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Abstract

Finite size scaling studies of monopole condensation in noncompact quenched

lattice QED indicate an authentic second order phase transition lying in the uni-

versality class of four dimensional percolation. Since the upper critical dimension

of percolation is six, the measured critical indices are far from mean-field values.

We propose a simple set of ratios as the exact critical indices for this transition.

The implication of these results for critical points in Abelian gauge theories are

discussed.
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Monopole condensation was identified long ago as the physical mechanism driving

the confinement transition in U(1) lattice gauge theory [1]. This model illustrates the

dual Meissner effect which is presumed to occur in non-Abelian theories as discussed by

t’Hooft [2] and Mandelstam [3]. The complexity of these models, however, has led to

slow progress in sharpening our understanding of the condensation mechanism and its

physical implications. It is, therefore, interesting to consider a particularly simple model of

monopole condensation in four dimensions, where exacting work can be done. In particular,

we shall consider monopole condensation in non-compact quenched lattice QED and argue

that it is in the same universality class as four dimensional percolation. The simplicity

of the model will allow us to do accurate numerical studies, which will determine the

monopole susceptibility critical index γ, the monopole percolation (“magnetic” critical

index β, and the correlation length critical index ν to a few percent. We shall see that

the critical indices coincide with those of four dimensional percolation. These results are

interesting because they indicate that monopole condensation in non-compact quenched

QED is an authentic second order phase transition even though the local field theory in

which it is embedded is just a free field. In addition, since the upper critical dimensionality

of percolation is six, the critical indices associated with the phase transition are far from

mean-field values. We begin by discussing our numerical determinations of the critical

indices γ, β and ν. The lattice action we simulated is

Sgauge =
1

2

∑

nµν

(

θµ(n) + θν(n + µ) − θµ(n + ν) − θν(n)
)2

≡
1

2

∑

nµν

Θ2
µν(n), (1)

where the gauge fields θµ(n) are oriented, real variables in the range (−∞, +∞) defined

on lattice links. Although Eq.(1) is just a free field, we can define a magnetic charge on

the lattice as was already done in compact lattice QED4. Introduce an electric charge e

and define an integer-valued Dirac string by,

eΘµν(n) = eΘ̄µν(n) + 2πSµν , (2)

where the integer Sµν determines the strength of the string threading the plaquette and

eΘ̄µν is defined to lie in the interval (−π, +π]. The integer-valued monopole current mµ(ñ),

defined on links of the dual lattice, is then

mµ(ñ) =
1

2
ǫµνκλ∆+

ν Sκλ(n + µ̂) (3)
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where ∆+
ν is the forward lattice difference operator, and mµ is the oriented sum of the Sµν

around the faces of an elementary cube. This definition, which is gauge-invariant, implies

the conservation law ∆−

µ mµ(ñ) = 0 which means that monopole world lines form closed

loops. A fuller discussion of these variables can be found in ref.[5] where useful contrasts

are made with the same constructions in compact lattice QED.

As emphasized originally in ref.[5], the constructions and concepts of percolation [6-

8] are useful in quantifying the meaning of monopole condensation. Introduce the idea

of a connected cluster of monopoles on the dual lattice: one counts the number of dual

sites joined into clusters by monopole line elements. The oriented (vector-like) nature

of the monopole elements is ignored. The problem of identifying and counting clusters

is now exactly the same as occurs in bond percolation problems [6-8]. In the simplest

models of bond percolation the entire problem is one of counting. One assumes that bonds

are occupied randomly with probability ρ. At some critical concentration ρc (called the

percolation threshold), the largest connected cluster becomes infinite in extent, occupying

a macroscopic fraction of the dual lattice, and signalling a phase transition. A natural

order parameter for the phase transition is M = nmax/ntot where nmax is the number of

sites in the largest cluster and ntot is the total number of connected sites [8]. Its associated

susceptibility reads,

χ =
<

∑nmax

nmin
gnn2 − n2

max >

ntot
(4)

where n labels the size of a cluster occuring gn times on the dual lattice. In general

nmin = 2, but for monopoles nmin = 4 because of the conservation law.

The critical indices for monopole condensation are then defined as in bond perco-

lation[8]. For a lattice of infinite extent, M should be nonzero for a strong coupling e

and vanish identically for weak coupling. At some critical point, M should turn on non-

analytically with a ”magnetic” exponent β,

M ∼

(

1

e2
c

−
1

e2

)β

, e ≥ ec (5)

where we have written 1/e2 (rather than e itself), following the standard conventions of

strong coupling lattice gauge theory [1]. The susceptibility should diverge at ec with a

susceptibility index γ
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χ ∼

(

1

e2
c

−
1

e2

)

−γ

(6)

and the linear size ξ of the largest cluster should also diverge:

ξ ∼

(

1

e2
c

−
1

e2

)

−ν

, e ≥ ec (7)

where ν is the correlation length exponent.

In order to measure γ, β and ν, we did three types of computer experiment. First we

measured χ and M as a function of coupling 1/e2 on lattices of volume L4, with L ranging

from 10 to 20. Since Sgauge is a quadratic form, independent gauge field configurations

could be generated by FFT methods avoiding critical slowing down entirely [9]. According

to standard finite-size scaling arguments [10], the peak of the susceptibility should grow

with lattice size L as

χmax(L) ∼ Lγ/ν . (8)

In addition, the value of the order parameter M should vanish as

M(L) ∼ L−β/ν , e = ec (9)

at the critical point. And finally, Eq.(5) yields an estimate of the magnetic exponent β as

long as we can study a range of coupling 1/e2 where the functional dependence of Eq.(5)

is not distorted by finite size effects. Consider the susceptibility first. Data of χ versus

1/e2 for L values 10, 12, 16, 18 and 20 are given in Table 1. Note that the peak occurs

at 1/e2
c = 0.244 independent of L. In Fig. 1 we plot the logarithms of the peaks, lnχmax

versus ln L, and find an excellent straight-line fit with the slope,

γ/ν = 2.24(2) (10)

The order parameter M was measured in parallel with χ, and the results are recorded in

Table 2. A plot of lnM as a function of lnL at 1/e2
c = 0.244 is shown in Fig. 2. Again a

straight line fit compatible with finite-size scaling emerges and the slope is determined to

be

β/ν = 0.88(2) (11)
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Finally we attempted a direct measurement of Eq.(5) using the 164, 184 and 204 lat-

tices. The measurements of M indicate that its value at 1/e2 = 0.242 decreases sig-

nificantly as L ranges from 16 to 20, and are not useful here. However, the couplings

1/e2 = 0.240, 0.238, 0.236 yield stable M values. We plot lnM against ln(1/e2
c − 1/e2) in

Fig.3, and find that a linear fit is acceptable for the three points 1/e2 = 0.236, 0.238, 0.240.

The fit gives an estimate for the slope, the magnetic exponent β,

β = 0.58(2) (12)

Clearly the measurements of γ/ν and β/ν in Eqs.(10) and (11) are our most precise.

It is interesting to test whether the critical indices of the monopole condensation transition

satisfy hyperscaling (which is expected of any model with a single divergent correlation

length, which controls the system’s non-analyticities at the critical point), and deduce

other critical exponents of the transition. According to hyperscaling,

γ/ν = 2 − η (13a)

β/ν = (d − 2 + η)/2, (13b)

where d = 4 here. From Eq.(13.a) the critical index η = −0.24 and from Eq.(13.b)

η = −0.24, as well. The agreement with hyperscaling is perfect! The third hyperscaling

relation 2β/ν + γ/ν = d, becomes 1.76 + 2.24 = 4.00 and works perfectly also, while the

fourth hyperscaling relation, 2βδ−γ = dν, gives the critical index δ = 3.55(2). Finally, the

fifth and last hyperscaling relation, dν = 2 − α, requires additional input for the specific

heat index α. Now use Eq.(12), our determination of the magnetic exponent. For example,

combining Eqs.(10) and (12) with the hyperscaling relations gives all the critical indices

of the transition,

γ = 1.48(3), ν = 0.66(3), η = −0.24(2),

α = −0.64(3), β = 0.58(2), δ = 3.55(3) (14)

We complete the discussion of our numerical results with two observations. First, we

should classify this critical point, if at all possible. Naturally, we suspect that it is simply

related to a four-dimensional percolation problem, although we have not proved this an-

alytically, because of the vector character of the monopole problem and the conservation

law (∆−

µ mµ(ñ)). In fact, the results of Eq.(14) are in excellent agreement with the critical

4



exponents of four-dimensional percolation, as estimated both by numerical simulation [6]

and from series expansions [7], so we suggest that these two transitions lie in the same

universality class. This is particularly intriguing since the indices of Eq.(14) are far from

mean field indices. In fact, the upper critical dimensionality of percolation is 6, where mean

field considerations become exact and γ = β = 1, ν = 1/2, η = 0, α = −1 and δ = 2 [11].

Second, since the results of Eq.(14) are so close to ratios of small integers, we conjecture

that the exact critical indices of this universality class are,

γ = 3/2, ν = 2/3, η = −1/4,

α = −2/3, β = 7/12, δ = 25/7 (15)

A comment about the negative value of η is in order. The hyperscaling relations

(Eq.13) are derived on the assumption that the physics of the critical region can be de-

scribed by a local scalar field theory. In general for a field of dimension dφ they read:

γ/ν = d − 2dφ, β/ν = dφ, (16)

which for dφ = (d− 2+ η)/2 reproduces Eq.(13). If η is negative, we see that dφ is smaller

than the canonical value d/2− 1, which leads to an infrared behaviour that is inconsistent

with unitarity. The numerical success of the hyperscaling relations, the conjectured exact

fractional form of the critical indices Eq.(15), and the field theoretic description of the

critical point remain to be integrated into a single comprehensive theory of percolation.

The fact that quenched non-compact QED monopoles condense with the same expo-

nents as four-dimensional percolation is perhaps not too surprising. In ref.[5] it was shown

that the concentration of monopole world lines varies smoothly as 1/e2 is made to vary

across the critical region, i.e. there exists a smooth function ρ(1/e2) for the probability

of bond occupation, and so the only source of non-analytic behavior can be the percola-

tion threshold itself. Dynamical considerations are entirely subsumed by geometrical ones.

This is in marked contrast to the compact U(1) model, in which the monopole density

falls sharply across the deconfining transition [4]. It would be interesting to repeat these

measurements in non-compact lattice QED including the effects of dynamical fermions.

We have argued elsewhere [12] that in this case, because of the compact nature of the U(1)

connection required to couple fermions to the model, the monopoles might have a direct

dynamical influence on the physics of chiral symmetry breaking - there is no reason a pri-

ori to expect that monopole condensation in this case lies in the same universality class.
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Preliminary results with Nf = 2 suggest that the two cases are difficult to distinguish [13].

Work continues on this interesting problem.

JBK is supported in part by grant NSF-PHY87-01775. SJH is supported in part by

an S.E.R.C. Advanced Fellowship.
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Table 1

Monopole susceptibility χ as a function of coupling 1/e2 for lattices 104, 124, 164, 184 and

204.

1/e2 104 124 164 184 204

.254 38.66(38) 50.27(45) 67.35(60) 72.80(91) 75.2(1.5)

.252 41.89(45) 56.64(57) 75.58(78) 88.3(1.2) 94.8(2.2)

.250 45.93(57) 63.44(72) 95.6(1.0) 109.1(1.7) 117.5(2.9)

.248 49.16(72) 70.85(93) 116.4(1.6) 140.7(2.9) 153.1(4.8)

.246 51.37(83) 75.9(1.1) 136.9(2.5) 172.9(2.5) 211.4(4.3)

.244 52.02(97) 77.2(1.4) 146.2(3.5) 192.9(3.4) 248.8(7.4)

.242 51.9(1.1) 73.8(1.6) 134.9(4.4) 167.4(5.0) 215.8(10.3)

.240 48.2(1.1) 66.2(1.8) 106.4(4.5) 114.5(9.6) 105.7(12.8)

.238 43.1(1.3) 56.9(1.9) 63.8(3.2) 64.6(5.0) 62.8(6.1)

.236 36.3(1.2) 42.1(1.6) 38.7(2.1) 35.7(1.4) 37.1(3.1)
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Table 2

Same as Table 1, but for the order parameter M = nmax/ntot.

1/e2 104 124 164 184 204

.254 .0952(15) .0652(11) .0311(60) .0225(6) .0165(7)

.252 .1096(19) .0776(13) .0392(8) .0282(9) .0196(9)

.250 .1282(22) .0942(16) .0507(11) .0368(13) .0282(17)

.248 .1519(26) .1162(19) .0684(16) .0518(19) .0390(27)

.246 .1809(29) .1468(23) .0968(21) .0816(16) .0688(20)

.244 .2172(33) .1882(28) .1410(29) .1283(23) .1165(29)

.242 .2559(37) .2374(31) .2052(33) .1993(27) .1950(34)

.240 .3033(38) .2949(33) .2775(34) .2722(55) .2792(67)

.238 .3557(39) .3530(32) .3518(28) .3505(38) .3497(52)

.236 .4099(37) .4147(28) .4154(22) .4162(29) .4135(42)
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Figure captions

1. Finite-size scaling for the peaks of the monopole susceptibility lnχmax as a function of

lnL.

2. Same as Fig.1, but for the order parameter M at ec.

3. lnM against ln(1/e2
c − 1/e2) for 1/e2 = 0.242, 0.240, 0.238 and 0.236. The size of the

symbols for 164, 184 and 204 lattices include the statistical error bars except in the case

1/e2 = 0.242, which is not used in the fit because of the finite-size effects.
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