), data from dif-
ferent channels and different experiments have to be com-
bined. For

√
s ≤ 1.4 GeV, the total hadronic cross section is

a sum of about 25 exclusive final states. At the present level
of precision, a careful treatment of the radiative corrections
is required. As mentioned above, it is mandatory to remove
VP effects from the observed cross sections, but the final-
state radiation off hadrons should be kept. The major contri-
bution to the uncertainty comes from the systematic error of
the R(s) measurement at low energies (s < 2 GeV2), which,
in turn, is dominated by the systematic error of the measured
cross section e+e− → π+π−.

3.1 Leading-order annihilation cross sections

Here we present the lowest-order expressions for the process-
es of electron–positron annihilation into pairs of muons, pi-
ons and kaons.

For the muon production channel

e−(p−)+ e+(p+)→ μ−(p′−)+μ+(p′+) (86)

13Lattice QCD computations (see, e.g., Ref. [269]) of the hadronic vac-
uum polarisation are in progress, but they are not yet able to provide
the required precision.
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within the Standard Model at Born level we have

dσμμ
0

dΩ−
= α2βμ

4s

(
2 − β2

μ

(
1 − c2))(1 +K

μμ
W

)
,

s = (p− + p+)2 = 4ε2, c = cos θ−, θ− = p̂−p′−, (87)

where βμ =
√

1 −m2
μ/ε

2 is the muon velocity. Small terms

suppressed by the factor m2
e/s are omitted. Here K

μμ
W rep-

resents contributions due to Z-boson intermediate states in-
cluding Z − γ interference, see, e.g., Refs. [270, 271]:

K
μμ
W = s2(2 − β2

μ(1 − c2))−1

(s −M2
Z)

2 +M2
ZΓ

2
Z

{(
2 − β2

μ

(
1 − c2))

×
(
c2
v

(
3 − 2

M2
Z

s

)
+ c2

a

)
− 1 − β2

μ

2

(
c2
a + c2

v

)

+ cβμ

[
4

(
1 − M2

Z

s

)
c2
a + 8c2

ac
2
v

]}
,

ca = − 1

2 sin 2θW
, cv = ca

(
1 − 4 sin2 θW

)
, (88)

where θW is the weak mixing angle.
The contribution of Z boson exchange is suppressed, in

the energy range under consideration, by a factor s/M2
Z

which reaches per mill level only at B factories.
In the Born approximation the differential cross section

of the process

e+(p+)+ e−(p−)→ π+(q+)+ π−(q−) (89)

has the form

dσππ
0

dΩ
(s)= α2β3

π

8s
sin2 θ

∣
∣Fπ(s)

∣
∣2
,

βπ =
√

1 −m2
π/ε

2, θ = p̂−q−. (90)

The pion form factor Fπ(s) takes into account non-pertur-
bative virtual vertex corrections due to strong interac-
tions [256, 272]. We would like to emphasise that in the
approach under discussion the final-state QED corrections
are not included into Fπ(s). The form factor is extracted
from the experimental data on the same process as discussed
below.

The annihilation process with three pions in the final state
was considered in Refs. [273, 274] including radiative cor-
rections relevant to the energy region close to the threshold.
A stand-alone Monte Carlo event generator for this chan-
nel is available [273]. The channel was also included in
the MCGPJ generator [236] on the same footing as other
processes under consideration in this report.

In the case of KLKS meson pair production the differen-
tial cross section in the Born approximation reads

dσ0(s)
KLKS

dΩL

= α2β3
K

4s
sin2 θ

∣∣FLS(s)
∣∣2
. (91)

Here, as well as in the case of pion production, we as-
sume that the form factor FLS also includes the vacuum-
polarisation operator of the virtual photon. The quantity

βK =
√

1 − 4m2
K/s is the K meson c.m.s. velocity, and θ

is the angle between the directions of motion of the long
living kaon and the initial electron.

In the case of K+K− meson production near thresh-
old, the Sakharov–Sommerfeld factor for the Coulomb final-
state interaction should additionally be taken into account:

dσ0(s)
K+K−

dΩ−
= α2β3

K

4s
sin2 θ

∣∣FK(s)
∣∣2 Z

1 − exp(−Z)
,

Z = 2πα

v
, v = 2

√
s − 4m2

K

s

(
1 + s − 4m2

K

s

)−1

, (92)

where v is the relative velocity of the kaons [275] which has
the proper non-relativistic and ultra-relativistic limits. When
s =m2

φ , we have v ≈ 0.5 and the final-state interaction cor-
rection gives about 5% enhancement in the cross section.

3.2 QED radiative corrections

One-loop radiative corrections (RC) for the processes (86),
(89) can be separated into two natural parts according to the
parity with respect to the substitution c → −c.

The c-even part of the one-loop soft and virtual contri-
bution to the muon pair creation channel can be combined
from the well-known Dirac and Pauli form factors and the
soft-photon contributions. It reads

dσB+S+V
μμ−even

dΩ
= dσμμ

0

dΩ

1

|1 −Π(s)|2

×
{

1 + 2α

π

[[
L− 2 + 1 + β2

μ

2βμ
lβ

]
ln
Δε

ε

+ 3

4
(L− 1)+Kμμ

even

]}
, (93)

Kμμ
even = π2

6
− 5

4
+ ρ

(
1 + β2

μ

2βμ
− 1

2
+ 1

4βμ

)

+ ln
1 + βμ

2

(
1

2βμ
+ 1 + β2

μ

βμ

)

− 1 − β2
μ

2βμ

lβ

2 − β2
μ(1 − c2)
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+ 1 + β2
μ

2βμ

[
π2

6
+ 2Li2

(
1 − βμ

1 + βμ

)
+ ρ ln

1 + βμ

2β2
μ

+ 2 ln
1 + βμ

2
ln

1 + βμ

2β2
μ

]
,

lβ = ln
1 + βμ

1 − βμ
, ρ = ln

s

m2
μ

L= ln
s

m2
e

, (94)

where Li2(z) = − ∫ z

0 dt ln(1 − t)/t is the dilogarithm and
Δε 	 ε is the maximum energy of soft photons in the
centre-of-mass (c.m.) system. Π(s) is the vacuum-polarisa-
tion operator. Here we again see that the terms with the large
logarithm L dominate numerically.

The c-odd part of the one-loop correction comes from the
interference of Born and box Feynman diagrams and from
the interference part of the soft-photon emission contribu-
tion. It causes the charge asymmetry of the process:

η = dσ(c)− dσ(−c)

dσ(c)+ dσ(−c)
�= 0. (95)

The c-odd part of the differential cross section has the fol-
lowing form [245]:

dσS+V
odd

dΩ
= dσμμ

0

dΩ

2α

π

[
2 ln

Δε

ε
ln

1 − βc

1 + βc
+K

μμ
odd

]
. (96)

The expression for the c-odd form factor can be found in
Ref. [245]. Note that in most cases the experiments have a
symmetric angular acceptance, so that the odd part of the
cross section does not contribute to the measured quantities.

Consider now the process of hard-photon emission

e+(p+)+ e−(p−)→ μ+(q+)+μ−(q−)+ γ (k). (97)

It was studied in detail in Refs. [245, 276]. The photon en-
ergy is assumed to be larger than Δε. The differential cross
section has the form

dσμμγ = α3

2π2s2
R dΓ, (98)

dΓ = d3q−d3q+d3k

q0−q0+k0
δ(4)(p+ + p− − q− − q+ − k),

R = s

16(4πα)3
∑

spins

|M|2 =Re +Rμ +Reμ.

The quantities Ri are found directly from the matrix ele-
ments and read

Re = s

χ−χ+
B − m2

e

2χ2−

(t21 + u2
1 + 2m2

μs1)

s2
1

− m2
e

2χ2+

(t2 + u2 + 2m2
μs1)

s2
1

+ m2
μ

s2
1

Δs1s1,

Reμ = B

(
u

χ−χ ′+
+ u1

χ+χ ′−
− t

χ−χ ′−
− t1

χ+χ ′+

)

+ m2
μ

ss1
Δss1,

Rμ = s1

χ ′−χ ′+
B + m2

μ

s2
Δss,

B = u2 + u2
1 + t2 + t21

4ss1
,

Δs1s1 = − (t + u)2 + (t1 + u1)
2

2χ−χ+
,

Δss = −u2 + t21 + 2sm2
μ

2(χ ′−)2
− u2

1 + t2 + 2sm2
μ

2(χ ′+)2

+ 1

χ ′−χ ′+

(
ss1 − s2 + tu+ t1u1 − 2sm2

μ

)
,

Δss1 = s + s1

2

(
u

χ−χ ′+
+ u1

χ+χ ′−
− t

χ−χ ′−
− t1

χ+χ ′+

)

+ 2(u− t1)

χ ′−
+ 2(u1 − t)

χ ′+
,

where

s1 = (q+ + q−)2, t = −2p−q−, t1 = −2p+q+,

u= −2p−q+, u1 = −2p+q−, χ± = p±k,

χ ′± = q±k.

The bulk of the hard-photon radiation comes from ISR in
collinear regions. If we consider photon emission inside two
narrow cones along the beam axis with restrictions

p̂±k = θ ≤ θ0 	 1, θ0 � me

ε
, (99)

we see that the corresponding contribution takes the fac-
torised form

(
dσμμ

dΩ−

)

coll
= Ce +De,

Ce = α

2π

(
ln

s

m2
e

− 1

)∫ 1

Δ

dx
1 + (1 − x)2

x
A0,

De = α

2π

∫ 1

Δ

dx

{
x + 1 + (1 − x)2

x
ln
θ2

0

4

}
A0,

A0 =
[

dσ̃0(1 − x,1)

dΩ−
+ dσ̃0(1,1 − x)

dΩ−

]
, (100)

where the shifted Born differential cross section describes
the process e+(p+(1−x2))+e−(p−(1−x1))→ μ+(q+)+
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μ−(q−),

dσ̃ μμ
0 (z1, z2)

dΩ−

= α2

4s

y1[z2
1(Y1 − y1c)

2 + z2
2(Y1 + y1c)
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2
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3
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,
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s
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ε
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μ

s
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[
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+
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4z2
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2
2− 4(m2
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. (101)

One can recognise that the large logarithms related to the
collinear photon emission appear in Ce in agreement with
the structure function approach discussed in the section on
luminosity. In analogy to the definition of the QCD structure
functions, one can move the factorised logarithmic correc-
tions Ce into the QED electron structure function. Adding
the higher-order radiative corrections in the leading loga-
rithmic approximation to the complete one-loop result, the
resulting cross section can be written as

dσ e+e−→μ+μ−(γ )

dΩ−

=
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, (102)

where De, Ceμ and Cμ are compensating terms, which pro-
vide the cancellation of the auxiliary parameters Δ and θ0

inside the curly brackets. In the first term, containing D
functions, we collect all the leading logarithmic terms. A
part of non-leading terms proportional to the Born cross sec-
tion is written as the K-factor. The rest of the non-leading
contributions are written as two additional terms. The com-
pensating term De (see (100)) comes from the integration
in the collinear region of hard-photon emission. The quan-
tities Cμ and Ceμ come from the even and odd parts of the
differential cross section (arising from soft and virtual cor-
rections), respectively. Here we consider the phase space of
two (dΩ−) and three (dΓ ) final particles as those that al-
ready include all required experimental cuts. Using specific
experimental conditions one can determine the lower limits
of the integration over z1 and z2 instead of the kinematical
limit zmin = 2mμ/(2ε −mμ).

Matching of the complete O(α) RC with higher-order
leading logarithmic corrections can be performed in differ-
ent schemes. The above approach is implemented in the
MCGPJ event generator [236]. The solution of the QED
evolution equations in the form of parton showers (see the
section on luminosity), matched again with the first-order
corrections, is implemented in the BabaYaga@NLO gen-
erator [234]. Another possibility is realised in the KKMC
code [277, 278] with the Yennie–Frautschi–Suura exponen-
tiated representation of the photonic higher-order correc-
tions. A good agreement was obtained in [236] for vari-
ous differential distributions for the μ+μ− channel between
MCGPJ, BabaYaga@NLO and KKMC, see Fig. 31 for an
example.

Since the radiative corrections to the initial e+e− state are
the same for annihilation into hadrons and muons as well as

Fig. 31 Comparison of the e+e− → μ+μ− total cross sections com-
puted by the MCGPJ and KKMC generators versus the c.m. energy
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that into pions, they cancel out in part in the ratio (106).
However, the experimental conditions and systematic are
different for the muon and hadron channels. Therefore, a
separate treatment of the processes has to be performed and
the corrections to the initial states have to be included in the
analysis.

For the π+π− channel the complete set of O(α) correc-
tions matched with the leading logarithmic electron struc-
ture functions can be found in Ref. [279]. There the RC cal-
culation was performed within scalar QED.

Taking into account only final-state corrections calcu-
lated within scalar QED, it is convenient to introduce the
bare e+e− → π+π−(γ ) cross section as

σ 0
ππ(γ ) = πα2

3s
β3
π

∣∣Fπ(s)
∣∣2∣∣1−Π(s)

∣∣2
(

1+ α

π
Λ(s)

)
, (103)

where the factor |1 −Π(s)|2 with the polarisation operator
Π(s) gives the effect of leptonic and hadronic vacuum po-
larisation. The final-state radiation (FSR) correction is de-
noted by Λ(s). For an inclusive measurement without cuts
it reads [280–283]
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(104)

For the neutral kaon channel the corrected cross section
has the form

dσ e+e−→KLKS (s)

dΩL

=
∫ Δ

0
dx

dσ e+e−→KLKS

0 (s(1 − x))

dΩL

F(x, s).

The radiation factor F takes into account radiative correc-
tions to the initial state within the leading logarithmic ap-
proximation with exponentiation of the numerically impor-
tant contribution of soft-photon radiation, see Ref. [228]:
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Radiative corrections to the K+K− channel in the point-
like particle approximation are the same as for the case of
charged pion pair (with the substitution mπ → mK ). Usu-
ally, for the kaon channel we deal with the energy range
close to φ mass. There one may choose the maximal energy
of a radiated photon as

ω ≤ΔE =mφ − 2mK 	mK, Δ≡ ΔE

mK

≈ 1

25
. (105)

For these photons one can use the soft-photon approxima-
tion.

3.3 Experimental treatment
of hadronic cross sections and R

For older low-energy data sets obtained at various e+e− col-
liders, the correct treatment of radiative corrections is diffi-
cult and sometimes ambiguous. So, to avoid uncontrolled
possible systematic errors, it may be reasonable not to in-
clude all previous results except the recent data from CMD-
2 and SND. Both experiments at the VEPP-2M collider in
Novosibirsk have delivered independent new measurements.
The covered energy range is crucial for (gμ − 2)/2 of muon
and for running α. As for the two-pion channel π+π−,
which gives more than 70% of the total hadronic contribu-
tion, both experiments have very good agreement over the
whole energy range. The relative deviation “SND − CMD-
2” is (−0.3 ± 1.6)% only, well within the quoted errors.

The CMD-2 and SND detectors were located in the op-
posite straight sections of VEPP-2M and were taking data in
parallel until the year 2000 when the collider was shut down
to prepare for the construction of the new collider VEPP-
2000. Some important features of the CMD-2 detector al-
lowed one to select a sample of the “clean” collinear back-
to-back events. The drift chamber (DC) was used to sep-
arate e+e−, μ+μ−, π+π− and K+K− events from other
particles. The Z-chamber allowed one to significantly im-
prove the determination of the polar angle of charged parti-
cle tracks in the DC that, in turn, provided the detector ac-
ceptance with 0.2% precision. The barrel electromagnetic
calorimeter based on CsI crystals helped to separate the
Bhabha from other collinear events.
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The SND detector consisted of three spherical layers of
the electromagnetic calorimeter with 1620 crystals (NaI)
and a total weight of 3.6 tons. The solid angle of the
calorimeter is about 90% of 4π steradians, which makes the
detector practically hermetic for photons coming from the
interaction point. The angular and energy resolution for pho-
tons was found to be 1.5◦ and σ(E)/E = 4.2%/E(GeV)1/4,
respectively. More detail about CMD-2 and SND can be
found elsewhere [284, 285].

3.3.1 Data taking and analysis of the π+π− channel

The detailed data on the pion form factor are crucial for a
number of problems in hadronic physics and they are used to
extract ρ(770) meson parameters and its radial excitations.
Besides, the detailed data allow to extrapolate the pion form
factor to the point s = 0 and determine the value of the pion
electromagnetic radius.

From the experimental point of view the form factor can
be defined as [268]

|Fπ |2 = Nππ

Nee +Nμμ

σee(1 + δee)εee + σμμ(1 + δμμ)εμμ

σππ(1 + δππ )(1 +ΔN)(1 +ΔD)εππ

−Δ3π , (106)

where the ratio Nππ/(Nee + Nμμ) is derived from the ob-
served numbers of events, σ are the corresponding Born
cross sections, δ are the radiative corrections (see below),
ε are the detection efficiencies, ΔD and ΔN are the cor-
rections for the pion losses caused by decays in flight and
nuclear interactions respectively, and Δ3π is the correction
for misidentification of ω → π+π−π0 events as e+e− →
π+π−. In the case of the latter process, σππ corresponds to
point-like pions.

The data were collected in the whole energy range of
VEPP-2M and the integrated luminosity of about 60 pb−1

was recorded by both detectors. The beam energy was con-
trolled and measured with a relative accuracy not worse than
∼10−4 by using the method of resonance depolarisation. A
sample of the e+e−, μ+μ− and π+π− events was selected
for analysis. As for CMD-2, the procedure of the e/μ/π

separation for energies 2E ≤ 600 MeV was based on the
momentum measurement in the DC. For these energies the
average difference between the momenta of e/μ/π is large
enough with respect to the momentum resolution (Fig. 32).
On the contrary, for energies 2E ≥ 600 MeV, the energy de-
position of the particles in the calorimeter is quite different
and allows one to separate electrons from muons and pi-
ons (Fig. 33). At the same time, muons and pions cannot be
separated by their energy depositions in the calorimeter. So,
the ratio N(μ+μ−)/N(e+e−) was fixed according to QED
calculations taking into account the detector acceptance and
the radiative corrections. Since the selection criteria were

Fig. 32 Two-dimensional plot of the e/μ/π events. Cosmic events
are distributed predominantly along a corridor which extends from the
right upper to the left bottom corner. Points in this plot correspond to
the momenta of particles for the beam energy of 195 MeV

Fig. 33 Energy deposition of collinear events for the beam energy of
460 MeV

the same for all collinear events, many effects of the detec-
tor imperfections were partly cancelled out. It allowed one
to measure the cross section of the process e+e− → π+π−
with better precision than that of the luminosity.

Separation of e+e−, μ+μ− and π+π− events was based
on the minimisation of the unbinned likelihood function.
This method is described in detail elsewhere [286]. To sim-
plify the error calculation of the pion form factor, the like-
lihood function had the global fit parameters (Nee + Nμμ)

and Nππ/(Nee + Nμμ), through |Fπ(s)|2 given by (106).
The pion form factor measured by CMD-2 has a systematic
error of about 0.6–0.8% for

√
s ≤ 1 GeV. For energies above

1 GeV it varies from 1.2% to 4.2%.
Since at low energies all three final states could be

separated independently, the cross section of the process
e+e− → μ+μ− was also measured, providing an additional
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consistency test. The experimental value σ
exp
μμ /σ

QED
μμ =

(0.980 ± 0.013 ± 0.007) is in good agreement with the ex-
pected value of 1 within 1.4 statistical deviations.

Another method to discriminate electrons and pions from
other particles was used in SND. The event separation was
based on the difference in longitudinal energy deposition
profiles (energy deposition in three calorimeter layers) for
these particles. To use the correlations between energy de-
positions in calorimeter layers in the most complete way,
the separation parameter was based on the neural network
approach [287, 288]. The network had an input layer con-
sisting of 7 neurons, two hidden layers with 20 neurons
each, and the output layer with one neuron. As input data,
the network used the energy depositions of the particles in
calorimeter layers and the polar angle of one of the parti-
cles. The output signal Re/π is a discrimination parameter
between different particles. The network was tuned by us-
ing simulated events and was checked with experimental 3π
and e+e− events. The misidentification ratio between elec-
trons and pions was found to be 0.5–1%. SND measured the
e+e− → π+π− cross section in the energy range 0.36–0.87
GeV with a systematic error of 1.3%.

The Gounaris–Sakurai (GS) parametrisation was used to
fit the pion form factor. Results of the fit are shown in
Fig. 34. The χ2 was found to be χ2

min/n.d.f. = 122.9/111
that corresponds to the probability P(χ2

min/n.d.f.) = 0.21.
The average deviation between SND [287, 288] and CMD-
2 [289] data is: Δ(SND − CMD-2) ∼(1.3 ± 3.6)% for
the energy range

√
s ≤ 0.55 GeV and Δ(SND − CMD-2)

∼(−0.53 ± 0.34)% for the energy range
√
s ≥ 0.55 GeV.

The obtained ρ meson parameters are:

CMD-2—Mρ = 775.97 ± 0.46 ± 0.70 MeV,

Γρ = 145.98 ± 0.75 ± 0.50 MeV,

Γee = 7.048 ± 0.057 ± 0.050 keV,

Fig. 34 Pion form factor data from CMD-2 and GS fit. The energy
range around the ω meson is scaled up and presented in the inset

Br(ω → π+π−)= (1.46 ± 0.12 ± 0.02)%;
SND—Mρ = 774.6 ± 0.4 ± 0.5 MeV,

Γρ = 146.1 ± 0.8 ± 1.5 MeV,

Γee = 7.12 ± 0.02 ± 0.11 keV,

Br(ω → π+π−)= (1.72 ± 0.10 ± 0.07)%.

The systematic errors were carefully studied and are listed
in Table 12.

The comparison of the ρ meson parameters determined
by CMD-2 and SND with the values from the PDG is pre-
sented in Fig. 35. Good agreement is observed for all para-
meters, except for the branching fraction of ω decaying to
π+π−, where a difference ∼1.6 standard deviations is ob-
served.

3.3.2 Cross section of the process e+e− → π+π−π0

This channel was studied by SND in the energy range
√
s

from 0.6 to 1.4 GeV [290, 291], while CMD-2 has reported
results of the measurements in vicinity of the ω [289] and φ

meson peaks [292]. For both the ω and φ resonances CMD-
2 and SND obtain consistent results for the product of the
resonance branching fractions into e+e− and π+π−π0, for
which they have the world’s best accuracy (SND for the ω

and CMD-2 for the φ resonance).
CMD-2 has also performed a detailed Dalitz plot analy-

sis of the dynamics of φ decaying to π+π−π0. Two models
of 3π production were used: a ρπ mechanism and a con-
tact amplitude. The result obtained for the ratio of the con-
tact and ρπ amplitudes is in good agreement with that of
KLOE [293].

The systematic accuracy of the measurements is about
1.3% around the ω meson energy region, 2.5% in the φ re-
gion, and about 5.6% for higher energies. The results of dif-
ferent experiments are collected in Fig. 36. The curve is the
fit which takes into account the ρ, ω, φ, ω′ and ω′′ mesons.

Table 12 The main sources of the systematic errors for different en-
ergy regions

Sources of errors CMD-2 SND CMD-2√
s < 1 GeV 1.4 >

√
s > 1 GeV

Event separation method 0.2–0.4% 0.5% 0.2–1.5%

Fiducial volume 0.2% 0.8% 0.2–0.5%

Detection efficiency 0.2–0.5% 0.6% 0.5–2%

Corrections for pion losses 0.2% 0.2% 0.2%

Radiative corrections 0.3–0.4% 0.2% 0.5–2%

Beam energy determination 0.1–0.3% 0.3% 0.7–1.1%

Other corrections 0.2% 0.5% 0.6–2.2%

The total systematic error 0.6–0.8% 1.3% 1.2–4.2%
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Fig. 35 Comparison of ρ
meson parameters from CMD-2
and SND with corresponding
PDG values. The panels
(top-left to bottom-right) refer to
the mass (MeV), width (MeV),
leptonic width (keV) and the
branching fraction of the decay
ω → π+π− (%)

Fig. 36 Cross section of the process e+e− → π+π−π0

3.3.3 Cross section of the process e+e− → 4π

This cross section becomes important for energies above the
φ meson region. CMD-2 showed that the a1(1260)π mech-
anism is dominant for the process e+e− → π+π−π+π−,
whereas for the channel e+e− → π+π−π0π0 in addition
the intermediate state ωπ is required to describe the energy
dependence of the cross section [294]. The SND analysis
confirmed these conclusions [295]. The knowledge of the
dynamics of 4π production allowed us to determine the de-
tector acceptance and efficiencies with better precision com-
pared to the previous measurements.

The cross section of the process e+e− → π+π−π+π−
was measured with a total systematic error of 15% for CMD-
2 and 7% for SND. For the channel e+e− → π+π−π0π0

the systematic uncertainty was 15 and 8%, respectively. The
CMD-2 reanalysis of the process e+e− → π+π−π+π−,
with a better procedure for the efficiency determination, re-
duced the systematic error to (5–7)% [296], and these new
results are now in remarkable agreement with other experi-
ments.

3.3.4 Other modes

CMD-2 and SND have also measured the cross sections of
the processes e+e− → KSKL and e+e− → K+K− from
threshold and up to 1.38 GeV with much better accuracy
than before [297–299]. These cross sections were studied
thoroughly in the vicinity of the φ meson, and their sys-
tematic errors were determined with a precision of about
1.7% (SND) and 4% (CMD-2), respectively. The analyses
were based on two decay modes of the KS : KS → π0π0

and π+π−. As for the process e+e− →K+K−, the system-
atic uncertainty was studied in detail and found to be 2.2%
(CMD-2) and 7% (SND).

At energies
√
s above 1.04 GeV the cross sections of

the processes e+e− → KSKL,K
+K− were measured with

a statistical accuracy of about 4% and systematic errors of
about 4–6% and 3%, respectively, and are in good agreement
with other experiments.

To summarise, the experiments performed in 1995–2000
with the CMD-2 and SND detectors at VEPP-2M allowed
one to measure the exclusive cross sections of e+e− annihi-
lation into hadrons in the energy range

√
s = 0.36–1.38 GeV

with larger statistics and smaller systematic errors compared
to the previous experiments. Figure 37 summarises the cross
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Fig. 37 Hadronic cross sections
measured by CMD-2 and SND
in the whole energy range of
VEPP-2M. The curve represents
a smooth spline of the sum of all
data

section measurements from CMD-2 ans SND. The results of
these experiments determine the current accuracy of the cal-
culation of the muon anomaly, and they are one of the main
sources of information about physics of vector mesons at
low energies.

3.3.5 R measurement at CLEO

Two important measurements of the R ratio have been re-
cently reported by the CLEO Collaboration [300, 301].

In the energy range just above the open charm thresh-
old, they collected statistics at thirteen c.m. energy points
from 3.97 to 4.26 GeV [301]. Hadronic cross sections in
this region exhibit a rich structure, reflecting the produc-
tion of cc̄ resonances. Two independent measurements have
been performed. In one of them they determined a sum of
the exclusive cross sections for final states consisting of two
charm mesons (DD̄, D∗D̄, D∗D̄∗, D+

s D
−
s , D∗+

s D−
s , and

D∗+
s D∗−

s ) and of processes in which the charm-meson pair
is accompanied by a pion. In the second one they measured
the inclusive cross section with a systematic uncertainty be-
tween 5.2 and 6.1%. The results of both measurements are
in excellent agreement, which leads to the important con-
clusion that in this energy range the sum of the two- and
three-body cross sections saturates the total cross section
for charm production. In Fig. 38 the inclusive cross section
measured by CLEO is compared with the previous measure-
ments by Crystal Ball [302] and BES [303]. Good agree-
ment is observed between the data.

CLEO has also performed a new measurement of R at
higher energy. They collected statistics at seven c.m. en-
ergy points from 6.964 to 10.538 GeV [300] and reached
a very small systematic uncertainty of 2% only. Results of
their scan are presented in Fig. 39 and are in good agree-
ment with those of Crystal Ball [302], MD-1 [304] and the
previous measurement of CLEO [305]. However, they are

Fig. 38 Comparison of the R values from CLEO (the inclusive deter-
mination) with those from Crystal Ball and BES

obviously inconsistent with those of the old MARK I mea-
surement [306].

3.3.6 R measurement at BES

Above 2 GeV the number of final states becomes too large
for completely exclusive measurements, so that the values
of R are measured inclusively.

In 1998, as a feasibility test of R measurements, BES
took data at six c.m. energy points between 2.6 and
5.0 GeV [307]. The integrated luminosity collected at each
energy point changed from 85 to 292 nb−1. The statisti-
cal error was around 3% per point and the systematic error
ranged from 7 to 10%.

Later, in 1999, BES performed a systematic fine scan
over the c.m. energy range from 2 to 4.8 GeV [303]. Data
were taken at 85 energy points, with an integrated lumi-
nosity varying from 9.2 to 135 nb−1 per point. In this ex-
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Fig. 39 Top plot: comparison of the R values from CLEO with those
from MARK I, Crystal Ball and MD-1; bottom plot: comparison of the
new CLEO results with the QCD prediction at Λ= 0.31 GeV

periment, besides the continuum region below the charmo-
nium threshold, the high charmonium states from 3.77 to
4.50 GeV were studied [308] in detail. The statistical er-
ror was between 2 to 3%, while the systematic error ranged
from 5 to 8%, due to improvement on hadronic event selec-
tion and Monte Carlo simulation of hadronisation processes.
The uncertainty due to the luminosity determination varied
from 2 to 5.8%.

More recently, in 2003 and 2004, before BES-II was shut
down for the upgrade to BES-III, a high-statistics data sam-
ple was taken at 2.6, 3.07 and 3.65 GeV, with an integrated
luminosity of 1222, 2291 and 6485 nb−1, respectively [309].
The systematic error, which exceeded the statistical error,
was reduced to 3.5% due to further refinement on hadronic
event selection and Monte Carlo simulation.

For BES-III, the main goal of the R measurement
is to perform a fine scan over the whole energy region
which BEPC-II can cover. For a continuum region (below
3.73 GeV), the step size should not exceed 100 MeV, and
for the resonance region (above 3.73 GeV), the step size
should be 10 to 20 MeV. Since the luminosity of BEPC-II is
two orders of magnitude higher than at BEPC, the scan of
the resonance region will provide precise information on the
1−− charmonium states up to 4.6 GeV.

3.4 Estimate of the theoretical accuracy

Let us discuss the accuracy of the description of the
processes under consideration. This accuracy can be sub-
divided into two major parts: theoretical and technical one.
The first one is related to the precision in the actual com-
puter codes. It usually does not take into account all known
contributions in the best approximation. The technical pre-
cision can be verified by special tests within a given code
(e.g., by looking at the numerical cancellation of the depen-
dence on auxiliary parameters) and tuned comparisons of
different codes.

The pure theoretical precision consists of unknown high-
er-order corrections, of uncertainties in the treatment of pho-
ton radiation off hadrons, and of errors in the phenomeno-
logical definition of such quantities as the hadronic vacuum
polarisation and the pion form factor.

Many of the codes used at meson factories do not include
contributions from weak interactions even at Born level. As
discussed above, these contributions are suppressed at least
by a factor of s/M2

Z and do not spoil the precision up to the
energies of B factories.

Matching the complete one-loop QED corrections with
the higher-order corrections in the leading logarithmic ap-
proximation, certain parts of the second-order next-to-
leading corrections are taken into account [235]. For the case
of Bhabha scattering, where, e.g., soft and virtual photonic
corrections in O(α2L) are known analytically, one can see
that their contribution in the relevant kinematic region does
not exceed 0.1%.14

The uncertainty coming from the hadronic vacuum po-
larisation has been estimated [13] to be of order 0.04%. For
measurements performed with the c.m. energy at a narrow
resonance (like at the φ-meson factories), a systematic error
in the determination of the resonance contribution to vac-
uum polarisation is to be added.

The next point concerns non-leading terms of order
(α/π)2L. There are several sources of them. One is the
emission of two extra hard photons, one in the collinear re-
gion and one at large angles. Others are related to virtual-
and soft-photon radiative corrections to single hard-photon
emission and Born processes. Most of these contributions
were not considered up to now. Nevertheless we can es-
timate the coefficient in front of the quantity (α/π)2L ≈
1 · 10−4 to be of order one. This was indirectly confirmed
by our complete calculations of these terms for the case of
small-angle Bhabha scattering.

Considering all sources of uncertainties mentioned above
as independent, we conclude that the systematic error of our
formulae is about 0.2% or better, both for muons and pi-
ons. For the former it is a rather safe estimate. Comparisons

14The proper choice of the factorisation scale [246] is important here.



632 Eur. Phys. J. C (2010) 66: 585–686

between different codes which treat higher-order QED cor-
rections in different ways typically show agreement at the
0.1% level. Such comparisons test the technical and partially
the theoretical uncertainties. As for the π+π− and two kaon
channels, the uncertainty is enhanced due to the presence
of form factors and due to the application of the point-like
approximation for the final-state hadrons.

4 Radiative return

4.1 History and evolution of radiative return
in precision physics

The idea to use Initial State Radiation to measure hadronic
cross sections from the threshold of a reaction up to the
centre-of-mass (c.m.) energy of colliders with fixed energies√
s, to reveal reaction mechanisms and to search for new

mesonic states consists in exploiting the process e+e− →
hadrons+nγ , thus reducing the c.m. energy of the colliding
electrons and positrons and consequently the mass-squared
M2

had = s − 2
√
sEγ of the hadronic system in the final state

by emission of one or more photons. The method is partic-
ularly well suited for modern meson factories like DAΦNE
(detector KLOE), running at the φ-resonance, BEPC-II (de-
tector BES-III), commissioned in 2008 and running at the
J/ψ and ψ(2S)-resonances, PEP-II (detector BaBar) and
KEKB (detector Belle) at the Υ (4S)-resonance. Their high
luminosities compensate for the α/π suppression of the
photon emission. DAΦNE, BEPC-II, PEP-II and KEKB
cover the regions in Mhad up to 1.02, 3.8 (maximally 4.6)
and 10.6 GeV, respectively (for the latter actually restricted
to 4–5 GeV if hard photons are detected). A big advan-
tage of ISR is the low point-to-point systematic errors of the
hadronic energy spectra. This is because the luminosity, the
energy of the electrons and positrons and many other con-
tributions to the detection efficiencies are determined once
for the whole spectrum. As a consequence, the overall nor-
malisation error is the same for all energies of the hadronic
system. The term Radiative Return alternately used for ISR
refers to the appearance of pronounced resonances (e.g. ρ,
ω, φ, J/ψ , Z) with energies below the collider energy. Re-
views and updated results can be found in the Proceedings
of the International Workshops in Pisa (2003) [310], Nara
(2004) [311], Novosibirsk (2006) [312], Pisa (2006) [313],
Frascati (2008) [314], and Novosibirsk (2008) [315].

Calculations of ISR date back to the sixties to seven-
ties of the 20th century. For example, photon emission for
muon pair production in electron–positron collisions has
been calculated in Ref. [316], for the 2π -final state in Refs.
[317, 318]; the resonances ρ, ω and φ have been imple-
mented in Ref. [318], the excitations ψ(3100) and ψ ′(3700)
in Ref. [319], and the possibility to determine the pion form

factor was discussed in Ref. [320]. The application of ISR
to the new high luminosity meson factories, originally aimed
at the determination of the hadronic contribution to the vac-
uum polarisation, more specifically the pion form factor,
has materialised in the late nineties. Early calculations of
ISR for the colliders DAΦNE, PEP-II and KEKB can be
found in [321–324]. In Ref. [279] calculations of radiative
corrections for pion and kaon production below energies of
2 GeV have been reported. An impressive example of ISR
is the Radiative Return to the region of the Z-resonance at
LEP-2 with collider energies around 200 GeV [325–328]
(see Fig. 40).

ISR became a powerful tool for the analysis of experi-
ments at low and intermediate energies with the develop-
ment of EVA-PHOKHARA, a Monte Carlo generator which
is user friendly, flexible and easy to implement into the soft-
ware of the existing detectors [329–345].

EVA and its successor PHOKHARA allow one to simu-
late the process e+e− → hadrons + γ for a variety of ex-
clusive final states. As a starting point EVA was constructed
[329] to simulate leading-order ISR and FSR for the π+π−
channel, and additional soft and collinear ISR was included
on the basis of structure functions taken from [346]. Sub-
sequently EVA was extended to include the four-pion state
[330], albeit without FSR. Neglecting FSR and radiative cor-
rections, i.e. including one-photon emission from the initial
state only, the cross section for the radiative return can be
cast into the product of a radiator function H(M2

had, s) and

Fig. 40 The reconstructed distribution of e+e− → qq̄ events as a
function of the invariant mass of the quark–antiquark system. The data
has been taken for a collider energy range of 182–209 GeV. The promi-
nent peak around 90 GeV represents the Z-resonance, populated after
emission of photons in the initial state [326]
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the cross section σ(M2
had) for the reaction e+e− → hadrons:

s dσ(e+e− → hadrons γ )/dM2
had = σ

(
M2

had

)
H

(
M2

had, s
)
.

However, for a precise evaluation of σ(M2
had), the leading

logarithmic approximation inherent in EVA is insufficient.
Therefore, in the next step, the exact one-loop correction to
the ISR process was evaluated analytically, first for large-
angle photon emission [331], then for arbitrary angles, in-
cluding collinear configurations [332]. This was and is one
of the key ingredients of the generator called PHOKHARA
[333, 334], which also includes soft and hard real radiation,
evaluated using exact matrix elements formulated within
the framework of helicity amplitudes [333]. FSR in NLO
approximation was addressed in [335] and incorporated in
[336, 337]. The importance of the charge asymmetry, a con-
sequence of interference between ISR and FSR amplitudes,
for a test of the (model dependent) description of FSR has
been emphasised already in Ref. [329] and was further stud-
ied in [337].

Subsequently the generator was extended to allow for
the generation of many more channels with mesons, like
K+K−, K0K̄0, π+π−π0, for an improved description of
the 4π modes [338, 339] and for improvements in the de-
scription of FSR for the μ+μ− channel [336, 337]. Also the
nucleon channels pp̄ and nn̄ were implemented [340], and
it was demonstrated that the separation of electric and mag-
netic proton form factors is feasible for a wide energy range.
In fact, for the case of ΛΛ̄ and including the polarisation-
sensitive weak decay of Λ into the simulation, it was shown
that even the relative phase between the two independent
form factors could be disentangled [341].

Starting already with [347], various improvements were
made to include the direct decay φ → π+π−γ as a specific
aspect of FSR into the generator, a contribution of specific
importance for data taken on top of the φ resonance.

This was further pursued in the event generators FEVA
and FASTERD based on EVA-PHOKHARA. FEVA in-
cludes the effects of the direct decay φ → π−π+γ and
the decay via the ρ-resonance φ → ρ±π∓ → π−π+γ
[348–350]. The code FASTERD takes into account Final
State Radiation in the framework of both Resonance Pertur-
bation Theory and sQED, Initial State Radiation, their inter-
ference and also the direct decays e+e− → φ → (fo;fo +
σ)γ → π+π−γ , e+e− → φ → ρ±π∓ → π+π−γ and
e+e− → ρ → ωπo → πoπoγ [351], with the possibility to
include additional models.

EVA-PHOKHARA was applied for the first time to an
experiment to determine the cross section e+e− → π+π−
from the reaction threshold up to the maximum energy of
the collider with the detector KLOE at DAΦNE [352–376]
(Sect. 4.4.1). The motivation was the determination of the
2π final-state contribution to the hadronic vacuum polarisa-
tion.

The determination of the hadronic contribution to the
vacuum polarisation, which arises from the coupling of vir-
tual photons to quark–antiquark pairs, γ � → qq̄ → γ �, is
possible by measuring the cross section of electron–positron
annihilation into hadrons, e+e− → γ ∗ → qq̄ → hadrons,
and applying the optical theorem. It is of great importance
for the interpretation of the precision measurement of the
anomalous magnetic moment of the muon aμ in Brookhaven
(E821) [31, 377–379] and for the determination of the value
of the running QED coupling at the Zo resonance, α(m2

Z),
which contributes to precision tests of the Standard Model of
particle physics, for details see e.g. Jegerlehner [380], also
Davie and Marciano [381], or Teubner et al. [26, 382, 383].
The hadronic contribution to aμ below about 2 GeV is domi-
nated by the 2π final state, which contributes about 70% due
to the dominance of the ρ-resonance. Other major contribu-
tions come from the three- and four-pion final states. These
hadronic final states constitute at present the largest error to
the Standard Model values of aμ and α(m2

Z) and can be de-
termined only experimentally. This is because calculations
within perturbative QCD are unrealistic, calculations on the
lattice are not yet available with the necessary accuracy, and
calculations in the framework of chiral perturbation theory
are restricted to values close to the reaction thresholds. At
energies above about 2 to 2.5 GeV, perturbative QCD calcu-
lations start to become possible and reliable, see e.g. Refs.
[384, 385], and also [386].

The Novosibirsk groups CMD-2 [268, 297, 312, 387,
289, 388–392] and SND [287, 288, 291, 298, 299, 393] mea-
sured hadronic cross sections below 1.4 GeV by changing
the collider energy (energy scan, see the preceding Sect. 3).
The Initial State Radiation method used by KLOE repre-
sents an alternative, independent and complementary way
to determine hadronic cross sections with different system-
atic errors. KLOE has determined the cross section for the
reaction e+e− → π+π− in the energy region between 0.63
and 0.958 GeV by measuring the reaction e+e− → π+π−γ
and applying a radiator function based on PHOKHARA.
For the hadronic contribution to the anomalous magnetic
moment of the muon due to the 2π final state it obtained
aππμ = (356.7 ± 3.1stat+syst) · 10−10 [374]. This value is in
good agreement with those from SND [298] and CMD-
2 [392], aππμ = (361.0 ± 5.1stat+syst) · 10−10 and aππμ =
(361.5±3.4stat+syst) ·10−10, respectively, leading to an eval-
uation of aμ [26, 37, 380–383] which differs by about three
standard deviations from the BNL experiment [31]. A differ-
ent evaluation using τ decays into two pions results in a re-
duced discrepancy [37, 381]. The difference between e+e−
and τ based analyses is at present not understood. But one
has to be aware that the evaluation with τ data needs more
theoretical input.

Soon after the application of EVA-PHOKHARA to
KLOE [352], the BaBar collaboration also started the mea-
surement of hadronic cross sections exploiting ISR [394]
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and using PHOKHARA (Sect. 4.4.2). In recent years a
plethora of final states has been studied, starting with the
reaction e+e− → J/ψ γ → μ+μ− γ [395]. While detect-
ing a hard photon, the upper energy for the hadron cross
sections is limited to roughly 4.5 GeV. Final states with 3, 4,
5, 6 charged and neutral pions, 2 pions and 2 kaons, 4 kaons,
4 pions and 2 kaons, with a φ and an fo(980), J/ψ and 2 pi-
ons or 2 kaons, pions and η, kaons and η, but also baryonic
final states with protons and antiprotons, Λo and Λ̄o, Λo

and Σ̄o, Σo and Σ̄o, DD̄, DD̄∗, and D∗D̄∗ mesons, etc.
have been investigated [396–408]. In preparation are final
states with 2 pions [409] and 2 kaons. Particularly important
final states are those with 4 pions (including ωπo). They
contribute significantly to the muon anomalous magnetic
moment and were poorly known before the ISR measure-
ments. In many of these channels additional insights into
isospin symmetry breaking are expected from the compari-
son between e+e− annihilation and τ decays.

More recently also Belle joined the ISR programme with
emphasis on final states containing mesons with hidden and
open charm: J/ψ and ψ(2S), D(∗) and D̄(∗), Λc

+Λc
−

[410–417] (Sect. 4.4.3).
A major surprise in recent years was the opening of a

totally new field of hadron spectroscopy by applying ISR.
Several new, relatively narrow highly excited states with
J PC = 1−−, the quantum numbers of the photon, have been
discovered (preliminarily denoted as X, Y, Z) at the B facto-
ries PEP-II and KEKB with the detectors BaBar and Belle,
respectively. The first of them was found by BaBar in the re-
action e+e− → Y(4260) γ → J/ψ π+π−γ [418], a state
around 4260 MeV with a width of 90 MeV, later con-
firmed by Belle via ISR [410, 419] and by CLEO in an
direct energy scan [420] and a radiative return [421]. An-
other state was detected at 2175 MeV by BaBar in the
reaction e+e− → Y(2175) γ → φfo(980)γ [400]. Belle
found new states at 4050, 4360, 4660 MeV in the reac-
tions e+e− → Y γ → J/ψ π+π−γ and e+e− → Y γ →
ψ(2S) π+π−γ [410, 411]. The structure of basically all
of these new states (if they will survive) is unknown so
far. Four-quark states, e.g. a [cs][c̄s̄] state for Y(4260), a
[ss][s̄ s̄] state for Y(2175), hybrid and molecular structures
are discussed, see also [422].

Detailed analyses allow, in addition, also for the iden-
tification of intermediate states, and consequently a study
of reaction mechanisms. For instance, in the case of the
final state with 2 charged and 2 neutral pions (e+e− →
π+π−πoπoγ ), the dominating intermediate states are ωπo

and a1(1260)π , while ρ+ρ− and ρofo(980) contribute sig-
nificantly less.

Many more highly excited states with quantum numbers
different from those of the photon have been found in decay
chains of the primarily produced heavy mesons at the B fac-
tories PEP-II and KEKB. These analyses without ISR have

clearly been triggered and encouraged by the unexpected
discovery of highly excited states with JPC = 1−− found
with ISR.

Also baryonic final states with protons and antiprotons,
Λo and Λ̄o, Λo and Σ̄o, Σo and Σ̄o have been investigated
using ISR. The effective proton form factor (see Sect. 4.4.2)
shows a strong increase down to the pp̄ threshold and non-
trivial structures at invariant pp̄ masses of 2.25 and 3.0 GeV,
so far unexplained [398, 423–426]. Furthermore, it should
be possible to disentangle electric and magnetic form factors
and thus shed light on discrepancies between different mea-
surements of these quantities in the space-like region [427].

Prospects for the Radiative Return at the Novosibirsk col-
lider VEPP-2000 and BEPC-II are discussed in Sects. 4.4.4
and 4.4.5.

4.2 Radiative return: a theoretical overview

4.2.1 Radiative return at leading order

We consider the e+e− annihilation process

e+(p1)+ e−(p2)→ hadrons + γ (k1), (107)

where the real photon is emitted either from the initial
(Fig. 41a) or the final state (Fig. 41b). The former process is
denoted initial-state radiation (ISR), while the latter is called
final-state radiation (FSR).

The differential rate for the ISR process can be cast into
the product of a leptonic Lμν and a hadronic Hμν tensor and
the corresponding factorised phase space,

dσISR = 1

2s
L
μν
ISRHμν dΦ2(p1,p2;Q,k1)

× dΦn(Q;q1, ·, qn)dQ2

2π
, (108)

where dΦn(Q;q1, ·, qn) denotes the hadronic n-body phase
space with all the statistical factors coming from the hadro-
nic final state included, Q= ∑

qi and s = (p1 + p2)
2.

For an arbitrary hadronic final state, the matrix element
for the diagrams in Fig. 41a is given by

Fig. 41 Leading-order contributions to the reaction e+e− → hh̄ + γ

from ISR (a) and FSR (b). Final-state particles are pions or muons, or
any other multi-hadron state. The blob represents the hadronic form
factor
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A(0)
ISR = M

(0)
ISR · J (0)

= − e2

Q2
v̄(p1)

(
ε/∗(k1)[k/1 − p/1 +me]γ μ

2k1 · p1

+ γ μ[p/2 − k/1 +me]ε/∗(k1)

2k1 · p2

)
u(p2)J

(0)
μ , (109)

where Jμ is the hadronic current. The superscript (0) indi-
cates that the scattering amplitude is evaluated at tree level.
Summing over the polarisations of the final real photon, av-
eraging over the polarisations of the initial e+e− state, and
using current conservation, Q · J (0) = 0, the leptonic tensor

L
(0),μν
ISR =M

(0),μ
ISR (M

(0),ν
ISR )†

can be written in the form

L
(0),μν
ISR = (4πα)2

Q4

×
[(

2m2q2(1 − q2)2

y2
1y

2
2

− 2q2 + y2
1 + y2

2

y1y2

)
gμν

+
(

8m2

y2
2

− 4q2

y1y2

)
p
μ
1 p

ν
1

s
+

(
8m2

y2
1

− 4q2

y1y2

)
p
μ
2 p

ν
2

s

−
(

8m2

y1y2

)
p
μ
1 p

ν
2 + pν1p

μ
2

s

]
, (110)

with

yi = 2k1 · pi
s

, m2 = m2
e

s
, q2 = Q2

s
. (111)

The leptonic tensor is symmetric under the exchange of the
electron and the positron momenta. Expressing the bilinear
products yi by the photon emission angle in the c.m. frame,

y1,2 = 1 − q2

2
(1 ∓ β cos θ), β =

√
1 − 4m2,

and rewriting the two-body phase space as

dΦ2(p1,p2;Q,k1)= 1 − q2

32π2
dΩ, (112)

it is evident that expression (110) contains several singulari-
ties: soft singularities for q2 → 1 and collinear singularities
for cos θ → ±1. The former are avoided by requiring a min-
imal photon energy. The latter are regulated by the electron
mass. For s � m2

e the expression (110) can nevertheless be
safely taken in the limit me → 0 if the emitted real photon
lies far from the collinear region. In general, however, one
encounters spurious singularities in the phase–space integra-
tions if powers of m2 =m2

e/s are neglected prematurely.

Physics of the hadronic system, whose description is
model dependent, enters through the hadronic tensor

Hμν = J (0)
μ

(
J (0)
ν

)†
, (113)

where the hadronic current has to be parametrised through
form factors. For two charged pions in the final state, the
current

J
(0),μ
π+π− = ieF2π

(
Q2)(q1 − q2)

μ, (114)

where q1 and q2 are the momenta of the π+ and π−, re-
spectively, is determined by only one function, the pion form
factor F2π . The current for the μ+μ− final state is obviously
defined by QED:

J
(0),μ
μ+μ− = ieū(q2)γ

μv(q1). (115)

Integrating the hadronic tensor over the hadronic phase
space, one gets

∫
Hμν dΦn(Q;q1, ·, qn)= e2

6π

(
QμQν − gμνQ2)R

(
Q2),

(116)

where R(Q2) = σ(e+e− → hadrons)/σ0(e
+e− → μ+μ−),

with

σ0(e
+e− → μ+μ−)= 4πα2

3Q2
(117)

the tree-level muonic cross section in the limit Q2 � 4m2
μ.

After the additional integration over the photon angles, the
differential distribution

Q2 dσISR

dQ2
= 4α3

3s
R

(
Q2)

{
s2 +Q4

s(s −Q2)
(L− 1)

}
, (118)

with L= log(s/m2
e) is obtained. If instead the photon polar

angle is restricted to be in the range θmin < θ < π − θmin,
this differential distribution is given by

Q2 dσISR

dQ2
= 4α3

3s
R

(
Q2)

{
s2 +Q4

s(s −Q2)
log

1 + cos θmin

1 − cos θmin

− s −Q2

s
cos θmin

}
. (119)

In the latter case, the electron mass can be taken equal
to zero before integration, since the collinear region is ex-
cluded by the angular cut. The contribution of the two-pion
exclusive channel can be calculated from (118) and (119)
with

Rπ+π−
(
Q2) = 1

4

(
1 − 4m2

π

Q2

)3/2∣∣F2π
(
Q2)∣∣2

, (120)
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and the corresponding muonic contribution with

Rμ+μ−
(
Q2) =

√

1 − 4m2
μ

Q2

(
1 + 2m2

μ

Q2

)
. (121)

A potential complication for the measurement of the
hadronic cross section from the radiative return may arise
from the interplay between photons from ISR and FSR [329].
Their relative strength is strongly dependent on the photon
angle relative to the beam and to the direction of the final-
state particles, the c.m. energy of the reaction and the invari-
ant mass of the hadronic system. While ISR is independent
of the hadronic final state, FSR is not. Moreover, it cannot be
predicted from first principles and thus has to be modelled.

The amplitude for FSR (Fig. 41b) factorises as well as

A(0)
FSR =M(0) · J (0)

FSR, (122)

where

M(0)
μ = e

s
v̄(p1)γμu(p2). (123)

Assuming that pions are point-like, the FSR current for two
pions in scalar QED (sQED) reads

J
(0),μ
FSR = −ie2F2π (s)

×
[
−2gμσ + (q1 + k1 − q2)

μ (2q1 + k1)
σ

2k1 · q1

− (q1 − k1 − q2)
μ (2q2 + k1)

σ

2k1 · q2

]
ε∗
σ (k1). (124)

Due to momentum conservation, p1 + p2 = q1 + q2 + k1,
and current conservation, this expression can be simplified
further to

J
(0),μ
FSR = 2ie2F2π (s)

[
gμσ + q

μ
2 q

σ
1

k1 · q1
+ q

μ
1 q

σ
2

k1 · q2

]
ε∗
σ (k1). (125)

This is the basic model adopted in EVA [329] and in PHO-
KHARA [331–338, 341, 428] to simulate FSR off charged
pions. The corresponding FSR current for muons is given by
QED.

The fully differential cross section describing photon
emission at leading order can be split into three pieces

dσ (0) = dσ (0)
ISR + dσ (0)

FSR + dσ (0)
INT, (126)

which originate from the squared ISR and FSR amplitudes
and the interference term, respectively. The ISR–FSR inter-
ference is odd under charge conjugation,

dσ (0)
INT(q1, q2)= −dσ (0)

INT(q2, q1), (127)

and its contribution vanishes after angular integration. It
gives rise, however, to a relatively large charge asymmetry

and, correspondingly, to a forward–backward asymmetry,

A(θ)= Nh(θ)−Nh(π − θ)

Nh(θ)+Nh(π − θ)
. (128)

The asymmetry can be used for the calibration of the FSR
amplitude, and fits to the angular distribution A(θ) can test
details of its model dependence [329].

The second option to disentangle ISR from FSR exploits
the markedly different angular distribution of the photon
from the two processes. This observation is completely gen-
eral and does not rely on any model like sQED for FSR. FSR
is dominated by photons collinear to the final-state particles,
while ISR is dominated by photons collinear to the beam
direction. This suggests that we should consider only events
with photons well separated from the charged final-state par-
ticles and preferentially close to the beam [329, 333, 334].

This is illustrated in Fig. 42, which has been generated
running PHOKHARA at leading order (LO). After introduc-
ing suitable angular cuts, the contamination of events with
FSR is easily reduced to less than a few per mill. The price
to pay, however, is a suppression of the threshold region too.
To have access to that region, photons at large angles need to
be tagged and a better control of FSR is required. In Fig. 43
the angular distribution of π+ and μ+ at DAΦNE energies,√
s = 1.02 GeV, are shown for different angular cuts. The

angles are defined with respect to the incoming positron. If
no angular cut is applied, the angular distribution in both
cases is highly asymmetric as a consequence of the ISR–
FSR interference contribution. If cuts suitable to suppress
FSR, and therefore the ISR–FSR interference, are applied,
the distributions become symmetric.

Fig. 42 Suppression of the FSR contributions to the cross section by
a suitable choice of angular cuts; results from the PHOKHARA gener-
ator; no cuts (upper curves) and suitable cuts applied (lower curves)
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Fig. 43 Angular distributions of π+ and μ+ at
√
s = 1.02 GeV with and without FSR for different angular cuts

Fig. 44 Angular distributions of π+ (ISR 
 FSR + ISR) and μ+ at
√
s = 10.6 GeV for various Q2 cuts

Two complementary analyses are therefore possible (for
details see Sect. 4.4.1): The small photon angle analysis,
where the photon is untagged and FSR can be suppressed
below some reasonable limit. This analysis is suitable for in-
termediate values of the invariant mass of the hadronic sys-
tem. And the large photon angle analysis, giving access to
the threshold region, where FSR is more pronounced and the
charge asymmetry is a useful tool to probe its model depen-
dence.

These considerations apply, however, only to low beam
energies, around 1 GeV. At high energies, e.g. at B facto-
ries, very hard tagged photons are needed to access the re-
gion with low hadronic invariant masses, and the hadronic
system is mainly produced back-to-back to the hard photon.
The suppression of FSR is naturally accomplished and no
special angular cuts are needed. This kinematical situation
is illustrated in Fig. 45. The suppression of FSR contribu-
tions to π+π−γ events is also a consequence of the rapid
decrease of the form factor above 1 GeV. The relative size

Fig. 45 Typical kinematic configuration of the radiative return at low
and high energies

of FSR is of the order of a few per mill (see Fig. 44). For
μ+μ− in the final state, the amount of FSR depends on the
invariant mass of the muons. For

√
Q2 < 1 GeV FSR is still

tiny, but becomes more relevant for larger values of Q2 (see
Fig. 44).
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4.2.2 Structure functions

The original and default version of EVA [329], simulating
the process e+e− → π+π−γ at LO, allowed for additional
initial-state radiation of soft and collinear photons by the
structure function (SF) method [346, 429].

In the leading logarithmic approximation (LL), the multi-
ple emission of collinear photons off an electron is described
by the convolution integral

σ(e−X → Y + nγ )=
∫ 1

0
dxfe

(
x,Q2)σ(e−X → Y),

(129)

where fe(x,Q
2) is the probability distribution of the elec-

tron with longitudinal momentum fraction x, and Q is the
transverse momentum of the collinear photons. The function
fe(x,Q

2) fulfils the evolution equation

d

d logQ
fe

(
x,Q2)

=
∫ 1

x

dz

z

α

π

(
1 + z2

(1 − z)+
+ 3

2
δ(1 − z)

)
fe

(
x

z
,Q2

)
(130)

with initial conditions

fe
(
x,Q2) ∣∣

Q2=m2
e
= δ(1 − x), (131)

and the + prescription defined as

∫ 1

0
dx

f (x)

(1 − x)+
=

∫ 1

0
dx

f (x)− f (1)

(1 − x)
. (132)

The analytic solution to (130) provided in Refs. [346, 429]
allows one to resum soft photons to all orders in perturbation
theory, accounting for large logarithms of collinear origin,
L = log(s/m2

e), up to two loops. The resummed cross sec-
tion,

σSF =
∫ 1

0
dx1

∫ 1

0
dx2D(x1)D(x2)σe+e−→had.+γ (x1x2s),

(133)

is thus obtained by convoluting the Born cross section of the
hard-photon emission process e+e− → hadrons + γ with
the SF distribution [346, 429]

D(x) = [1 + δN ]1/2 βe

2
(1 − x)

βe
2 −1

×
{

1

2

(
1 + x2) + 1

2

(1 − x)2

L− 1

+ βe

8

(
−1

2

(
1 + 3x2) logx − (1 − x)2

)}
, (134)

with

βe = 2
α

π
(L− 1) (135)

and

δN = α

π

(
3

2
L+ π2

3
−2

)
+β2

e

π2

8
+

(
α

π

)2(11

8
− 2π2

3

)
L2.

(136)

In the SF approach, the additional emission of collinear
photons reduces the effective c.m. energy of the collision to√
x1x2s. Momentum conservation is not accomplished be-

cause the extra radiation is integrated out. In order to re-
duce the kinematic distortion of the events, a minimal invari-
ant mass of the observed particles, hadrons plus the tagged
photon, was required in [329], introducing in turn a cut
dependence. Therefore the SF predictions are not accurate
enough for a high-precision measurement of the hadronic
cross section from radiative return, and a next-to-leading or-
der (NLO) calculation is in order. The NLO prediction con-
tains the large logarithms L = log(s/m2

e) at order α3 and
additional sub-leading terms, which are not taken into ac-
count within the SF method. Furthermore, it allows for a
better control of the kinematical configurations because mo-
mentum conservation is fulfilled. A comparison between SF
and NLO predictions can be found in [333].

4.2.3 Radiative return at NLO

At NLO, the e+e− annihilation process in (107) receives
contributions from one-loop corrections and from the emis-
sion of a second real photon (see Fig. 46). After renormal-
isation, the one-loop matrix elements still contain infrared
divergences. These are cancelled by adding the two-photon
contributions to the one-loop corrections. There are several
well established methods to perform this cancellation. The
slicing method, where amplitudes are evaluated in dimen-
sional regularisation and the two-photon contribution is in-
tegrated analytically in phase space for one of the photon
energies up to an energy cut-off Eγ < w

√
s far below

√
s,

was used in [331, 332] to calculate the NLO corrections to
ISR. Here the sum of the virtual and soft contributions is
finite, but it depends on the soft-photon cut-off. The contri-
bution from the emission of the second photon with energy
Eγ > w

√
s, which is evaluated numerically, completes the

calculation and cancels this dependence.
The size and sign of the NLO corrections do depend on

the particular choice of the experimental cuts. Hence, only
using a Monte Carlo event generator one can realistically
compare theoretical predictions with experiment. This is the
main motivation behind PHOKHARA [331–338, 341, 428].

The full set of scattering amplitudes at tree level and one
loop can be constructed from the sub-amplitudes depicted in
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Fig. 46 Typical sub-amplitudes describing virtual and real corrections
to the reaction e+e− → hh̄ + γ (γ ), where h = π−, μ−. The super-
scripts (0) and (1) denote tree-level and one-loop quantities, respec-
tively. ISR and FSR indicate that real photons are emitted from the ini-
tial or final state. The last two diagrams, with exchange of two virtual
photons, are non-factorisable. Permutations are omitted

Fig. 46. The one-loop amplitude with emission of a single
photon is given by

A(1)
1γ = A(1)

ISR + A(1)
FSR +M(1) · J (0)

FSR +M
(0)
ISR · J (1)

+ A2γ ∗
ISR + A2γ ∗

FSR, (137)

where

A(1)
ISR =M

(1)
ISR · J (0), A(1)

FSR =M(0) · J (1)
FSR, (138)

while the amplitude with emission of two real photons reads

A(0)
2γ = A(0)

2ISR+ A(0)
2FSR+(

M
(0)
ISR(k1) ·J (0)

FSR(k2)+ (k1↔ k2)
)
,

(139)

where

A(0)
2ISR =M

(0)
2ISR · J (0), A(0)

2FSR =M(0) · J (0)
2FSR. (140)

PHOKHARA includes the full LO amplitudes and the
most relevant C-even NLO contributions:

dσ = dσ (0) + dσ (1)
ISR + dσ (1)

IFS, (141)

where dσ (0) is the LO differential cross section (see (126)),

dσ (1)
ISR = 1

2s

[
2Re

{
A(1)

ISR

(
A(0)

ISR

)†}dΦ3(p1,p2;q1, q2, k1)

+ ∣∣A(0)
2ISR

∣∣2 dΦ4(p1,p2;q1, q2, k1, k2)

]
(142)

is the second-order radiative correction to ISR, and

dσ (1)
IFS = 1

2s

[
2Re

{
M

(0)
ISR · J (1)(A(0)

ISR

)†

+M(1) · J (0)
FSR

(
A(0)

FSR

)†}dΦ3(p1,p2;q1, q2, k1)

+ (∣∣M(0)
ISR(k1) · J (0)

FSR(k2)
∣∣2 + (k1 ↔ k2)

)

× dΦ4(p1,p2;q1, q2, k1, k2)
]

(143)

is the contribution of events with simultaneous emission of
one photon from the initial state and another one from the fi-
nal state, together with ISR amplitudes with final-state one-
loop vertex corrections, and FSR amplitudes with initial-
state one-loop vertex corrections. We denote these correc-
tions as IFS.

Vacuum-polarisation corrections are included in the
hadronic currents multiplicatively:

J (i) → CVP
(
Q2)J (i),

J
(i)
FSR(kj )→ CVP

(
(Q+ kj )

2)J (i)
FSR(kj ), (144)

J
(0)
2FSR → CVP(s)J

(0)
2FSR.

The virtual photon propagator is by definition included in
the leptonic sub-amplitudes M(i), M(i)

ISR and M
(0)
2ISR:

M(i) ∼ 1

s
,

M
(i)
ISR(kj )∼ 1

(p1 + p2 + kj )2
, (145)

M
(0)
2ISR ∼ 1

Q2
.
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Neither diagrams where two photons are emitted from
the final state, nor final-state vertex corrections with associ-
ated real radiation from the final state are included. These
constitute radiative corrections to FSR and will give non-
negligible contributions only for those cases where at least
one photon is collinear with one of the final-state parti-
cles. Box diagrams with associated real radiation from the
initial- or the final-state leptons, as well as pentagon dia-
grams, are also neglected. As long as one considers charge
symmetric observables only, their contribution is divergent
neither in the soft nor the collinear limit and is thus of order
α/π without any enhancement factor. One should stress that
PHOKHARA includes only C-even gauge invariant sets of
diagrams at NLO. The missing contributions are either small
or do not contribute for charge symmetric cuts. Nevertheless
their implementation is underway.

The calculation of the NLO corrections to ISR, dσ (1)
ISR, is

independent of the final state. These corrections are included
by default for all the final-state channels implemented in
PHOKHARA, and can be easily added for any other new
channel, with the sole substitution of the tree-level final-state
current. The radiative corrections of the IFS process depend
on the final state. The latest version of PHOKHARA (ver-
sion 6.0 [341]) includes these corrections for two charged
pions, kaons and muons.

Virtual and soft corrections to ISR The virtual and soft
QED corrections to ISR in e+e− annihilation were orig-
inally implemented in PHOKHARA through the leptonic
tensor. For future applications, however, it will be more con-
venient to implement those corrections directly at the ampli-
tude level (in preparation). In terms of sub-amplitudes, the
leptonic tensor is given by

L
μν
ISR = L

(0),μν
ISR +M

(1),μ
ISR

(
M

(0),ν
ISR

)† +M
(0),μ
ISR

(
M

(1),ν
ISR

)†

+ 1

2(2π)d−1

∫ w
√
s

0
Ed−3 dE dΩM

(0),μ
2ISR

(
M

(0),ν
2ISR

)†
,

(146)

where E and Ω are the energy and the solid angle of the soft
photon, respectively, and d = 4−2ε is the number of dimen-
sions in dimensional regularisation. The leptonic tensor has
the general form

L
μν
ISR = (4πα)2

Q4

[
a00g

μν + a11
p
μ
1 p

ν
1

s
+ a22

p
μ
2 p

ν
2

s

+ a12
p
μ
1 p

ν
2 + p

μ
2 p

ν
1

s
+ iπa−1

p
μ
1 p

ν
2 − p

μ
2 p

ν
1

s

]
,

(147)

where the scalar coefficients aij and a−1 allow for the fol-
lowing expansion:

aij = a
(0)
ij + α

π
a
(1)
ij , a−1 = α

π
a
(1)
−1. (148)

The imaginary antisymmetric piece, which is proportional
to a−1, appears for the first time at second order and is par-
ticularly relevant for those cases where the hadronic current
receives contributions from different amplitudes with non-
trivial relative phases. This is possible, e.g., for final states
with three or more mesons, or for pp̄ production.

The LO coefficients a(0)ij can be read directly from (110)

a
(0)
00 = 2m2q2(1 − q2)2

y2
1y

2
2

− 2q2 + y2
1 + y2

2

y1y2
,

a
(0)
11 = 8m2

y2
2

− 4q2

y1y2
, a

(0)
22 = a

(0)
11 (y1 ↔ y2), (149)

a
(0)
12 = − 8m2

y1y2
.

The NLO coefficients a(1)ij and a
(1)
−1 are obtained by com-

bining the one-loop and the soft contributions. It is conve-
nient to split the coefficients a(1)ij into a part that contributes

at large photon angles and a part proportional to m2
e and m4

e

which is relevant only in the collinear regions. These coeffi-
cients are denoted by a

(1,0)
ij and a

(1,m)
ij , respectively:

a
(1)
ij = a

(0)
ij

[
− log

(
4w2)[1 + log

(
m2)]

− 3

2
log

(
m2

q2

)
− 2 + π2

3

]
+ a

(1,0)
ij + a

(1,m)
ij . (150)

The factor proportional to the LO coefficients a(0)ij contains
the usual soft and collinear logarithms. The quantity w de-
notes the dimensionless value of the soft-photon energy cut-
off, Eγ < w

√
s. It is enough to present four out of the five

coefficients because exchanging the positron with the elec-
tron momenta leads to the symmetry relation

a
(1)
22 = a

(1)
11 (y1 ↔ y2). (151)

The large-angle contributions have been calculated in
Ref. [331]. The coefficient proportional to gμν reads

a
(1,0)
00 = 1

y1y2

[
−q2(1 − q2)

2
− y1y2

−
[
q2 + 2y1y2

1 − q2

]
log

(
q2)

+
{
y1

2

[
4 − y1 − 3(1 + q2)

1 − y2

]
log

(
y1

q2

)

−
[

1 + (1 − y2)
2 + y1q

2

y2

]
L(y1)+ (y1 ↔ y2)

}]
,

(152)
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where the function L is defined as

L(yi) = Li2

(
− yi

q2

)
− Li2

(
1 − 1

q2

)

+ log
(
q2 + yi

)
log

(
yi

q2

)
, (153)

with Li2 the Spence (or dilogarithmic) function defined be-
low (94). The coefficient in front of the tensor structure
p
μ
1 p

ν
1 is given by

a
(1,0)
11 = 1

y1y2

[(
1 + q2)2

(
1

1 − y1
− 1

1 − q2

)

− 4(1 − y2)y1

1 − q2

− 2q2

1 − q2

[
(1 − y2)

(
1

y2
+ q2

y1
+ 2y1

1 − q2

)

+ 2q2

1 − q2

]
log

(
q2) − q2

[
1 + 2

y2

]
log

(
y1

q2

)

− q2
[
(2 − 3y1)(1 − y2)

2

y1(1 − y1)2

]
log

(
y2

q2

)

− 2q2
[

1 + 1

y2
2

]
L(y1)

− 2q2
[

3 + 2q2

y1
+ q4

y2
1

]
L(y2)

]
. (154)

For the symmetric tensor structure (pμ1 p
ν
2 +p

μ
2 p

ν
1 ) one gets

a
(1,0)
12 = 1

y1y2

[
−4q2 + (y1 − y2)

2

1 − q2

− 2q2
[

q2

y1y2
+ 1 + q2 − 2y1y2

(1 − q2)2

]
log

(
q2)

+
{

q2

1 − y1
− 2q2

1 − y2

[
1 − y1 + q2

y2
− q2

2(1 − y2)

]

× log

(
y1

q2

)

− 2q2
[

1 + q2

y2
+ q2

y2
2

]
L(y1)+ (y1 ↔ y2)

}]
. (155)

Finally, the antisymmetric coefficient a−1 accompanying
(pμ1 p

ν
2 − p

μ
2 p

ν
1 ) reads

a
(1,0)
−1 = q2

y1y2

[
2 log(1 − y1)

y1
+ 1 − q2

1 − y1
+ q2

(1 − y1)2

]

− (y1 ↔ y2). (156)

The mass-suppressed coefficients a(1,m)ij are given by [332]

a
(1,m)
00 = m2q2

y2
1

[
log

(
q2) log

(
y4

1

m4q2

)
+ 4 Li2

(
1 − q2)

+ Li2

(
1 − y1

m2

)
− π2

6

]

− m2(1 − q2)

y2
1

[
1 − log

(
y1

m2

)

+ m2

y1

(
Li2

(
1 − y1

m2

)
− π2

6

)]

+ q2

2
n

(
y1,

1 − 3q2

q2

)
+ (y1 ↔ y2), (157)

whereas

a
(1,m)
11 = q2

1 − q2

{
4m2

y2
1

[
1 − log

(
y1

m2

)

+ m2

y1

(
Li2

(
1 − y1

m2

)
− π2

6

)]
− n(y1,1)

+ 2m2q2

y1(m2(1 − q2)− y1)

[
1

q2
log

(
y1

m2

)
+ log(q2)

1 − q2

+
(

1 + m2

m2(1 − q2)− y1

)
N(y1)

]}

+ 1

1 − q2

{
4m2(1 − q2)

y2
2

[
log

(
q2) log

(
y4

2

m4q2

)

+ 4 Li2
(
1 − q2) + 2

(
Li2

(
1 − y2

m2

)
− π2

6

)]

+ 4m2q2

y2
2

[
1 − log

(
y2

m2

)

+
(

1 + m2

y2

)(
Li2

(
1 − y2

m2

)
− π2

6

)]

− 1 − 2q4

q2
n

(
y2,

3 − 8q2 + 6q4

1 − 2q4

)

+ 2m2

y2(m2(1 − q2)− y2)

[
1

q2
log

(
y2

m2

)
+ log(q2)

1 − q2

+
(

3 + m2

m2(1 − q2)− y2

)
N(y2)

]}
, (158)

and

a
(1,m)
12 = q2

1 − q2

{
4m2

y2
1

[
1 − log

(
y1

m2

)

+
(

1

2
+ m2

y1

)(
Li2

(
1 − y1

m2

)
− π2

6

)]
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− 1 − q2

q2
n

(
y1,

1

1 − q2

)
+ 2m2

y1(m2(1 − q2)− y1)

×
[

1

q2
log

(
y1

m2

)
+ log(q2)

1 − q2

+
(

2 + m2

m2(1 − q2)− y1

)
N(y1)

]}
+ (y1 ↔ y2).

(159)

The asymmetric coefficient does not get mass corrections,

a
(1,m)
−1 = 0. (160)

The functions n(yi, z) and N(yi) are defined through

n(yi, z) = m2

yi(m2 − yi)

[
1 + z log

(
yi

m2

)]

+ m2

(m2 − yi)2
log

(
yi

m2

)
, (161)

and

N(yi) = log
(
q2) log

(
yi

m2

)
+ Li2

(
1 − q2)

+ Li2

(
1 − yi

m2

)
− π2

6
. (162)

The apparent singularity of the function n(yi, z) inside the
phase–space limits is compensated by the zero in the numer-
ator. In the region yi close to m2 it behaves as

n(yi, z)|yi→m2 = 1

yi

[
1 + z log

(
yi

m2

)]

− 1

m2

∑

n=0

(
1

n+ 2
+ z

n+ 1

)(
1 − yi

m2

)n

.

(163)

Similarly, the function N(yi) guarantees that the coefficients
a
(1)
ij are finite in the limit yi →m2(1 − q2):

m2N(yi)

m2(1 − q2)− yi

∣∣∣∣
yi→m2(1−q2)

= − log(1 − q2)

q2
− log(q2)

1 − q2
.

(164)

Virtual and soft corrections to IFS The virtual- plus soft-
photon corrections of the initial-state and final-state vertex
(see (143)) to FSR and ISR, respectively, can be written
as [430, 431]

dσV+S
IFS = α

π

[
δV+S(w)dσ (0)

FSR(s)+ ηV+S(s′,w)dσ (0)
ISR(s

′)
]
,

(165)

where dσ (0)
FSR and dσ (0)

ISR are the leading-order FSR and ISR
differential cross sections, respectively, w = Ecut

γ /
√
s with

Ecut
γ the maximal energy of the soft photon in the e+e− c.m.

rest frame, and s′ corresponds to the squared mass of the
hh̄γ system. The function δV+S(w) is independent of the
final state. In the limit m2

e 	 s,

δV+S(w)= 2

[
(L− 1) log (2w)+ 3

4
L− 1 + π2

6

]
, (166)

where L = log(s/m2
e). For two pions in the final state, the

function ηV+S(s′,w) is given by

ηV+S(s′,w)

= −2

[
1 + β2

π

2βπ
log(tπ )+ 1

]

×
[

log(2w)+ 1 + s′

s′ − s
log

(
s

s′

)]
+ log

(
m2
π

s′

)

− 1 + β2
π

βπ

[
2 Li2(1 − tπ )+ log(tπ ) log(1 + tπ )− π2

2

]

− 2 + β2
π

βπ
log(tπ )− 2, (167)

where

βπ =
√

1 − 4m2
π

s′
, tπ = 1 − βπ

1 + βπ
. (168)

The function ηV+S(s′,w) is equivalent to the famil-
iar correction factor derived in [280, 281] for the reac-
tion e+e− → π+π−γ in the framework of sQED (see also
[283]) in the limit s → s′:

log(2w)+ 1 + s′

s′ − s
log

(
s

s′

) ∣∣∣
∣
s→s′

= log(2w′) (169)

with w′ = Ecut
γ /

√
s′. The factor on the right hand side of

(169) for s �= s′ arises from defining the soft-photon cut-off
in the e+e− laboratory frame.

Correspondingly, the function ηV+S(s′,w) for two muons
in the final state reads

ηV+S(s′,w)

= −2

[
1 + β2

μ

2βμ
log(tμ)+ 1

]

×
[

log(2w)+ 1 + s′

s′ − s
log

(
s

s′

)]
+ log

(
m2
μ

s′

)

− 1 + β2
μ

2βμ

[
4 Li2(1 − tμ)

− 2 log(tμ) log

(
1 + βμ

2

)
− π2

]

− 1

βμ

[
3

3 − β2
μ

+ β2
μ

]
log(tμ)− 2, (170)
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where

βμ =
√

1 − 4m2
μ

s′
, tμ = 1 − βμ

1 + βμ
. (171)

Real corrections Matrix elements for the emission of two
real photons,

e+(p1)+ e−(p2)→ hadrons (Q)+ γ (k1)+ γ (k2), (172)

are calculated in PHOKHARA following the helicity ampli-
tude method with the conventions introduced in [432, 433].
The Weyl representation for fermions is used where the
Dirac matrices

γ μ =
(

0 σ
μ
+

σ
μ
− 0

)

, μ= 0,1,2,3, (173)

are given in terms of the unit 2 × 2 matrix I and the Pauli
matrices σi , i = 1,2,3, with σμ

± = (I,±σi). The contraction
of any four-vector aμ with the γ μ matrices has the form

a/= aμγ
μ =

(
0 a+
a− 0

)
, (174)

where the 2 × 2 matrices a± are given by

a± = aμσ±
μ =

(
a0 ∓ a3 ∓(a1 − ia2)

∓(a1 + ia2) a0 ± a3

)

. (175)

The helicity spinors u and v for a particle and an antipar-
ticle of four-momentum p = (E,p) and helicity λ = ±1/2
are given by

u(p,λ= ±1/2)=
(√

E ∓ |p|χ(p,±)√
E ± |p|χ(p,±)

)

≡
(
uI
uII

)
,

v(p,λ= ±1/2)=
(∓√

E ± |p|χ(p,∓)

±√
E ∓ |p|χ(p,∓)

)

≡
(
vI
vII

)
.

(176)

The helicity eigenstates χ(p, λ) can be expressed in terms
of the polar and azimuthal angles of the momentum vector
p as

χ(p,+)=
(

cos (θ/2)

eiφ sin (θ/2)

)

,

χ(p,−)=
(

−e−iφ sin (θ/2)

cos (θ/2)

)

.

(177)

Finally, complex polarisation vectors in the helicity basis are
defined for the real photons:

εμ(ki, λi = ±) = 1√
2
(0,∓ cos θi cosφi + i sinφi,

∓ cos θi sinφi − i cosφi,± sin θi), (178)

with i = 1,2.

Phase space One of the key ingredients of any Monte
Carlo simulation is an efficient generation of the phase
space. The generation of the multi-particle phase space in
PHOKHARA is based on the Lorentz-invariant representa-
tion

dΦm+n(p1,p2; k1, ·, km, q1, ·, qn)

= dΦm(p1,p2;Q,k1, ·, km)dΦn(Q;q1, ·, qn)dQ2

2π
,

(179)

where p1 and p2 are the four-momenta of the initial parti-
cles, k1 . . . km are the four-momenta of the emitted photons
and q1 . . . qn, with Q= ∑

qi , label the four-momenta of the
final-state hadrons.

When two particles of the same mass are produced in the
final state, q2

i =M2, their phase space is given by

dΦ2(Q;q1, q2)=
√

1 − 4M2

Q2

32π2
dΩ, (180)

where dΩ is the solid angle of one of the final-state particles
at, for instance, the Q2 rest frame.

Single photon emission is described by the corresponding
leptonic part of the phase space,

dΦ2(p1,p2;Q,k1)= 1 − q2

32π2
dΩ1, (181)

with q2 =Q2/s and dΩ1 the solid angle of the emitted pho-
ton at the e+e− rest frame. The polar angle θ1 is defined with
respect to the positron momentum p1. In order to make the
Monte Carlo generation more efficient, the following substi-
tution is performed:

cos θ1 = 1

β
tanh(βt1), t1 = 1

2β
log

1 + β cos θ1

1 − β cos θ1
, (182)

with β = √
1 − 4m2

e/s, which accounts for the collinear
emission peaks

d cos θ1

1 − β2 cos2 θ1
= dt1. (183)

With this the azimuthal angle and the new variable t1 are
generated flat.

Considering the emission of two real photons in the c.m.
of the initial particles, the four-momenta of the positron, the
electron and the two emitted photons are given by

p1 =
√
s

2
(1,0,0, β), p2 =

√
s

2
(1,0,0,−β),

k1 =w1
√
s(1, sin θ1 cosφ1, sin θ1 sinφ1, cos θ1),

k2 =w2
√
s(1, sin θ2 cosφ2, sin θ2 sinφ2, cos θ2),

(184)



644 Eur. Phys. J. C (2010) 66: 585–686

respectively. The polar angles θ1 and θ2 are again defined
with respect to the positron momentum p1. Both photons are
generated with energies larger than the soft-photon cut-off:
wi > w with i = 1,2. At least one of these exceeds the min-
imal detection energy: w1 > Emin

γ /
√
s or w2 > Emin

γ /
√
s.

In terms of the solid angles dΩ1 and dΩ2 of the two pho-
tons and the normalised energy of one of them, e.g. w1, the
leptonic part of the phase space reads

dΦ3(p1,p2;Q,k1, k2)

= 1

2!
s

4(2π)5
w1w

2
2

1 − q2 − 2w1
dw1 dΩ1 dΩ2, (185)

where the limits of the phase space are determined from the
constraint

q2 = 1 − 2(w1 +w2)+ 2w1w2(1 − cosχ12), (186)

with χ12 being the angle between the two photons

cosχ12 = sin θ1 sin θ2 cos(φ1 − φ2)+ cos θ1 cos θ2. (187)

Again, the matrix element squared contains several
peaks, soft and collinear, which should be softened by
choosing suitable substitutions in order to achieve an effi-
cient Monte Carlo generator. The leading behaviour of the
matrix element squared is given by 1/(y11y12y21y22), where

yij = 2ki · pj
s

=wi(1 ∓ β cos θi). (188)

In combination with the leptonic part of the phase space, we
have

dΦ3(p1,p2;Q,k1, k2)

y11y12y21y22

∼ dw1

w1(1 − q2 − 2w1)

dΩ1

1 − β2 cos2 θ1

dΩ2

1 − β2 cos2 θ2
.

(189)

The collinear peaks are then flattened with the help of (182),
with one change of variables for each photon polar angle.
The remaining soft peak, w1 → w, is reabsorbed with the
following substitution

w1 = 1 − q2

2 + e−u1
, u1 = log

w1

1 − q2 − 2w1
, (190)

or

dw1

w1(1 − q2 − 2w1)
= du1

1 − q2
, (191)

where the new variable u1 is generated flat. Multi-channel-
ling is used to absorb simultaneously the soft and collinear
peaks, and the peaks of the form factors.

NLO cross section and theoretical uncertainty The LO and
NLO predictions for the differential cross section of the
process e+e− → π+π−γ (γ ) at DAΦNE energies,

√
s =

1.02 GeV, are presented in Fig. 47 as a function of the
invariant mass of the hadronic system Mππ . We choose
the same kinematical cuts as in the small-angle analysis of
KLOE [374]; pions are restricted to be in the central region,
50◦ < θπ < 130◦, with |pT |> 160 MeV or |pz|> 90 MeV,
the hard photon is not tagged and the sum of the momenta
of the two pions, which flows in the opposite direction to
the photon’s momenta, is close to the beam (θππ < 15◦ or
θππ > 165◦). The track mass, which is calculated from the
equation

(√
s −

√
|pπ+|2 +M2

trk −
√

|pπ−|2 +M2
trk

)2

− (pπ+ + pπ−)2 = 0, (192)

lies within the limits 130 MeV< Mtrk < 220 MeV and
Mtrk < (250 − 105

√
1 − (M2

ππ/0.85)2) MeV, with Mππ

in GeV, in order to reject μ+μ− and π+π−π0 events. The
cut on the track mass, however, does not have any effect for
single photon emission, as obviously Mtrk = mπ for such
events.

Fig. 47 Differential cross section for the process e+e− → π+π−γ
at LO and NLO for

√
s = 1.02 GeV. The cuts are the same as in the

small-angle analysis of KLOE, including the cut on the track mass. The
lower plot shows the relative size of FSR at LO, ISR at NLO and IFS
contributions with respect to the full LO prediction
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The lower plot in Fig. 47 shows the relative size, with re-
spect to the LO prediction, of FSR at LO, ISR corrections
at NLO, and IFS contributions. The NLO ISR radiative cor-
rections are almost flat and of the order of −8%, FSR is
clearly below 1%, while IFS corrections are also small al-
though they become of the order of a few per cent at high
values of Mππ .

To estimate the systematic uncertainty of the NLO
prediction, we observe that leading logarithmic two-loop
O(α2) corrections and the associate real emission are not
included. For samples with untagged photons the process
e+e− → e+e−π+π− might also become a sizeable back-
ground. This process, however, can be simulated with the
Monte Carlo event generator EKHARA [223, 224]. Its con-
tribution depends on the pion pair invariant mass, ranges
from 0.1–0.8% for the KLOE event selection, and has been
taken into account in the KLOE analysis [374].

From naïve exponentiation one expects that LL correc-
tions at next-to-next-to-leading order (NNLO) are of the
order of 1

2 (
3
2 (α/π) log(s/m2

e))
2 ≈ 0.1–0.2% for inclusive

observables. For less inclusive distributions, a larger error
is expected. The conservative estimate of the accuracy of
PHOKHARA from ISR is 0.5%. This has been confirmed
by comparisons with KKMC [264, 265], where the biggest
observed difference is about 0.3% in the invariant mass re-
gions which are not close to the nominal energies of the ex-
periments. Improving the accuracy of PHOKHARA below
0.5%, however, will be required to meet the growing exper-
imental requirements in the near future.

4.2.4 FSR beyond sQED∗VMD model

The model for FSR from pions described in details in
Sects. 4.2.1 and 4.2.3 will be called for short the sQED∗VMD
model. The question arises how well it can reflect the data.
As shown in [317], the first two terms in the expansion of
the FSR amplitude as a function of k0/

√
Q2 (i.e. the diver-

gence and the constant) are fully given by the pion form
factor. Thus one could expect that going beyond this ap-
proximation is necessary only for a hard-photon emission.
Moreover, the pion form factor is extremely big in the ρ

resonance region, and thus the validity of this approxima-
tion is further extended. In the kinematical regions where
resonance contributions are not contained in the pion form
factor, and also near the π+π− threshold, where the emit-
ted photon is hard and the pion form factor is relatively
small, it is necessary to go beyond the sQED∗VMD model
and one needs a more general description of the amplitude
M(γ ∗(Q)→ γ (k)+ π+(q1)+ π−(q2)).

In the general case the amplitude of the reaction γ ∗(Q)→
γ (k) + π+(q1) + π−(q2) depends on three 4-momenta,
which can be chosen as Q, k and l ≡ q1 − q2. The second-
rank Lorentz tensor Mμν(Q,k, l) that describes the FSR

amplitude can be decomposed through ten independent ten-
sors [434, 435]. Taking into account the charge conjugation
symmetry of the S-matrix element

(〈
γ (k),π+(q1)π

−(q2)|S|γ ∗(Q)
〉

= 〈
γ (k),π−(q1)π

+(q2)|S|γ ∗(Q)
〉)
,

the photon crossing symmetry (Q ↔ −k and μ ↔ ν) and
the gauge invariance conditions QμM

μν(Q,k, l) = 0 and
M

μν
F (Q,k, l)kν = 0, the number of independent tensors de-

creases to five. For a final real photon, i.e. k2 = 0 and
kνεν = 0 (εν being the polarisation vector of the final pho-
ton) and the initial virtual photon produced in e+e− annihi-
lation (Q2 ≥ 4m2

π ), the FSR tensor can be rewritten in terms
of three gauge invariant tensors [434, 435]

Mμν(Q,k, l)= τ
μν
1 f1 + τ

μν
2 f2 + τ

μν
3 f3, (193)

where the gauge invariant tensors τμνi read

τ
μν
1 = kμQν − gμνk ·Q, (194)

τ
μν
2 = k · l(lμQν − gμνk · l) + lν

(
kμk · l − lμk ·Q)

,

τ
μν
3 =Q2(gμνk · l − kμlν

) +Qμ
(
lνk ·Q−Qνk · l).

It thus follows that the evaluation of the FSR tensor
amounts to the calculation of the scalar functions

fi
(
Q2,Q · k, k · l) (i = 1,2,3).

As is clear from the above discussion, the extraction of
the pion form factor from radiative return experiments is a
demanding task. The main problem is that in the same exper-
iment one has to test the models describing the pion–photon
interactions (see Sect. 4.3) and to extract the pion form fac-
tor needed for the evaluation of the muon anomalous mag-
netic moment. Fortunately, there are event selections, which
naturally suppress the FSR contributions, independently of
their nature. These were already discussed in Sect. 4.2.1 in
the context of the sQED∗VMD model.

Extensive theoretical studies of the role of the FSR
emission beyond the sQED∗VMD model were performed
[337, 347, 349–351]. They are important mainly for the
KLOE measurements at DAΦNE, as at B factories FSR is
naturally suppressed and the accuracy needed in its mod-
elling is by far less demanding than that for KLOE purposes.

For DAΦNE, running on or near the φ resonance, the
following mechanisms of the π+π− final-state photon emis-
sion have to be considered:

– bremsstrahlung process

e+ + e− → π+ + π− + γ, (195)

which is modelled by sQED∗VMD;
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– direct φ decay

e+ + e− → φ → (f0;f0 + σ)γ → π+ + π− + γ, (196)

and
– double resonance process

e+ + e− → (φ;ω′)→ ρπ → π+ + π− + γ. (197)

The resonance chiral theory (RχT) [436, 437] was used in
[349, 350] to estimate the contributions beyond sQED∗VMD.
They were implemented at leading order into the event gen-
erator FASTERD [351]. Having in mind that at present these
models still await accurate experimental tests, other models
[438, 439] were also implemented in the event generator
FASTERD. To include both next-to-leading-order radiative
corrections and the mechanisms discussed for FSR, a part
of the FASTERD code, based on the models [438, 439],
was implemented by O. Shekhovtsova in PHOKHARA v6.0
(PHOKHARA v6.1 [440]) and the studies presented below
are based on this code. The model used there, even if far
from an ideal, is the best tested model available in literature.

We briefly describe main features of the models used
to describe processes contributing to FSR photon emission
listed above. For a more detailed description and the calcula-
tion of the function fi we refer the reader to [337, 347, 351]
(see also references therein).

The sQED∗VMD part gives contributions to f1 and f2.
The direct φ decay is assumed to proceed through the

intermediate scalar meson state: φ → (f0 + σ)γ → ππγ .
Various models are proposed to describe the φ-scalar-γ ver-
tex: either it is the direct decay φ → (scalar)γ , or the ver-
tex is generated dynamically through a loop of the charged
kaons. As shown in [347], in the framework of any model,
the direct φ decay affects only the form factor f1 of (193).

The double resonance contribution consists of the off-
shell φ meson decay into (ρ±π∓) and subsequent decay
ρ → πγ . In the energy region around 1 GeV the tail of the
excited ω meson can also play a role, and γ ∗ → ω′ → ρπ

has to be considered. The double resonance mechanism af-
fects all three form factors fi of (193).

Assuming isospin symmetry, this part can be deduced
from the measurement of the neutral pion pair production.
Various models [438, 439] were confronted with data by
KLOE [441] for the neutral mode. The model that was re-
producing the data in the best way was adopted to be used
for the charged pion pair production relying on the isospin
symmetry [440].

In [337] it was shown that an important tool for testing
the various models of FSR is the charge asymmetry. At lead-
ing order it originates from the fact that the pion pair couples
to an even (odd) number of photons if the final-state photon
is emitted from the final (initial) state. The interference di-
agrams do not give any contribution to the integrated cross

section for C-even event selections, but produce an asym-
metry in the angular distribution. The definitions and experi-
mental studies based on the charge asymmetry are presented
in Sect. 4.3.2.

Few strategies can be adopted to profit in the best way
from the KLOE data taken on and off peak. The ‘easiest’
part is to look for the event selections where the FSR contri-
butions are negligible. This was performed by KLOE [374]
(see Sect. 4.4.1), giving important information on the pion
form factor relevant for the prediction of the hadronic contri-
butions to the muon anomalous magnetic moment aμ. Typi-
cal contributions of the FSR (1–4%) to the differential cross
section (Figs. 47 and 48) allow for excellent control of the
accuracy of these corrections. One disadvantage of using
this event selection is that it does not allow one to perform
measurements near the pion production threshold.

The next step, partly discussed in Sect. 4.3.2, is to con-
front the models based on isospin symmetry and the neutral
channel data with charged pion data taken off-peak, where
the contributions from models beyond the sQED∗VMD ap-
proximation are relatively small (Fig. 49). For the off-peak
data [442] the region below Q2 = 0.3 GeV2 can be covered
experimentally. However, the small statistics in this region
makes it difficult to perform high-precision tests of the mod-
els. For this analysis an accurate knowledge of the pion form
factor at the nominal energy of the experiment is important,
as it defines the sQED∗VMD predictions and as the FSR
corrections (Fig. 50) are sizeable.

Fig. 48 Relative contribution of the FSR to the differential cross sec-
tion of the reaction e+e− → π+π−γ (γ ) for

√
s =mφ and low invari-

ant masses of pion pairs. KLOE small-angle event selection [374] was
used, and for this event selection the relative contribution of the FSR
is almost identical also for the off peak cross section. The effect of a
track-mass cut (see Sect. 4.4.1) is shown. ISRNLO refers to initial-state
corrections at next-to-leading order (NLO). The IFSNLO cross section
contains the final-state emissions at NLO
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Fig. 49 The contributions of FSR beyond the sQED∗VMD approx-
imation (see (196) and (197)) for KLOE large-angle event selection
[442, 443] for

√
s =mφ and for

√
s = 1 GeV

Fig. 50 Relative contribution of FSR to the differential cross sec-
tion of the reaction e+e− → π+π−γ (γ ) for

√
s = mφ and for√

s = 1 GeV. KLOE large-angle event selection [442, 443] was used

The last step, which allows for the most accurate FSR
model testing and profits from the knowledge of the pion
form factor from previous analysis, is the on-peak large-
angle measurement. The large FSR corrections coming from
sources beyond the sQED∗VMD approximation (Figs. 49
and 50) make these data [443] the most valuable source of
information on these models. In this case, the accumulated
data set is much larger than the off-peak data set and one is
able to cover also the region below Q2 = 0.3 GeV2.

4.3 Experiment confronting theory

4.3.1 Study of the process e+e− → π+π−γ with FSR
with the CMD-2 detector at VEPP-2M

The process e+e− → π+π−γ with final-state radiation can
be used to answer the question whether one can treat pions
as point-like particles and apply scalar QED to calculate the
radiative corrections to the cross section. In particular, one
can compare the photon spectra obtained using scalar QED
with those found in data.

The radiative corrections due to photon emission in the
final state (FSR) contribute about 1% to the cross section.
The hadronic contribution of the process e+e− → π+π− to
the value ahad

μ amounts to ∼50 ppm, while the anomalous
magnetic moment of the muon was measured in the E821
experiment at BNL with an accuracy of 0.5 ppm [31]. There-
fore the theoretical precision of the cross section calculation
for this process should be several times smaller than 1%. In
this case we can neglect the error of this contribution to the
value ahad

μ compared to 0.5 ppm. These facts are the main
motivation to study this process.

Event selection For the analysis, data were taken in a c.m.
energy range from 720 to 780 MeV, with one photon de-
tected in the CsI calorimeter. Events from the processes
e+e− → e+e−γ and e+e− → μ+μ−γ have a very simi-
lar topology in the detector, compared to e+e− → π+π−γ
events. In addition, the cross section of the process e+e− →
π+π−γ with FSR is more than ten times smaller than the
one for the similar process with ISR. On the other hand,
the cross section of the process e+e− → π+π−γ has a
strong energy dependence due to the presence of the ρ-
resonance. This fact allows us to significantly enrich the
fraction of the events e+e− → π+π−γ with FSR for en-
ergies below the ρ-peak. Indeed, ISR shifts the c.m. en-
ergy to smaller values and, as a result, the cross section
falls down dramatically, whereas the process with FSR is al-
most energy-independent. Several curves describing the ra-
tio σ FSR+ISR

π+π−γ /σ ISR
π+π−γ plotted against the c.m. energy, are

presented in Fig. 51a for different energy thresholds for pho-
tons detected in the calorimeter. It is clearly visible that the
optimal energy range to be used in this study goes from
720 MeV up to 780 MeV.

It is also seen that this ratio increases with the threshold
energy for photons to be detected. This means that the frac-
tion of the π+π−γ events with FSR (with respect to events
without FSR) grows with increasing photon energy. It al-
lows one to enrich the number of π+π−γ events with FSR.
Let us recollect that the shape of the distribution of π+π−γ
events, at photon energies of the same order as the pion mass
or larger, is of special interest. First of all, namely in that part
of the photon spectrum we can meet a discrepancy with the
sQED prediction.
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Fig. 51 (a) Ratio σISR+FSR/σISR vs the c.m. energy. The set of curves
indicates how this ratio depends on the threshold energy for the de-
tected photons. The threshold energy in MeV is stated over the curves.
(b) Distributions of the parameter W for events of the processes
e+e− → π+π−γ , e+e− → μ+μ−γ and e+e− → e+e−γ , for a c.m.
energy of 780 MeV

A typical π+π−γ event in the CMD-2 detector has two
tracks in the drift chamber with two associated clusters in the
CsI calorimeter and a third cluster representing the radiated
photon. To suppress multi-photon events and significantly
cut-off collinear π+π− events the following requirements
were applied: the angle between the direction of photon mo-
mentum and missing momentum must be larger than 1 rad
and the angle between one of the two tracks and the photon
direction must be smaller than 0.2 rad.

To suppress e+e−γ events, a parameter W = p/E was
used, in which the particle momentum p (measured in the
drift chamber) is divided by the energy E (measured in

Fig. 52 (a) Distributions of the parameter M2 for events of the
processes e+e− → π+π−γ , e+e− → μ+μ−γ and e+e− → e+e−γ
for a c.m. energy of 780 MeV. (b) Distribution of the π+π−γ events
against the photon energy in relative units. Also stated is the fraction of
π+π−γ events with FSR for each region as indicated by the vertical
lines

the CsI calorimeter). Simulation results are presented in
Fig. 51b. The condition W < 0.4 reduces the electron con-
tribution to the level of ∼1%. The square of the invariant
mass for electrons, muons and pions is plotted in Fig. 52a.
The condition M2 > 10000 MeV2 further rejects the num-
ber of electrons and muons by a factor of 1.5. About 1% of
the pion events are lost with these cuts.

Preliminary results of the analysis The histogram of the
number π+π−γ events against the photon energy in rel-
ative units is presented in Fig. 52b. The histogram repre-
sents the simulation, while the points with error bars show
the experimental data. Vertical dotted lines divide the plot
area into three zones. The inscription inside each zone indi-
cates the fraction of π+π−γ events with FSR with respect to
others. The number of the simulated events was normalised
to the experimental one. The average deviation between the
two distributions was found to be (−2.1 ± 2.3)%. There-
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fore, one can conclude that there is no evidence that photon
radiation by pions needs to be described beyond the frame-
work of scalar QED. In other words, pions can be treated
as point-like objects, and the application of scalar QED is
found to be valid within the stated accuracy. Unfortunately,
the lack of statistics in the energy range under study does
not allow us to check this assumption with better accuracy.
Forthcoming experiments at VEPP-2000 will significantly
improve the statistical error.

4.3.2 Study of the process e+e− → π+π−γ with FSR
with KLOE detector

As has been explained in Sect. 4.2, the forward–backward
asymmetry

AFB
(
Q2) = N(θπ+ > 90◦)−N(θπ+ < 90◦)

N(θπ+ > 90◦)+N(θπ+ < 90◦)
(
Q2) (198)

can be used to test the validity of the description of the var-
ious mechanisms of the π+π− final-state photon emission,
by confronting the output of the Monte Carlo generator with
data. In the following studies, the Monte Carlo generator
PHOKHARA v6.1 [440] was used. The parameters for the
pion form factor were taken from [444], based on the para-
metrisation of Kühn and Santamaria [445]. The parameters
for the description of the direct φ decay and the double res-
onance contribution were taken from the KLOE analysis of
the neutral mode [441].

To suppress higher-order effects, for which the interfer-
ence and thus the asymmetry is not implemented in the
Monte Carlo generator, a rather tight cut on the track-mass
variable (see Sect. 4.4.1 and Fig. 60) of |Mtrk − Mπ±| <
10 MeV has been applied in the data, in addition to the large-
angle selection cuts described in Sect. 4.4.1. This should re-
duce events with more than one hard photon emitted and en-
hance the contribution of the final-state radiation processes
under study over the dominant ISR process.

The data sets used in the analysis were taken in two dif-
ferent periods:

• The data taken in 2002 were collected with DAΦNE op-
erating at the φ-peak, at

√
s =Mφ (240 pb−1).

• The data taken in 2006 were collected with DAΦNE op-
erating 20 MeV below the φ-peak, at

√
s = 1000 MeV

(230 pb−1).

Since the 2006 data were taken more than 4Γφ below
the resonant peak (Γφ = 4.26 MeV), one expects the con-
tributions from the direct φ decay and the double resonance
contribution to be suppressed compared to the data taken
on-peak in 2002 (see Fig. 49). In fact one observes a very
different shape of the forward–backward asymmetry for the
two different data sets, as can be seen in Figs. 53 and 54.
Especially in the region below 0.4 GeV2 and in the vicinity

Fig. 53 (a) Preliminary forward–backward asymmetry for data taken
at

√
s =Mφ in 2002, and the corresponding Monte Carlo prediction us-

ing the PHOKHARA v6.1 generator. (b) Absolute difference between
the asymmetries from data and Monte Carlo prediction. Used with per-
mission of the KLOE collaboration

of the f0(980) at 0.96 GeV2, one observes different trends
in the asymmetries for the two data sets.

One can also see that, qualitatively, the theoretical de-
scription used to model the different FSR contributions
agrees well with the data, although, especially at low M2

ππ ,
the data statistics becomes poor and the data points for
the asymmetry have large errors. In particular, the off-
peak data in Fig. 54 show very good agreement above
0.35 GeV2. In this case, the asymmetry is dominated fully
by the bremsstrahlung process, as the other processes do
not contribute outside the φ-resonance. The assumption of
point-like pions (sQED) used to describe the bremsstrahlung
in the Monte Carlo generator seems to be valid above
0.35 GeV2, while below it is difficult to make a statement
due to the large statistical errors of the data points.

However, to obtain a solid quantitative statement on the
validity of the models, as needed, e.g., in the radiative return
analyses at the KLOE experiment, one needs to understand
how a discrepancy between theory and data in the forward–
backward asymmetry affects the cross section, as it is the
cross section one wants to measure. This requires further
work, which at the moment is still in progress.

It should also be mentioned that the KLOE experiment
has taken almost ten times more data in the years 2004–
2005 than what is shown in Fig. 53, with DAΦNE operating
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Fig. 54 (a) Preliminary forward–backward asymmetry for data taken
at

√
s 
 1000 MeV in 2006, and the corresponding Monte Carlo pre-

diction using the PHOKHARA v6.1 generator. (b) Absolute difference
between the asymmetries from data and Monte Carlo prediction. Used
with permission of the KLOE collaboration

at the φ-peak energy. This is unfortunately not the case for
the off-peak data, which is restricted to the data set shown
in Fig. 54. In the future, the larger data set from 2004–2005
may be used, together with the results from the neutral chan-
nel and the assumption of isospin symmetry, to determine
the parameters of the direct φ decay and the double reso-
nance contribution with high precision.

4.4 The use of radiative return as an experimental tool

4.4.1 Radiative return at KLOE

The KLOE experiment, in operation at the DAΦNE e+e−
collider in Frascati between 1999 and 2006, utilises radia-
tive return to obtain precise measurements of hadronic cross
sections in the energy range below 1 GeV. As the DAΦNE
machine was designed to operate as a meson factory with
collision energy equal to the mass of the φ-meson (mφ =
1.01946 GeV), with limited possibility to change the en-
ergy of the colliding beams while maintaining stable run-
ning conditions, the use of events with initial-state radiation
of hard photons from the e+ or the e− is the only way to
access energies below DAΦNE’s nominal collision energy.
These low-energy cross sections are important for the the-
oretical evaluation of the muon magnetic moment anomaly

aμ = (gμ−2)/2 [13], and high precision is needed since the
uncertainty on the cross section data enters the uncertainty
of the theoretical prediction. The channel e+e− → π+π−
gives the largest contribution to the hadronic part ahad

μ of
the anomaly. Therefore, so far KLOE efforts have concen-
trated on the derivation of the pion pair-production cross
section σππ from measurements of the differential cross sec-
tion

dσππγ (γ )
dM2

ππ
, in which M2

ππ is the invariant mass-squared of

the di-pion system in the final state.
The KLOE detector (shown in Fig. 55), which con-

sists of a high resolution drift chamber (σp/p ≤ 0.4%) and
an electromagnetic calorimeter with excellent time (σt ∼
54 ps/

√
E [GeV] ⊕100 ps) and good energy (σE/E ∼

5.7%/
√
E [GeV]) resolution, is optimally suited for this

kind of analyses.

The KLOE ππγ analyses The KLOE analyses for σππ use
two different sets of acceptance cuts:

• In the small-angle analysis, photons are emitted within
a cone of θγ < 15◦ around the beamline (narrow cones
in Fig. 55), and the two charged pion tracks have 50◦ <
θπ < 130◦. The photon is not explicitly detected; its di-
rection is reconstructed from the track momenta by clos-
ing the kinematics: pγ 
 pmiss = −(pπ+ + pπ−). In this
analysis, the separation of pion- and photon selection re-
gions greatly reduces the contamination from the resonant
process e+e− → φ → π+π−π0 in which the π0 mim-
ics the missing momentum of the photon(s) and from the
final-state radiation process e+e− → π+π−γFSR. Since

Fig. 55 KLOE detector with the selection regions for small-angle pho-
tons (narrow cones) and for pion tracks and large-angle photons (wide
cones). Used with permission of the KLOE collaboration
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ISR-photons are mostly collinear with the beam line, a
high statistics for the ISR signal events remains. On the
other hand, a high-energy photon emitted at angles close
to the incoming beams forces the pions also to have a
small angle with respect to the beamline (and thus outside
the selection cuts), resulting in a kinematical suppression
of events with M2

ππ < 0.35 GeV2.
• The large-angle analysis requires both photons and pi-

ons to be emitted at 50◦ < θπ,γ < 130◦ (wide cones in
Fig. 55), allowing for a detection of the photons in the
barrel of the calorimeter. This analysis allows one to reach
the 2π threshold region, at the price of higher background
contributions from the π+π−π0 final state and events
with final-state radiation. In addition, events from the de-
cays φ → f0γ → π+π−γ and φ → π±ρ∓ → π±π∓γ ,
which need to be described by model-dependent para-
meterisations, contribute to the spectrum of the selected
events (running at the φ peak).

Two analyses based on the small-angle acceptance cuts
have been carried out. The first one, using 140 pb−1 of data
taken in the year 2001, was published in 2005 [373]. The
second one, based on 240 pb−1 of data taken in 2002, was
published in 2008 [446].

The differential cross section is obtained from the spec-
trum of selected events N sel subtracting the residual back-
ground (mostly μμγ (γ ), πππ and radiative Bhabha events)
and dividing by the selection efficiencies and the integrated
luminosity:

dσππγ (γ )
dM2

ππ

= N sel −Nbkg

ΔM2
ππ

· 1

εsel
· 1
∫
Ldt

. (199)

ΔM2
ππ is the bin width used in the analysis (typically

0.01 GeV2), and
∫
Ldt is the integrated luminosity obtained

from Bhabha events detected at large angles (55◦ < θe <

125◦) and the reference cross section from the BabaYaga
generator [233, 235] (discussed in Sect. 2). The total cross
section is then obtained from the formula

σππ
(
M2

ππ

) = s · dσππγ (γ )
dM2

ππ

1

H(s,M2
ππ )

. (200)

In (200), s is the squared energy at which the DAΦNE col-
lider is operated during data taking, and H(s,M2

ππ ) is the
radiator function describing the emission of photons from
the e+ or the e− in the initial state. Note that (200) does
not contain the effects from final-state radiation from pions.
These effects complicate the analysis, since the KLOE de-
tector cannot distinguish whether photons in an event were
emitted in the initial or the final state. The PHOKHARA
Monte Carlo generator [335], which includes final-state ra-
diation at next-to-leading order and in the point-like-pion
approximation, is used to properly take into account final-
state radiation in the analyses. This is important because the

bare cross section used to evaluate ahad
μ via an appropriate

dispersion integral should be inclusive with respect to final-
state radiation, and also needs to be undressed from vacuum-
polarisation effects present in the virtual photon produced in
the e+e− annihilation. For the latter, we use a function pro-
vided by F. Jegerlehner [447] (see Sect. 6), and correct the
cross section via

σ bare
ππ

(
M2

ππ

) = σ dressed
ππ

(
M2

ππ

)( α(0)

α(M2
ππ )

)2

. (201)

Here α(0) is the fine-structure constant in the limit q = 0,
and α(M2

ππ ) represents the value of the effective coupling at
the scale of the invariant mass of the di-pion system. Since
the hadronic contributions to α(M2

ππ ) are calculated via a
dispersion integral which includes the hadronic cross sec-
tion itself in the integrand (see Sect. 6), the correct proce-
dure has to be iterative and should include the same data
that must be corrected. However, since the correction is at
the few per cent level, the inclusion of the new KLOE data
will not change α(M2

ππ ) at a level which would signifi-
cantly affect the analyses. We therefore have used the val-
ues for α(M2

ππ ) derived from the existing hadronic cross
section database. As an example, Fig. 56 shows the KLOE
result for dσππγ (γ )/dM2

ππ obtained from data taken in the
year 2002 [446]. Inserting this differential cross section into
(200) and the result into (201), one derives σ bare

ππ . Using the
bare cross section to get the ππ -contribution to ahad

μ be-
tween 0.35 and 0.95 GeV2 then gives the value (in units of
10−10)

aππμ
(
0.35–0.95 GeV2) = (387.2 ± 0.5stat ± 2.4exp ± 2.3th).

Table 13 shows the contributions to the systematic errors on
aππμ (0.35 − 0.95 GeV2).

Fig. 56 Differential radiative cross section dσππγ (γ )/dM
2
ππ , inclu-

sive in θπ and with 0◦ < θγ < 15◦ or 165◦ < θγ < 180◦ measured by
the KLOE experiment [446]. Used with permission of the KLOE col-
laboration



652 Eur. Phys. J. C (2010) 66: 585–686

Table 13 List of systematic errors on the ππ -contribution to ahad
μ be-

tween 0.35 and 0.95 GeV2 when using the σππ cross section measured
by the KLOE experiment in the corresponding dispersion integral [446]

Reconstruction Filter negligible

Background subtraction 0.3%

Track mass 0.2%

Particle ID negligible

Tracking 0.3%

Trigger 0.1%

Unfolding negligible

Acceptance (θππ ) 0.2%

Acceptance (θπ ) negligible

Software Trigger (L3) 0.1%

Luminosity (0.1th ⊕ 0.3exp)% 0.3%√
s dep. of H 0.2%

Total exp systematics 0.6%

Vacuum Polarisation 0.1%

FSR resummation 0.3%

Rad. function H 0.5%

Total theory systematics 0.6%

Radiative corrections and Monte Carlo tools The radiator
function is a crucial ingredient in this kind of radiative return
analyses and is obtained using the relation

H
(
s,M2

ππ

) = s · 3M2
ππ

πα2β3
π

· dσ ISR
ππγ (γ )

dM2
ππ

∣∣∣∣|F2π |2=1
, (202)

in which
dσ ISR

ππγ (γ )

dM2
ππ

||F2π |2=1 is evaluated using the PHOKHA-

RA Monte Carlo generator in next-to-leading order ISR-
only configuration, with the squared pion form factor |F2π |2
set to 1. βπ =

√
1 − 4m2

π

M2
ππ

is the pion velocity. While

(202) provides a convenient mechanism to extract the di-
mensionless quantity H(s,M2

ππ ) also for specific angu-
lar regions of pions and photons by applying the relevant

cuts to
dσ ISR

ππγ (γ )

dM2
ππ

||F2π |2=1, in the published KLOE analyses.

H(s,M2
ππ ) is evaluated fully inclusive for pion and photon

angles in the range 0◦ < θπ,γ < 180◦. Figure 57 shows the
radiator function in the range of 0.35 <M2

ππ < 0.95 GeV2.
As can be seen from Table 13, the 0.5% uncertainty of the ra-
diator function quoted by the authors of PHOKHARA trans-
lates into an uncertainty of 0.5% in the ππ -contribution to
ahad
μ between 0.35 and 0.95 GeV2, giving the largest individ-

ual contribution and dominating the theoretical systematic
error.

The presence of events with final-state radiation in the
data sample affects the analyses in several ways:

Fig. 57 The dimensionless radiator function H(s,M2
ππ ), inclusive

in θπ,γ . The value used for s in the Monte Carlo production was
s =M2

φ = (1.019456 GeV)2

• Passing from M2
ππ to (M0

ππ )
2. The presence of final-state

radiation shifts the observed value of M2
ππ (evaluated

from the momenta of the two charged pion tracks in the
events) away from the value of the invariant mass-squared
of the virtual photon produced in the collision of the elec-
tron and the positron, (M0

ππ )
2. The transition from M2

ππ

to (M0
ππ )

2 is performed using a modified version of the
PHOKHARA Monte Carlo generator, which allows one
to (approximately) determine whether a generated photon
comes from the initial or the final state [448]. Figure 58
shows the probability matrix relating M2

ππ to (M0
ππ )

2 by
giving the probability for an event in a bin of M2

ππ to end
up in a bin of (M0

ππ )
2. It can be seen that the shift is only

in one direction, (M0
ππ )

2 ≥M2
ππ , so events with one pho-

ton from initial-state radiation and one photon from final-
state radiation move to a higher value of (M0

ππ )
2. The

entries lining up above (M0
ππ )

2 
 1.03 GeV2 represent

Fig. 58 Probability matrix relating the measured quantity M2
ππ to

(M0
ππ )

2. To produce this plot, a private version of the PHOKHARA
Monte Carlo generator was used [448]. The photon angle is restricted
to θγ < 15◦ (θγ > 165◦)



Eur. Phys. J. C (2010) 66: 585–686 653

events with two pions and only one photon, emitted in the
final state. Events of this type have (M0

ππ )
2 = s, there is

no hard photon from initial-state radiation present. Since
in the KLOE analyses, the maximum value of (M0

ππ )
2

for which the cross sections are measured is 0.95 GeV2

and sufficiently smaller than s 
M2
φ of the DAΦNE col-

lider, these leading-order final-state radiation events need
to be taken out in the analysis. By moving these events
to (M0

ππ )
2 = s, the passage from M2

ππ to (M0
ππ )

2 auto-
matically performs this task. Figure 59 shows the fraction
of events from leading-order final-state radiation con-
tributing to the total number of events, evaluated with the
PHOKHARA event generator. Since in the small-angle
analysis the angular regions for pions and photons are
separated, final-state radiation, for which the photons are
emitted preferably along the direction of the pions, is sup-
pressed to less than 0.5%. Using large-angle acceptance
cuts, the effect is much bigger, especially above and be-
low the %-resonance, where it can reach 20–30%. The cor-
rection of the shift in M2

ππ depends on the implementa-
tion of final-state radiation in the Monte Carlo generator
in terms of model dependence and missing contributions.
It also relies on the correct assignment of photons coming
from the initial or the final state; however, in case of sym-
metrical cuts in θγ , interference effects between the two
states vanish and the separation of initial- and final-state
amplitudes is feasible.

Fig. 59 (a) Fraction of events with leading-order final-state radia-
tion in the small-angle selection: 50◦ < θπ < 130◦ and θγ < 15◦
(θγ > 165◦). (b) Fraction of events with leading-order final-state
radiation in the large-angle selection: 50◦ < θπ < 130◦ and
50◦ < θγ < 130◦. The PHOKHARA generator was used to produce
the plots

• The acceptance in θγ . Since the direction of the photons
emitted in the final state is peaked along the direction
of the pions, and the photons are emitted in the initial
state along the e+/e− direction, the choice of the accep-
tance cuts affects the amount of final-state radiation in the
analyses. Using the small-angle analysis cuts, a large part
of final-state radiation is suppressed by the separation of
the pion and photon acceptance regions, and consequently
needs to be reintroduced using corrections obtained from
Monte Carlo simulations to arrive at a result which is in-
clusive with respect to final-state radiation (as needed in
the dispersion integral for aππμ ). Even if in the large-angle
analysis the fraction of events with final-state radiation
surviving the selection is larger, again the missing part
has to be added using Monte Carlo simulations. The ac-
ceptance correction for the cut in θγ is evaluated for ini-
tial and final-state radiation using the PHOKHARA gen-
erator, and the small differences found in the comparison
of data and Monte Carlo distributions contribute to the
systematic uncertainty of the measurement (see Table 13
and [449]).

• The distributions of kinematical variables. Cuts on the
kinematical track-mass variable Mtrk (see (192)), intro-
duced in the analyses to remove background from the
process e+e− → φ → π+π−π0, take out also a frac-
tion of the events with final-state radiation, necessitating
a correction to obtain an inclusive result. Figure 60 shows
the effect final-state radiation has on the distribution of
the track-mass variable. The radiative tail of multi-photon
events to the right of the peak at the π± mass increases
because the additional radiation moves events from the
peak to higher values in Mtrk. The width of the peak at
Mπ± is due to the detector resolution; the plot was pro-
duced using the PHOKHARA event generator interfaced
with the KLOE detector simulation [450]. Between 150
and 200 MeV, an M2

ππ -dependent cut is used in the event
selection to reject the π+π−π0 events which have a value
of Mtrk > Mπ± . In this region, the cut also acts on the

Fig. 60 Modification of the distribution of the track-mass variable due
to the presence of final-state radiation (dark grey triangles) compared
to the one with initial-state radiation only (light grey triangles). The
arrows indicate the region in which the M2

ππ -dependent cut is applied
in the analysis. The plot was created with the PHOKHARA generator
interfaced to the KLOE detector simulation [450]
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signal events. Missing terms concerning final-state radia-
tion in the Monte Carlo simulation or the non-validity of
the point-like-pion approximation used in PHOKHARA
may affect the shape of the radiative tail in the track-mass
variable. To overcome this, in the KLOE analyses, small
corrections are applied to the momenta and the angles of
the charged particles in the event in the simulation, and
good agreement in the shape of Mtrk is obtained between
Monte Carlo simulation and data [449].

• The division by the radiator function H(s,M2
ππ ). In this

case, one assumes perfect factorisation between the ISR
and the FSR process. This has been tested by performing
the analysis in an inclusive and exclusive approach with
respect to final-state radiation. The assumption was found
to be valid within 0.2% [373, 451].

It has been argued that contributions from events with
two hard photons in the final state, which are not included
in the PHOKHARA generator, may have an effect on the
analyses [380].

The effect of the direct decay φ → π+π−γ on the ra-
diative return analysis has been addressed already in [347].
Running at

√
s 
 1.02 GeV, the amplitude for the processes

φ → (f0(980) + f0(600))γ → π+π−γ interferes with the
amplitude for the final-state radiation process. Due to the
yet unclear nature of the scalar states f0(980) and f0(600),
the effect on the π+π−γ (γ ) cross section depends on the
model used to describe the scalar mesons. The possibil-
ity to simulate φ decays together with the processes for
initial- and final-state radiation has been implemented in the
PHOKHARA event generator in [337], using two charac-
teristic models for the φ decays: the “no structure” model
of [452] and the K+K− loop model of [453]. A refined ver-
sion of the K+K− loop model [439] and the double vec-
tor resonance φ → π±%∓(→ π∓γ ) have been included as
described in [350]. Using parameter values for the differ-
ent φ decays found in the analysis of the neutral channel
φ → (f0(980)+ f0(600))γ → π0π0γ [439, 441], one can
estimate the effect on the different analyses. While in the
small-angle analysis there is no significant effect due to the
choice of the acceptance cuts, in the large-angle selection
the effect is of the order of several per cent and can reach up
to 20% in the vicinity of the f0(980), see Fig. 61a. While
this allows us to study the different models for the direct
decays of φ-mesons (see also Sect. 4.3.2), it prevents a pre-
cise measurement of σππ until the model and the parame-
ters are understood with better accuracy. An obvious way
out is to use data taken at a value of

√
s outside the narrow

peak of the φ resonance (Γφ = 4.26 ± 0.04 MeV [267]). In
2006, the KLOE experiment has taken ∼ 250 pb−1 of data at√
s = 1 GeV, 20 MeV below Mφ . As can be seen in Fig. 61

(b), this reduces the effect due to contributions from f0γ and
%π decays of the φ-meson to be within ±1%.

Fig. 61 (a) dσ (ISR+FSR+f0+%π)
ππγ /dσ (ISR+FSR)

ππγ for
√
s = 1.019 GeV.

(b) dσ (ISR+FSR+f0+%π)
ππγ /dσ (ISR+FSR)

ππγ for
√
s = 1 GeV. Both plots

were produced with the PHOKHARA v6.1 event generator using
large-angle acceptance regions for pions and photons, with model pa-
rameters for the f0 and %π contributions from [439, 441]

Normalisation with muon events An alternative method to
extract the pion form factor is to normalise the differen-
tial cross section dσππγ (γ )/dM2

ππ directly to the process
e+e− → μ+μ−γ (γ ), dσμμγ (γ )/dM2

μμ, in each bin of
ΔM2

ππ = ΔM2
μμ. Radiative corrections like the effect of

vacuum polarisation, the radiator function and also the in-
tegrated luminosity

∫
Ldt cancel out in the ratio of pions

over muons, and only the effects from final-state radiation
(which is different for pions and muons) need to be taken
into account consistently. An approach currently under way
at KLOE uses the following equation to obtain |F2π |2:

∣
∣F2π (s

′)
∣
∣2 · (1 + η(s′)

)

= 4(1 + 2m2
μ/s

′)βμ
β3
π

·
(

dσππγ (γ )
dM2

ππ
)ISR+FSR

(
dσμμγ (γ )

dM2
μμ

)ISR
. (203)

In this formula, the measured differential cross section
dσππγ (γ )/dM2

ππ should be inclusive with respect to pio-
nic final-state radiation, while the measured cross section
dσμμγ (γ )/dM2

μμ should be exclusive for muonic final-state
radiation. s′ =M2

ππ =M2
μμ is the squared invariant mass of

the di-pion or the di-muon system after the respective cor-
rections for final-state radiation. Using this approach, one
gets on the left-hand side the pion form factor times the
factor (1 + η(s′)), which describes the effect of the pionic
final-state radiation. This bare form factor is the quantity
needed in the dispersion integral for the ππ -contribution
to ahad

μ . While the measurement of dσππγ (γ )/dM2
ππ and its
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corrections for pionic final-state radiation are very similar to
the one using the normalisation with Bhabha events already
performed at KLOE, the corrections needed to subtract
the muonic final-state radiation from the dσμμγ (γ )/dM2

μμ

cross section are pure QED and can be obtained from the
PHOKHARA generator, which includes final-state radiation
for muon pair production at next-to-leading order [336]. Due
to the fact that the KLOE detector does not provide particle
IDs, pions and muons have to be separated and identified
using kinematical variables (e.g. the aforementioned track-
mass variable) [367]. The analysis is in progress and a sys-
tematic precision similar to the one obtained in the absolute
measurement is expected.

4.4.2 Radiative return at BaBar

The BaBar radiative return program aims at the study of all
significant hadronic processes in electron–positron annihi-
lation, e+e− → hadrons, for energies from threshold up to
about 4.5 GeV. Moreover, hadron spectroscopy of the ini-
tial JPC = 1−− states, which are produced in e+e− colli-
sions, and of their decay products is performed. In this chap-
ter BaBar results for processes with 3, 4, 5 and 6 hadrons
in the final state, as well as measurements of baryon form
factors in the time-like region are reported. A precision
analysis of the pion form factor, i.e. of the cross section
e+e− → π+π−, which is essential for an improved determi-
nation of the hadronic contribution to the anomalous mag-
netic moment of the muon, appeared most recently [454].
The results presented in this chapter are based on a total in-
tegrated luminosity of 230 fb−1, except for the 3π and 4
hadron channels of Ref. [397], which were analysed using
a data sample of 90 fb−1. The total BaBar data sample col-
lected between the years 1999 to 2008 amounts to 530 fb−1.
A typical feature common to all radiative return analyses at
BaBar is a wide coverage of the entire mass range of in-
terest in one single experiment, with reduced point-by-point
uncertainties compared to previous experiments.

e+e− → 3 pions The π+π−π0 mass spectrum has been
measured from 1.05 GeV up to the J/ψ mass region with a
systematic error of ∼5% below 2.5 GeV, and up to ∼20%
at higher masses [396]. The spectrum is dominated by the
ω, φ and J/ψ resonances. The BaBar measurement was
able to significantly improve the world knowledge on the ex-
cited ω states. The spectrum has been fitted up to 1.8 GeV
and the following results for the masses and widths of the
ω′ and ω′′ states have been found: M(ω′) = (1350 ± 20 ±
20) MeV, Γ (ω′)= (450±70±70) MeV, M(ω′′)= (1660±
10 ± 2) MeV, Γ (ω′′) = (230 ± 30 ± 20) MeV. Note that
below 1.4 GeV the results from BaBar are in good agree-
ment with those from SND [290], while above this energy
the cross sections measured by BaBar are much higher than
those from DM2 [455].

e+e− → 4 hadrons The π+π−π+π−, K+K−π+π− and
K+K−K+K− exclusive final states have been measured
from threshold up to 4.5 GeV with systematic errors of
5%, 15% and 25%, respectively [397]. The K+K−K+K−
measurement is the first measurement of this process at all.
Figure 62 shows the mass distribution of the π+π−π+π−
channel. We identify an impressive improvement with re-
spect to previous experiments. Background is relatively low
for all channels under study (e.g. a few per cent at 1.5 GeV
for π+π−π+π−) and is dominated by ISR-events of higher
multiplicities and by continuum non-ISR events at higher
masses. The π+π−π+π− final state is dominated by the
two-body intermediate state a1(1260)π ; the K+K−π+π−
final state shows no significant two-body states, but a rich
three-body structure, including K∗(890)Kπ , φππ , ρKK

and K∗
2 (1430)Kπ .

Figure 63 shows BaBar preliminary results for the
process e+e− → π+π−π0π0. The current systematic er-
ror of the measurement varies from 8% around the peak
of the cross section to 14% at 4.5 GeV. BaBar results are
in agreement with SND [456] in the energy range below
1.4 GeV and show a significant improvement for higher en-
ergies (>1.4 GeV). In the energy range above 2.5 GeV this
is the first measurement at all. The e+e− → π+π−π0π0

final state is dominated by the ωπ0, a1(1260)π and ρ+ρ−
intermediate channels, where the latter channel has been ob-
served for the first time.

A specific analysis was devoted to the intermediate
structures in the e+e− → K+K−π+π− and e+e− →
K+K−π0π0 channels [401]. Of special interest is the in-
termediate state φf0(980), where the decays f0(980) →
π+π− and f0(980) → π0π0 have been looked at. A peak
is observed in the φf0(980) channel at a mass M = 2175 ±
18 MeV and a width Γ = 58 ± 2 MeV. The new state is

Fig. 62 BaBar measurement of the energy dependence of the
e+e− → π+π−π+π− cross section obtained by radiative return in
comparison with the world data set
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Fig. 63 Preliminary BaBar data for the e+e− → π+π−π0π0 cross
section in comparison with previous experiments

usually denoted as Y(2175) and is also clearly visible in the
K+K−f0 spectrum.

e+e− → 2(π+π−)π0, 2(π+π−)η The e+e− →
2(π+π−)π0 cross section has been measured by BaBar
from threshold up to 4.5 GeV [403]. A large coupling of
the J/ψ and ψ(2S) to this channel is observed. The sys-
tematic error of the measurement is about 7% around the
peak of the mass spectrum. In the π+π−π0 mass distribu-
tion the ω and η peaks are observed; the rest of the events
have a 3πρ structure.

BaBar performed also the first measurement of the
e+e− → 2(π+π−)η cross section. A peak value of about
1.2 nb at about 2.2 GeV is observed, followed by a
monotonic decrease towards higher energies. Three interme-
diate states are seen: ηρ(1450), η′ρ(770) and
f1(1285)ρ(770).

e+e− → 6 hadrons The 6 hadron final state has been mea-
sured in the exclusive channels 3(π+π−), 2(π+π−)2π0

and K+K−2(π+π−) [399]. The cross section in the last
case has never been measured before; the precision in the
first two cases is ∼20%, which is a large improvement with
respect to existing data. Again, the entire energy range from
threshold up to 4.5 GeV is measured in a single experi-
ment. The distributions for the final states 3(π+π−) and
2(π+π−)2π0 are shown in Fig. 64. A clear dip is visi-
ble at about 1.9 GeV in both pion modes. A similar fea-
ture was already seen by FOCUS [457] in the diffractive

Fig. 64 The energy dependence of the cross sections for
e+e− → 3(π+π−) (upper plot) and e+e− → 2(π+π−)2π0

(lower plot), obtained by BaBar (filled circles) by radiative return, in
comparison with previous data

photo-production of six charged pions. The spectra are fit-
ted by BaBar using the sum of a Breit–Wigner resonance
function and a Jacob–Slansky continuum shape. For the
3(π+π−) (2(π+π−)2π0) mode, BaBar obtains values of
1880 ± 30 MeV (1860 ± 20 MeV) for the resonance peak,
130 ± 30 MeV (160 ± 20 MeV) for the resonance width and
21o ± 14o (−3o ± 15o) for the phase shift between the reso-
nance and continuum.

e+e− → K+K−π0,K+K−η, KSK
±π∓ A recent BaBar

ISR-analysis is dedicated to three hadrons in the final state,
including a pair of kaons (K+K−π0, KKSπ ); a peak near
1.7 GeV, which is mainly due to the φ′(1680) state, is ob-
served. A Dalitz plot analysis shows that the KK∗(892) and
KK∗

2 (1430) intermediate states are dominating the KK̄π

channel. A fit to the e+e− → KK̄π cross section assum-
ing the expected contributions from the φ,φ′, φ′′, ρ0, ρ′, ρ′′
states was performed. The parameters of the φ′ and other ex-
cited vector meson states are compatible with PDG values.
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Time-like proton form factor e+e− → pp̄, hyperon form
factors e+e− → Λ0Λ̄0,Λ0Σ̄0,Σ0Σ̄0 BaBar has also
performed a measurement of the e+e− → pp̄ cross sec-
tion [398]. This time-like process is parametrised by the
electric and magnetic form factors, GE and GM :

σe+e−→pp̄ = 4πα2βC

3s

(
|GM |2 + 2m2

p

s
|GE |2

)
,

where β =
√

1 − 4m2
p/s and the factor C = y/(1 − e−y)

(with y = παmp/(β
√
s)) accounts for the Coulomb interac-

tion of the final-state particles. The proton helicity angle θp
in the pp̄ rest frame can be used to separate the |GE |2 and
|GM |2 terms. Their respective variations are approximately
∼ sin2 θp and ∼(1 + cos2 θp). By fitting the cos θp distribu-
tion to a sum of the two terms, the ratio |GE |/|GM | can be
extracted. This is done separately in six bins of Mpp̄ . The
results disagree significantly with previous measurements
from LEAR [458] above threshold. BaBar observes a ratio
|GE |/|GM | > 1 above threshold, while at larger values of
Mpp̄ the BaBar measurement finds |GE |/|GM | ≈ 1. LEAR
data, on the contrary, show a behaviour |GE |/|GM | < 1
above threshold.

In order to compare the cross section measurement with
previous data (e+e− and p̄p experiments), the effective form
factor G is introduced: |G|2 = (|GM |2 + η|GE |2)/(1 + η)

with η = 2m2
p/s. The BaBar measurement of G is in good

agreement with existing results, as can be seen in Fig. 65.
The structure of the form factor is rather complicated; the
following observations can be made: (i) BaBar confirms an
increase of G towards threshold as seen before by other ex-
periments; (ii) two sharp drops of the spectrum at Mpp̄ =
2.25 and 3.0 GeV are observed; (iii) data at large values

Fig. 65 The e+e− → pp̄ cross section measured by BaBar (filled cir-
cles) in comparison with data from other e+e− colliders (blue points)
and from p̄p experiments (red points)

Mpp̄ > 3 GeV are in good agreement with the prediction
from perturbative QCD.

A continuation of the ISR program with baryon final
states is the measurement of the e+e− → ΛΛ̄ cross sec-
tion [404]. So far only one data point from DM2 [459] was
existing for this channel, which is in good agreement with
BaBar data. About 360 ΛΛ̄ events could be selected us-
ing the Λ → pπ decay. In two invariant mass bins an at-
tempt has been made to extract the ratio of the electric to
magnetic form factor |GE |/|GM |. In the mass range below
2.4 GeV this ratio is above unity—as in the proton case—
with a significance of one standard deviation (|GE |/|GM | =
1.73+0.99

−0.57). Above 2.4 GeV the ratio is consistent with unity

(|GE |/|GM | = 0.71+0.66
−0.71). Also the Λ polarisation and the

phase between GE and GM was studied using the slope of
the angle between the polarisation axis and the proton mo-
mentum in the Λ rest frame. The following limit on Λ polar-
isation is obtained: −0.22 < ζ < 0.28; the relative phase be-
tween the two form factors is measured as −0.76 < sin(φ) <
0.98, which is not yet significant due to limited statistics.

Finally, the first measurements of the e+e− → Σ0Σ̄0

and e+e− → Σ0Λ̄(ΛΣ̄0) cross sections were performed.
For the detection of the Σ0 baryon, the decay Σ0 →Λγ →
pπγ was used. About 40 candidate events were selected
for the reaction Σ0Σ̄0 and about 20 events for ΛΣ̄0. All
baryon form factors measured by BaBar have a similar size
and mass shape, namely a rise towards threshold. The reason
for this peculiar behaviour is not understood.

4.4.3 Radiative return at Belle

ISR studies at Belle Until now most of the Belle analyses
using radiative return focused on studies of the charmonium
and charmonium-like states. They can be subdivided into fi-
nal states with open and hidden charm.

Final states with open charm Belle performed a systematic
study of various exclusive channels of e+e− annihilation
into charmed mesons and baryons using ISR, often based on
the so-called partial reconstruction to increase the detection
efficiency.

In Ref. [413] they measured the cross sections of the
processes e+e− → D∗±D∗∓ and e+e− → D+D∗− + c.c.

The shape of the former is complicated and has several local
maxima and minima. The first two maxima are close to the
ψ(4040) and ψ(4160) states. The latter shows significant
excess of events near the ψ(4040).

The cross sections of the processes e+e− →D+D− and
e+e− → D0D̄0 show a signal of the ψ(3770), as well as
hints of the ψ(4040), ψ(4160) and ψ(4415) [414]. There
is also an enhancement near 3.9 GeV, which qualitatively
agrees with the prediction of the coupled channel model
[460].

The cross section of the process e+e− → D0D−π+
has a prominent peak at the energy corresponding to the
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ψ(4415) [415]. From a study of the resonant substructure
in the decay ψ(4415) → D0D−π+ they conclude that it is
dominated by the intermediate DD̄∗

2(2460) mechanism.
In contrast to expectations of some hybrid models pre-

dicting Y(4260) → D(∗)D̄(∗)π decays, no clear structures
were observed in the cross section of the process e+e− →
D0D∗−π+ [417]. There is only some evidence (∼3.1σ ) for
the ψ(4415).

Finally, they measure the cross section of the reaction
e+e− →Λ+

c Λ
−
c and observe a significant peak near thresh-

old that they dub X(4630) [416]. Assuming that the peak is
a resonance, they find that its mass and width are compati-
ble within errors with those of the Y(4660) state found by
Belle in the ψ(2S)π+π− final state via ISR [411]. However,
interpretations other than X(4630)≡ Y(4660) cannot be ex-
cluded. For example, peaks at the baryon–antibaryon thresh-
old are observed in various processes. According to other
assumptions, the X(4630) is a ψ(5S) [461] or ψ(6S) [462]
charmonium state, or, for example, a threshold effect which
is due to the ψ(3D), slightly below the Λ+

c Λ
−
c thresh-

old [463]. Figure 66 shows all cross sections mentioned
above, with the vertical lines showing positions of both well

Fig. 66 Cross sections of various exclusive processes measured
by Belle: (a) e+e− → D∗±D∗∓, (b) e+e− → D+D∗− + c.c.,

(c) e+e− → DD̄, (d) e+e− → D0D−π+ + c.c., (e) e+e− →
D0D∗−π+ + c.c., and (f) e+e− → Λ+

c Λ
−
c . The dashed lines show

the position of the ψ states, while the dotted lines correspond to the
Y (4008), Y (4260), Y (4360), and Y (4660) states

established states like ψ(4040), ψ(4160) and ψ(4415), and
new charmonium-like states Y(4008), Y(4260), Y(4360)
and Y(4660) discussed below.

Summing the measured cross sections and taking into ac-
count not yet observed final states on base of isospin sym-
metry they find that the sum of exclusive cross sections al-
most saturates the total inclusive cross section measured by
BES [303].

Final states with hidden charm Studying the J/ψπ+π−
final state, Belle confirmed the Y(4260) discovered by
BaBar and in addition observed a new structure dubbed
Y(4008) [410], see Fig. 67. They also observe the reaction
e+e− → J/ψK+K− and find first evidence for the reaction
e+e− → J/ψK0

SK
0
S [412].

Studying the ψ(2S)π+π− final state, Belle confirmed
the Y(4360) discovered by BaBar and in addition observed
a new structure dubbed Y(4660) [411], see Fig. 68.

It is worth noting that the resonance interpretation of var-
ious enhancements discussed above is not unambiguous and
can be strongly affected by close thresholds of different final
states and rescattering effects.

Various ISR studies performed at the Belle detector in the
charmonium region are summarised in Table 14.

ISR studies of light quark states In one case the ISR
method was used to study the light quark states [464]. In this
analysis the cross sections of the reactions e+e− → φπ+π−

Fig. 67 The J/ψπ+π− invariant mass distribution

Fig. 68 The ψ(2S)π+π− invariant mass distribution
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and e+e− → φf0(980) are measured from threshold to
3 GeV, using a data sample of 673 fb−1, see Fig. 69a, b. In
the φπ+π− mode the authors observe and measure for the
first time the parameters of the φ(1680); they also observe
and measure the parameters of the φ(2170). Also selected in
this analysis is the φf0(980) final state, which shows a clear
signal of the φ(2170). For Monte Carlo simulation they use
a version of PHOKHARA in which the produced resonance
decays into φπ+π− or φf0(980) with the subsequent decays
φ → K+K− and f0(980) → π+π−. The π+π− system is
in the S-wave, the π+π− system and the φ are also in a
relative S-wave. The π+π− mass distribution is generated
according to phase space. They assign 0.1% as the system-
atic uncertainty of the ISR photon radiator.

In all the ISR studies the Monte Carlo simulation is per-
formed as follows. First, the kinematics of the initial-state
radiation is generated using the PHOKHARA v5.0 package
for simulation of the process e+e− → V γISR(γISR) [338].
Then a qq̄ generator is used to generate V decays.

4.4.4 Prospects for radiative return at VEPP-2000

As discussed above, the major hadronic leading-order con-
tribution to ahad

μ comes from the energy range below 1 GeV,
where in turn the π+π− channel gives the dominant contri-
bution. Direct scan at VEPP-2000 will deliver huge statis-
tics at the experiments CMD-3 and SND, but the accuracy
of the cross sections will be determined by systematic er-
rors. Therefore, any other possibility to measure the pion

Table 14 Summary of ISR studies in the cc̄ region at Belle

Final state
∫
L dt , fb−1 Ref.

D∗+D∗− 547.8 [413]

D±D∗∓ 547.8 [413]

D0D̄0, D+D− 673 [414]

D0D−π+ 673 [415]

D0D∗−π+ 695 [417]

Λ+
c Λ

−
c 695 [416]

J/ψπ+π− 548 [410]

ψ(2S)π+π− 673 [411]

J/ψK+K− 673 [412]

form factor, for example with ISR, will be a valuable tool to
provide a cross-check for better understanding the scale of
systematic effects.

The design luminosity of ∼1032 cm−2 c−1 is expected
at

√
s = 2 GeV. The luminosity recalculated to the ρ-peak

will be close to the one obtained with CMD-2. Let us recol-
lect that the ISR method provides a continuous “low-energy
scan”, while taking data at fixed high energy. The threshold
region, 2mπ–0.5 GeV, gives about 13% of the total contri-
bution to the muon anomaly. As a rule, the collider lumi-
nosity dramatically decreases at low energies. To overcome
the lack of data in the threshold region, the ISR method can
serve as a very efficient and unique way to measure the pion
form factor inside this energy region.

Today, the theoretical precision for the cross section of
the process e+e− → π+π−γ is dominated by the uncer-
tainty of the radiator function (0.5%), and there is hope to re-
duce it to a few per mill in the future. In the case of the pion
form factor extraction from the π+π−γ /μ+μ−γ ratio, the
dependence on theory will be significantly reduced, since
the main uncertainty of the radiator function and vacuum-
polarisation effects cancel out in the ratio. With the inte-
grated luminosity of several inverse femtobarn at 2 GeV, one
can reach a fractional accuracy on the total error smaller than
0.5%.

In direct scan experiments the data are collected at fixed
energy points. Thus, some “empty” gaps without data natu-
rally arise. The experiments with ISR will cover the whole
energy scale, filling any existing gaps. Trigger and recon-
struction efficiencies, detector imperfections and many other
factors will be identical for all data in the whole energy
range. Therefore, some systematic errors will be cancelled
out in part. Comparison of cross sections for the process
e+e− → μ+μ−, measured both with ISR and direct scan,
can serve as a benchmark to study and control systematic ef-
fects. It should confirm the validity of this method and help
to determine the energy scale. A fit of the ω and φ reso-
nances will also provide a calibration of the energy scale—
an important feature to achieve a systematic accuracy of a
few per mill for the pion form factor.

Fig. 69 Cross sections of the
processes e+e− → φπ+π− (a)
and e+e− → φf0(980) (b)
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4.4.5 Prospects for radiative return at BES-III

The designed peak luminosity of BEPC-II is 1×1033 cm−2 s−1

at
√
s = 3.77 GeV, i.e. the ψ(3770) peak. It has reached

30% of the design luminosity now and is starting to deliver
luminosity to BES-III for physics. Although the physics pro-
grams at BES-III are rather rich [51], most of the time, the
machine will run at

√
s = 3.77 GeV and 4.17 GeV for charm

physics, since the cross sections of J/ψ and ψ(2S) produc-
tion are large and the required statistics can be accumulated
in short time, say, one year at each energy point. The esti-
mated running time of BEPC-II at

√
s = 3.77 and 4.17 GeV

is around eight years, which corresponds to an integrated
luminosity of about 20 fb−1 at each energy point.

Data samples at
√
s = 3.77 and 4.17 GeV can be used for

radiative return studies, for the c.m. energies of the hadron
system between the π+π− threshold to above 2.0 GeV. This
will allow for measurements of the pion, kaon and proton
form factors, as well as of cross sections for some multi-
hadron final states. The good coverage of the muon detector
at BES-III also allows for the identification of the μ+μ−
final state, thus supplying a normalisation factor for the other
two-body final states.

Figure 70 shows the expected luminosity at low ener-
gies in 10 MeV bins for 10 fb−1 data accumulated on the
ψ(3770) peak. In terms of luminosity at the ρ0 peak, one
can see that 10 fb−1 of data at

√
s = 3.77 GeV is equivalent

to 70 fb−1 at 10.58 GeV, i.e. at the B factories.

Fig. 70 Expected luminosity at low energies due to ISR for 10 fb−1

data accumulated on the ψ(3770) peak

With Monte Carlo generated e+e− → γISRπ
+π− data

using PHOKHARA [333], after a fast simulation and re-
construction with the BES-III software, one found the ef-
ficiency for events at the ρ0 peak to be around 5% if one
requires the detection of the ISR photon. This is higher than
the efficiency at BaBar [465]. Figure 71 shows the signal for
10,000 generated π+π− events. One estimates the number
of events in each 10 MeV bin to be around 20,000 at the ρ0

peak, for 10 fb−1 of data at
√
s = 3.77 GeV. This is com-

parable with the recent BaBar results based on 232 fb−1 of
data at the Υ (4S) peak [465].

The most important work related to the pion form factor
measurement is the estimate of the systematic error. Since
the cross section of good events at the ψ(3770) peak is not
large (around 30 nb for the total hadronic cross section, with
about 400 nb cross section for the QED processes) compared
to the highest trigger rates at J/ψ and ψ(2S) peak energies,
a loose trigger is mandatory to allow the ISR events to be
recorded. In principle, the trigger rate for these events could
reach 100%, with an allowed trigger purity of less than 20%.

With enough DD̄ events accumulated at the same energy,
the tracking and particle ID efficiencies can be measured
with high precision (as has been done at CLEO-c [466]). In
addition, a huge data sample at the ψ(2S) and the well mea-
sured large branching fraction of ψ(2S) transition modes,
such as π+π−J/ψ , J/ψ → μ+μ−, can be used to study
the tracking efficiency, μ-ID efficiency and so on. All this
will greatly help to understand the detector performance and
to pin down the systematic errors in the form factor measure-
ment.

The kaon and proton form factors can be measured as
well since they are even simpler than the measurement of
the pion form factor. This will allow us to better understand
the structure close to threshold and possible existing high-
mass structures.

Except for the lowest lying vector states (ρ, ω, φ), the pa-
rameters of other vector states are poorly known, and further
investigations are needed. BES-III ISR analyses may reach
energies slightly above 2 GeV, while beyond that BEPC-II

Fig. 71 Detected γISRπ
+π− in 10000 produced events at the ψ(3770)

peak. The sample is generated with PHOKHARA
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can run by adjusting the beam energy. This allows BES-III
to study the full range of vector mesons between the π+π−
threshold and 4.6 GeV, which is the highest energy BEPC-II
can reach, thus covering the ρ, ω and φ, as well as the ψ

sector. One will have the chance to study the excited ρ, ω
and φ states between 1 and about 2.5 GeV. The final states
include π+π−π0, KK̄ , 4 pions, ππKK , etc. Final states
with more than four particles will be hard to study using the
ISR method, since the DD̄ decay will contribute as back-
ground.

5 Tau decays

5.1 Introduction

After discovery of the τ lepton, which is a fundamental lep-
ton, heavy enough to decay not only into leptons, but also
into dozens of various hadronic final states, it became clear
that corresponding Monte Carlo (MC) event generators are
needed for various purposes:

– To calculate detector acceptance, efficiencies and various
distributions for signal event selection and comparison to
data. In general the acceptance is small (a few per cent)
and depends on the model; in principle, it is a compli-
cated function of invariant masses, angles, and resolu-
tions. Analysis of publications shows that effects of MC
signal modelling are almost always neglected.

– To estimate the number of background (BG) events NBG
ev

and their distributions; in addition to background coming
from τ+τ− pairs (so-called cross-feed), there might be
BG events from qq̄ continuum, γ γ collisions etc.

– To unfold observed distributions to get rid of detector ef-
fects, important when extracting resonance parameters.

Various computer packages like, e.g., KORALB [467],
KKMC [468], TAUOLA [469–471] and PHOTOS [472]
were developed to generate events for τ lepton production
in e+e− annihilation and their subsequent decay, taking into
account the possibility of photon emission. These codes be-
came very important tools for experiments at LEP, CLEO,
Tevatron and HERA.

Simulation of hadronic decays requires the knowledge
of hadronic form factors. Various hadronic final states were
considered in the 90’s, resulting in a large number of specific
hadronic currents [473].

However, already experiments at LEP and CLEO show-
ed that with increase of the collected data sets a more pre-
cise description is necessary. Some attempts were made
to improve the parametrisation of various hadronic cur-
rents. One should note the serious efforts of the ALEPH
and CLEO Collaborations, which created their own para-
metrisations of TAUOLA hadronic currents already in the

late 90’s, or a parametrisation of the hadronic current in
the 4π decays [474], based on the experimental infor-
mation on e+e− → 2π+2π−, π+π−2π0 from Novosi-
birsk [294], which is now implemented in the presently dis-
tributed TAUOLA code [475].

5.2 Current status of data and MC generators

In this section we will briefly discuss the most precise recent
experimental data on τ lepton decays, showing, wherever
possible, their comparison with the existing MC generators
and discussing the decay dynamics.

5.2.1 τ− → π−π0ντ at Belle

Recently results of a study of the τ− → π−π0ντ decay by
the Belle Collaboration were published [476]. From less
than 10% of the data set available the authors selected a
huge statistics of 5.4M events, about two orders of mag-
nitude larger than in any previous experiment, determined
the branching fraction and after the unfolding obtained the
hadronic mass spectrum, in which for the first time three ρ-
like resonances were observed together: ρ(770), ρ(1450)
and ρ(1700). Their parameters were also determined.

The comparison of the obtained missing mass distri-
butions with simulations for different polar angle ranges
(Fig. 72) shows that there exist small discrepancies between
MC and data.

Figure 73 shows various background contributions to the
di-pion mass distribution (upper panel) and underlying dy-
namics (lower panel), clearly demonstrating a pattern of the
three interfering resonances ρ(770), ρ(1450) and ρ(1700).

5.2.2 τ− → K̄0π−ντ , K−π0ντ

Two high-precision studies of the τ decay into the Kπντ
final state were recently published. The BaBar Collabora-
tion reported a measurement of the branching fraction of
the τ− → K−π0ντ decay [477]. They do not study in de-
tail the Kπ invariant mass distribution, noting only that the
K∗(892)− resonance is seen prominently above the simu-
lated background, see Fig. 74. Near 1.4 GeV/c2 decays to
higher K∗ mesons are expected, such as the K∗(1410)−
and K∗

0 (1430)−, but their branching fractions are not yet
measured well. These decays are not included in the BaBar
simulation of τ decays, but seem to be present in the data
around 1.4 GeV/c2. It is also worth noting that this decay
mode is heavily contaminated by cross-feed backgrounds
from other τ decays. For example, below 0.7 GeV/c2 the
background is dominated by K−π0π0ντ and K−K0π0ντ
events, for which the branching fractions are only known
with large relative uncertainties of ≈37% and ≈13%, re-
spectively. Non-negligible background may also come from
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Fig. 72 Projections to the missing mass and missing direction for
τ− → π−π0ντ decays at Belle: (a)–(c) correspond to different ranges
of the missing polar angles. The solid circles represent the data and the
histograms the MC simulation (signal + background). The open his-

togram shows the contribution from τ+τ− pairs, the vertical (hori-
zontal) striped area shows that from two-photon leptonic (hadronic)
processes; the wide (narrow) hatched area shows that from Bhabha
(μ+μ−), and the shaded area that from the qq̄ continuum

the τ− → π−π0ντ decay, which has a large branching frac-
tion and thus should be simulated properly.

Another charge combination of the final-state particles,
i.e., K0

Sπ
−ντ , was studied in the Belle experiment [478].

In this case a detailed analysis of the Kπ invariant mass
distribution has been performed. The authors also conclude
that the decay dynamics differs from pure K∗(892): the best
fit includes K∗

0 (800)+K∗(892)+K∗(1410)/K∗
0 (1430), see

Fig. 75.

5.2.3 τ decays into three pseudoscalars

Recently a measurement of the branching fractions of var-
ious particle combinations in the decay to three charged
hadrons (any combination of pions and kaons) was reported
by the BaBar Collaboration [479]. A similar study was also
performed by the Belle group [480]. However, both groups
have not yet analysed the mass spectra in detail. In the
K−K+K−ντ final state BaBar [479] and Belle [481] re-
ported the observation of the decay mode φK−ντ , while in
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Fig. 73 Invariant-mass-squared distribution for τ− → π−π0ντ decay
at Belle. (a) Contributions of different background sources. The solid
circles with error bars represent the data, and the histogram represents
the MC simulation (signal + background). (b) Fully corrected distri-
bution. The solid curve is the result of a fit to the Gounaris–Sakurai
model with the ρ(770), ρ(1450) and ρ(1700) resonances

the K−K+π−ντ final state BaBar observed the φπ−ντ de-
cay mode [479]. Belle analysed the spectrum of the φK−
mass and concluded that it might have a complicated dy-
namics, see Fig. 76.

The most detailed previous study of the mass spectra was
done by the CLEO group [482]. With the statistics of about
8,000 events they conclude that the 3π mass spectrum is
dominated by the a1(1260) meson, and confirmed that the
decay of the latter is not saturated by the ρπ intermediate
state, having in addition a significant f0(600)π− component
observed earlier in e+e− annihilation into four charged pi-
ons [294].

Recently the Belle Collaboration performed a detailed
study of various decays with the η meson in the final

Fig. 74 The Kπ invariant mass distribution for the decay
τ− → K−π0ντ at BaBar. The dots are the data, while the histograms
are background MC events with selection and efficiency corrections: τ
background (dashed line), qq̄ (dash-dotted line), μ+μ− (dotted line)

Fig. 75 The Kπ invariant mass distribution for the decay
τ− → K−π0ντ at Belle. Points are experimental data, histograms
are spectra expected for different models. (a) shows the fitted result
in the model with the K∗(892) alone. (b) shows the fitted result in
the K∗(892)+K∗

0 (800)+K∗(1410) model. Also shown are different
types of background
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state [483]. They measured the branching fractions of the
following decay modes: τ− → K−ηντ , τ− → K−π0ηντ ,
τ− → π−π0ηντ , τ− → π−K0

Sηντ , and τ− → K∗−ηντ .
They also set upper limits on the branching fractions of the
decays into K−K0

Sηντ , π−K0
Sπ

0ηντ , K−ηηντ , π−ηηντ ,
and non-resonant K−π0ηντ final states.

Figure 77 shows that there is reasonable agreement for
ηπ−π0ντ (a, b) and a worse one for ηK−ντ (c) and ηK∗−ντ
(d).

5.2.4 τ decays to four pions

There are two possible isospin combinations of this hadronic
final state, 2π−π+π0 and π−3π0. Both have not yet been
studied at B factories, so the best existing results are based
on ALEPH [484] and CLEO [485] results.

Fig. 76 The φK invariant mass distribution for the decay
τ− → φK−ντ at Belle. Points with error bars are the data. The open
histogram is the phase–space distributed signal MC, and dotted and
dot-dashed histograms indicate the signal MC mediated by a resonance
with mass and width of 1650 MeV and 100 MeV, and 1570 MeV and
150 MeV, respectively

The theoretical description of such decays is based on the
CVC relations and the available low-energy e+e− data [330,
339, 474, 486].

5.2.5 τ− → 3h−2h+ντ at BaBar

A new study of the τ− → 3h−2h+ντ decay (h = π, K)
has been performed by the BaBar Collaboration [487]. A
large data set of over 34,000 events (two orders of mag-
nitude larger than in the best previous measurement at
CLEO [488]) allows one a first search for resonant struc-
tures and decay dynamics.

The invariant mass distribution of the five charged parti-
cles in Fig. 78 shows a clear discrepancy between the data
and the MC simulation, which uses the phase–space distrib-
ution for τ− → 3π−2π+ντ .

The mass of the h+h− pair combinations in Fig. 79 (up-
per panel), with a prominent shoulder at 0.77 GeV/c2, sug-
gests a strong contribution from the ρ meson. Note that
there are three allowed isospin states for this decay, of which
two may have a ρ meson. The mass of the 2h+2h− combi-
nations in Fig. 79 (lower panel) also shows a structure at
1.285 GeV/c2 coming from the τ− → f1(1285)π−ντ de-
cay.

The first attempt to take into account the dynamics of this
decay was recently performed in Ref. [489].

5.2.6 τ decays to six pions

The six-pion final state was studied by the CLEO Collab-
oration [490]. Two charge combinations, 3π−2π+π0 and
2π−π+3π0, were observed and it was found that the decays

Fig. 77 Invariant mass
distributions: (a) ππ0 and (b)
πηπ0 for τ → ππ0ηντ ; (c) ηK
for τ →Kηντ and (d) πK0

Sη

for τ → πK0
Sηντ at Belle. The

points with error bars are the
data. The normal and filled
histograms indicate the signal
and τ+τ− background MC
distributions, respectively
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Fig. 78 Invariant mass of five charged particles for τ− → 3h−2h+ντ
at BaBar

Fig. 79 Invariant mass distributions for τ− → 3h−2h+ντ at BaBar.
Points with error bars are the data: Upper panel—h+h−; the unshaded
and shaded histograms are the signal and background predicted by
MC. Lower panel—2π+2π−; the solid line is a fit to the data us-
ing a second-order polynomial (dashed line) for the background and
a Breit–Wigner convoluted with a Gaussian for the peak region

are saturated by intermediate states with η and ω mesons.
Despite the rather limited statistics (about 260 events alto-
gether), it became clear that the dynamics of these decays is
rather rich.

5.2.7 Lepton-flavour violating decays

More than 50 different Lepton-Flavour Violating (LFV) de-
cays have been studied by the CLEO, BaBar and Belle Col-
laborations. Publications rarely describe how the simulation

of such decays is performed. Moreover, theoretical papers
suggesting LFV in new models usually do not provide dif-
ferential cross sections. In some experimental papers the au-
thors claim that the production of final state hadrons with
a phase–space distribution is assumed. However, the real
meaning of this statement is not very clear since LFV as-
sumes New Physics and, therefore, matrix elements are not
necessarily separated into weak and hadronic parts.

However, there exist a few theoretical papers considering
differential cross sections. For example, angular correlations
for τ− → μ−γ, μ−μ+μ− and μ−e+e− decays were stud-
ied in Ref. [491]. An attempt to classify different types of
operators entering New Physics Lagrangians for τ decays to
three charged leptons was made in [492].

5.3 Status of Monte Carlo event generators
for τ production and decays

High-statistics and high-precision experiments, as well as
searches for rare processes, result in a new challenge: Monte
Carlo generators based on an adequate theoretical descrip-
tion of energy and angular distributions. In the following we
will describe the status of the Monte Carlo programs used
by experiments. We will review the building blocks used in
the simulation with the goal in mind to localise the points
requiring most urgent attention.

At present, for the production of τ pairs, the Monte Carlo
programs KORALB [467] and KKMC [468] are the stan-
dard codes to be used. For the generation of bremsstrah-
lung in decays, the Monte Carlo PHOTOS [472] is used.
Finally, τ decays themselves are simulated with the pro-
gram TAUOLA [469–471]. The EvtGen code was writ-
ten and maintained for simulation of B meson decays, see
www.slac.stanford.edu/~lange/EvtGen/. It offers a unique
opportunity to specify, at run time, a list of the final-state
particles,15 without having to change and/or compile the un-
derlying code. In a multi-particle final state dominated by
phase–space considerations, this generator provides an ade-
quate description of the final-state momenta, for which the
underlying form factor calculation is more involved and not
presently available in a closed form. That is why it is used
by experiments measuring τ decays too.

So far, our discussion has been based on the comparison
of experimental data and theory embodied into Monte Carlo
programs treated as a black box. One could see that a typical
signature of any given τ decay channel is matching rather
poorly the publicly available Monte Carlo predictions. This
should be of no surprise as efforts to compare data with pre-
dictions were completed for the last time in late 90’s by the
ALEPH and CLEO collaborations. The resulting hadronic
currents were afterwards implemented in [475]. Since that

15E.g. τ lepton decay products including neutrinos.

http://www.slac.stanford.edu/~lange/EvtGen/
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time no efforts to prepare a complete parametrisation of τ
decay simulation for the public use were undertaken seri-
ously.

There is another important message which can be drawn
from these comparisons. Starting from a certain precision
level, the study of a given decay mode cannot be separated
from the discussion of others. In the distributions aimed at
representing the given decay mode, a contribution from the
other τ decay modes can be large, up to even 30%.

It may be less clear that experiments differ significantly
in the way how they measure individual decay modes. For
instance, ALEPH produced τ samples free of the non-τ
backgrounds, but, on the other hand, strongly boosted, mak-
ing the reconstruction of some angles in the hadronic sys-
tem more difficult. This is important and affects properties
of the decay models which will be used for a parametri-
sation. In particular, when the statistics is small, possible
fluctuations may affect the picture and there are not enough
data to complete an estimate of the systematic errors. In this
case, details of the description of the hadronic current, as
the inclusion of intermediate resonances, are not important.
Let us consider, as an example, τ− →K0

Sπ
−π0ντ . The ma-

trix element in the ALEPH parametrisation is saturated by
ρ− → π−π0 and K∗0 →K0

Sπ
0, and a similar parametrisa-

tion is used for K∗− →K0
Sπ

−. In practice, the contribution
of the ρ is more significant in the ALEPH parametrisation
in contrast to the CLEO one where the K∗ dominates. One
has to admit that at the time when both collaborations were
preparing their parametrisations to be used in TAUOLA, the
data samples of both experiments were rather small and the
differences were not of much significance. This can, how-
ever, affect possible estimates of backgrounds for searches
of rare decays, e.g. of B mesons at LHCb.16

Let us now go point-by-point and discuss examples of
Monte Carlo programs and fitting strategies. We will focus
on subjects requiring most attention and future work. We
will review the theoretical constraints which are useful in
the construction of the models used for the data description.

5.4 Phase space

Because of the relatively low multiplicity of final-state par-
ticles, it is possible to separate the description of τ pro-
duction and decay into segments describing the matrix ele-
ments and the phase space. In the phase space no approx-
imations are used, contrary to the matrix elements where
all approximations and assumptions reside. The descrip-
tion of the phase space used in TAUOLA is given in detail

16LHCb performed MC studies for B0
s → μ+μ− and the radiative de-

cays B0 →K∗γ and B0
s → φγ , but τ decays have not yet been taken

into account. These results are not public and exist only as internal
documents LHCB-ROADMAP1-002 and LHCB-ROADMAP4-001.

in [471]. The description of the phase space for τ production
is given in [468]. Thanks to conformal symmetry it is exact
for an arbitrary number of photons. Using exponentiation,
see, for example, Yennie–Frautchi–Suura [493], the phase–
space description can be exact and the matrix element can be
refined order by order. For radiative corrections in the decay
PHOTOS can be used. Its phase space is described, for ex-
ample, in the journal version of [494] and is exact. Approx-
imations are made in the matrix element only. Benchmark
comparisons17 with other calculations, which are actually
based on second-order matrix elements and exponentiation,
found excellent agreement [495, 496].

5.5 Spin effects

The lifetime of the τ lepton is orders of magnitude larger not
only than its formation time in high-energy experiments, but
also than the time scale of all phenomena related to higher-
order corrections such as bremsstrahlung.

The separation of τ production and decay is excellent due
to the small width of the τ lepton. Its propagator can be well
approximated by a delta function for phase space and matrix
elements. The cross section for the process f f̄ → τ+τ−Y ;
τ+ →X+ν̄τ ; τ− → l−νlντ reads

dσ =
∑

spin

|M|2 dΩ =
∑

spin

|M|2 dΩprod dΩτ+ dΩτ− ,

where Y and X+ stand for particles produced together with
the τ+τ− and in the τ+ decay, respectively; dΩ , dΩprod,
dΩτ+ , dΩτ− denote the phase space in the original process,
in production and decay, respectively.

This formalism looks simple, but because of the over 20
τ decay channels there are more than 400 distinct processes.

Let us write the spin amplitude separated into the parts
for τ pair production and decay:

M =
2∑

λ1λ2=1

Mprod
λ1λ2

Mτ+
λ1

Mτ−
λ2
.

After integrating out the τ propagators, the formula for the
cross section can be rewritten as

dσ =
(∑

spin

∣∣Mprod
∣∣2

)(∑

spin

∣∣Mτ+ ∣∣2
)(∑

spin

∣∣Mτ− ∣∣2
)

×wt dΩprod dΩτ+ dΩτ− ,

17The purpose of this type of tests may vary. If two programs differ in
their physics assumptions, it may help to control the physics precision.
If the physics assumptions are identical, but the technical constructions
differ, then the comparison checks the correctness of the implementa-
tion of the algorithm. Finally, the comparison of results from the same
program, but installed on different computers, may check the correct-
ness of the code’s implementation in new software environments. Such
comparisons, or just the data necessary for comparisons, will be re-
ferred to as physical, technical and installation benchmarks, respec-
tively. They are indispensable for the reliable use of Monte Carlo pro-
grams.
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where

wt =
( ∑

i,j=0,3

Rijh
i+h

j
−
)
,

R00 = 1, 〈wt〉 = 1, 0 ≤wt ≤ 4.

Rij can be calculated from Mλ1λ2 , hi+ and h
j
− from

Mτ+
and Mτ−

, respectively. Bell inequalities (related to
the Einstein–Rosen–Podolsky paradox [497]) tell us that in
general it is impossible to rewrite wt in the following fac-
torised form, wt factorised:

wt �=wt factorised =
( ∑

i,j=0,3

RA
i h

i+
)( ∑

i,j=0,3

RB
j h

j
−
)
,

where RA
i and RB

j are four-component objects calculated
from variables of the process of τ pair production. In the
Monte Carlo construction it is thus impossible to generate
a τ+ τ− pair, where each of the two is in some quantum
state, and later to perform the decays of the τ+ and the τ−
independently. This holds at all orders of the perturbative
expansion. τ production and decay are correlated through
spin effects, which can be represented by the well-behaved
factor wt introduced previously. The above formulae do not
lead to any loss of precision and hold in presence of radia-
tive corrections as well. Different options for the formalism,
based on these expressions, are used in Monte Carlo pro-
grams and are basically well founded. This should be con-
fronted with processes where instead of τ leptons short-lived
intermediate states are considered. Then, in general, ambi-
guities appear and corrections proportional to the ratio of
the resonance width to its mass (or other energy scales of
the process resulting, for example, from cut-offs) must be
included. Interfering background diagrams may cause addi-
tional problems. For details we refer to [468, 469, 498].

5.6 τ lepton production

KORALB was published [467, 499] more than twenty years
ago. It included first-order QED corrections and complete
mass and spin effects. It turned out to be very useful, and
still remains in broad use. On the other hand, some of its
ingredients are outdated and do not match the present day
requirements, even for technical tests. For example the func-
tion PIRET(S), which describes the real part of the photon
hadronic vacuum polarisation as measured by the data col-
lected until the early 80’s should be replaced by one of the
new precise codes (see Sect. 6 for details).

Unfortunately, this replacement does not solve all nor-
malisation problems of KORALB. For example, it is well
known that the one-loop corrections are not sufficient. The
two major improvements which were developed during the

LEP era are the introduction of higher-order QED correc-
tions into Monte Carlo simulation and a better way to com-
bine loop corrections with the rest of the field theory calcu-
lations. For energies up to 10 GeV (typical of the B facto-
ries), the KKMC Monte Carlo [468] provides a realisation
of the above improvements. This program includes higher-
order QED matrix elements with the help of exclusive ex-
ponentiation, and explicit matrix elements up to the second
order. Also in this case the function calculating the vacuum
polarisation must be replaced by a version appropriate for
low energy (see Sect. 6).

Once this is completed, and if the two-loop photon vac-
uum polarisation can be neglected, KORALB and KKMC
can form a base for tests and studies of systematic errors for
cross section normalisations at low energies. Using a strat-
egy similar to the one for Bhabha scattering [500], the re-
sults obtained in [278, 501] allow one to expect a precision
of 0.35–0.45% using KKMC at Belle/BaBar energies. Cer-
tainly, a precision tag similar to that for linear colliders can
also be achieved for lower energies. Work beyond [501] and
explained in that paper would then be necessary.

5.7 Separation into leptonic and hadronic current

The matrix element used in TAUOLA for semi-leptonic de-
cays, τ (P, s)→ ντ (N)X,

M = G√
2
ū(N)γ μ(v + aγ5)u(P )Jμ (204)

requires the knowledge of the hadronic current Jμ. The ex-
pression is easy to manipulate. One obtains:

|M|2 =G2 v
2 + a2

2

(
ω+Hμs

μ
)
,

ω = Pμ
(
Πμ − γvaΠ

5
μ

)
,

Hμ = 1

M

(
M2δνμ − PμP

ν
)(
Π5
ν − γvaΠν

)
,

Πμ = 2
[
(J ∗ ·N)Jμ + (J ·N)J ∗

μ − (J ∗ · J )Nμ

]
,

Π5μ = 2Im εμνρσ J ∗
ν JρNσ ,

γva = − 2va

v2 + a2
.

(205)

If the τ coupling is v+ aγ5 and mντ �= 0 is allowed, one has
to add to ω and Hμ:

ω̂ = 2
v2 − a2

v2 + a2
mνM(J ∗ · J ),

Ĥμ = −2
v2 − a2

v2 + a2
mν Im εμνρσ J ∗

ν JρPσ .

(206)
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The expressions are useful for Monte Carlo applications and
are also calculable from first principles. The resulting ex-
pression can be used to the precision level of the order of
0.2–0.3%.

In contrast to other parts, the hadronic current Jμ still
cannot be calculated reliably from first principles. Some the-
oretical constraints need to be fulfilled, but in general it has
to be obtained from experimental data. We will return to this
point later (see Sect. 5.9).

5.8 Bremsstrahlung in decays

The PHOTOS Monte Carlo is widely used for generation
of radiative corrections in cascade decays, starting from the
early papers [502, 503]. With time the precision of its pre-
dictions improved significantly, but the main principle re-
mains the same. Its algorithm is aimed to modify the content
of the event record filled in with complete cascade decays at
earlier steps of the generation. PHOTOS modifies the con-
tent of the event record; it adds additional photons to the
decay vertices and at the same time modifies the kinematic
configuration of other decay products.

One could naively expect that this strategy is bound to
substantial approximations. However, the algorithm is com-
patible with NLO calculations, leads to a complete coverage
of the phase space for multi-photon final states and provides
correct distributions in soft-photon limits. For more details
of the program organisation and its phase–space generation
we address the reader to [494].

The changes introduced over the last few years into the
PHOTOS Monte Carlo program itself were rather small and
the work concentrated on its theoretical foundations. This
wide and complex subject goes beyond the scope of this
Review and the interested reader can consult [504], where
some of the topics are discussed. Previous tests of two-body
decays of the Z into a pair of charged leptons [496] and a
pseudoscalar B into a pair of scalars [494] were recently
supplemented [505] with the study of W± → l±νγ . The
study of the process γ ∗ → π+π− is on-going [506]. In all of
these cases a universal kernel of PHOTOS was replaced with
the one matching the exact first-order matrix element. In this
way terms for the NLO/NLL level are implemented. The al-
gorithm covers the full multi-photon phase space and it is
exact in the infrared region of the phase space. One should
not forget that PHOTOS generates weight-one events.

The results of all tests of PHOTOS with an NLO ker-
nel are at a sub-per mill level. No differences with bench-
marks were found, even for samples of 109 events. When
simpler physics assumptions were used, differences between
total rates at sub-per mill level were observed or they were
matching a precision of the programs used for tests.

This is very encouraging and points to the possible exten-
sion of the approach beyond (scalar) QED, and in particular

to QCD and/or models with phenomenological Lagrangians
for interactions of photons with hadrons. For this work to be
completed, spin amplitudes have to be further studied [507].

The refinements discussed above affect the practical side
of simulations for τ physics only indirectly. Changes in the
kernels necessary for NLO may remain as options for tests
only. They are available from the PHOTOS web page [505],
but are not recommended for wider use. The corrections are
small, and distributions visualising their size are available.
On the other hand, their use could be perilous, as it requires
control of the decaying particle spin state. It is known (see,
e.g., [508]) that this is not easy because of technical reasons.

We will show later that radiative corrections do not pro-
vide a limitation in the quest for improved precision of
matching theoretical models to experimental data until is-
sues discussed in Sect. 5.12 are solved.

5.9 Hadronic currents

So far all discussed contributions to the predictions were
found to be controlled to the precision level of 0.5% with
respect to the decay rate under study.18

This is not the case for the hadronic current, which is
the main source of our difficulties. It cannot be obtained
from perturbative QCD as the energy scales involved are too
small. On the other hand, for the low-energy limits the scale
is too large. Despite these difficulties one can obtain a the-
oretically clear object if enough effort is devoted. This may
lead to a better understanding of the boundaries of the per-
turbative domain of QCD as well.

The unquestionable property which hadronic currents
must fulfil is Lorentz invariance. For example, if the final
state consists of three scalars with momenta p1, p2, p3, re-
spectively, it must take the form

Jμ = N

{
T μ
ν

[
c1(p2 − p3)

νF1 + c2(p3 − p1)
νF2

+ c3(p1 − p2)
νF3

]

+ c4q
μF4 − ic5ε

μ
. νρσ

4π2f 2
π

pν1p
ρ
2p

σ
3 F5

}
, (207)

where Tμν = gμν − qμqν/q
2 is the transverse projector and

q = p1 + p2 + p3. The functions Fi depend on three vari-
ables that can be chosen as q2 = (p1 + p2 + p3)

2 and two
of the following three, s1 = (p2 + p3)

2, s2 = (p1 + p3)
2,

s3 = (p1 +p2)
2. This form is obtained from Lorentz invari-

ance only.

18This 0.5% uncertainty is for QED radiative effects. One should bear
in mind other mechanisms involving the production of photons, like,
for example, the decay channel ω → πγ , which occurs with a proba-
bility of (8.28 ± 0.28)% and does not belong to the category of radia-
tive corrections.
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Among the first four hadronic structure functions (F1, F2,
F3, F4), only three are independent. We leave the structure
function F4 in the basis because, neglecting the pseudoscalar
resonance production mechanism, the contribution due to F4

is negligible (∼m2
π/q

2) [509] and (depending on the decay
channel) one of F1, F2 and F3 drops out, exactly as it is in
TAUOLA since long.

In each case, the number of independent functions is four
(rather than five) and not larger than the dimension of our
space-time. That is why the projection operators can be de-
fined, for two- and three-scalar final states. Work in that di-
rection has already been done in Ref. [473] and then imple-
mented in tests of TAUOLA too. Thanks to such a method,
hadronic currents can be obtained from data without any
need of phenomenological assumptions. Since long such
methods were useful for data analysis, but only in part. Ex-
perimental samples were simply too small.

At present, for high statistics and precision the method
may be revisited. That is why it is of great interest to verify
whether detector deficiencies will invalidate the method or
if adjustments due to incomplete phase–space coverage are
necessary. We will return to that question later. In the mean
time let us return to other theoretical considerations which
constrain the form of hadronic currents, but not always to
the precision of today’s data.

5.10 The resonance chiral approximation and its result
for the currents

Once the allowed Lorentz structures are determined and a
proper minimal set of them is chosen, one should impose the
QCD symmetries valid at low energies. The chiral symmetry
of massless QCD allows one to develop an effective field
theory description valid for momenta much smaller than the
ρ mass, χPT [510, 511].

Although χPT cannot provide predictions valid over the
full τ decay phase space, it constrains the form and the nor-
malisation of the form factors in such limits.

The model, proposed in [445] for τ decaying to pions and
used also for extensions to other decay channels, employs
weighted products of Breit–Wigner functions to take into ac-
count resonance exchange. The form factors used there have
the right chiral limit at LO. However, as it was demonstrated
in [509], they do not reproduce the NLO chiral limit.

The step towards incorporating the right low-energy limit
up to NLO and the contributions from meson resonances
which reflect the experimental data was done within Res-
onance Chiral Theory (RχT [436, 437]). The current state-
of-the-art for the hadronic form factors (Fi ) appearing in the
τ decays is described in [512, 513]. Apart from the correct
low-energy properties, it includes the right falloff [514, 515]
at high energies.

The energy-dependent imaginary parts in the propagators
of the vector and the axial-vector mesons, 1/(m2 − q2 −

imΓ (q2)), were calculated in [516] at one-loop, exploiting
the optical theorem that relates the appropriate hadronic ma-
trix elements of τ decays and the cuts with on-shell mesons
in the (axial-) vector-(axial-) vector correlators.

This formalism has been shown to successfully describe
the invariant mass spectra of experimental data in τ decays
for the following hadronic systems: ππ [517–519], πK
[520, 521], 3π [509, 512, 513, 522] and KKπ [512, 522].
Other channels will be worked out along the same lines.

It has already been checked that the RχT results pro-
vide also a good description of the three-meson processes
Γ (τ → 3πντ ) [523] and σ(e+e− →KKπ)I=1 [402].

Both the spin-one resonance widths and the form factors
of the decays τ− → (ππ, πK, 3π, KKπ)−ντ computed
within RχT are being implemented in TAUOLA only now.

Starting from a certain precision level, the predictions,
like the ones presented above, may turn out to be not suf-
ficiently precise. Nonetheless, even in such a case they can
provide some essential constraints on the form of the func-
tions Fi . Further refinements will require large and com-
bined efforts of experimental and theoretical physicists. We
will elaborate on possible technical solutions later in the re-
view. Such attempts turned out to be difficult in the past and
a long time was needed for parametrisations given in [475]
to become public. Even now they are semi-official and are
not based on the final ALEPH and/or CLEO data.

5.11 Isospin symmetry of the hadronic currents

If one neglects quark masses, QCD is invariant under a
transformation replacing quark flavours. As a consequence,
hadronic currents describing vector τ decays (2π,4π,
ηππ, . . .) and low-energy e+e− annihilation into corre-
sponding isovector final states are related and can be ob-
tained from one another [524, 525]. This property, often
referred to as conservation of the vector current (CVC) in
τ decays, results in the possibility to predict invariant mass
distributions of the hadronic system, as well as the corre-
sponding branching fractions in τ decays using e+e− data.
A systematic check of these predictions showed that at the
(5–10)% level they work rather well [526].

In principle, the corrections due to mass and charge dif-
ferences between u and d quarks are not expected to pro-
vide significant and impossible to control effects [527, 528].
However, the high-precision data of the CLEO [529],
ALEPH [530], OPAL [531], Belle [476], CMD-2 [289, 388,
390, 392], SND [288] and KLOE [374] collaborations in the
2π channel challenged this statement, and as it was shown
in [17, 20, 27, 35, 36, 380, 532] that the spectral functions
for τ− → π−π0ντ significantly differ from those obtained
using e+e− → π+π− data. Some evidence for a similar
discrepancy is also observed in the τ− → 2π−π+π0ντ de-
cay [339, 533, 534]. This effect remains unexplained. The



670 Eur. Phys. J. C (2010) 66: 585–686

magnitude of the isospin-breaking corrections has been up-
dated recently, making the discrepancy in the 2π channel
smaller [37].

These CVC based relations were originally used in the
TAUOLA form factors parametrisation, but they were of-
ten modified to improve fits to the data. Let us point here
to an example where experimental e+e− data were used
for the model of the τ → 4πντ decay channels [474]. In
this case, only a measurement of the distribution in the total
invariant mass of the hadronic system was available. This
is not enough to fix the distribution over the multidimen-
sional phase space. For other dimensions one had to rely on
phenomenological models or other experiments. In the fu-
ture, this may not be necessary, but will always remain as a
method of benchmarks construction.

5.12 The challenges

As we have argued before, refined techniques for fits, in-
volving simultaneous fits to many τ decay channels, are
necessary to improve the phenomenological description of
τ decays. Complex backgrounds (where each channel con-
tributes to signatures of other decay modes as well), differ-
ent sensitivities of experiments for measurements of some
angular distributions within the same hadronic system, and
sometimes even an incomplete reconstruction of final states,
are the main cause of this necessity. Moreover, theoretical
models based on the Lagrangian approach simultaneously
describe more than one τ decay channel with the same set
of parameters, and only simultaneous fits allow us to estab-
lish their experimental constraints in a consistent way. Sig-
nificant efforts are thus necessary and close collaboration
between phenomenologists and experimental physicists is
indispensable. As a result, techniques of automated calcu-
lations of hadronic currents may become necessary [535].

5.13 Technical solutions for fits

For the final states of up to three scalars, the use of pro-
jection operators [473] is popular since long [533]. It en-
ables, at least in principle, to obtain form factors used in
hadronic currents directly from the data, for one scalar func-
tion defined in (207) at a time. Only recently experimental
samples became sufficiently large. However, to exploit this
method one may have to improve it first by systematically
including the effects of a limited detector acceptance. Im-
plementation of the projection operators into packages like
MC-TESTER [536] may be useful. Efforts in that direction
are being pursued now19 [538].

19This may help to embed the method in the modern software for fits,
see, e.g., [537].

On the theoretical side one may need to choose predic-
tions from many models, before a sufficiently good agree-
ment with data will be achieved. Some automated methods
of calculations may then become useful [539]. This is espe-
cially important for hadronic multiplicities larger than three,
when projector operators have never been defined.

Certain automation of the methods is thus advisable. To
discriminate from the broad spectrum of choices, new meth-
ods of data analysis may become useful [540]. Such meth-
ods may require simulating samples of events where several
options for the matrix element calculation are used simulta-
neously.20

The neutrino coming from τ decays escapes detection
and as a result the τ rest frame cannot be reconstructed.
Nevertheless, as was shown in Ref. [473], angular distrib-
utions can be used for the construction of projection opera-
tors, which allow for the extraction of the hadronic structure
functions from the data. This is possible as they depend on
s1, s2 and q2 only.

A dedicated module for the MC-TESTER [536], im-
plementing the moments of different angular functions de-
fined in (39)–(47) of Ref. [473], is under development.
The moments are proportional to combinations of the type
α|Fi |2 + β|Fj |2 + γRe(FiF ∗

j ), where the coefficients α, β
and γ are functions of hadron four-momentum components
in the hadronic rest frame. Preliminary results obtained with
large statistics of five million τ → a1ντ → 3πντ decays,
and assuming vanishing F3 and F5 form factors, show that
it is possible to extract |F1|2, |F2|2 and |F1 · F ∗

2 |2 as func-
tions of s1, s2 and Q2. This extraction requires solving a set
of equations. Since the solution is sensitive to the precision
of the estimation of the moments entering the equation, large
data samples of the order of O(106–107) are necessary. The
calculation of the moments also requires the knowledge of
the initial

√
s of the τ pair, which makes the analysis sensi-

tive to initial-state radiation (ISR) effects. The same stud-
ies show that the analysis is easier if one, instead of ex-
tracting the form factors |Fi |2, compares the moments ob-
tained from the experimental data with theoretical predic-
tions. Such a comparison does not require repetition of the
Monte Carlo simulation of τ decays with different form fac-
tors, and only the calculation of combinations of |Fi |2 and
Re(FiF ∗

j ) is necessary. This is much simpler than compar-
ing the kinematic distributions obtained from data with dis-
tributions coming from Monte Carlo simulations with vari-
ous theoretical models. Further complications, for example,
due to the presence of an initial-state bremsstrahlung or an
incomplete acceptance of decay phase space, were not yet
taken into account.

20Attempts to code such methods into TAUOLA, combined with pro-
grams for τ pair production and experimental detector environment,
were recently performed [541], but they were applied so far as proto-
types only, see Fig. 1 of Ref. [542].
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Note that 2% electroweak radiative corrections discussed
in Ref. [543] do not contribute to the technical obstacles pre-
sented here. They can be simply hidden in overall normal-
ization for all hadronic τ decay channels.

5.14 Prospects

Definitely the improvements of τ decay simulation packages
and fit strategies are of interest for phenomenology of low
energy. As a consequence, their input for such domains as
phenomenology of the muon g− 2 or αQED, αQCD and their
use in constraints of new physics would improve.

In this section, let us argue if possible benefits for LHC
phenomenology may arise from a better understanding of
τ decay channels in measurements as well. In the papers
[544, 545] it was shown that spin effects can indeed be use-
ful to measure properties of the Higgs boson such as parity.
Moreover, such methods were verified to work well when
detector effects as proposed for a future linear collider were
taken into account. Good control of the decay properties is
helpful. For example, in Ref. [546] it was shown that for the
τ → a1ντ → 3πντ decay the sensitivity to the τ polarisa-
tion increases about four times when all angular variables
are used compared with the usual dΓ/dq2, see also [547].

Even though τ decays provide some of the most promi-
nent signatures for the LHC physics program, see, e.g.,
Ref. [548], for some time it was expected that methods
exploiting detailed properties of τ cascade decays are not
practical for LHC studies. Thanks to efforts on reconstruc-
tion of π0 and ρ invariant mass peaks, this opinion evolves.
Such work was done for studies of the CMS ECAL detector
inter-calibration [549], and in a relatively narrow pT range
(5–10 GeV) some potentially encouraging results were ob-
tained. Some work in context of searches for new particles
started recently [550]. There, improved knowledge of dis-
tinct τ decay modes may become important at a certain
point.

One can conclude that the situation is similar to that at
the start of LEP, and some control of all τ decay channels is
important. Nonetheless, only if detector studies of π0 and ρ

reconstruction will provide positive results, the gate to im-
prove the sensitivity of τ spin measurements with most of
its decay modes, as at LEP [551–553], will be open. At this
moment, however, it is difficult to judge about the impor-
tance of such improvements in the description of τ decays
for LHC perspectives. The experience of the first years of
LHC must be consolidated first. In any case such an activity
is important for the physics of future Linear Colliders.

5.15 Summary

We have shown that the most urgent challenge in the quest
for a better understanding of τ decays is the development

of efficient techniques for fitting multidimensional distri-
butions, which take into account realistic detector condi-
tions. This includes cross contamination of different τ decay
modes, their respective signatures and detector acceptance
effects, which have to be simultaneously taken into account
when fitting experimental data. Moreover, at the current ex-
perimental precision, theoretical concepts have to be reex-
amined. In contrast to the past, the precision of predictions
based on chiral Lagrangians and/or isospin symmetry can-
not be expected to always match the precision of the data.
The use of model-independent data analyses should be en-
couraged whenever possible in realistic conditions.

Good understanding of τ decays is crucial for under-
standing the low-energy regime of strong interactions and
the matching between the non-perturbative and the pertur-
bative domains. Further work on better simulations of τ de-
cays at the LHC is needed to improve its potential to study
processes of new physics, especially in the Higgs sector. In
addition, an accurate simulation of τ decays is important
for the control of backgrounds for very rare decays. For the
project to be successful, this should lead to the encapsula-
tion of our knowledge on τ decays in form of a Monte Carlo
library to be used by low-energy as well as high-energy ap-
plications.

6 Vacuum polarisation

6.1 Introduction

The vacuum polarisation (VP) of the photon is a quantum
effect which leads, through renormalisation, to the scale
dependence (‘running’) of the electromagnetic coupling,
α(q2). It therefore plays an important role in many physi-
cal processes and its knowledge is crucial for many preci-
sion analyses. A prominent example is the precision fits of
the Standard Model as performed by the electroweak work-
ing group, where the QED coupling α(q2 = M2

Z) is the
least well known of the set of fundamental parameters at the
Z scale, {Gμ,MZ,α(M

2
Z)}. Here we are more concerned

about the VP at lower scales as it enters all photon-mediated
hadronic cross sections. These are used, e.g., in the deter-
mination of the strong coupling αs , the charm and bottom
quark masses from Rhad as well as in the evaluation of the
hadronic contributions to the muon g − 2 and α(q2) itself.
It also appears in Bhabha scattering in higher orders of per-
turbation theory needed for a precise determination of the
luminosity. It is hence clear that VP also has to be included
in the corresponding Monte Carlo programs.

In the following we shall first define the relevant nota-
tions, then briefly discuss the calculation of the leptonic and
hadronic VP contributions, before comparing available VP
parametrisations.
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Conventionally the vacuum-polarisation function is de-
noted by Π(q2) where q is a space- or time-like momen-
tum. The shaded blob in Fig. 80 stands for all possible one-
particle irreducible leptonic or hadronic contributions. The
full photon propagator is then the sum of the bare photon
propagator and arbitrarily many iterations of VP insertions,

full photon propagator

∼ −i

q2
· (1 +Π +Π ·Π +Π ·Π ·Π + · · · ). (208)

The Dyson summation of the real part of the one-particle
irreducible blobs then defines the effective QED coupling

α(q2)= α

1 −Δα(q2)
= α

1 − ReΠ(q2)
, (209)

where α ≡ α(0) is the usual fine-structure constant, α ∼
1/137. It is determined most precisely through the anom-
alous magnetic moment of the electron, ae, as measured by
the Harvard group to an amazing 0.24 ppb [1], in agreement
with less precise determinations from caesium and rubidium
atom experiments. The most precise value for α, which in-
cludes the updated calculations of O(α4) contributions to
ae [554], is given by 1/α = 137.035999084(51).

By using (209) we have defined Π to include the electric
charge squared, e2 for leptons, but note that different con-
ventions are used in the literature, and sometimes Π is also
defined with a different overall sign.

Equation (209) is the usual definition of the running ef-
fective QED coupling and has the advantage that one obtains
a real coupling. However, the imaginary part of the VP func-
tion Π is completely neglected, which is normally a good
approximation as the contributions from the imaginary part
are formally suppressed. This can be seen, e.g., in the case
of the ‘undressing’ of the experimentally measured hadronic
cross section σhad(s). The measured cross section e+e− →
γ ∗ → hadrons contains |full photon propagator|2, i.e. the
modulus squared of the infinite sum (208). Writing Π =
e2(P + iA) one easily sees that

|1 + e2(P + iA)+ e4(P + iA)2 + · · · |2
= 1 + e22P + e4(3P 2 −A2) + e64P

(
P 2 −A2) + · · ·

and that the imaginary part A enters only at order O(e4)

compared to O(e2) for the leading contribution from the
real part P . To account for the imaginary part of Π one may

Fig. 80 Photon vacuum polarisation Π(q2)

therefore apply the summed form of the ‘(un)dressing’ fac-
tor with the relation

σhad(s)= σ 0
had(s)

|1 −Π |2 (210)

instead of the traditionally used relation with the real effec-
tive coupling,

σhad(s)= σ 0
had(s)

(
α(s)

α

)2

. (211)

We shall return to a comparison of the different approaches
below for the case of the hadronic VP.

It should be noted that the summation breaks down and
hence cannot be used if |Π(s)| ∼ 1. This is the case if

√
s

is very close to or even at narrow resonance energies. In this
case one cannot include the narrow resonance in the defi-
nition of the effective coupling but has to rely on another
formulation, e.g. through a Breit–Wigner propagator (or a
narrow width approximation with a delta-function). For a
discussion of this issue see [555]. Also note that the VP
summation covers only the class of one-particle irreducible
diagrams of factorisable bubbles depicted in Fig. 80. This in-
cludes photon radiation within and between single bubbles,
but clearly does not take into account higher-order correc-
tions from initial-state radiation or initial–final-state inter-
ference effects in e+e− → hadrons.

As will be discussed in the following, leptonic and
hadronic contributions to Δα are normally calculated sep-
arately and then added, Δα(q2) = Δαlep(q

2)+Δαhad(q
2).

While the leptonic contributions can be predicted within per-
turbation theory, the precise determination of the hadronic
contributions relies on a dispersion relation using experi-
mental data as input.

6.2 Leptonic contributions

The leptonic contributions Δαlep have been calculated to
sufficiently high precision. The leading-order (LO) and
next-to-leading order (NLO) contributions are known as an-
alytic expressions including the full mass dependence [556],
where LO and NLO refer to the expansion in terms of α. The
next-to-next-to-leading order (NNLO) contribution is avail-
able as an expansion in terms of m2

!/q
2 [11], where m! is

the lepton mass. To evaluate Δαlep(q
2) for |q2| � m2

τ , this
expansion is not appropriate, but this is exactly the region
where the hadronic uncertainties are dominant. Also from
the smallness of the NNLO contribution, we conclude that
we do not need to further improve the leptonic contributions
beyond this approximation.

The evaluation of the LO contribution is rather simple,
and we briefly summarise the results below. Hereafter, it
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is understood that we impose the renormalisation condition
Π(0)= 0 on Π(q2). For q2 < 0, the VP function reads

Π
(
q2) = − e2

36π2

(
5 − 12η

+ 3(−1 + 2η)
√

1 + 4η ln

√
1 + 4η+ 1√
1 + 4η− 1

)
, (212)

where η ≡m2
!/(−q2). For 0 ≤ q2 ≤ 4m2

! one obtains

Π
(
q2) = − e2

36π2

(
5 − 12η

+ 3(−1 + 2η)
√−1 − 4η arctan

√−1 − 4η

−1 − 2η

)
,

(213)

and for q2 ≥ 4m2
!

Π
(
q2) = − e2

36π2

(
5 − 12η

+ 3(−1 + 2η)
√

1 + 4η · ln
1 + √

1 + 4η

1 − √
1 + 4η

)

− ie2

12π
(1 − 2η)

√
1 + 4η. (214)

An easily accessible reference which gives the NLO con-
tributions is, for instance, Ref. [557, 558]. As mentioned
above, the NNLO contribution is given in Ref. [11]. For all
foreseeable applications the available formulae can be eas-
ily implemented and provide a sufficient accuracy. While the
uncertainty from α is of course completely negligible, the
uncertainty stemming from the lepton masses is only tiny.
Therefore the leptonic VP poses no problem.

6.3 Hadronic contributions

In contrast to the leptonic case, the hadronic VP Πhad(q
2)

cannot be reliably calculated using perturbation theory. This
is clear for time-like momentum transfer q2 > 0, where,
via the optical theorem ImΠhad(q

2)∼ σ(e+e− → hadrons)
goes through all the resonances in the low-energy region.
However, it is possible to use a dispersion relation to obtain
the real part of Π from the imaginary part. The dispersion
integral is given by

Δα
(5)
had

(
q2) = − q2

4π2α
P

∫ ∞

m2
π

σ 0
had(s)ds

s − q2
, (215)

where σ 0
had(s) is the (undressed) hadronic cross section

which is determined from experimental data. Only away
from hadronic resonances and (heavy) quark thresholds one

can apply perturbative QCD to calculate σ 0
had(s). In this re-

gion the parametric uncertainties due to the values of the
quark masses and αs , and due to the choice of the renor-
malisation scale, are small. Therefore the uncertainty of the
hadronic VP is dominated by the statistical and systematic
uncertainties of the experimental data for σ 0

had(s) used as in-
put in (215).

Note that the dispersion integral (215) leads to a smooth
function for space-like momenta q2 < 0, whereas in the
time-like region it has to be evaluated using the principal
value description and shows strong variations at resonance
energies, as demonstrated e.g. in Fig. 81. In (215) Δα(5)had de-
notes the five-flavour hadronic contribution. At energies we
are interested in, i.e. far below the t t̄ threshold, the contri-
bution from the top quark is small and usually added sep-
arately. The analytic expressions for Δαtop(q2) obtained in
perturbative QCD are the same as for the leptonic contri-
butions given above, up to multiplicative factors taking into
account the top-quark charge and the corresponding SU(3)

colour factors, which read Q2
t Nc at LO and Q2

t
N2
c −1
2 at

NLO.
Contributions from narrow resonances can easily be

treated using the narrow width approximation or a Breit–
Wigner form. For the latter one obtains

ΔαBreit−Wigner(s)= 3Γee
αM

s(s −M2 − Γ 2)

(s −M2)2 +M2Γ 2
, (216)

with M , Γ and Γee the mass, total and electronic width of
the resonance. For a discussion of the undressing of Γee
see [555].

Although the determination of Δα(5)had(q
2) via the disper-

sion integral (215) may appear straightforward, in practice
the data combination for σ 0

had(s) is far from trivial. In the
low-energy region up to about 1.4–2 GeV many data sets
from the different hadronic exclusive final states (channels)
from various experiments have to be combined, before the

Fig. 81 Different contributions to Δα(s) in the time-like region as
given by the routine from Fred Jegerlehner (version February 2010)
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different channels which contribute incoherently to σ 0
had(s)

can be summed. For higher energies the data for the fast
growing number of possible multi-hadronic final states are
far from complete, and instead inclusive (hadronic) mea-
surements are used. For the details of the data input, the
treatment of the data w.r.t. radiative corrections, the estimate
of missing threshold contributions and unknown subleading
channels (often via isospin correlations) and the combina-
tion procedures we refer to the publications of the different
groups cited below.

In the following we shall briefly describe and then com-
pare the evaluations of the (hadronic) VP available as para-
metrisations or tabulations from different groups.

6.4 Currently available VP parametrisations

For many years Helmut Burkhardt and Bolek Pietrzyk have
been providing the Fortran function named REPI for the lep-
tonic and hadronic VP [15, 175, 260, 559, 560]. While the
leptonic VP is coded in analytical form with one-loop ac-
curacy, the hadronic VP is given as a very compact para-
metrisation in the space-like region, but does not cover the
time-like region. For their latest update see [7]. The code
can be obtained from Burkhardt’s web pages which contain
also a short introduction and a list of older references, see
http://hbu.web.cern.ch/hbu/aqed/aqed.html.

Similarly, Fred Jegerlehner has been providing a pack-
age of Fortran routines for the running of the effective QED
coupling [13, 18–21, 259]. It provides leptonic and hadronic
VP both in the space- and time-like region. For the lep-
tonic VP the complete one- and two-loop results and the
known high-energy approximation for the three-loop cor-
rections are included. The hadronic contributions are given
in tabulated form in the subroutine HADR5N. The full
set of routines can be downloaded from Jegerlehner’s web
page http://www-com.physik.hu-berlin.de/~fjeger/. The ver-
sion available from there is the one we use in the compar-
isons below and was last modified in November 2003. It
will be referred to as J03 in the following. An update is in
progress and other versions may be available from the author
upon request.21 Note that for quite some time his routine has
been the only available code for the time-like hadronic VP.
Figure 81 shows the leptonic and hadronic contributions to-
gether with their sum as given by Jegerlehner’s routine in
the version updated in February 2010.

The experiments CMD-2 and SND at Novosibirsk are us-
ing their own VP compilation to undress hadronic cross sec-
tions, and the values used are given in tables in some of their
publications. Recently CMD-2 has made their compilation
publicly available, see Fedor Ignatov’s web page http://cmd.

21After completion of this work an updated version of the routine has
become available on Jegerlehner’s webpage.

inp.nsk.su/~ignatov/vpl/. There links are given to a corre-
sponding talk at the ‘4th meeting of the Working Group
on Radiative Corrections and Monte Carlo Generators for
Low Energies’ (Beijing 2008), to the thesis of Ignatov (in
Russian) and to a file containing the tabulation, which can
be used together with a downloadable package. The tabu-
lation is given for the real and imaginary parts of the sum
of leptonic and hadronic VP, for both space- and time-like
momenta, and for the corresponding errors. Figure 82, also
displayed on their web page, shows the results from CMD-
2 for |1 + Π |2 both for the space- and time-like momenta
in the range −(15 GeV)2 < q2 < (15 GeV)2 (upper panel)
and for the important low-energy region −(2 GeV)2 < q2 <

(2 GeV)2. The solid (black) lines are the sum of leptonic
and hadronic contributions, while the dotted (red) lines are
for the leptonic contributions only.

Another independent compilation of the hadronic VP is
available from the group of Hagiwara et al. [555] (HMNT),
at present upon request from the authors. They provide tab-
ulations (with a simple interpolation routine in Fortran) of

Fig. 82 |1 + Π |2 from CMD-2’s compilation for space- and
time-like momenta (labelled

√
s); solid (black) lines: leptonic plus

hadronic contributions, dotted (red) lines: only leptonic contribu-
tions. Upper panel: −(15 GeV)2 < q2 < (15 GeV)2. Lower panel:
−(2 GeV)2 < q2 < (2 GeV)2. Figures provided by Fedor Ignatov

http://hbu.web.cern.ch/hbu/aqed/aqed.html
http://www-com.physik.hu-berlin.de/~fjeger/
http://cmd.inp.nsk.su/~ignatov/vpl/
http://cmd.inp.nsk.su/~ignatov/vpl/
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Δα
(5)
had(q

2) both in the space- and time-like region, and also
a compilation of Rhad(s). Currently available routines are
based on the analysis [22, 23]. Two different versions are
provided, one including the narrow resonances J/ψ,ψ ′ and
the Upsilon family, Υ (1S)−Υ (3S), in Breit–Wigner form,
one excluding them. However, for applications of Δα it
should be remembered that close to narrow resonances the
resummation of such large contributions in the effective cou-
pling breaks down. In this context, note that the compi-
lation from Novosibirsk contains these narrow resonances,
whereas the routine from Jegerlehner does contain J/ψ and
ψ ′, but seems to exclude (or smear over) the Upsilon reso-
nances. When called in the charm or bottom resonance re-
gion Jegerlehner’s routine gives a warning that the “results
may not be reliable close to J/Psi and Upsilon resonances”.

In the following we shall compare the parametrisations
from the different groups.

6.5 Comparison of the results from different groups

In Fig. 83, we compare the parametrisations from Burk-
hardt and Pietrzyk (BP05), Jegerlehner (J03) and Hagiwara
et al. (HMNT) in the space-like (upper) and time-like re-
gion (lower panel). For the space-like region the differences
among the three parametrisations are roughly within one
standard deviation in the whole energy range shown. How-
ever, for the time-like region, there is disagreement between
HMNT and J03 at several energy regions, most notably at
1 GeV � √

s � 1.6 GeV, and at 0.8 GeV � √
s � 0.95 GeV.

As for the discrepancy at 1 GeV � √
s � 1.6 GeV, checking

the routine from Jegerlehner, one finds that a too sparsely
spaced energy grid in this region seems to be the reason.
The discrepancy at 0.8 GeV � √

s � 0.95 GeV is further
scrutinised in Fig. 84, where in addition to the two para-
metrisations HMNT (solid (red) line) and J03 (dotted (blue)
line), the result for Δα(5)had(s)/α obtained by integrating over
the R-data as compiled by the PDG [267]22 is shown as the
dashed (green) line. While the results from HMNT and the
one based on the PDG R-data agree rather well, their dis-
agreement with the J03 compilation in the region 0.8 GeV
� √

s � 0.95 GeV is uncomfortably large compared to the
error but may be due to a different data input of the J03
parametrisation. Note that the differences discussed here are
with respect to the widely used 2003 version of Jegerlehner’s
routine; the new version (see footnote 21) is significantly
improved.

In the following we shall compare the parametrisation
from HMNT with the one from the CMD-2 collaboration
which has become available very recently. Note that for un-
dressing their experimentally measured hadronic cross sec-

22The actual compilation of the data is available in electronic
form from http://pdg.lbl.gov/2008/hadronic-xsections/hadronicrpp_
page1001.dat.

Fig. 83 Comparison of the results from Hagiwara et al. (HMNT [555])
for Δα(5)had(q

2) in units of α with parametrisations from Burkhardt and

Pietrzyk (BP05 [7]) and Jegerlehner (J03). Upper panel: Δα(5)had(Q
2)/α

for space-like momentum transfer (Q2 < 0), where the three parametri-
sations are indistinguishable. The differences (normalised and multi-
plied by 100) are highlighted by the dashed and dotted curves; the
wide light (blue) band is obtained by using the error band of HMNT
in the normalised difference to J03, labelled ‘(J03-HMNT)/HMNT
(×100)’. Lower panel: Δα(5)had(s)/α from J03 and HMNT (as labelled)
for time-like momenta (q2 = s). For readability, only the error band of
HMNT is displayed

tions, CMD-2 includes the imaginary part of the VP func-
tion Π(q2) in addition to the real part. Before coming to
the comparison with CMD-2, let us discuss some generali-
ties about ImΠ(q2). If we are to include the imaginary part,
then the VP correction factor α(q2)2 should be replaced as

(
α

1 −Δα(q2)

)2

=
(

α

1 − ReΠ(q2)

)2

→
∣∣∣∣

α

1 −Π(q2)

∣∣∣∣

2

= α2

(1 − ReΠ(q2))2 + (ImΠ(q2))2
.

(217)

Note that, as mentioned already in the introduction, the con-
tribution from the real part appears at O(e2) in the de-
nominator, while that from the imaginary part starts only
at O(e4). Because of this suppression we expect the effects

http://pdg.lbl.gov/2008/hadronic-xsections/hadronicrpp_page1001.dat
http://pdg.lbl.gov/2008/hadronic-xsections/hadronicrpp_page1001.dat
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Fig. 84 Comparison of the results from Hagiwara et al. (HMNT,
solid (red) line) for Δα

(5)
had(s)/α with the parametrisation from

Jegerlehner (J03, dotted (blue) line) in the time-like region in the range√
s = 0.7–1 GeV. The dashed (green) line shows the result if the data

compilation from the PDG [267] is used

from the imaginary part to be small. Nevertheless we would
like to stress two points. First, field-theoretically, it is more
accurate to include the imaginary part which exists above
threshold. Including only ReΠ(q2) in the VP correction is
an approximation which may be sufficient in most cases.
Second, it is expected that the contribution from the imagi-
nary part is of the order of a few per mill of the total VP cor-
rections. While this seems small, it can be non-negligible at
the ρ meson region where the accuracy of the cross section
measurements reaches the order of (or even less than) 1%.
Similarly, in the region of the narrow φ resonance, the con-
tributions from the imaginary part become non-negligible
and should be taken into account.

In Fig. 85 the VP correction factor, based on the compi-
lation from HMNT, with and without ImΠ(q2) is compared
to |1 −Π(s)|2 as used by the CMD-2 collaboration in their
recent analysis of the hadronic cross section in the 2π chan-
nel in the ρ central region [392].23 In the upper panel the VP
correction factors are given, whereas in the lower panel the
differences are shown. As expected, the differences between
the three are visible, and are about a few per mill at most.
The difference between the CMD-2 results and the one from
HMNT including ImΠ(q2) (solid (red) curve in the lower
panel of Fig. 85 shows a marked dip followed by a peak in
the ρ−ω interference region where the π+π− cross section
falls sharply. This is most probably a direct consequence of
the different data input used. However, in most applications
such a difference will be partially cancelled when integrated
over an energy region including the ρ peak.

In Figs. 86 and 87 we compare Δα(s) in the time-like
region as given by the parametrisation from CMD-2 with

23We thank Gennadiy Fedotovich for providing us with a table includ-
ing the VP correction factors not included in [392].

Fig. 85 Upper panel: Correction factor |1 − Π(s)|2 as used for ‘un-
dressing’ by the CMD-2 collaboration in [392] (dashed line) com-
pared to the same quantity using the HMNT compilation for the
e+e− → hadrons data (solid line). Also shown is the correction fac-
tor (1 − ReΠ)2 = (α/α(s))2, based on α(s) in the time-like region
from HMNT (dotted line). Lower panel: Differences of the quantities
as indicated on the plot

the one from HMNT, where for HMNT we have calculated
the leptonic contributions (up to including the NNLO cor-
rections) as described above. The two panels in Fig. 86 (up-
per panel: 0 <

√
s < 2 GeV, lower panel: 2 GeV <

√
s <

10 GeV) show Δα(s) with the 1σ error band from CMD-2
as a solid (blue) band, whereas for HMNT the mean value
for Δα(s) is given by the dotted (red) line, which can hardly
be distinguished. To highlight the differences between the
two parametrisations, Fig. 87 displays the normalised differ-
ence (ΔαCMD−2(s) − ΔαHMNT(s))/ΔαHMNT(s) as a solid
(black) line, and also shows the relative errors of CMD-2
and HMNT as dashed (blue) and red (dotted) lines, re-
spectively. As visible in Fig. 87, the error as given by the
CMD-2 parametrisation is somewhat smaller than the one
from HMNT. Both parametrisations agree fairly well, and
for most energies the differences between the parametrisa-
tions are about as large or smaller than the error bands. Close
to narrow resonances the estimated uncertainties are large,
but as discussed above, there the approximation of the effec-
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Fig. 86 Δα(s) in the time-like region as given by the parametrisa-
tion from CMD-2 (solid (blue) band) compared to the same quantity
from HMNT (dotted (red) line). Upper panel: 0 <

√
s < 2 GeV, lower

panel: 2 GeV<
√
s < 10 GeV

tive coupling α(s) breaks down and resonance contributions
should be treated differently.

6.6 Summary

Vacuum polarisation of the photon plays an important role
in many physical processes. It has to be taken into account,
e.g., in Monte Carlo generators for hadronic cross sections
or Bhabha scattering. When low-energy data are used in
dispersion integrals to predict the hadronic contributions to
muon g − 2 or Δα(q2), undressed data have to be used,
so VP has to be subtracted from measured cross sections.
The different VP contributions have been discussed, and
available VP compilations have been briefly described and
compared. Until recently only one parametrisation has been
available in the time-like region, now three routines in the
space- and time-like regions exist, from Jegerlehner, CMD-2
and HMNT, and a fourth from Burkhardt and Pietrzyk in the
space-like region. While the accuracy of the hadronic cross
section data themselves is the limiting factor in the precise
determination of g− 2 and Δα(M2

Z), the error of the VP (or
Δα(q2)) is not the limiting factor in its current applications.
With the ongoing efforts to measure σhad(s) with even better
accuracy in the whole low-energy region, further improve-
ments of the various VP parametrisations are foreseen.

Fig. 87 Solid (black) lines: Normalised difference
(ΔαCMD−2(s) − ΔαHMNT(s))/ΔαHMNT(s) in the time-like re-
gion. The dashed (blue) and dotted (red) lines indicate the relative
error for the CMD-2 and HMNT parametrisations. Upper panel:
0 <

√
s < 2 GeV, lower panel: 2 GeV<

√
s < 10 GeV

7 Summary

In this Report we have summarised the achievements of the
last years of the experimental and theoretical groups work-
ing on hadronic cross section measurements and tau physics.
In addition we have sketched the prospects in this field for
the years to come. We have emphasised the importance of
continuous and close collaboration between the experimen-
tal and theoretical groups which is crucial in the quest for
precision in hadronic physics. The platform set to simplify
this collaboration is a Working Group on Radiative Correc-
tions and Monte Carlo Generators for Low Energies (Ra-
dio MontecarLow), for the better understanding of the needs
and limitations of both experimental and theoretical commu-
nities and to facilitate the information flow between them.
This Review is a result of the Working Group.

The Report was divided into five sections covering the
luminosity measurements at low energies (up to the energy
of B factories) (Sect. 2), R measurement by energy scan
(Sect. 3), R measurement using radiative return (Sect. 4), tau
physics (Sect. 5), and the calculation of the vacuum polarisa-
tion with emphasis on the hadronic contributions (Sect. 6).
In all the sections, with the exception of Sect. 6, we gave
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an overview of the experimental results and the status of
the Monte Carlo event generators used in the experimental
analyses with emphasis on their accuracy and tests.

Concerning the work done on the topic of precision lumi-
nosity measurement (Sect. 2), a particular effort was paid to
arrive at an up-to-date estimate of the accuracy of the most
precise MC tools used by the experimentalists. Several tuned
comparisons between the predictions of independent gen-
erators were presented, considering the large-angle Bhabha
process with realistic event selection criteria and at differ-
ent c.m. energies. It turned out that the three most precise
luminosity tools, i.e. the programs BabaYaga@NLO, BH-
WIDE and MCGPJ, agree within 0.1% for the integrated
cross sections and within less than 1% for the differential
distributions. Therefore the main conclusion of the work on
tuned comparisons is that the technical precision of MC pro-
grams is well under control, the (minor) discrepancies still
observed being due to slightly different details in the treat-
ment of radiative corrections and their implementation. The
theoretical accuracy of the generators with regard to radia-
tive corrections not fully taken into account was assessed
by performing detailed comparisons between the results of
the generators and those of exact perturbative calculations.
In particular, explicit cross-checks with the predictions of
available NNLO QED calculations and with new exact re-
sults for lepton and hadron pair corrections led to the con-
clusion that the total theoretical uncertainty is at the one
per mill level for the large-angle Bhabha process at differ-
ent c.m. energies. Albeit this error estimate could be put on
firmer grounds thanks to further work in progress, it appears
to be already quite robust and sufficient for a precise deter-
mination of the luminosity.

In Sect. 3 we presented the current status of the studies
of e+e− annihilation into hadrons and muons at the energies
up to a few GeV. Accurate measurements of the ratio R, i.e.
the ratio of the cross sections of hadron and muon channels,
are crucial for the evaluation of the hadronic contribution to
vacuum polarisation and subsequently for various precision
tests of the Standard Model. Results of several experimen-
tal collaborations have been reviewed for the most impor-
tant processes with the final states μ+μ−, π+π−, π+π−π0,
π+π−2π0, π+2π−, two kaons and heavier mesons. In par-
ticular, R scans at the experiments CMD-2, SND, CLEO and
BES experiments have been discussed. Analytic expressions
for the Born level cross sections of the main processes have
been presented. First-order QED radiative corrections have
been given explicitly for the case of muon, pion and kaon
pair production. The two latter cases are computed using
scalar QED to describe interactions of pseudoscalar mesons
with photons in the final state. Matching with higher-order
QED corrections evaluated in the leading logarithmic ap-
proximation have been discussed. Good agreement between
different Monte Carlo codes for the muon channel has been

shown. The theoretical uncertainty in the description of
these processes has been evaluated. For the two main chan-
nels, e+e− → μ+μ− and e+e− → π+π−, this uncertainty
has been estimated to be of the order of 0.2%.

In Sect. 4 we have given an overview of experimental
measurements via radiative return and described the Monte
Carlo generators used in the analyses. Special emphasis has
been put on the modelling of the meson–photon interac-
tion, crucial for reaching an accuracy below 1%. Radia-
tive return has been applied successfully at the experiments
KLOE in Frascati, BaBar in Stanford and Belle in Tsuku-
ba, obtaining important results for the measurement of pre-
cise hadronic cross sections as well as in the field of hadron
spectroscopy. In all three experiments, the ISR physics pro-
gramme is still going on. New experiments like the BES-III
detector at BEPC-II in Beijing and the experiments at the
VEPP-2000 machine in Novosibirsk will use radiative re-
turn to complement their standard physics programme of
energy scanning in the regions of 2–4.6 GeV (BEPC-II)
and 1–2 GeV (VEPP-2000). The success of this programme
was possible only through close collaboration between ex-
perimental and theoretical groups. Dedicated Monte Carlo
generators (PHOKHARA, EKHARA, FEVA, FASTERD)
were developed to make the experimental analyses possi-
ble. The physics programme allowed for better modelling of
the photon–meson interaction which is crucial for a precise
determination of the pion form factor. The measurements
of the hadronic cross sections by means of radiative return
allowed one to reduce the error of the hadronic contribu-
tion to the anomalous magnetic moment of the muon and
to the running of the fine-structure constant. Ongoing and
forthcoming measurements will aim at an even better mod-
elling of the hadron–photon interaction and the inclusion of
those QED radiative corrections not yet accounted for in the
Monte Carlo generators. This ongoing physics programme
will lead to further improvements in the precision of the cal-
culation of the hadronic contribution to the anomalous mag-
netic moment of the muon and to the running of the fine-
structure constant, which in turn is crucial for tests of the
Standard Model and searches for New Physics.

In Sect. 5 we described the present status of the simula-
tion programs for the production and decay of τ leptons. The
available programs have been discussed in the context of
the required accuracy to match current high-statistics exper-
imental data. After a review of the existing programs used
in the data analysis we have emphasised the topics which
will require particular attention in the future. We have elab-
orated on the efforts which are going on at present and fo-
cused on the necessary improvements. The techniques for
fitting τ decay currents require particular attention. The ob-
served spectra and angular distributions are a convolution
of theoretical predictions with experimental effects which
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should be taken into account in the fitting procedures. Back-
ground contributions also play an important role if high pre-
cision is requested. We have also commented on the impact
of these efforts for forthcoming high-energy experiments
(like at LHC), where τ decays are used to constrain hard
processes rather than to measure properties of τ decays.

In Sect. 6 the different vacuum-polarisation (VP) contri-
butions have been discussed, and available parametrisations
have been compared. VP forms a universal part of radiative
corrections and as such is an important ingredient in Monte
Carlo programs. In addition, to evaluate the hadronic contri-
butions to the muon g − 2 and Δα(q2) via dispersion rela-
tions, one has to use the ‘undressed’ hadronic cross section,
i.e. data with the VP effects removed. Therefore the precise
knowledge of VP is required. While in the space-like re-
gion the VP is a smooth function and the parametrisations
are in excellent agreement, in the time-like region the VP
is a fast varying function and differences exist between dif-
ferent parametrisations, especially around resonances. How-
ever, the accuracy which is typically of the order of or below
a few per mill and the agreement of the more recent compi-
lations indicate that the current precision of VP is sufficient
for the envisaged applications. In the future better hadronic
cross section data will lead to further improved accuracy.
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