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A bstract

W e derive the coupling of a hypem ultiplet of N = 2 global supersym —
m etry to the D racBom-Infeld M axwell theory with Iinear N = 1 and a
second nonlinear supersymm etry. At the level of global supersym m etry,
this construction corresponds to the interaction w ith M axwell brane elds
of buk hypem ultiplets, such as the universal dilaton of type IIB strings
com pacti ed on a CakbiYau manifold. It digplays in particular the ac-
tive role of a fourform eld. Constrained N = 1 and N = 2 super elds
and the form ulation of the hypem ultiplet in its singletensor version are
used to derive the nonlinear realization, allow ing a fully o —shell descrip—
tion. Exact results w ith explicit sym m etries and supersym m etries are then
obtained. T he electric-m agnetic dual version of the theory is also derived
and the gauge structure of the interaction is exempli ed with N = 2 non-
Iinear QED of a charged hyperm ultiplet. Tts H iggs phase describes a novel
superH iggs m echanism w ithout gravity, where the goldstino is com bined
w ith half of the hypem ultiplet nto an N = 1 m assive vector m ultiplet.
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1 Introduction

Tt isnotorious that (linear) N = 2 supersym m etry, globalor local, forbids a dependence
on hypem ultiplet scalars of gauge kinetic term s. For instance, in N = 2 supergrav—
iy, the scalarm anifold is the product of a quatemionK ahler (E instein) m anifold, for
hypem ultiplet scalars (1], and a K ahler m anifold of a special type for vector m ulti-
plet scalars 2]. In globalN = 2 supersymm etry, the quatemionXK ahler m anifold of
hyperm ultiplet scalars is replaced by a R ioci- at hyperkahler space [3].

If however (at least) one of the supersym m etries is nonlinearly realized, these re-
strictions on the action are expected to change. For instance, string theory indicates
that the D iracBom-Infeld (D BI) Lagrangian describing kinetic term s of brane gauge

edsm ay interact w ith the dilaton and w ith its hyperm ultiplet partners. M oreover, if
the dilaton superm ultiplet is form ulated w ith one or two antisym m etric tensors, m ore
involved interactions dictated by the gauge sym m etries of the theory are certainly al-
lowed. An interesting problam is then to construct an interaction Lagrangian in which,
when the second supersymm etry tums nonlinear, both the DBI Lagrangian and its
necessary dilaton dependence are sin ultaneously generated. In other words, if we con—
sider a theory w ith a broken, nonlnear supersym m etry realized in a godstino m ode,
another unbroken linear supersymm etry and a D BT superM axwell system coupled to
hypem ultiplet elds, we certainly expect that the allowed Lagrangians are severely
restricted . A nalyzing these restrictions is the m ain m otivation of this paper.

In this work, we construct an action invariant under N = 2 global supersym m etry,
one of them being nonlinearly realized, nvolving the M axwell godstino m ultiplet of
the nonlinear supersymm etry coupled to a singletensor N = 2 multiplet [4,15,6], or
equivalently to a hyperm ultiplet w ith one abelian (shift) isom etry. In the absence of this
m ultiplet, the action reduces to the standard superM axwellD B I theory, derived in the
past from the sam e symm etry principle [7,18,/9]. T he coupling of the two m ultiplets is
shown to arise from a N = 2 Chem-Sinons (CS) term which, under electric-m agnetic
duality, am ounts to shifting the gauge eld strength by the antisymm etric tensor.
M oreover, under Poincare duality of the antisym m etric tensor to a pseudoscalar, the
C S coupling becom es a Stuckelberg gauging of the pseudoscalar axionic symm etry.

An In portant property of the singletensor m ultiplet is that it adm its an o —shell
(superspace) form ulation, unlke the generic hypem ultiplet that can be form ulated o —
shellonly at the cost of ntroducing in nite num ber of auxiliary elds in the context of
ham onic superspace [10]. T hus, our form alism using the singletensorN = 2multiplet
allow s to construct o —shell supersym m etric Lagrangians. By an appropriate change
of variables from the N = 2 sihgletensor multiplet, one nds an action that couples



the godstino vector multiplet (of the linear supersymmetry) to an N = 2 charged
hyperm ultiplet, describing the low -energy Iim it of a theory w ith partial spontaneous
supersymm etry breaking from N = 2 to N = 1 [11,,[12].

The vacuum of this theory exhibits an interesting novel feature: the godstino is
‘absorbed’ Into a m assive vector m ultiplet of N = 1 linear supersymm etry, leaving a
masslessN = 1 chiralmultiplet associated to atdirections ofthe scalarpotential. T he
goXdstino assam bles w ith one of the two W eyl ferm ions in the singletensorm ultiplet to
form am assive D irac spinor. A tone particularpointalong the atdirections, the vector
m ultiplet becom esm assless and the U (1) is restored. T his phenom enon is know n from
D brane dynam ics, where the U (1) word=volum e eld becom es generically m assive
due to the CS coupling. A crucial role for the invariance of the action under nonlinear
supersym m etry is played by a non-dynam ical fourform gauge potential, known again
from D ‘brane dynam ics. Hence, a globally supersym m etric com bination of H iggs and
superH iggs m echanian s, In the presence of a fourform eld, elim inates any m assless
goMdstino ferm ion related to partial supersymm etry breaking. This interesting new
m echanism can be studied in the context ofnonlinear N = 2 quantum electrodynam ics
w ith one charged hyperm ultiplet, which after a holom orphic eld rede nition and a
duality transform ation, is equivalent to our setup.

In type IIB superstrings com pacti ed to four dim ensions w ith eight residual super-
charges, the dilaton scalar (associated to the string coupling) belongs to a universalhy—
pem ultiplet, together w ith the (Neveu-Schwarz) N S{N S antisym m etric tensor and the
(Ram ond) R {R scalar and two-form . Its naturalbasis is therefore a doubletensor su—
pem u]ijp]etB having three perturbative isom etries associated to the two axionic shifts
of the antisym m etric tensors and an extra shift of the R {R scalar. These isom etrdes
form a H eisenberg algebra, w hich at the string treeJevel is enhanced to the quatemion—
Kahlerand K ahler space SU (2;1)=SU (2) U (1). Atthe levelofglobalN = 2, im posing
the H eisenberg algebra of isom etries determm nes a unique hyperkahler m anifold of di-
m ension four, depending on a single param eter, in close analogy w ith the local case of
a quatemionic space where the corresponding param eter is associated to the one-loop
correction [19]. Thism anifold isnottrivially at and should describe the rigid lim it of
the universal hyperm ultiplet.

T he plan of the paper is as follow s. In Section [2, we review the construction of the
N = 2 sin pletensorand M axwell superm ultiplets in termm sof N = 1 super edsand we
describe their interaction in a C hem-Sin ons term , aswas earlier partly done In Ref. [9].
In addition we explain how the intricate web of gauge variations in the Stuckeberg

1T his representation of N = 2 globalsupersym m etry has been only recently explicitly constructed
[L3]. See also Ref. [14]].



coupling of theM axw ell and single-tensor superm ultiplets leads to the interpretation of
one (non-propagating) com ponent of the singletensor as a fourfom eld. In Section

3, we reform ulate the superm ultiplets in chiralN = 2 superspace and then dem onstrate
how this construction can be used to describe electric-m agnetic duality in a m anifestly
N = 2 covariant way. In Section [4, we rst review the construction of the D irac—
Bom-Infeld theory from constrained N = 2 super elds describing the goldstino of one
non-linear supersym m etry and then extend it to construct its coupling to a singletensor
superm ultiplet, engineered by a CS term . W e also perform an electrom agnetic duality
to determ ine the fn agnetic’ version of the theory. W Tth the dilaton hyperm ultiplet
of type IIB superstrings in m ind, we in pose the H eisenberg algebra of perturbative
isom etries to our theory. In Section [3, we derive the coupling of the M axw ell goldstino
multiplet to a charged hypem ultiplet and m ake a detailed analysis of the vacuum

structure of N = 2 superQ ED w ith partial supersym m etry breaking. W e conclude in
Section [d and two appendices present our conventions and the resolution of a quadratic
constraint applied on a N = 2 chiral super eld.

2 The linear N = 2 M axw ell-dilaton system

Our rst obEctive is to describe, In the context of linear N = 2 supersymm etry, the
coupling of the singletensor multiplet to N = 2 superM axwell theory. Since these
two supem ultiplets adm it o —shell realizations, they can be described in superspace
w ithout reference to a particular Lagrangian. G auge transfom ations of the M axwell
multiplet use a singletensor m ultiplet, we then begin w ith the latter.

2.1 The single-tensor m ultiplet

In globalN = 1 supersymm etry, a real antisymm etric tensor eld b is described by
a chiral, spinorial super eld with 8 + 8 elds [16[1:

1 on 1 —
= — (C+ 1CH+ = ) b+ o (D =0); (21)
4 4 -
C and C°being the real scalar partners of b . The curlh = 3@Q; b is described
by the real super ed
L=D D ~-: (22)

°Thenotation m g + nr stands Hr fn bosonic and n ferm ionic eds’.



Chirality of Inplies linearity of L: DDL = DDL = 0. The linear super ed L is
nvariant under the supersym m etric gauge transform at]'orH

i— i —
! + -DDD ; - ! ~— +-DDD ; 23)
4 - 4 -

of : this is the supersymm etric extension of the invariance of h under b =

2@ - Considering bosons only, the gauge transform ation (2.3) elin inates three of
the six com ponents of b and the scalar el C °. A ccordingly, L only depends on the
Invariant curl h and on the nvariant real scalar C . The linear L describes then
4y + 4 elds. Using either orL,wewill nd two descriptions of the singletensor
multiplet of globalN = 2 supersymm etry [4,15,l4].

In the gauge-invariant description using L ,the N = 2m ultiplet is com pleted w ith a
chiralsuper eld (85 + 8 eldsin total). T he second supersym m etry transform ations
(with param eter ) are

L = pl—E(D + D );
o___ . D_ (24)
= 1 2 DL; = 1 2 DL ;

whereD and 5_ aretheusualN = 1 supersym m etry derivatives verifying fD ;E_g
2i( ) Q@ . Ifiseasily veri ed that theN = 2 supersymm etry algebra closes on L

and

W em ay try to replace L by w ith second supersym m etry transform ation =

B ,as suggested when com paring Egs. (22) and (2.4)). H owever, w ith super elds
and only,theN = 2 algebra only closes up to a gauge transform ation ([2.3). This
fact, and the unusual number 125 + 12 of elds, indicate that ( ; ) is a gauge-

xed version of the o <hellN = 2 multiplet. W e actually need another chiralN = 1
super ed Y to close the supersym m etry algebra. T he second supersym m etry variations
are P_

Y = 2 ;
= s - DDY 2i( T)eY; (2.5)

= 2p 21 %W + i@ -
O ne easily veri es that the Y {dependent termm s in Induce a gauge transform ation
(23). Hence, the Inear L. and itsvariation L donot feelY . The super eds
and Y have 16g + 16; el com ponents. G auge transform ation (2.3) elin nates 45 + 4¢
elds. To further elim inate 45 + 4 elds,a new gauge variation

1
Y ! Y 5DD 0, (26)

3 is an arbitrary realsuper eld.



with © real, is then postulated. W e will see below that this variation is actually
dictated by N = 2 supersymm etry. T here exists then a gauge in which ¥ = 0 but in
this gauge the supersym m etry algebra closes on only up to a transform ation (2.3).
T his isanalogous to the W essZum ino gauge of N = 1 supersym m etry, but in our case,
this particular gauge respects N = 1 supersymm etry and gauge symm etry (2.3).

Two ram arks should be m ade at this point. Firstly, the super ed Y willplay an
In portant role In the construction of the D iracB om-Tnfeld interaction w ith non-linear
N = 2 supersymm etry. Aswe w ill see Iater OI‘H, it includes a four-index antisym m etric
tensor eld in itshighest com ponent. Secondly, a constant ( {independent) background

valueh ibreaksthe second supersym m etry only, = pi—zh i +::: Itisanatural
source of partial supersym m etry breaking in the singletensor m ultiplet. Notice that
the condition h i= 0 isequivalenttoD (D D )= 0.

An nvariant kinetic action for the gauge-invariant single-tensor m ultjplet involves
an arbitrary function solution of the threedin ensional Laplace equation (for the vari-

ablesL, and ) [I5]

_ _ @%H Q°H
L= & & H L; ;) + 2 — = 0: 2.7
ST ( ) oL’ e (2.7)

In the dual hypem ultiplet form ulation the Laplace equation is replaced by a M onge-
Am pere equation. W ew ill often insist on theories w ith axionic shift sym m etry = ic
(c real), dual to a doubletensor theory. In this case, H isa function of L, and +

0 that the general solution of Laplace equation is
Z

Legr= & & H(V)+ hrs; V=L+p=( + ); (2.8)

w ith an arbitrary analytic function H (V).

2.2 TheM axwellm ultiplet, Fayet-Tliopoulos term s

Take two real vector super eldsV,; and V,. Variations

;h i p_h 1
Vl = -p_é D + D VZ; sz 21 D + D Vl (2.9)

provide a representation of N = 2 supersymmetry with 165 + 16 elds. Wemay
reduce the supem ultiplet by in posing on V; and V, constraints consistent w ith the
second supersym m etry variations: for instance, the single-tensor m ultiplet is obtained

4 See Subsection [2.4.



by requiringV; = L and V, = + . Another option is to In pose a gauge invariance:

wemay In pose that the theory is invariant und
vayVi= 4 vy Vo= ot i (2.10)
where .and . form a sihgle-tensorm ultiplet,

= . DD .= 0; D .= 0; (211)

w ith transform ations (2.4). D e ning the gauge nvariant super e]dsH

W = iDDD V,; W_ = iDDD _V,;
- _ (212)
X = iDDVy; X = 3DDVy;
the variations (2.9) i pbﬂ
P_ . — P
X = 21 W ; X = 21 W 7
P_ -
W= 2i3 DX +i( 7)@X ; (213)
_ P . _
W = 2ii"DDX i )@X

— [ -

W hile (V1;V;) describes the N = 2 supersym m etric extension of the gauge potential
A , (W ;X )isthemultiplet of the gauge curvature ¥ = 2@, A ;[17].

TheN = 2 gauge-nvariant Lagrangian depends on the derivatives of a holom orphic
prepotential B (X ):

Lyax: = 3 & FPXWW <F%X)DDX + cx:
7 7 h i
= 1 @ FOX W W +emi+t & d FOUXOX 4+ F X)X + @ (i)
(2.14)

In the construction of the M axwelkm ultiplet in term s of X and W, one expects a
triplet of Fayet-Tliopoulos tem s,
Z Z Z
(1+ia) & X %(1 ia) & X+, d&& & w; (215)

Lpg.=

NI

SFor clarity, we use the Hllow ing convention for eld variations: refers to the second (N = 2)
supersym m etry variations of the super elds and com ponent elds; y (1) Indicates the M axwellgauge
variations; appears for gauge variations of super eldsor eld com ponents related (by supersymm e-
try) to b = 2@, 1-

R em em ber that w ith this (standard) convemjon,w_7 ism inus the com plex conjigate of W

"There is a phase choice in the de nition of X : a phase rotation of X can be absorbed in a phase
choice of



with realparam eters 1, , and a. T hey m ay generate background values of the auxil-
jary com ponents fx and d, of X and V, which in generalbreak both supersym m etries:

x =31 i+ :::; W= hfy, i+ ::: (2.16)
In term s 0ofV; and V, however, the relation X = %ﬁ’\/l In plies that In fy is the curl
of a threedndex antisym m etric tensor (see Subsection [2.4) and that its expectation
value is tumed into an integration constant of the tensor eld equation [18,[19]. Asa
consequence,
Z Z Z
(1+da) & X (1 da) & X =, & d WV + dervative

NG
IS

and the FayetIliopoulos Lagrangian becom es
Z

Leg.= d° & [WVi+ Vo) (2.17)

w ith two real param eters only.

The M axwell multiplet with super eds (X ;W ) and the sihgletensor multiplet
(Y; ; )have a sinple Interpretation in tem s of chiral super edson N = 2 super-
space. W ew illuse this form alisn to construct their interacting Lagrangians In Section
3.

2.3 The Chern-Sim ons interaction

WihaMaxwell edF = 2@ A ;(InW )andan antisymmetric tensorb (in
or L), onem ay expect the presence ofa b” F interaction

b F =2 A Q@b + derivative:

This equality suggests that its N = 2 supersymm etric extension also exists in two
form s: either as an integral over chiral superspace of an expression depending on

W ,X, andY¥ ,orasa realexpression using L, + 7\/ 1 and Vs,.

In the “=al’ form ulation, the N = 2 Chem-Sin ons term J@

Z _h i
Les= g & & LVe+ (+ W ; (2.18)

with a real coupling constant g. Tt is Invariant (up to a derivative) under the gauge
transform ations (2.10) ofV; and V, with L and  left inert. N otice that the introduction

8T he din ensions in m ass unit of our super edsareas Pllows: Vy;V, :0 ,X ;Y :1,W ; :3=2,
;L :2. The coupling constant g is then dim ensionless.



of Fayet-liopoulos termm s for V; and V, corresponds regpectively to the shifts + o
+  ;=gandL ! L  ,=g in the Chem-Sin ons tem .
T he chiral’ version uses the spinorial prepotential  instead of L . Tuming expres—
sion (Z.18) into a chiral integraland using X = DD V; leads to
Z h i 2 n ;i
Les, =g o W +=-X +qg d —_w—+§x ; (2.19)

N

which di ers from L.g by a derivative. T he chiral version of the Chem-Sin ons tem
Lcs; transfom s as a derdvative under the gauge variation (23) of . Its nvariance
under constant shift symmetry of In  follows from X = %D D V;. It does not depend

ony.

T he consistent Lagrangian fortheM axw ell{ single-tensor system w ith C hem-Sin ons
Interaction is then

Lgr + Liw ax: + Lcs or Lgr + Ly ax: + Les; (2.20)

The rsttwo contribbutions include the kinetic term s and self-nteractions of the m ulti-
plets while the third describes how they interact. Each of the three term s is separately
N = 2 supersymm etric.

UsingaN = 1 duality, a linearm ultiplet can be transform ed into a chiral super eld
w ith constant shift sym m etry and the opposite transform ation of course exists. H ence,
perform ing both transform ations, a single-tensorm ultiplet Lagrangian (L ; ) w ith con—
stant shift symm etry of the chiral hasa doubledual’ second version. Suppose that
we start with a Lagrangian where M axwell gauge symm etry acts as a Stuckeberg

gauging of the singletensor m ultiplet
Z

L= & & BH@L gwu; + gV ,): (221)

The shift symm etry of ITn = has been gauged and L is lnvariant under gauge transfor-
m ations (2.10) com bined w ith

vb =9 7 vy =9 ci (222)

and under N = 2 supersymm etry ifH veri es Laplace equation (2.7). Iffwe perform a
double dualization (L; + )! ( "+ ~;T),we obtah the dual theory
Z Z
~ 2 2~ ~, 2 1
= & d& H@;"+ D+g & ~wW + 57X +emy (223)

Strictly speaking, the coupling constant g in this theory has din ension (energy)?. There is an
Irrelevant energy scale nvolved in the duality transform ation of a din ension two L Into a din ension
two chiralsuper eld. Hence, g in Eq. (2.23) is again dim ensionless.



where H™ is the result of the double Legendre transform ation
H(y;x)= H (x;y) =X yy: (224)

T he dual theory is then the sum of the ungauged Lagrangian (2.7) and of the Chem-
Sin ons coupling (2.18). This singletensor { single—+ensor duality is actually N = 2
covariant: ifH solves Laplace equation, so does H', and every interm ediate step of the
duality transform ation can be form ulated w ith explicit N = 2 o —shell supersym m etry.

W e have then found two classes of couplings of M axw ell theory to the singletensor
multiplet. Firstly, using the supersymm etric extension of the b~ F coupling, as in
Egs. (2.20). Secondly, using a Stuckelberg gauging (2.21]) of the singletensor kinetic
term s. The rst version only is directly appropriate to perform an electric-m agnetic
duality transform ation. H owever, since the second version can always be tumed into
the st one by a singletensor { single-tensor duality, electric-m agnetic duality of the
second version requires this prelin nary step: both theordies have the sam e fn agnetic’
dual.

24 The signi cance ofV,,X and Y

In the description of the N = 2 M axwellmultiplet n tetm s of two N = 1 real super—
elds, V, describes as usual the gauge potential A, a gaugino and a real auxiliary
ed d, (in W ess7Zum ino gauge). W e wish to clarify the signi cance and the eld

content of the super eds V; and X = %ﬁvl , as well as the related content of the

chiral super ed Y usad in the description in term s of the spinorial potential of the
singletensormultiplet (Y; ; ).

The vector super eld V; has the N = 2 M axwell gauge variation yq)Vi = -,

with a real linear param eter super eld .. In analogy with the W essZum ino gauge
comm only applied to V,, there exists then a gauge where
Vi(x; ;) B Lo = Lo L — +1_@(225)
X; ;)= - X = X — — —
1 \i 5 > 19—2 X 19—2 X >
T his gauge leaves a residual Invariance acting on the vector ed v; only:
1
U(l)V]_ = 5 @ . (2.26)
T his indicates that the vector v; is actually a three-index antisym m etric tensor,
1
v, = = A ; (2.27)
6
w ith M axw ell gauge invariance
v = 3¢ r (2.28)



By construction, X = D V; is gauge invariant. Tn chiral variables,

1
2

X (y; )=x+ 2 @@+ 1@ v, ): (2.29)
Hence,whileRefy = d;,
1
:ﬁ'ﬂfX:@Vl:Z F H F :4@[A ] (2.30)

is the gauge-nvariant curlof A . Tt follow s that the eld content (in W essZum ino
gauge) of V; is the second gaugino x , the com plex scalar of the M axwellm ultiplet x,
a real auxiliary el d; and the threeform ed A, which corresponds to a single,
non-propagating com ponent eld. T he gauge-nvariant chiralX includes the four-fom

curvature F

At the Lagrangian level, the im plication of relations (2.30) is as follow s. Suppose
that we com pare two theories w ith the sam e Lagrangian L (u) but eitherwith u= ,
arealscalar,orwithu= @ V ,asin Eq. (230). Since L ( ) doesnotdepend on @ ,

the scalar isauxiliary. The el equations for both theories are
@ @
Eﬁ()=0; @ —L @) =0

T he second case allow s a supplem entary integration constant k related to the possible
addition of a “opological” term proportionalto @ V. to the Lagrangian [18,119]:

In the rst case, the sam e Integration constant appears if one considers the follow ing
m odi ed theory and eld equation:

@
L() k ! —L( )= k:
@
Retuming to our superM axwell case, the relation is = Im £y and the m odi cation
of the Lagrangian is then
4
ik 2
kIn fx = > d® X + cxc: (231)

T his is the third FayetTliopoulos term , w hich becom es a *hidden param eter’ [18]when
using V; instead of X .

Consider nally the singletensormultiplet (Y; ; ) and the supersymm etric ex—
tension of the antisym m etrictensor gauge symm etry, as given in Egs. (2.3) and (2.4):
1 i
Y= -DD Y% =-DDD ; = O:
2 4

10



U sing expansion (2.29), there is a gauge In which Y reduces sin ply to
Y= 1 In £ (2.32)
and one should dentify In fy as a four-ndex antisym m etric tensor eld,
n fy = = C (233)
Y = 24 ’
w ith residual gauge invariance
C = 4@ i (2.34)

T he antisym m etric tensorC describes a single eld com ponentw hich can be gauged

away using . Applying this extended W essZum ino gauge to the N = 2 multiplet
(Y; ; ),the edsdescribed by these N = 1 super elds are asgiven in the ollow Ing
table.
N = 1 super ed | Field | Gauge Invariance | Number of elds
b b = 2@ ] 6g 38 = 3p
C g
4p
23
f 25 (auxiliary)
4p
Y C C = 4@ il 1s 1z = 0

T he propagating bosonic edsb ,C and (four bosonic degrees of freedom ) have
kinetic term s de ned by Lagrangian L sy, Eq. (2.1).

3 ChiralN = 2 superspace

M any results of the previous section can be reform ulated in temm s of chiral super elds
on N = 2 superspace. W e now tum to a discussion of this fram ework, including an
explicitly N = 2 covariant form ulation of electric-m agnetic duality.

3.1 ChiralN = 2 super elds

A chiralsuper ed on N = 2 superspace can be written as a function ofy ; ;7 :

D 7 = §_z =0 ! Z =7 (y; i) (3.1)

11



withy = x i @ - andB_y = g_y = 0. Its second supersymm etry
variations are B

Z2 =1Q+7Q0)2; (32)
w ith supercharge di erential operators Q° and 5 which we do not need to explicitly
write. Tt includes four N = 1 chiral super elds a;ld 165 + 16y com ponent elds and

wem ay use the expansions

(3.3)

where ~ and ¥ are the G rasan ann coordinates and the superderivatives associated
w ith the second supersym m etry. T he second supersym m etry variations (3.2) are easily
obtained by analogy w ith the N 1 chiral superm ultiplet:

P_
7z = 2 1,
P vooo— i P53 ——= P _
lo= 2F + 14 T)yezl= &, - DDz 21 T)e7Z;
P_
F = 21@ ! T ;
P— _
z = 2 21:DD !+ i@!
(34)
W e inm ediately observe that the second expansion (3.3) leads to the second supersym —
m etry variations (2.9) of a sihgletensormultiplet (Y = Z2; = !; = ;). Sinikrly,
the expansion
N p— ot
W (y; i7)=X(y; )+ 21°W (y; ) ZDDX(y; )i (3.5)

which isobtained by mposing , = 0 in expansion (33), leads to the M axw ell super—
multiplet (ZI13) 20). The Bianchidentity D W =D W ~ isrequired by , = O.
TheN = 2M axwell Lagrangian (2.14) rew rites then as an integral over chiral N = 2

superspace, 7 7
1
Luac=5 & &7F @ )+ coy (36)
and the Fayet—Tliopoulos term s (2.17) can be w ritten 211]
Z 7 Z h i
2 - 1 2 2~ o~ p_- ~
Leg.= d° & [WVi+ ,Vy]= 7 @ d " 21 Y, W + cx: (3.7)

Consdering the unconstrained chiral super ed (3.3) with 165 + 16; elds, the
reduction to the 8z + 8 com ponents of the singletensorm ultiplet is done by in posing
gauge nvariance (2.3) and (24). In tetms of N = 2 chiral super elds, this gauge
symm etry is sim ply

Y= W; (3.8)
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whereW isaM axwellN = 2 super ed param eter (3.9). In term sofN = 1 super eds,
this is

Yy = ¥; = ® ; = 0; (39)
as in Egs. (Z3) and (2.d). Hence, a single-tensor super eld Y is a chiral super ed Z
w ith the second expansion (33) and w ith gauge symm etry (3.8).

T he chiral version of the C hem-Sin ons Interaction (2.19) can be easily w ritten on
N = 2 superspace. Using Y w ith gauge Invariance (3.8) and W to respectively describe
the singletensor and the M axwellm ultiplets. T hen
Z Z
Les, = ig d ETYW + ce: (3.10)

It is gauge—=nvariant since for any pair of M axwell super elds
Z Z
i & &ETWW + cc:= derivative: (311)

N otice that the lowest com ponent super eld Y of Y does not contribute to the eld
equations derived from Lcg,; : it only contributes to this Lagrangian w ith a derivative.

Finally, a second m ethod to obtain an interactive Lagrangian for the M axwell{
singletensor system is then obvious. Firstly, a generic N = 2 chiral super ed Z can
always be written as

Z =W + 29Y: (312)

It is invariant under the single-tensor gauge vardation (3.8) if one also postulates that
W = 2gW ; (313)

which amounts to a N = 2 Stuckelberg gauging of the sym m etry of the antisym m etric
tensor. W ith thisdecom position, F andb only appearin the & com ponent of Z
through the gauge-nvariant com bination F gb . The chiral integral
1Z Z
L = 5 d° dF~F W + 29Y )+ cri+ Lger (3.14)

provdes a N = 2 Invariant Lagrangian describing 16z + 16y (o —shell) interacting
elds. There exists a gauge in which W = 0, in which case theory (3.14) describes a
m assive chiralN = 2 super eld.

T heory (3.14) isactually related to the C hem-Sin ons Lagrangian (2.20) by electric—
m agnetic duality, as w illbe shown below .
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3.2 Electric-m agnetic duality

The description In chiralN = 2 supergpace of theM axwellm ultiplet allow s to derive a
N = 2 covariant version of electric agnetic duality. The M axwell Lagrangian (2.14)

supplem ented by the C hem-Sin ons coupling (2.19) can be w ritten
Z 7

1
Leeewic= & &~ SE0 )+ dgYi 4+ cry (3.15)

adding Egs. (3.d) and (3.10). Replace then W by an unconstrained chiral super ed
A (with N = 1 super elds f, ™ and A) and introduce a new M axwellm ultiplet i
With N = 1 super eds € and W ). Using

1 1
¥=2DDW ; % = -DDD ©&;
2 4
we have
Z z z h 5
i PR Z+co: = & L1T€+ R+ oo
z h B 1 Gae)
= 2 d ¢+ H+ O » D )

Consider now the Lagrangian
Z Z

2 2~ T 2 ia
L= & d 5F(Z)+Ezaﬁ +29Y) + cr: (317)

Invariance under the gauge transform ation of the singletensor super ed, Eq. (3.9),
requires a com pensating gauge variation of # , as n Eq. (3.13). E lin nating ® leads

back to theory (3.19) w ith 7 = W . Thiscan be seen in two ways. F irstly, the condition
Z Z

i @? &% 7 + cr:= dervative

ladsto Z = W ,aN = 2 M axwell super eld, up to a badckground value. Secondly,
ushg Eqgs. (3.148), we see that &, in poses the B ianchi dentity on * whilke ¥ cancels ~
up to an In aginary constant W ew ill com e back to the (in portant) role of a nonzero
badckground value in the next section. For the m om ent we disregard it.

On theotherhand,wemayprefertoe]injnateZA,usjngji:s eld equation
FOUZ )= v ; v W + 29Y ; (3.18)

which corresponds to a Legendre transform ation exchanging variables 7 andV.De n-
ing
BW)=F (Z)+ VZ; (319)

19A n unconstrained ¥ would Hrbid this constant.
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we have

N

eOwv)= i7" ; FOUZ )= v ; v )Fr %7 )= 1: (320)

T he dual (Legendre-transform ed) theory is then
7 Z

d®  ETEW + 2gY )+ cc: (321)

N

]§m agnetic —

or,expressed MmN =1 superspace
Z h
Bragnese = 7 & PBO0€+29Y)F 2ig ) & 2ig )
_ i
10 ~ . 0 .
SEEPCE + 29Y )DD (€ + 2gY ) 2igFE’(€ + 29Y) + cx:
(322)

W e then conclide that the presence of the Chem-Sim ons term in the electric theory
induces a Stuckelberg gauging in the dualm agnetic theory.

A s explained in Ref. [21]], the situation changes when Fayet-Tliopoulos term s (3.7)
are present In the electric theory. In the m agnetic theory coupled to the singletensor
multiplet, with Lagrangian (3.27), the gauging W = 2gW forbids FayetTliopoulos
term s for the m agnetic M axwell super eds ¥, and ¥,. Spontaneous supersym m etry
breaking by FayetTliopoulos term s in the electric theory nds then a di erent origin
in the m agnetic dual.

For our needs, we only consider the Fayet-Iliopoulos term induced by Vi, ie.we

add Z Z Z
4 1 2 2 mom
Ler= 1 da = Z 1 d d W + cc: (323)
t0 L etectric s Eg. (3.19). In tum, this am ounts to add
7 Z
1 2 2o P
Zl . d d Z + cc:

to theory (3.17). But, in contrast to expression (3.23), thism odi cation isnot invariant
under the second supersymm etry: according to the rst Eq. (34), its  variation
p Z

— d? ' + cxc:
4

N

isnota derjyatjye TorestoreN = 2 supersymm etry, wem ustdeform the variation
of W 2ig  into

1
deromea ® 219 =Pz 4 & 219 ); (324)

1T he free, canonically-nom alized theory correspondsto F (W )= W ? and (V)= 1V?.
2Tt would be a derivative if ! would be replaced by the M axwellsuper ed W ,as in Eq. (3.23).
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the second term being the usual, undeform ed, variations (2.13) and (2.9). Hence, the
m agnetic theory has a godstino ferm ion and linear N = 2 supersymm etry partially
breaks to N = 1, as a consequence of the electric FayetTIliopoulos temm . Concretely,
the m agnetic theory is now

Z Z
]?m agnetic = % d2 dZNEe Tﬁ + ZgY + El 1NN + ce:
Z Z h | 5
= 2 & I E W +2gY + 1R + 297 4+ cx:
Z Z 7

I PP W +29Y + 4, & PO¥+ 297 +cx:

-

(3.25)
One easily checks that N = 2 supersymm etry holds, using the deform ed variations
(3.24).

4 Nonlinear N = 2 supersymm etry and the DBI
action

In the previous sections, w e have developed various agpects of the coupling ofa M axwell
multiplet to a singletensor multiplet in linear N = 2 supersymm etry. W ith these
tools, we can now address ourm ain sub fct: show how a D iracBom-Infeld Lagrangian
(DBI) coupled to the single-tensorm ultiplet arises from non-linearization of the second
supersym m etry.

Tthasbeen observed that theD B ILagrangian w ith nonlinear second supersym m etry
can be derived by solving a constraint nvariant under N = 2 supersymm etry in posed
on the superM axwell theory [7,18]. W e start with a sum m ary of this result, follow ing
m ostly Rocek and T seytlin (8], and we then generalize the m ethod to incorporate the

elds of the singletensor m ultiplet.

41 TheN = 2 superM axwellD BT theory

The constraint mposed on the N = 2M axwell chiral super ed W is [8@

2 ~~ 1~~2
WEoSTW o= oW = 0: (41)

It in poses a relation between the superM axwell Lagrangian super eld W ? and the
Fayet—Tliopoulos ‘super eld’ "W ,Eq.[B23). Therealscale param eter hasdin ension

135ee also Ref. [22]and very recently R ef. [23]1n the context of N = 1 supersym m etry.
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(energy) 2. In tem s of N = 1 super elds, the constraint is equivalent to
1

X?=0; XW = 0; W W 5XDDx:—x: (42)
T he third equality leads to
2W W
£+ DDX
which, shceW W W = 0, Inplies the rst two conditions. Solving the third con—

straint am ounts to express X as a function of W W [/[3. The DBI theory is then
obtained using as Lagrangian the Fayet-TIliopoulos term (3.23) properly nom alized:

1 ° 1 ! S
Lopr= o~ d X + o= o 1 det( +2 2F ) + ::: (44)

T he constraints (4.1) and (4.2) are not invariant under the second linear supersym m e—
try, w ith variations . However, one easily veri es that the three constraints (£.2) are

Invariant under the deform ed, nonlinear variation

p- 1 1 — . _
deform eaW = 212— +Zl DD X + i ) @ X (4.5)

with X unchanged. The defom ation preserves the N = 2 supersymm etry algebra.
It indicates that the gaugino spinor n W = i + :::transform s Inhom ogeneously,
= p1_7 + :::, Ike a godstino for the breaking of the second supersym m etry.

In other words, at the levelofthe N = 2 chiral super ed W ,
1. . gy . _ —
deformedw = - +1 Q0+ Q W =1 QO+ Q@ W 2—

T he deform ed second supersym m etry variations . o @Cton W as the usual varia—
tions act on the shifted super ed W zi ~~. In fact, this super eld transform s lke
achiralN = 2 super ed 33)with Z = X ,! = W verifying the Bianchi dentity
andwith , = i= .The atterbackground value of ; may be viewed as the source

of the partial breaking of linear supersym m etry.

Hence, the scale param eter introduced in the nonlinear constraint [4.1]) appears
as the scale param eter of the D B I Lagrangian and also as the order param eter of partial
supersym m etry breaking. T he Fayet-Tliopoulos temm (£.4) has In principle an arbitrary
coe cient 1=4,as Eq. (2I7). W ehave chosen ;| = ! to canonically nom alize

gauge kinetic temm s.

The DB I Lagrangian is nvariant under electric-m agnetic dua]jty In ourN = 2
case, the Invariance is easily established In the Janguage of N = 2 superspace. W e rst

14See A ppendix B .
1SFor instance, in the context of D 3-branes of IIB superstrings, see Ref. [24]. O ur procedure is
nspired by Ref. [8].
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include the constraint asa eld equation of the Lagrangian:
7 7 n , #
2 2~ 1 ~~ 1 ~r~

The eld equation ofthe N = 2 super ed enforces ([4]). W e then Introduce two
unconstrained N = 2 chiral super edsU and and them odi ed Lagrangian
Z Z
2 2~ 1o 1, 1 1.
4 4 2 2

Since the Lagrangem ultiplier inposesU = W ="~ the equivalence w ith &.4) is
m anifest. Butwem ay also elin lnateW which only appears linearly in the last version
of the theory. T he result is

where  isaMaxwellN = 2 super ed dualtoW and an arbitrary real constant.
Asin Subsection[32,N = 2 supersym m etry of the theory w ith a Fayet—Tliopoulos term

requires a nonlinear deform ation of the  variation of ® : % 1 1 i~ shoud
bea good’N = 2 chiral super ed. Replacing in the Lagrangian and taking = 0
leads to
Z Z ) . .
Lpgr= d° a2~ }U2+ 2 2 2 4 ocx
4 2 2 4

Finally, elin lnating U gives the m agnetic dual
Z Z " . ) l #
2 2~ 1 e 1 e
Lpgr= d GRS > + 4—v§ + cxe: (4.7)

One easily veri es that the resulting theory has the sam e expression as the initial
‘electric’ theory (44). The Lagrange m ultiplier ! in poses constraint @) to i ,
which reduces to Eq. (£3) applied to €. The Lagrangian is then given by the
Fayet—Tliopoulos term for this super eld.

4.2 Coupling the DBTI theory to a single-tensor m ultiplet:
a super-H iggs m echanism w ithout gravity

TheN = 2 superM axwellD B Itheory isgiven by a Fayet_Tliopoulos term fora M axwell
super ed subm itted to the quadratic constraint (4.]), which also provides the source
of partial supersymm etry breaking. The second supersymm etry is deform ed by the
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constraint: it is W Zi“ which transform s as a reqular N = 2 chiral super ed.
Instead of expression (3.10), we are thus led to consider the follow ing C hem-Sin ons
Interaction w ith the singletensorm ultjplet:
7 7
L _ 2 2~ 1 ~~ .
CSdef: = 9 d asmYy w el + CL:
7 (4.8)

= g & X+ W =Y + cr:+ derivative:

Thenew temm nduced by thedeformm ation of W  isproportionalto the fourform eld
described by the chiral super eld Y , as explained in Subsection [2.4 [see Eq. (2.33)1.
Thism odi ed Chem-Sin ons interaction, invariant under the deform ed second super—
symm etry variations, m ay be sim ply added to theM axwellD B I theory (4.d). W e then
consider the Lagrangian

7 7 " .

9 o . 1 1 1
Lpgr = d d Y W 2— Z 1 W + W 2— + CT:;

(4.9)
for the constrained M axwell and singletensor m ultiplets, keeping the Fayet—TIliopoulos
coe cient ; arbitrary. For a coherent theory w ith a propagating single-tensor m ulti-
plt, a kinetic Lagrangian Lgr [Eq. (2.1)] should also be added. Since
Z Z Z

1
d? d?~ gYW v TTW 4+crci= & g W+ g

1
X 2 1 X  +cre+ derivs;
we see that the Fayet-Tliopoulos term is equivalent to a constant real shift of which,
according to variations (2.3), partially breaks supersym m etry. W ew illchoose to expand

around h i= 0and keep 6 0.
Again, the constraint (4.1]) im posed by the Lagrange m ultiplier can be solved to
express X asa function of W W :X =X W W ). The result is [/]

— WWWW
XWW)= WW DD S
1+ A+ 1+2°A+ “B?

i (4.10)

where A and B arede ned In Appendix B .The D BT Lagrangian coupled to the single—
tensor m ultiplet reads then
Z .
2 1 g
LDBI= d Z(Zg l)X (WW )+ g W Z_Y + Ccec:+ LST: (4.11)
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T he bosonic Lagrangian depends on a single auxiliary e ,db InW  orv,:

q
Lpsrmos: = 7= (2gRe 1)1 8 2d det( +2 2F ) 2Ccq,

+g s F F b F + =C + LigT smos:t
(4.12)
Therealscalar el C is the lowest com ponent of the linear super eld L . Contrary to
h i, its background value is allowed by N = 2 supersymm etry. H owever, a non-zero
hC i would Induce a non—zero hd,1 which would spontaneously break the resdualN = 1
linear supersymm etry. T his is visible In the bosonic action which, after elim nation of
S

=
q 3 gC det( + 2 2 F ). 413)
2ibos: (2gRe R+ 2g2c2’
becom es
1 a 2g°C ? 4 5
Lpsimes: = 3 (2gRe 1) 1 l+m det( +2 2 F )
+g ;I F F b F + C + List pos:
(414)
First of all, as expected, the theory includes a DB I Lagrangian for the M axwell eld
strength F , with scale . W ith the Chem-Sin ons coupling to the single-tensor
multiplet, the DBI term acquiresa eld-dependent coe cient,
1P d —
—  (2gRe 1)+ 2g°C*? det( +2 2 F ): (415)

8

It also ncludes a F © F temm which respects the axionic shift symmetry of In , a

b”* F coupling Induced by (linear) N = 2 supersymm etry and a “opological’ C, tem

Induced by the nonlinear deform ation. T hese temm s are strongly rem iniscent of those
found when coupling a D brane Lagrangian to IIB supergravity. T he contribbution of
the fourfom can be elim inated by a gauge choice of the single-tensor sym m etry (2.34).
W e have how ever Insisted on kesping o —<hell (deform ed) N = 2 supersym m etry, hence
the presence of this term .

T he theory also includes a sem positive scalar potemja

"S #
29R 2g2C 2
V(ECRe )= 22 1 4, g 1 (4.16)
8 (2gRe 1)?

16 Since X (W W )j-o is a function of farm jon bilinears, the auxiliary £ does not contribute to the
bosonic Lagrangian and does not include any auxiliary eld.
"W e only consider 2gRe 1 > 0, in order to have well-de ned positive gauge kinetic term s.
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which vanishes only ifC is zero T he scalar potential determ ines then Ci= 0 but

leaves Re arbitrary. Since
. D E
i 1=2
d,i= g2— (2gRe D+ 2gZC2 ;

the vacuum line lCi= 0 is com patdble w ith lnear N = 1 and deform ed second super—
symm etry. W hile isclearly m assless, C hasa m ass temm

1 2

“MZC?= ° c?:

2 4 (2Re 1)
The sam em ass isacquired by the U (1) gauge eld coupled to the antisym m etric tensor
b ,and by the godstino (theU (1) gaugino in W ) that form sa D irac spinor w ith the
ferm ion of the Inear multiplet . In other words, the Chem-Sin ons coupling W
pairs the M axwell goldstino w ith the linear m ultiplet to form a m assive vector, while

the chiralmultiplet rem ainsm assless w ith no superpotential.

AthCi= MRRe i= 0,gauge kinetic term s are canonically nom alized if | = L,
TheM axwellD B I theory (4.4) is of course recovered w hen the C hem-Sin ons interaction
decouples with g = 0. Notice nally that the kinetic term s L gt of the singletensor
multiplet are given by Eq. (2.1), as with linear N = 2 supersymm etry. Since the
nonlinear deform ation of the second supersymm etry doesnota ect L or even if
Re i6 0, the function H rem ains com pletely arbitrary.

T he phenom enon described above provides a rst Instance of a superH iggs m ech—
anism without gravity: the nonlinear goldstino multiplet is ‘absorbed’ by the linear
multiplet to form a m assive vector N = 1 super edd. Onemay wonder how this can
happen w ithout gravity ; nom ally one expects that the goldstino can be absorbed only
by the gravitino in localsupersymm etry. T he reason ofthisnovelm echanian isthatthe
goMdstino sits in the sam e m ultiplet of the linear supersym m etry asa gauge eld which
has a Chem-Sin ons Interaction w ith the tensor m ultiplet. T his w ill becom e clearer in
Section[d, wherewew illshow by a change of variables that this coupling is equivalent to
an ordinary gauge interaction w ith a charged hyperm ultiplet, providing non derivative
gauge couplings to the godstino. A ctually, this particular superH iggsm echanism isan
explicit realization of a phenom enon known in string theory where the U (1) eld ofthe
D brane world-volum e becom es in generalm assive due to a C hem-Sin ons interaction
w ith the R {R antisym m etric tensor of a bulk hypem u]ijp]et

W e have chosen a description in term s of the singletensor m ultiplet because it
adm itsan o -shell form ulation welladapted to ourproblem . O urD B ILagrangian (4.9),

®1 ith respect to Re , the potential is stationary, ze=— = 0,only ifC = 0. Alllbcalm inina are
then characterized by C = 0 and Re arbitrary and are then (supersymm etric) globalm inin a.
T his can be avoided in the ordentibX case: the N = 2 buk supem ultiplets are truncated by the

orientifold projction.
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supplem ented w ith kinetic term s Lt , adm its how ever several duality transform ations.
Firstly, since it only depends on W , we may perform an electric-m agnetic duality
transform ation, as described in Subsection [£.4. Then, for any choice of Lgr , we can
transform the linear N = 1 super ed L into a chiral °. The resulting theory is a
hypem ultiplet form ulation w ith super eds ( ; % and N = 2 supersymm etry realized
only on—shell. A salready explained in Subsection[2.3, theb* F interaction is replaced by
a Stuckeberg gauging of the axionic shift symm etry of the new chiral °: the Kahlr
potential of the hyperm ultiplkt form ulation is a function of °+ gV,. Explicit
form ulae are given In the next subsection and in Section [ we w illuse thism echanisn

In the case of nonlinear N = 2 QED . Finally, if kinetic term s L4t also respect the
shift symm etry of In  , the chiral can be tumed into a second linear super ed L °,
lading to two form ulations which are also brie y described below .

4.3 Hyperm ultiplet, double-tensor and single-tensor
dual form ulations

A s already m entioned, using the singletensor m ultiplet is jasti ed by the existence
ofan o hellN = 2 formulation. The hypem ultiplet form ulation, with two N = 1
chiralsuper elds, ishoweverm ore fam iliar and the rst purpose of this subsaction is to
translate our results into this form alism . In the D B I theory (4.11]), the linear super ed
L only appears in
Z Z
Ler+g & W +cci= & & HL; ; )+ gLV , + derivative:

T hese contributions are not Invariant under  variations: the nonlinear deform ation
actson W and on V,. Nevertheless, the linear super eld can be transform ed into a
new chiralsuper ed °. The resulting ‘hypem ultiplet orm ulation’ has Lagrangian
Z
Lps1hyper: = & & K O+ - gVa; i
Z (417)
+ & 2(g DX W W) 2Y +cx:

The K ahler potential is given by the Legendre transform ation

K(% 5 ;)=HU; ;) Ul °+ ) (4.18)

—H@U; ; )= + : (4.19)
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In the singletensor formulation, N = 2 supersymm etry im plies that H solves Laplace
equation. A s a result of the Legendre transform ation, the determ inant of K is constant
and them etric is hyperkahler [5]. Tt should be noted that the Legendre transform ation
de nes the new auxiliary scalar f o of ?according to

f: (4.20)

Hence, the hyperm ultiplet form ulation has the sam e num ber of independent auxiliary
elds as the singletensor version: d, and f .

The second supersymm etry variation of °is also de ned by transfom ation
(4.19): in the hypem ultiplet form ulation, N = 2 is realized on-shell only, using the
Lagrangian function. The nonlinear deform ation of variations acts on V,. Since

W = 4DDD V;,Eq. {43) indicates that
i — —  P- _
VZ: pz—( )+2l( D + D)\a:

The -dependenttemm in the variation Ofthf K ahler potentialterm In Lp g 1;nyper: 1S
then the sam e asthe -dependentpartin g d? W + cx,which is com pensated
by the variation of the fourform eld. This can again be shown using Egs. (4.18) and
(4.19). This hyperm ultiplet form ulation will be used in Section [3, on the exam ple of
nonlinear DBIQ ED with a charged hyperm ultiplet.

For com pleteness, let us brie y m ention two further form ulations of the ssme DB1I
theory, using either a doubletensor, or a dual singletensor N = 2 multiplet. These
possibilities appear if Lagrangian (4.11]) has a second shift symm etry of In . This is
the case if the singletensor kinetic Lagrangian has this isom etry:

Z
Ler= & & H@L; + ):

W emay then transform  into a lnear super ed L using a N = 1 duality transor-

mation. Kesping L and tuming into L ° Jeads to a doubletensor form ulation w ith

super eds (L ;L°. The Lagrangian has the om

z Z _

Lpr= & & GL;L° gy w ) ad? %p((WW) g W +2£Y + cr:
(4.21)

T he function G is the Legendre transform ofH w ith respect to its second variable + -

and the real super ed V(W W ) isde ned by the equation

X W W )=§DD Vi(W W ): (4.22)
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Tt includes the D B Igauge kinetic term in itsd; com ponent and the Lagrangian depends
on thenew tensortd through thecombination 3¢, ¥ | g! ,where! = 3A(F

is the M axwell C hem-Sin ons form .

Finally, uming andL ntoL and °, Jeads to another singletensor theory w ith a
Stuckelberg gauging ofboth  %and L°, as in theory (2.21]). Tn this case, the Lagrangian
is

Z Z .

2 g 0, 0 0 2 1 9
Lgro= & & B %+ gv,;LY gy W W ) d 7% W W )+ Y +ow
(4.23)
W hile in the double+tensor theory (4.21) the second nonlinear supersymm etry only
holds on-chell, it is vald o -shell in theory (4.23). The function ¥ veri es Laplace
equation, as required by N = 2 linear supersymm etry U sihg the supersym m etric
Legendre transform ation, one can show that the nonlinear deform ation of V,,which

a ects £, isagain balnced by the variation of the foursform super ed Y .

44 Them agnetic dual

To perform electric-m agnetic duality on theory (£.9),we st replace it w ith
7 7 h
Lpgr = & FrigYy W 4T 1w
1 (424)

+1U?2 U W + 4+ +cri+ Lgr:

N

1
2

Both U and are unconstrained chiralN = 2 super elds. The Lagrange m ultiplier
inposesU = W ="~ , which leads again to theory BJ). The rst two tems,
which have gauge and N = 2 invariance properties related to the M axwell character
of W are left unchanged. The term quadratic in W has been tumed Into a linear one
using the Lagrange m ultiplier. Hence, the M axwell super ed W , which contributes to
Lagrangian (424) by
Z Z

d da~w JgY+2 1 + cxc:; (4.25)

N

can aswell be elim nated: should be such that this contrdbution is a derivative. In

term sof N = 1 chiralsuper elds,W hascom ponentsX and W and since there exists
two real super eds V; and V, such that X = %ﬁ\/’l and W = %WD Vo, we
actually need to elin nate V; and V, with result

. . 1 .
- i 2igY + S (1 + 1) (4.26)

Vsee Eq. (220).
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In this expression, W isaMaxwell N = 2 super ed, the fnagnetic dual’ of the
elimn inated W . There is a new arbitrary real deform ation param eter , allowed by
the el equation of V,. Notice however that | + i can be elin lnated by a constant
com plex shift of . Invariance of under the singletensor gauge variation ( [3.8) in plies
that § = 2% = 29 Y and

7z W + 29Y (4.27)

is then a gauge-invariant chiral super ed. A s already m entioned, any unconstrained
chiralN = 2 super ed can be decom posed In thisway and our theory m ay aswell be
considered as a description of the chiral super elds 2 and Y with Lagrangian
Z Z h . . i
5 o1 5 . 1 i o i
Lpgr= d A&7 - U“+1U =2+ —-(1+ 1) + —""(Z 29Y) + cxc:+ Lgr:
4 2 4 4

(4.28)
Invariance under the second supersym m etry in plies that 2 + Ei( 1+ 1 )7 transform s
asa standard N = 2 chiral super eld and then

deformea 2 = 11+ 1 ) + WO+ Q)2 : (429)

Elim nating U leads nally to
Z Z h i
“(Z  2gY) + crc:+ Lgr; (430)

1 2

]§DBI= d2 d2N4_ Z +

~

(1+1 ) +

N -

i
4
which is the electric-m agnetic dualoftheory (£.9)12] T he Lagrangem ultiplier super eld

! im plies now the constraint

i
0= Z+5(1+i)w~ =722+ i(,+1 V72 (4.31)

U sing the expansion (3.3),

— i
Z(YI /N)=Z(y; ) + 2~I(YI ) 7T 5 Z(Y! )+_DDZ(YI )r
withz =¥+ 2gY,! =i + 29 and , = 29 ,this constraint corresponds to
1
7%= 0; z! =0; SZbDz+ M= [z (1t i)k

In this case, and in contrast to the electric case, the constraint leading to the DBI
theory is due to the scale h ;i = 2gh i: we will actually chocose = 0, absorb
into , and consider the constraint Z 2 = 0 with a non-zero background value h ;i

breaking the second supersym m etry. O ur m agnetic theory is then
Z Z h | ) i

1
Bygr= d* &~ 4—zZ+ 4—~~(z 29Y ) + cx:+ Lgr; (4.32)

2Tt reduces to Eq. {&1) ifg= 0.
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1
7%= 0; z! =0; 5zr>r>z+!!= 7, ; (4 33)

theDBIscalkarishgfrom ; = ;+h ;i.AsintheM axwellcase, the third equation,

which also reads 0
1. .

Z = ———i (4.34)
; 3DDZ
nplies 2! = Z2 = 0 and allows to express Z as a function of ! ! and , 2 =
z('; ),usihg , = 29 1. The m agnetic theory (432) is then sin ply
;2 h i
Bypr = Z—Bn d? zZ('; ) 29Y + Lgr: (4 35)

Tt is the electric-m agnetic dual of expression (4.17]). At this point, it is in portant to
recallthat ! and areactually N = 1 super elds com ponentsofZ = W+ 29Y , ie.

P= +29 : (4.36)

The kinetic tem s for the singletensorm ultiplet (L; ),L = D D —,are included i
Lsr whilkeZ (!'!; ) includes the DB I kinetic termm s for the M axwellN = 1 super ed
% . Asin the electric case, them agnetic theory has a contribution proportional to
the fourform eld included In Y .

The third constraint {(£33) is certainly invariant under the variations (3.4), usihg
Zz! = 0.Butwith a nonzero background value = + h i,thespinor! transforms
nonlinearly, like a go]dstjno

jo
i . i 2 —— P—

T he solution of the constraint (4.34)) is given in A ppendix B . T he bosonic Lagrangian
inclided in the m agnetic theory (4.39) is
h o i
Bosrpes: = 5= o7y Jgfdet 2 23,3°®  gbo )

847 (3 , T+ 29°C?)+ 29°C?5 ,

1=2

+8gCd, (= gb )(® gb ) (4.38)
h i
8mj 2 i gb )(® gb ) 49C&
+ % C + List jpos:*

225ee Eq. (229).
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Tt depends on a single auxiliary eld, theM axwellreal scalar &, with eld equation

gC
& pos- b (#® b
2;bos: 26, 3 + 29°C2) gb )( gb )
r
P 4 39
det +PpPp—=2—F gb ) @
gC I 29°C2+ 3 5 F
23 5 F T Re , )P+ 2g2C 2

E Im inating d, and using , = 29 1 to reintroduce the super eld of the sihgle-
tensorm ultiplet and the original’ FayetTliopoulos term  ;,we nally obtain them ag-
netic, bosonic Lagrangian

2gRe 1p
@DBI;’QOS: % 8_ (2gRe 12+ 2g°C?2
r
p__ 22 i b
det g 292C 21 g 112( g )
(4.40)
gIn
(B  gb )® gb )
4 (2°C*+ Rg 1 F)
g
+— C + L .t
24 ST jos:
A s in the electric case, the DBI term hasa eld-dependent coe cient,
S
1P 1
—  (2gRe 1)+ 2g°C*2 det P (= gb ) ;
8 29°C2 + Pg 1 ¥
(441)

and, as expected,, the scalar potentials of them agnetic and electric [Eq. (£.14)] theordes
are dentical.
D e ne the com plex din ensionless eld

b
S = (2gRe 1P+ 29°C2+ 2i gm (4.42)

rwhich 237 = g 17+ 29°C2. In tem s of S, the m agnetic theory (4.40)
rew rites as

r
2gRe 1 1 p—
]?DBI;bos: = % WRGE det B 2 2 gb )
1 1 g
+—Im — E b )(® b )+ — C + L .
r
2gRe 1 —
- = - - S5Res  det 22 Bil®  gb )
1 1 g
+—Im — i b )(F b )+ — C + L 2
8 S ( g )( g ) 24 ST jos:

(443)
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T his is to be com pared w ith the electric theory (4.14):

2gRe 1 1 q =
Losijeos: = 8— FRGS det( 2 2 F )
+}an F F g b F +i C + LisT0s:t
8 4 24 .
(4.44)

Hence, the duality from the electric to the m agnetic theory corresponds to the trans-
form ations

b ! 0; F | B gb ; s ! s B (4 45)

which can be also derived from electricm agnetic duality applied on the bosonic DB I
theory only.

4.5 D ouble-tensor form ulation and connection w ith the string
elds

A sm entioned In the ntroduction, iIn TIB superstrings com pacti ed to four din ensions
w ith eight residual supercharges, the dilaton belongs to a double-tensor superm ultiplet.
This representation of N = 2 supersymm etry inclides two M a prana spinors, two
antisym m etric tensors B (NS{NS) and C (R {R) w ith gauge sym m etries

gaugeB = 2@[ i 0 C = 2@[ O] (4.406)

gauge

and two (real) scalar elds, the NS{NS dilaton and the R {R scalar, for a total of
4 + 4r physical states. In principle, both antisym m etric tensors can be dualized
to pseudoscalar elds with axionic shift symm etry, In a version of the e ective eld

theory w here the dilaton belongs to a hyperm ultiplet w ith four scalars in a quatemion—
K ah]er@ m anifold possessing three perturbative shift isom etries, since the R {R scalar
has its own shift symm etry. Tt is easy to see that only two shift isom etries, related to
the two antisym m etric tensors, com m ute, w hile all three together form the H eisenberg
algebra. Indeed, in the doubletensor basis, the R {R eld strength ism odi ed [25]due
to its anom alous Bianchi dentity to 3@, C ; 3C 9@, B . Thus, a shift of theR {R

scalar C ©) by a constant  is accom panied by an appropriate transform ation of C to
leave itsm odi ed eld-strength invariant:

sCc@= 4sC = B : (4.47)

It follow s that gauge: gauge and y verify the Heisenberg algebra, w ith a single non-
vanishing com m utator

[gauge; H = quuqe : (4.48)

23For supergravity. T he lin it of globalsupersym m etry isa hyperkahlerm aniod, which isR ioci- at.
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To establish the connection of the general form alisn described in the previous sub—
sections w ith string theory, we would like to identify the doubletensor m ultiplet w ith
the universal dilaton hypem ultiplet and study its coupling to the M axwell godstino
multiplet of a single D brane, in the rigid (globally-supersym m etric) lin it. To thisend,
we transform the N = 2 doubletensor into a single-tensor representation by dualizing
one of its two N = 1 linear m ultiplet com ponents LY, containing the R {R  elds C
and C @, into a chiralbasis + . In thisbasis, the twoR {R isom etries correspond to
constant com plex shiftsof the N = 1 super eld . Im posing this symm etry to the ki~
netic function of Egs. (2.7){ (2.8), one cbtains (up to totalderivatives, after superspace
Integration):

H@L; ; )= }L3+}L(+_)2 + L2+}(+_)2 ; (4.49)

3 2 2
where and are constants. Note that the second temm proportional to  can be
obtained from the rstby shiftingL. + = .For = 0 however, it corresponds to the

free case of quadratic kinetic term s for all elds of the single-tensor m ultiplet. The
coupling to theM axwell godstino m ultiplet is easily obtained using Egs. (4.12), (4.22)
and (2.18). Up to totalderivatives, the action is:
/ h
L = @ & i1+
i 7 h i (4.50)

gl + W.iWW) +qg d W Ly X W W) +ce:

In general, the fourform el is not inert under the variation , ofEq. (4.47) [26]]. In
our singletensor formaliam , 4y L = O and y = cwhere ¢ is com plex when com bined
with the axionic shift . of m dualtoC ofEq. (£4d); n addition

gauge

WY = X WW): (4.51)

W ith this variation, the Lagrangian, including the C hem-Sin ons interaction, is invari-
ant under the H eisenberg sym m etry.

W e can now dualizeback + to a second linearm ultiplet L by st replacing it

with a real super ed U :
Z h i

L= & d SL°+ ZLUZ + L+ 207  UmL %+ gvy)
Z  h i (4.52)

2 i .o

+g d W Z—lY 4—;X + cx

where the constant m corresponds to a rescaling of LY. Solving for U,

mL%+ gV
U:%“; (4 53)
L +
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delivers the double-tensor Lagrangian

Z h i 2 h . i
_ 1mLo%+ gvy )2t i 1
e= & & g3 gz tEL A OV) +g & W —Y X +ccy
3 2 L+ 2 4g
(4.54)
where asbefore Vi = Vi(W W )and X = X W W )= DD V;(W W ). It is invariant
under variation (4.51]) of the ourfom super ed combined with 5 L°= 2¢c( L+ )=m .
P_
A fter elim nation of the M axwell auxiliary eld (choosihgm =  2)
v
u det( + 252 F )
gC e
d2;r0s: = Z_Ltl o . 2 7 (4.55)
—Z9c + 2g°C?2

the com ponent expansion of the bosonic Lagrangian is

2

_ 1 2,1 c? 1 2
Bros: = (C+ ) 3@C)y+3@ —— +5C&Db y
1 0 ct ?
oo 36 b ! 3¢ b
co 4 co 2 2q 5
1 1
Tl e s (e A C det( +2 2F )
g g9
(4.56)
In term s of the M axwell Chem-Sim ons form ! = 3AF

e

W e expect that this action describes the globally-supersym m etric 1in it of the e ec-
tive fourdim ensional action of a D brane coupled to the universal dilaton hyperm ulti-
plet of the perturbative type II string. A sm entioned previously, its general form in the
local case depends also on two constant param eters, upon im posing the perturbative
H eisenberg isom etries, that correspond to the tree and one-loop contributions [15]. Tt
is tem pting to dentify these two parameterswith and  of our action. M oreover,
by dentifying the two antisymm etric tensors b and I with the respective NS{N S
B and R{R C and the combiation C%=( C + ) with the R{R scalar ¢ ?, as
the H eisenberg transfomm ations indicate, one nds that the two actions m atch up to
nom alization factors depending on the NS{N S dilaton that should correspond to the
scalar C . Finding the precise denti cations, which certainly depend on the way one
should take the rigid 1im it that decouples gravity, is an interesting question beyond our
present analysis restricted to global supersym m etry.
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5 Nonlinear N = 2 QED

W e willnow show that the e ective theory presented above describing a superH iggs
phenom enon of partial (global) supersymm etry breaking can be identi ed with the
H iggs phase of nonlinear N = 2 QED , up to an appropriate choice of the singletensor
multiplet kinetic term s. W e will then analyze its vacuum structure In the generally
allow ed param eter space.

In Inear N = 2 quantum electrodynam ics (Q ED ), the Lagrangian couples a hy—
pem ultiplet with two chiral super elds (Q1;Q0,) to the vector muliplet (V,;V,) or
X ;W ). The U (1) gauge transform ations of the hyperm ultiplet are linear, and Q ;
and Q , have opposite U (1) charges:

Z Z _
- — 1
Logp = & & QQ:1e7+Q,0.e " + & p—EXQlQZJr cxi+ Ly ag:+ Lj;
(5.57)
where Ly ax. Ncludes (canonical) gauge kinetic term s and L contains three param e-
ters: Z Z
L=m d2 010, + cc:+ d2 dz_ []_V]_ + Vs 1: (5.58)

T he hyperm ultiplet m ass term w ith coe cientm can kl%e elim inated by aRshjfc ofX and
1 » are the two Fayet-Tliopoulos coe cients. Since ; & & W = 3 & X +cx
the com plete superpotentialw is

i 1
w = ?—EX"'ITI Q102 21X2

There are six realauxiliary elds, f5,,fy,,d; and d, but only four are actually inde-
pendent@ Q EQ . =0 ZEQ , - Sihce the m etric is canonical, detK ;5 = 1 and trivially
hyperkahler. If ; = , = 0, the gauge symm etry is not broken and the hyperm ultiplet
massm + X i=p§ is arbitrary. Any nonzero ; or , inducesU (1) symm etry breaking
with all elds having the ssme mass. In any case, N = 2 supersymm etry rem ains
unbroken at the globalm Inim um .

In order to rst bring the theory to a form allow ing dualization to our single-tensor
form ulation, we use the holom orphic eld rede njt]'on

P— . P—
Q1= a e 7 Q.= 1a e ’
(559)

0

0.0, = 1% ; Q1=0,= i ;

24 | e use the sam e notation fora chiralsuper ed ,Q 1,Q2, ...and for its low est com plex scalar
com ponent eld.
25This eld rede nition has constant Jacobian.
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p_
with a? = 1= 2. The QED Lagrangian becom es

Z __ h i
1 2 o PT="_ o0y 0 0y
Lopp = #5 d & e ‘+ e 7+ Ly ax:
Z o 7 (5.60)
+ & I 2im) 1.X +co+ , & F W
W hile the gauge transform ation of %is y4, "= ., is gauge mvariant. Since

the K ahler potential is now a function of %+ _O, w ith a Stuckelberg gauging of the

axionic shift of ©?,the chiral °can be dualized to a Jnear L using a N = 1 Legendre

transform ation. T he result is

Z hp o____ i
Logp = & & 2 +L2 Lh 2 +L2+L  + Ly ax:
Z h i Z
& Ix o+ W sim + 2 .X +cri+ , & F W

(5.61)

The dual shgletensor Q ED theory has o —shellN = 2 invariance (the Laplace equa—

tion (2.7) is veri ed) and the two multiplets are now coupled by a N = 2 Chem-

Sin ons Interaction (2.19). N otice that the free quadratic kinetic temm s of the charged

hypem ultiplet lead to a highly non-trivial kinetic function in the single-tensor repre-

sentation. M oreover, there are only four auxiliary elds,f ,d; and d,. The Legendre

transform ation de nes the scalar ed C in L as

0 1 P— 0 1 P
ezRe = Pp—= 2 +C2+C ’ ezRe = PpP—= 2 +C2 C
2 2
(562)
and Egs. (5.09) relatethen C and wih Q ; and Q,:
b
C=9:F D7 = 21010,: (563)

A ccording to Eq. (411]), the nonlinear DB I version of N = 2 QED is obtained by
replacing in Lagrangian (561) X by X (W W ),which includes D B Igauge kinetic term s,
by om ittihg Ly ax o hich is rem oved by the third constraint (4.2) and by adding the

four-form term 2—1 d Y + cr::

LQED;DBI = d2 (f 2 + L 2 Ln 2 + L 2+L + 2V2
Z  h i
& 3+ 1 X@W) sm o+ W Y +cx:

(564)
N otice that tw o additional term s appear com pared to the action studied in Section[4: an
FayetTliopoulos term proportionalto , and a term linear in which is also nvariant
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under the second (nonlinear) supersymm etry (2.4); they generate, together with
the general param eter space of nonlinear Q ED coupled to a charged hyperm ultiplet.
W ithout loss of generality, we choosem to be real, while the choice ;= 1= would
canonically nom alize gauge kinetic tem s for a background where vanishes. W em ay
retum to chiral super elds ( ; % or (Q1;0,) to write the DB I theory a

Z
Logp = & & 0,0:€7+ 0,08 2+ LV,
z i (565)
+ d 010, 31 XWW)+mQiQ,+ 5+Y + cx:

Since X (W W )j_,only depends on ferm ion  elds, the auxiliary elds £, and f, only
contribute to the bosonic Lagrangian by a hypem ultiplet m ass tem

f.f+ £.5  =m® .5+ DT

bos:

to be added to the scalar potential obtained from Eq. (£.16) with the substitutions
p_
2gRe Ll 2 2 Q1Q2)  1j gC ! CH+ o= o+ DT DT

(sihce we have chosen g = 1). The com plete potential is th
"S #

1 P 2[ 2 +
Vorp per = — 2 2Im(Q:1Q2) 1 14 [pz_ D17 DLFF
° 2 2l (Qi0:) 1f
+m? (RF+ DoF):
(5.66)
T he analysis is then very sinple. The rst Jine vanishes only for
. P _
h,+ :Qljz @2j21= 0; 2 2 (Q105) [i> 0: (567)

The st condition is the usualD {temm equation hd,i= 0 for the M axwell super eld.
The second condition is necessary to have a wellde ned DB I gauge kinetic term at
them nimum . Hence, ifm = 0, conditions (5.61), which c%n always be solved, de ne
the vacuum of the theory. Choosing D 1i= vand ID,i= v?+ ,,with v real (and

arbitrary),we nd a m assive vector boson which, along w ith a real scalar and the two
M aprana fem ions

1 h P i
P——— V o, v+ o, 0, i
2V2+ 2

P
makes amassive N = 1 vector multiplet ofmass v?+ ,=2. Hence the potentially
m assless gaugino , with its godstino—like second supersym m etry variation =

265ec Eq. (@17).
27T he auxiliary d, is given n Eq. (4.13).
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p%— + ::: has been absorbed in them assive U (1) gauge boson multiplet. This is

possible only because the second supersym m etry transform ation of the four-form eld

com pensates the gaugino nonlinear variation. T he farm ion

2
V+2Q1+V 05

ism assless and corresponds to the ferm jon of the chiralsuper eld in the singletensor
form alism , in agream ent w ith our analysis in Section [see below Eq. (4.14)]. W ith
two real scalars, it belongsto amassless N = 1 chiralmultiplet.

Ifm 6 0,a supersymm etric vacuum hash)i= H,i= 0. Itonly exists if , = 0
and 1 & 0. The sscond condition is again to have D BT gauge kinetic term s on this
vacuum . In this case, the U (1) gauge symm etry is not broken, the goldstino vector
m ultiplet rem ains m assless and the hypem ultiplet hasmassm . Ifm 6§ 0, a nonzero
FayetTliopoulos coe cient , breaksthen N = 1 linear supersymm etry. N ote that the
single-tensor form alism is appropriate for the description of the H iggs phase of nonlinear
QED inamanifest N = 1 super eld basis (w ith regpect to the linear supersymm etry),
while the charged hypem ultiplet representation is cbviously convenient for describing
the Coulom b phase.

One can nally expand the action (5.65) in powers of 1 order to nd the low-—
est din ensional operators that couple the goldstino multiplet of partial supersym —
metry breaking to the N = 2 hypem ultiplet. Besides the dim ension-four opera-
tors corresponding to the gauge factors e V2
tential interaction 010,W 2 com ing from the solution of the nonlinear constraint
X = W2+ 0(°3); i anounts to a eld-dependent correction to the U (1) gauge

coupling.

, one obtains a dim ension-six superpo—

6 Conclusions

In this work we have studied the interaction of the M axwell goldstino m ultiplet of
N = 2 nonlinear supersymm etry to a hyperm ultiplet w ith at least one isom etry. The
starting point was to describe the hyperm ultiplet in term s of a singletensor m ultiplet,
which adm itsan o <hellN = 2 form ulation, and introduce a coupling using a C hem-—
Sim ons interaction. This system describes the coupling of a D brane to bulk elds
of N = 2 com pacti cations of type IT strings, In the rigid lim it of decoupled gravity.
UsingN = 1 and N = 2 dualities, we have also obtained equivalent form ulations of
the nonlinear M axwell theory coupled to amatter N = 2 supem ultiplet. Thisweb of

theories is sum m arized in the Figure.
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D oubletensor
(L,;L% (@21

6

s

Singletensor  gT-ST dualiy Sihgle-tensor E-M duality M agneticdual

Stuckelberg — ChemSmons -  Shgletensor
gauging ;) (ZID @L; ) (@33)
L’ % @23 )

H yperm ultiplet

(; 9 @&

Figure 1: W €b of dualities: double arrow s indicate duality transform ations
pressrving o <shellN = 2 supersymm etry, smple arrows areN = 1 o —
shell dualities only, Jeading to theories w ith on—shellN = 2 supersymm etry.
TheN = 1 super elds and the related equations are Indicated.

Specializing to the case of the universal dilaton hyperm ultiplet, we determ ined the
action com pletely in the rigid lim it, using the H eisenberg sym m etry of perturbative
string theory, up to an arbitrary constant param eter which, in the quatemionK ahler
caseof N = 2 supergravity, corresoonds to the string one-loop correction [15]. An inter—
esting open question is to realize this decoupling Iim it directly from the supergravity-
coupled systeam .

W e have shown how the above system applies to the H ggsphase of N = 2 nonlinear
QED coupled to a charged hyperm ultiplet. A llow ing a hyperm ultiplet m ass scale and
a Fayet—Tliopoulos term in the two-din ensional param eter space, the vacuum structure
nclides phases w ith broken and unbroken linear N = 1 supersymm etry and/or U (1)
gauge symm etry.

Tt is interesting to note that in the H iggs phase the goldstino vector multiplet
com bines w ith the hypermm ultiplet to form aN = 1 m assive vector and a m assless chiral
super eld. This novel super ggs m echanian is possible w ithout gravity because the
hypem ultiplet is charged under the U (1) partner of the goldstino. In the N = 1 case,
the goldstino m ultiplet can be gauged only by gravity and is absorbed by the gravitino

that acquires a m ass.
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In principle, it is straightforward to introduce additional hyperm ultiplets. O bvi-
ously only one of them will ‘absorb’ the godstino providing m ass to the U (1) vector.
T his action describes also the low -energy lin it of spontaneous partial supersym m etry
breakingN = 2! N = 1,when the breaking is ‘an all’ In them atter (hypem ultiplet)
sector. This is analogous, in the case of a single N = 1 nonlinear supersym m etry, to
the e ective action of the goldstino coupled toN = 1 m ultiplets at energies higher than
their soft breaking m asses. Tt is then know n that this action is obtained by sin ply iden—
tifying the constrained godstino m ultiplet w ith the socalled spurion [23]]. O nem ay try
to develop the analogy in the N = 2 nonlinear case and derive the structure of possible
‘soft’ term s associated to the partialN = 2 ! N = 1 breaking. As a step further,
one could try to integrate out the N = 2 superpartners and obtain the e ective action
at much lower energies, describbing the Interactions of the N = 2 goldstino multiplet
to N = 1 super eds. Thiswould be directly relevant for constructing brane e ective
theories involving non-abelian gauge groups and charged m atter. Tt could also be used
for studying a supersym m etric extension of the Standard M odel In the presence of a
second supersym m etry nonlinearly realized due to its breaking at a high scale.
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A Conventions for N = 1 superspace

The N = 1 supersymm etry variation of a super ed V is V = ( Q +~ Q )V, with
supercharges verifying the algebra

£Q ;0 g= 2i( ) _@: @ 1)
On V , the supersym m etry algebra is then

[172V= 2i(1 2 1)@ V: A 2)
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T he covariant derivatives
@ A — @ .
D = — I ) @ ; D =— 1i( )_@ (A 3)
@ Q
anticom m ute w ith supercharges and verify
fD ;D g= 2i( ) @ (A 4)
aswell. The dentities 7 7 7
1 - 1 —
d DD; @A5)

= 4 & d = - & DD= -
4 4

DD = DD =

R
only valid under a spacetin e integral d*x, are comm only used.
TheN = 1 supersymm etry variations of the com ponents (z; ;f) ofa chiral super-

ed ,D = 0,are
p_
z = 2 ;
p- L
= 2 + i( )Q z1; (A 6)
b,
f = 2i@
T he bosonic expansions of the chiral super elds used in the text are:
Wo(y; ) = dw)+ 3 T)F ()
vi )= 3 Cw+3( ~ )b ) (A7)
i ) = () £y
and any other chiral super eld has an expansion sin flar to . In thisnotation = =
() butW__= W ) .Sihcel =D 5__—,the Iinear super eld has bosonic
expansion
L(x,;_)=C+ _v+%_2C;
(A 8)
v=: @b =3z @bl=2 H :
W ith these expansions, 7
_ 1 _
d* & L2+ Z( + )°

is the Lagrangian of a free, canonically-nom alized, singletensor N = 2 multiplet. Tts

bosonic content is

%(@C><@C>+1—12H Ho H =3@Db |
T hese dentities are useful:
DD =1 DD; DD = : DD;
D ;DD1= 4i( D)@ ; D ;DD ]= +4iD )@ ;
DDW = 4i@wW )_:

DDW =4i( @W ) ;
Further dentities (w ith identical conventions) can be found in an appendix ofR ef. [9].

37



B Solving the quadratic constraint

T he quadratic constraint Z 2 = 0 must be solved to obtain the m agnetic D B I theory
coupled to a singletensor m ultiplet. U sing the expansion

N S i 1
Z(y; i7)=2(; )+ 271y ) §z+ZDDZ(y;);

in tetm sof theN = 1 chiralsuper eds 7 ,! and ; ,the constraint is equivalent to
the single equation .
Z = - —: B.1)
i, +3DDZ
T he electric constraint equation (£3), which was solved by Bagger and G alperin [7]

using a m ethod which applies to Eq. (B.1l) as well, corresponds to the particular case

! =W , , = i= and Z = X . Following then Ref. [1], the solution of Eq. (B_1)
is
" #!
i S T
z(!'; ;)= — 11 4+DD B ;. (B2)
. J,F+RA+ J,F+ 28,9+ B2

w here

A = :OD!!+DDTT)= A ;

B = 0D !! DDTT)= B

A nother useful expression is

Z(11; )= — !
Z
S LT n 3 p 3 3 _©
+DD — 7 + A ] + 2A + B
oD !!)DDTT) ~ ° ’ ‘
B 3)
In the text, we neaed the bosonic contentofZ (! !'; ;). W e write:
1 _
' (y; )= +§( Yy P o+ iz B 4)

where isa com plex scalar (2 bosons),P  a realantisym m etric tensor (6 bosons) and
dots Indicate om itted ferm Jonic tem s. H ence,

_ 2,1 i
[ = + EP P + 2
A = 2(%+7%)+ 2P P + :::;
B = 2(° “2)+i P P + :::
Since the bosonic expansion of ! carriesone , it follow s from solition (B_2) that the

bosonic Z (! !'; ;) hasa com ponent only, and that this com ponent only depends
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on ,P and the lowest scalar com ponent of ,; (which we also denoteby ;). As
a consequence, the bosonic 7z (! !'; ;) does not depend on the auxiliary scalar £ , of
z .Wethen nd:

i i , P — :
Z( 2! Dpsi= — !l J.f+Aa  j,F+223,F+B?
jzF 43 5 F =0
(B.S)
Theparenthesjsjsr%a],mtennsofoomponent eds:
- 1
Z = i3 327 i PP 2(2 72
e JaF+ 207+ 7% 16 “%+4(* 1 P P B 6)
2il:2
+43 ,FP P P P + 11
The decom position (A27),Z = W + 2gY , ndicates that
= %C+j§2; P =gb B 7 = 29 : B.7)

In Lagrangian (£39), we need the in agihary part of the = com ponent ofZ (! !; , ):

Mzl 2)) = T+ g5y 16950+ 8g7I F@C? 4%)  169°CE

+169°3 *(®  gb (® gb )

+89C & (* gb (#® gb )
h i, 1=2
(® gb (¥ gb )
h i
* 5957 (®  gb )(® gb ) 49C&
B 8)
W enow use
p- j
det(3 +?2P ) = g 3*det( +?2jp )
. B 9)
_ s 4 J 3 1 2
to rew rite
h o i
Mz )3 = T+ g5y 49t jidet 55® g )
4°& 23§+ C? + 2g°C?%5 F°
- (B 10)
+29Cd, = gb (& gb )
h i
Im
+ 5957 (= gb (® gb ) 4gC&
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Asa chedk, choosing = 1=(2g )and g= 0 to decouple the singletensor m ultiplet
leads back to theory (44) since in that case d;, = 0.
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