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1 Introduction and methodology

Many interesting and successful classes of models for physics beyond the standard model
involve various different sectors of light modes coupled only through massive mediator
particles. For example, models of gauge mediated supersymmetry breaking (GMSB) are
composed of a sector representing the degrees of freedom in the MSSM, and another sector
breaking supersymmetry (for a review, see [1]). These sectors are coupled by massive
mediators which induce soft supersymmetry breaking terms in the visible sector once we
integrate out the massive fields. Recent observations by the PAMELA, ATIC and FERMI
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collaborations have also suggested the possibility of an additional interacting dark mater
sector, coupled to the standard model via massive mediators [2].

It is therefore interesting to devise methods for embedding such multi-sector inter-
acting models in string theory. From the perspective of the landscape of string theory
vacua there are also statistical reasons to expect multiple interacting sectors - all we really
require in a model is that below a TeV we should recover the standard model. Previous
work has embedded two-sector models of gauge mediated supersymmetry breaking in string
theory [3–5].1 Here we extend these ideas to a systematic procedure for joining theories
coming from branes at toric singularities into a consistent local embedding, such that the
different subsectors interact only through massive mediators, with tunable scales. This
allows us to construct string theoretic embeddings of theories with an arbitrary number
of hidden sectors, such as those advocated in models of interacting dark matter [2]. From
the field theoretic perspective, we are giving a systematic procedure for adding massive
mediators between subsectors, such that the whole model is embeddable in string theory,
with mediator masses geometrized as the sizes of resolved cycles in a singularity. Our pro-
cedure allows us to join subsectors in a modular way, and covers a large class of interesting
models, such as branes at abelian orbifolds, or branes wrapping local cones over toric del
Pezzo surfaces.

Our framework is a refinement of [4, 5] where it was shown how local singular toric
Calabi-Yau geometries can be built from a slightly resolved parent singularity in order to
construct multi-sector models interacting through massive matter in Type II string theory.
These papers did not give a recipe for finding the particular parent theory that can be
resolved to give two subsectors of choice. This was because the same geometry can support
different field theories related by Seiberg duality, which is realized as toric duality in the
geometry [15, 16]. When building a particular model, one is often interested in getting a
particular representative of the family of Seiberg duals after resolution – but this typically
involves trial and error with many Seiberg dual phases. Instead of trying to intuit the
correct parent singularity, we describe here a bottom-up approach: we give a method of
splicing together sectors that realize the desired low-energy phenomenology.

The theories we construct have a very rich spectrum of massive mediators, with a
plethora of both chiral and vector multiplets. Despite their complexity as low energy
theories, they are remarkably simple from the string theory point of view, depending only
on a small number of parameters with simple geometric realizations. Such rich mediators
are generic in models arising from D-branes at sub-stringy separation.

This paper is organized as follows. Section 2 reviews some basic facts about branes at
toric singularities and the corresponding dimer models that we need. Section 3 describes our
algorithm for joining models and their corresponding singularities, a key technical result in
this paper. Section 4 describes a particular three-sector dark matter model. Section 5 shows
how the construction can be modified, including the introduction of orientifold planes.

1Alternative mechanisms for mediation of supersymmetry breaking which have been engineered in string

theory include (higher form) U(1) mediation [6, 7], anomaly mediation [8–10], instanton mediation [11],

holographic mediation [12] and of course gravity mediation [13, 14].
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Figure 1. a) Web diagram for the conifold. We have mapped the non-compact divisors of the
conifold to regions in the web diagram. v denotes the resolution parameter. b) Toric diagram for
the conifold.

Section 6 presents the type IIA mirror description of joining dimer models, and section 7
concludes the paper.

While this paper was being completed we became aware of [17], which contains results
related to ours.

2 Review of dimer model technology

We start by briefly reviewing the aspects of dimer models that we use in the present work.
The reader familiar with dimer model techniques can safely jump to section 3, although
section 2.5 reviews less well known material. For further details, the interested reader may
consult the excellent reviews by Kennaway [18] and Yamazaki [19].

2.1 Toric geometry: web diagrams and toric diagrams

Let us start by recalling some elementary facts about toric Calabi-Yau threefolds. We use
the conifold as our example, with other toric varieties constructed in a similar fashion. In
its singular limit, the conifold is defined by the equation

4∑
i=1

z2
i = 0 (2.1)

inside C4. This geometry is toric, meaning that it admits a U(1)3 = T 3 fibration, this
can be seen as follows. Equation (2.1) is invariant under SO(4) rotations transforming the
zi as a vector, and also invariant under U(1) rotations of the four coordinates, sending
zi → eiθzi. This gives a symmetry group SO(4)× U(1) ∼ SU(2)× SU(2)× U(1) ⊃ U(1)3,
so the conifold is indeed a toric variety. In our examples, we are interested in a smooth
space connected to the singular conifold described above, the resolved conifold, obtained
by blowing up a two sphere of size v at the singularity of the conifold.

It turns out that all the relevant information about the geometry can be efficiently
encoded by specifying over which points in the (three real dimensional) base the T 3 fiber
degenerates. For the case of Calabi-Yau manifolds, this information can be easily visualized
in terms of a web diagram. The web diagram is a projection of the base of the toric manifold
onto a plane. The base is a three real dimensional polyhedron with a T 3 fiber over each
point — the fibers degerate over faces and edges of the polyhedron which appear in the
planar projection of the polyhedron (see [20] for a review). For our purposes it suffices
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Figure 2. a) Quiver diagram for the conifold. The arrow with two heads represents two bifun-
damentals. b) Dimer model for the conifold. Note that the opposite sides of the square should
be identified, forming a two-torus, i.e., there is a single black dot and a single white dot. We
have denoted the orientation of the edges by arrows perpendicular to them: an arrow from U(N)a

to U(N)b crossing the edge E means that E transforms in ( a, b). We have also labelled the
bifundamentals as in the text.

to know that every manifold posses a web diagram, which is a graph drawn on a integer
lattice. The web diagram for the resolved conifold is given in figure 1. The singular conifold
is recovered by shrinking away the edge marked v. We also show its planar dual, the toric
diagram, which encodes the same information and is often more useful to work with.

2.2 Gauge theories from toric singularities: quiver diagrams and dimer models

Let us now proceed to put a stack of N D3 branes on the singular point zi = 0. As
argued by Klebanov and Witten [21], the resulting theory is U(N)1 × U(N)2 with four
bifundamentals2 Xi

12, Xi
21 (i takes values in 1, 2), and a superpotential:

W = Tr
(
X1

12X
1
21X

2
12X

2
21 −X2

21X
2
12X

1
21X

1
12

)
(2.2)

It is helpful to represent this information graphically. The most common representation
is in terms of quiver diagrams. These are oriented graphs in the plane where nodes represent
gauge groups, and bifundamentals fields are arrows connecting the nodes. We show the
quiver diagram for the conifold in figure 2a. This representation of the theory, however,
misses the F-term information encoded in the superpotential. It turns out that for theories
coming from D3 branes located at toric singularities, such as the conifold, it is possible
to do much better, using dimer models [22]. A dimer model is a periodic tiling of R2

(equivalently, a tiling of T 2) with the property that nodes in the graph can be colored black
or white, and white nodes only connect to black nodes (and vice versa). The dictionary
between this tiling and properties of the associated gauge theory is as follows:

2We always use the notation X•
ab, Y

•
ab, . . . to denote fields transforming in the fundamental representation

of U(N)a and the antifundamental of U(N)b.
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• Faces represent U(N) gauge groups.3 In the conformal case we have discussed so far
all faces have the same rank, but we will see below that it is also possible that faces
have different rank, representing D5 and D7 brane charge localized at the singularity
(i.e., fractional D3 charge).

• Edges between faces U(N)a and U(N)b represent bifundamental fields. It is possible
to assign a unique orientation to the edges (whether they transform in ( a, b) or
in ( a, b)) by imposing that edges around a black node go clockwise and around
a white node counter-clockwise. Note that this implies that as we go around a face,
edges alternate in their orientation. This also implies that every face has an even
number of edges, half incoming and half outgoing.

• Finally, nodes represent superpotential terms (more precisely, monomials in the su-
perpotential). The rule to obtain the precise monomial is to multiply the fields around
a black node clockwise, with an overall plus sign, and multiply fields around a white
node counter-clockwise, with an overall minus sign. One should take the trace of the
resulting polynomial in order to obtain a gauge invariant superpotential.

We have shown the quiver diagram and dimer model for the conifold in figure 2. It is
a simple exercise to verify that with the rules given here the dimer model in figure 2b
encodes precisely the conifold theory described above. In particular, the superpotential is
given by (2.2).

At this point two natural questions arise: can we obtain the dimer diagram for a given
toric singularity in a simple way? Is the geometry of the toric variety naturally encoded in
the dimer diagram?4 Surprisingly, the answer to both questions is affirmative, the essential
concept being the zig-zag path [25, 26]. We now review the definition and properties of
zig-zag paths, which are an essential tool in our construction, and show how they naturally
give an elegant answer to the second question. We postpone the answer to the first question
to section 2.4.

2.3 Zig-zag paths: From dimer models to toric geometry

Zig-zag paths [25, 26] (also called rhombus paths in the context of isoradial embeddings)
are paths in the dimer model with the property that they turn maximally at each node,
and they cross once the edges along which they run. We illustrate a typical zig-zag path
in figure 3a (see also figure 4 for the set of zig-zag paths for the conifold).

Zig-zag paths have a number of interesting and useful properties, of which we mention
a few here. We do not provide justification for the following statements, but refer the
reader to the original papers [25–27].

3In string theory most of the U(1) factors actually decouple at low energies, getting mass by mixing with

background RR axions [23, 24], although some of the anomaly-free U(1) factors can remain massless. For

simplicity, we always keep these U(1) factors around, and just discuss their fate when it makes a difference.
4The toric variety should arise as the moduli space for the theory of a single regular brane located at

the singular point, so the dimer model does encode all the information about the toric singularity. The

question is how to determine this moduli space efficiently from the dimer model.
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b)a)

Figure 3. a) Generic zig-zag path, drawn as a dashed blue line. It turns maximally when it reaches
an edge, and it crosses the edges along which it runs. b) When two zig-zag paths intersect, they do
it over an edge and running with opposite orientations.

The first property is that each edge in the dimer model corresponds to an intersection
of two zig-zag paths. That is, every time two zig-zag paths intersect they give rise to a
bifundamental field.

A second property is that we can naturally assign an orientation to each zig-zag path.
In order to do this, assign arbitrarily an orientation to one of the zig-zag paths. The
orientation of the rest of the zig-zag paths is determined by the requirement that when two
zig-zag paths intersect over an edge, they do it with opposite orientations, see figure 3b.

We can now describe how zig-zag paths solve the second problem above, namely how to
obtain the toric variety from the dimer model. Take one zig-zag path, with its orientation.
Compute its (p, q) winding number along the torus on which the dimer model is defined.
This can be represented as a vector in the plane, pointing in the (p, q) direction. Once we do
this for all zig-zag paths, we obtain the web diagram of the (unresolved) toric singularity.5

As an example, in figure 4 we compute the web diagram of the conifold from the conifold
dimer model.

2.4 The fast inverse algorithm: From toric geometry to dimer models

Let us now proceed to describe how one can compute the dimer model corresponding to
a given toric singularity. The most efficient algorithm, and the one that will inspire our
joining algorithm in section 3, is the fast inverse algorithm, first described in [26]. Since we
will make use of some of the ideas of this algorithm in the following sections, let us briefly
describe how it works.

The idea is simple and uses the key concept of zig-zag paths: draw in a torus cycles with
homology charges corresponding to the external legs of the geometry we want to consider.
These cycles divide the torus into regions, with boundaries given by portions of zig-zag
paths. These regions can be divided into two classes: those around which the boundary
has a definite orientation (inherited from the zig-zag paths defining the boundary), and
those which have no definite orientation. From this information we can easily recover the
dimer model, simply by identifying oriented regions with superpotential terms, zig-zag
path intersections with edges, and unoriented regions with gauge factors. We show how
this works in the case of the conifold in figure 5. Let us note that we could have further
subdivided oriented regions into clockwise and counter-clockwise regions. As it is simple
to see from examples, this corresponds to the black/white coloring of the nodes in the
dimer model.

5This can be naturally understood using mirror symmetry [27]. See also section 6.
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Figure 4. a) Set of zig-zag paths for the conifold. b) The web diagram obtained out of the zig-zag
paths.
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Figure 5. Inverse algorithm for the conifold. The two shaded regions are oriented, and correspond
to the two superpotential terms, while the two regions not shaded do not have a definite orientation,
and correspond to the two faces of the dimer model. Intersections of zig-zag paths correspond to
bifundamental fields.

2.5 The low energy spectrum for partial resolution

Zig-zag paths have another very interesting application. As mentioned above in section 2.1,
it is possible to smooth out the singularity in the conifold by blowing up a two-cycle. Simi-
larly, any toric Calabi-Yau variety can be completely smoothed out by blowing up two and
four cycles at the singularity. A complete resolution results in a toric diagram which is
maximally triangulated, and alternate triangulations describe resolutions related by flops.
It is always possible to completely smooth out a toric Calabi-Yau in this way, but it is
not necessary to completely smooth it out, partial resolutions are also possible. In such
a case, one blows up one of the zero-size two-cycles, while leaving parts of the geome-
try singular. Each such partial resolution partitions the toric diagram into concatenated
convex polytopes.

As a simple two complex dimensional example that illustrates the idea of partial res-
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olution, consider the geometry defined by the equation:

f = x2 + y2 + z4 = 0 (2.3)

in C3. This geometry has a singularity (of type A3) at the origin, due to the fact the
f = df = 0 there. It is possible to blow up a two-cycle and make the geometry less singular
by modifying the defining equation to:

f̃ = x2 + y2 + z2(z − a)2 = 0 (2.4)

with a 6= 0. The new geometry has two singularities of lower rank (they are now of type
A1) at x = y = z = 0 and at x = y = 0, z = a. The toric threefold examples we construct
behave in a similar way. We start with a “big” singularity, and partially blow it up in order
to obtain a Calabi-Yau variety with interesting “smaller” singularities at a finite distance
from each other.

In our constructions the gauge theory comes from branes located at the singularity,
so we need to know how the geometric operation of resolving the singularity affects the
gauge theory living on the branes. This problem was solved for arbitrary resolutions of
toric Calabi-Yau varieties in [4, 5]. As in the rest of this review section, we merely present
the rules for obtaining the answers, leaving the justification to the original references.

Let us review the algorithm for obtaining two dimer models corresponding to the
massless matter living on the branes at the two remaining daughter singularities, and the
massive mediators coupling the two massless sectors. In order to fix notation, let us call
the two daughter singularities 1 and 2. As noted above, we can naturally split the external
legs of the toric diagram into two sets, associated to the two daughter singularities. This
naturally gives us a splitting of the zig-zag paths for the mother singularity into two sets.
Let us abuse notation and also call these sets 1 and 2 (which particular meaning of “1”
and “2” we are talking about will be clear from the context).

Having split the zig-zag paths into two sets, associated to the two daughter singulari-
ties, we can classify the set of edges in the parent dimer into three sets: those over which
two zig-zag paths of type 1 intersect (edges of type 1), those over which zig-zag paths of
type 2 intersect (edges of type 2), and edges over which a type 1 zig-zag path and a type
2 zig-zag path intersect (edges of type 3).

The result in [4, 5] states that the correct field theory description of the resolution of
the singularity is to give the following sets of vevs to the different types of bifundamentals:

〈
X1
〉

=

(
0 0
0 vIQ

)
,

〈
X2
〉

=

(
vIP 0
0 0

)
,

〈
X3
〉

= 0 (2.5)

where we have denoted edges of type i as Xi, and we have split the N branes at the original
singularity into P branes going to the daughter singularity 1, and Q going to the daughter
singularity 2. IP , IQ denote the identity matrices of rank P,Q. v parameterizes the size of
the blown-up cycle. For simplicity, we have presented the case in which all the faces of the
original dimer have the same rank N (corresponding to the case with vanishing fractional
brane charge), so the vevs for the Xi bifundamentals can be naturally represented as
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Figure 6. Resolution process for the conifold into two copies of flat space. a) Resolution in terms
of the web diagram. The internal dashed lines denotes the blown up cycle, of size v. We have
denoted the two daughter singularities 1 and 2, as in the text. b) Dimer model corresponding to
the daughter singularity 1, obtained by removing the edge where B and C intersect (see figure 4a).
c) Dimer model for the daughter singularity 2, obtained by removing the edge where A and D
intersect. Note that both b) and c) match what one would obtain by directly applying the fast
inverse algorithm to flat space.

N ×N matrices. The case with non-vanishing fractional charge works similarly (see [4, 5]
for details).

This prescription admits a very simple description in terms of dimer models: edges
of type 1 disappear from the dimer model for the daughter singularity 2 (representing the
Higgsing coming from the nonzero vev), edges of type 2 disappear from the dimer model
for the daughter singularity 1, and edges of type 3 remain in both daughter dimers. We
illustrate this procedure for the case of the conifold in figure 6.6

The procedure we are describing can always be carried out for gauge theories arising
from D3-branes at a toric singularity. In this case every gauge group in the parent theory
has rank N while the gauge factors at the two daughter singularities all have ranks P and
Q with P +Q = N . If fractional branes are wrapped on any of the collapsed cycles of the
parent singularity, the resolutions of these cycles do not lie on the moduli space and cannot
be carried out. In other words, in the presence of fractional branes a partial resolution can
only be carried out if these branes are wrapped on cycles that are entirely carried into one of
the daughter singularities and not on the cycle we are blowing up. Fortunately, in this paper
we will always go in the other direction — given daughter singularities with or without
fractional branes we will give a gluing prescription that will give a larger parent singularity
containing both of the daughters. Thus, for our purpose of describing the spectrum of the
complete theory we can assume that the blowup in question can be performed even in the
presence of fractional branes.

Given the gauge theory of the parent singularity, and explicit expressions for the vevs of
the bifundamentals responsible for the partial resolution, we can give a complete description
of the theory after the resolution, including the massive mediator sector, with its couplings.
There are some simple rules for determining the massive spectrum, which apply even in

6In the case of the conifold a single blow-up completely smooths out the space, giving two copies of flat

space, so the term “daughter singularity” is perhaps a bit misleading in this context. The procedure still

applies without any change, and gives the right answer: N = 4 super-Yang-Mills in N = 1 notation, as it

is easy to check from figures 6b and 6c.
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the presence of fractional branes as long as the resolution is possible:

1. Consider an edge which disappears in the ith daughter dimer diagram leaving a face
with a gauge group of rank K. Then there is also a massive vector multiplet in
the adjoint of U(K) gauge factor. This massive multiplet arises from Higgsing of a
U(K)×U(K) subgroup of the gauge factors of the two faces the edge used to separate
in the parent theory. Only the diagonal component of this subgroup survives the
Higgsing, while the non-diagonal part gets a mass through the Higgs mechanism.

2. For each face in the parent dimer diagram, we obtain two massive vector multiplets
in the bi-fundamental (N1, N2) and its conjugate, where N1,2 are the ranks of the
faces in the daughter dimers that enclose the face in the parent. (It might be that
the faces in the daughters have expanded via the loss of edges, but they never shrink
in the procedure we are describing.)

3. Consider an edge present in both daughter dimer diagrams separating faces with
ranks Na

1 , N
b
1 and Na

2 , N
b
2 in the two daughters respectively. Also suppose that the

edge was oriented in the parent so that bifundamentals went from a to b. Then in
the daughter theory there are massive chiral multiplets in (Na

1 , N
b
2) and (N b

1 , N
a
2 ) bi-

fundamental representations. The dimer diagram ensures that globally, these types
of chiral multiplets pair up consistently to form massive scalar multiplets [5].

4. If the daughter dimer diagrams contain bi-valent nodes (nodes with two edges), the
pair of edges gives a massive scalar multiplet in the bi-fundamental of the two faces
separate by the pair.

If there are non-compact D7-branes threading the singularity, additional massive matter
will appear (see section 5 for details.)

3 Joining singularities

In the preceding section we discussed the process of partially resolving a larger (mother)
singularity into several smaller (daughter) singularities. We now consider the reverse pro-
cess, i.e., unresolving or joining daughter singularities to form a new singularity. There are
several reasons why this may be a more useful way to proceed. First, from a bottom-up
approach we start with a low-energy theory that consists of several sectors, each of which is
described by putting D-branes on a singularity. We then want to know how these singular-
ities fit together, such that we can determine the massive spectrum of messenger particles.
In addition, the process of splitting singularities described in section 2.5 has an ambiguity
in the case that the web diagram of the parent geometry has parallel external legs of the
same orientation that get split. In such a case one is free to choose which zig-zag path goes
to which side of the split, and the resolution procedure we described in section 2.5 will give
different answers depending on our choice. This phenomenon is a manifestation of Seiberg
duality [15], which in this context appears as toric duality [16]. More generally, there exist
different Seiberg-dual dimer models describing the same geometry. (Note that the conifold
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Figure 7. Joining two copies of flat space along one external leg. a) Web diagram perspective.
We have indicated the external edge to be joined (G) by the dashed colored line. b) Dimer model
perspective.

is special since taking the Seiberg dual of any face of the dimer brings us back to the same
dimer, i.e., it has a single Seiberg phase).

This effect is important when building particular models, since upon resolving the
daughter singularity in different ways (thus getting Seiberg dual daughters), or upon start-
ing with a different Seiberg dual phase of the mother theory, one obtains different daughter
theories. The latter are usually different from the theories one is interested in putting
together. In this section we describe a procedure, a simple combination of the fast inverse
algorithm described in section 2.4 and the partial resolution algorithm described in sec-
tion 2.5, that allows us to join any two singularities in such a way that upon resolution we
obtain the two desired dimer models for the two daughter singularities.

3.1 The process of unresolving

Let us start with the dimer models that we want to join. For illustration, we reconstruct
the conifold theory out of two copies of flat space. The complete procedure is shown in
figure 7. This particular example does not exhibit any of the subtleties having to do with
Seiberg duality, but the examples in section 4 do, and they can be analyzed in the same
way. In the general case, in addition to specifying the toric singularities that we want
to join, we also should choose the particular dimer model representative of the daughter
singularity that we want to join.

Once we have picked the singularities, we need to choose along which external leg of
their web diagram we want to join them. In general, we might need to perform a SL(2,Z)
transform of the daughter dimer models in order to align the legs that we want to join.
This is always possible if the legs are primitive vectors (i.e., for each vector the components
are relatively prime). If a leg is non-primitive, we write it as a multiple of a primitive vector
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and then the web diagram can only be joined to another diagram with a leg that is the
same multiple of an oppositely oriented primitive vector. In this case, in addition to the
two sectors we want to join, we might have to attach additional daughter singularities in
order to ensure that the combined parent singularity remains toric (we will see examples of
this later). The new sector will not contribute massless degrees of freedom if we do not put
any brane at the corresponding daughter singularity, but it will modify the precise form of
the massive mediators and their couplings to massless modes.

The next step in our graphical algorithm for joining theories is to remove from each
daughter dimer model everything except the external zig-zag paths that survive in the
parent.7 In particular, this removes the zig-zag paths corresponding to the daughter legs
that we are going to join. In the case of the conifold in figure 7, this means leaving only the
A,D zig-zag paths in the first dimer model, and B,C in the second dimer model, removing
all nodes, edges, and and the zig-zag path G.

Finally, we superpose the two sets of remaining zig-zag paths, and compute the new
theory as in the inverse algorithm. By construction, the new theory descends to the two
dimer models we started with upon partial resolution.8

In this graphical algorithm we started by removing all the edges and nodes in the
daughter dimer, and then reconstructed the dimer from the zig-zag paths of the par-
ent theory produced by the joining algorithm. Of course we could have simply left the
daughter edges and nodes in, since the joining algorithm essentially introduces a few new
bifundamentals (edges) and superpotential terms (nodes). It is simply easier as a graphical
technique to proceed as we described, and to reconstruct the dimer model for the joined
theory from scratch.

3.2 Tadpole cancellation

The previous algorithm works without any further subtleties in the case that all faces in
the final (joined) dimer model have the same rank. Note that this condition is equivalent
to each subsector having all its faces of the same rank (although different subsectors can
have different ranks). When all faces have the same rank our dimer model defines a
superconformal field theory [22]. For model building applications we require theories that
are non-conformal. We can achieve this in two ways: (1) by putting fractional branes in
the singularity, and/or (2) by introducing non-compact D7 branes in the geometry. Let us
analyze each of these possibilities in turn.

The first possibility consists of choosing the ranks of the faces in the dimer model
to be different. This situation is usually referred to as putting fractional branes in the

7The resulting diagram is closely related to what is referred to as a harlequin diagram in [28], the

only distinction being that we remove from the harlequin diagram the zig-zag that is going to join the

singularities.
8There is still some ambiguity in how to superpose the two sets of zig-zag paths. Namely, we could

deform the zig-zag paths in such a way that we induce no Yang-Baxter transform (i.e. Seiberg duality

coming from continuation across triple intersections of zig-zag paths [26]) in any of the daughter dimer

models, but we induce one such Yang-Baxter transform in the mother theory. This is perfectly consistent,

and reflects the fact that even if the daughter singularities have their Seiberg dual phase fixed, this does

not fix uniquely the Seiberg dual phase of the mother theory.
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system, since this kind of rank assignment comes from wrapping D5 and D7 branes on the
vanishing cycles (the configuration with all ranks equal corresponds to putting a stack of
D3 branes at the singularity).

In such a configuration local tadpole cancellation becomes an important issue. The
condition for tadpole cancellation in N = 1 quiver gauge theories is that every node in the
quiver has the same number of fundamental and antifundamental chiral multiplets.9 It is
easy to see that this holds in dimer models with faces of equal rank: recall that in a dimer
model, due to the alternating black/white coloring of the nodes, each face has to have an
even number of edges, with alternating orientations, so each face has as many fields in the
fundamental as in the antifundamental.

Once the ranks of the gauge groups are not equal, tadpole cancellation is no longer
guaranteed, and we need to check it for each rank assignment. However, as long as the
theories that we join are tadpole free, the joined singularity appears to be tadpole free
too. Heuristically, the reason why it is enough to satisfy tadpoles in each subsector is that
the compact cohomology charge adds simply when we join singularities. However, we do
not have a complete proof of this observation, and it is certainly no longer true if we add
non-compact D7 branes into the problem, which is often necessary to construct realistic
models. In this case, anomaly cancellation in the joined theory must be checked by hand.

The reason for this is that the requisite D7 branes naturally extend along the external
legs of the web diagram. When we join singularities we might be forced, to have consis-
tency of the construction, to introduce D7 branes along subsectors that did not have them
originally. As an example, let us consider sectors A and B where A had some D7 branes,
while B did not. Upon joining A with B, the D7 branes of A might extend along the
leg that connects A to B and thus have to exit the web diagram along an external leg of
B. This introduces new flavors charged under the fractional branes in B. In general this
also introduces local tadpoles in the theory B. More geometrically, the D7 brane has local
tadpole charge under the compact homology of the new subsector, and we need to cancel
this by adding extra fractional D-branes in the B sector.

Thus, we are forced to change sector B by changing the ranks of the gauge groups,
and by adding extra flavors to it. In some cases this modified model might be just as good
phenomenologically as the original. In general the D7 tadpole condition introduces an
important constraint that the subsectors must satisfy. Even if the constraint is important,
it is certainly possible to build interesting models that satisfy it (see [5] for some examples).

Finally, having obtained the tadpole free dimer model for the parent theory resulting
from joining daughter singularities, we are left to determine the ranks of the gauge groups
in the parent related to the ranks in the daughters. Every face in the parent dimer diagram
descends to part of face in each daughter diagram (the faces in the daughter arise from
removing some edges in the parent). The rank associated to the parent face is the sum of
the ranks of daughter faces that it participates in.

9This condition is the same one as anomaly cancellation of the resulting gauge theory, with the addition

that empty nodes must be anomaly free too. A simple way of understanding this extra condition is that

we can “fill in” the empty nodes without changing the compact tadpoles by bringing a D3 brane into the

singularity. This adds one unit to the rank of all faces, reducing the check for consistency to usual anomaly

cancellation.
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Dark
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SUSY

breaking

Figure 8. Schematic representation of our simple model. The nodes represent the different sub-
sectors of light degrees of freedom. The lines connecting the different nodes represent massive
multiplets charged under the different nodes.

4 A simple dark matter model

With these tools at hand, we can construct local models of dark matter. Our construc-
tions are motivated by simplicity, to illustrate our methods, and phenomenologically better
choices certainly exist. Because our constructions are modular, such improvements are eas-
ily incorporated, as long as they are toric. We present a number of different alternatives
to this model in section 5.

Our model consists of three sectors, coupled by massive mediators: a supersymmetry
breaking sector, a “MSSM” visible sector, and a dark matter sector, which we take to
be a copy of the MSSM sector, with the only difference that it couples differently to the
supersymmetry breaking sector. We show the structure of the resulting theory in figure 8.
We achieve this using the techniques described in previous sections: we locally engineer
each of the sectors as a dimer model, and use toric techniques to paste them together into
a slightly resolved bigger singularity. In fact, a big part of the work has already been done
for us in [5], where a local configuration with two sectors implementing gauge mediated
supersymmetry breaking was described. We explain how to attach a third sector containing
dark matter to the theory found in [5].

In more detail, our visible sector is of the trinified form (SU(3)3 gauge group), and the
dark matter sector is an exact copy of the standard model, as in the well studied mirror
world proposal of [29] (adapted for trinification). We take the supersymmetry breaking
sector to be a theory with a runaway potential and a metastable vacuum at the origin
of moduli space. In section 5.2 we will replace this supersymmetry breaking sector by a
better behaved geometry.

The resulting model is of the “minimal superdark moose” form described in [30]. In
such a model, in order to get weak scale dark matter we want the same mechanism to
set the µ-term in the MSSM and the dark sector. Thus, the µ-term has to be generated
by a common mechanism (such as a D-brane instanton [31–34]) that can appear in the
local geometries of both the dark sector and MSSM, rather than by RG running of the
interactions with the SUSY breaking sector. Our toy models will not generate the µ

term non-perturbatively, but in other local models studied in the literature this can be
arranged. See for instance [34] for a explicit set of semi-realistic models from branes at
toric singularities in which D-brane instantons generate the µ term non-perturbatively.
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Figure 9. a) Toric diagram for the complex cone over dP1. b) The quiver gauge theory for M
DSB branes in the complex cone over dP1. c) Dimer model.

4.1 Supersymmetry breaking sector

One simple way to obtain supersymmetry breaking in local models is to introduce an
appropriate kind of fractional brane in the local geometry. The resulting theory is no
longer conformal, and in particular infrared dynamics generate a runaway superpotential
that breaks supersymmetry. These kinds of branes (called DSB branes in the classification
of [35]) are very generic, the simplest example appearing already in the complex cone
over dP1. For the moment we take this geometry, with the appropriate brane, to be our
supersymmetry breaking sector (we will improve the problem of having a runaway potential
in following sections). The relevant data for this sector is shown in figure 9.

Let us review why this theory has a runaway potential [35, 36]. We denote the fields
going from U(M) to U(2M) as X12, Y12, Z12, the fields going from U(3M) to U(M) X31, Y31

and the field going from U(2M) to U(3M) X23. We can read off the superpotential for the
theory from the dimer model in figure 9c:

W = X23X31Y12 −X23Y31X12. (4.1)

Note in particular that Z12 is decoupled, and parameterizes a flat direction. Since this is
only a toy model, we will ignore this issue in the following.

As we remarked in footnote 3, generically the U(1) factors get masses by mixing with
background RR fields. In the particular case we are dealing with all U(1) factors are
anomalous (except for the overall U(1), which decouples), and thus necessarily get a mass.
So we are in fact dealing with a SU(3M)× SU(2M)× SU(M) gauge theory.

Let us assume that the node of rank 3M confines first. In this case the theory develops
an ADS superpotential, given by [35–38]

W = M21Y12 −M ′21X12 +M

(
Λ7M

3

detM

) 1
M

, (4.2)

where we have introduced the mesons M21 = X23X31, M ′21 = X23Y31, and the mesonic
2M × 2M matrix M = (M21;M ′21). We can easily see the runaway direction from here:
the F-term equations for Y12 and X12 want to set M21 = M ′21 = 0. But now the F-term
equation for the mesons pushes Y12 and X12 to infinity, due to the inverse power of the
meson matrix appearing in the ADS term.
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a) b) c)SU(3)

SU(3)SU(3)

Figure 10. a) Toric diagram for the complex cone over dP0. b) The quiver gauge theory for 3 D3
branes at the singular point of C3/Z3. c) Dimer model, all faces have rank 3.

It is possible to add a metastable vacuum at the origin of the runaway direction in
moduli space by adding vector-like massive matter to our theory [39], see also [40] for gen-
eralizations to a large class of toric singularities. A simple way of achieving this is by intro-
ducing non-compact D7 branes that come close to the singularity. Open strings between the
D3 branes at the singularity and the flavor D7 branes give rise to massive bifundamentals.

In our setup, we have another natural candidate for the massive flavors — the open
strings between the supersymmetry breaking sector and the visible sector. This configu-
ration is an interesting variation of the direct mediation [41, 42] family of models. (See
also [43, 44] for early studies of direct mediation of metastable supersymmetry breaking.)

4.2 The visible/dark matter sector

For the visible and dark matter sectors we choose to put our branes at the singular point
of the C3/Z3 orbifold, also known as the complex cone over dP0. This gives the theory
described in figure 10. These kinds of models with gauge group SU(3)3 and three families
of bifundamentals are usually referred to as trinification models (see for example [45]).
The idea of taking the dark matter sector to be a “mirror world”, namely a copy of the
standard model sector, also has a long history in phenomenology and it is a well studied
possibility [29].

4.3 Putting the different sectors together

As we mentioned in the introduction to this section, part of the work of combining the
three sectors was already done in [5], where one dP1 and one dP0 were joined together into
a X3,1 singularity, studied in [22, 46], see figure 11. We are left to consider the last step of
joining the X3,1 singularity with the complex cone over dP0. From the latter, we then get
a new dark matter sector, given by a copy of the MSSM.

Following the discussion in section 3, this is done by joining technique, placing the
complex cone of dP0 at a finite distance from the X3,1 singularity. Let us consider the X3,1

subsector. The corresponding dimer model is given in figure 11b. We draw the zig-zag paths
of this model in figure 11c. In order to join the singularities, we need to remove the path
corresponding to the internal leg (shown with a dashed line in figure 11c), and superpose
the external legs coming from the C3/Z3 part of the geometry that we are attaching. As
shown in figure 12a, the external legs have slopes (−1,−1) and (−1, 2). In figure 12b we
have superposed a couple of zig-zag paths with those winding numbers to the amputated
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b)a) c)

Figure 11. a) Toric geometry for the X3,1 singularity, obtained by joining the dP0 and dP1

singularities along the dashed line. b) Dimer model. c) Harlequin diagram obtained from the dimer
model. We have indicated with a dashed magenta line the zig-zag path along which we join X3,1

to the C3/Z3 geometry.

a) b) c)
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(−1,−1)

(−1,2)

Figure 12. a) Toric geometry for the three sector model, obtained by joining the X3,1 geometry to
dP0 along the dashed line. We have shown the external legs of the dP0 sector that we are attaching.
b) Harlequin diagram for the joined theory, obtained by adding the external zig-zag paths of C3/Z3

(dashed, in color) to the external zig-zag paths in harlequin diagram of figure 11c (in black). c)
Reconstructed dimer model. We have numbered the faces for later reference.

harlequin diagram obtained from figure 11c. Finally, in figure 12c we have reconstructed
the final dimer model from the set of zig-zag paths, as described in section 2.4.

We have included fractional branes in order to obtain a supersymmetry breaking sector,
so in order to completely specify the model we also need to specify the ranks of the different
faces in the dimer model. This is simple to determine once we have the explicit description
of the resolution in terms of dimer models (see section 3.2). Each face of the mother dimer
model maps to a specific face of the daughter dimer models. The rank of the face in the
mother theory is simply the sum of the ranks of the corresponding faces in the daughter
theory. That is, we have the following expression for the rank of the face i in the mother
dimer model:

rank(Fi) =
∑

daughter d

rank(Fd(Fi)) (4.3)

where Fd(Fi) denotes the face in the daughter dimer model corresponding to Fi in the mother.
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Figure 13. A better toy model for the MSSM, from [47]. The filled dark dots denote gauge groups,
while the white dots denote global symmetry groups, coming from non-compact D7 branes.

The procedure is systematic, so let us just quote the result that we get. Numbering of
the faces as in figure 12c, the rank vector is given by:

~Q = 6 · (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) + (M, 2M,M,M, 0, 3M, 3M, 2M, 3M, 2M). (4.4)

That is, our theory has gauge group SU(6+M)×SU(6+2M)×SU(6+M)× . . .. The first
term comes from the regular branes at the dP0 singularities, corresponding to the standard
model and the dark matter sector (they contribute 3 D3 branes each), and the second term
comes from the fractional brane at the dP1 singularity. It is a simple exercise to check that
there are no tadpoles with this assignment of ranks.

5 Some interesting modifications of the construction

In the previous section we have discussed the construction of a particular dark matter
model. Our construction is highly modular, and this section will illustrate this point by
discussing some interesting modifications of the structure given above. We have chosen
examples that require introducing some extra ingredients into our construction.

5.1 Flavor D7 branes and an improved standard model

We can improve the visible sector using the model in [47],10 which is given by a fractional
brane assignment in the C3/Z3 orbifold, with some non-compact D7 branes with baryonic
charge. The quiver for this theory is shown in figure 13. It includes the usual three
family MSSM (without right handed neutrinos), and some extra vector-like matter. Here
hypercharge does not correspond to the U(1) node (which is anomalous), but rather to a
non-anomalous combination of the abelian factors of the gauge symmetry on the nodes. In
particular, it is given by:

Y =
1
3
Q3 +

1
2
Q2 +Q1 (5.1)

where QN represents the abelian part of the U(N) node.
Let us review for completeness how to introduce flavor in our theories using non-

compact D7 branes passing through the singularity. In the following we will discuss massless
10A number of semi-realistic models involving branes at toric singularities and non-compact D7 branes

have been recently described in [48].
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X21

SU(N1)

SU(N2)

Figure 14. Local representation of a D7 brane, shown as a dashed blue line. SU(N1) and SU(N2)
denote a couple of faces in the dimer model, X21 is an edge connecting them, and the black and
white nodes denote superpotential terms. The dotted lines represent extra edges in the dimer that
do not enter our discussion.

flavors, but it is also possible to discuss massive flavors by introducing D7 branes that do
not touch the singularity [49]. This is very convenient for building models of metastable
supersymmetry breaking, see for example [39, 40].

D7 branes and dimer models. Let us start by briefly reviewing how to represent
non-compact D7 branes in the language of dimer models [39].

Non-compact D7 branes wrap a non-compact divisor of the toric geometry. In terms
of the web diagram, the basic class of non-compact divisors are associated with external
legs. The basic idea is that we can think of the basic divisor zi = 0, where zi is a field in
the gauge linear sigma model (GLSM), as determined by the couple of external legs of the
web diagram bounding it.11

In the mirror of the toric variety, this D7 brane naturally projects to a curve wrapping
a one cycle in a certain Riemann surface. We will explore this Riemann surface extensively
in section 6, but let us postpone that discussion for now. The basic point is that this
Riemann surface naturally encodes the dimer [27], and from the mirror description of the
non-compact D7 brane we can read its description in dimer model terms. The end result
is simple to state: D7 branes wrapped on basic divisors can be introduced as decoration
in the dimer model given by a line going from a face to a neighboring face, crossing one
bifundamental edge.12 We have shown this in figure 14.

The D7 brane introduces a couple of chiral multiplets X17, X72 into the theory, charged
in the bifundamental of the flavor D7-brane group and SU(N(1,2)). There is also a new
superpotential term given by:

WD7 = X72X21X17 (5.2)

where we are omitting the overall trace, as usual.
The improved MSSM given above is easily described in this language. We refer the

reader to [5] for details of the final dimer model, and a two-sector GMSB model involving
one such subsector.

11In general, apart from the geometric divisor class of a D7 brane, we also need to specify the value of

possible Wilson lines on it. The dimer model also captures this information in a natural way.
12There is a simple generalization for D7 branes wrapping general divisors. They get mapped to general

open paths in the dimer model [50, 51].
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Figure 15. a) Dimer model for the Z5 orbifold of the conifold. b) Line orientifold [28] of the
orbifold, giving the model used in [53]. We have denoted the orientifold plane by the vertical blue
dashed line. We have also indicated the ranks of the faces. c) Quiver representation of the theory.
The rightmost (colored) Sp(0) node gives rise to a mass term through a stringy instanton effect.

D7 branes and partial resolution. Upon partial resolution of the singularity the D7-
branes contribute additional matter. This gives one more massive messenger rule in addi-
tion to the four rules given in section 2.5:

5. For each D7-brane passing through an edge of type 1 there is a massive scalar mul-
tiplet in the fundamental representation of the U(N2) gauge factor corresponding to
the resulting recombined face. Similarly for edges of type 2. When there are N7 D7
branes across such an edge the massive multiplet transforms as (ND3, N7).

5.2 Orientifolds and improved supersymmetry breaking

The supersymmetry breaking sector described in the previous section has a couple of im-
portant shortcomings. First of all, it has a decoupled flat direction Z, which generically
gets a mass after supersymmetry breaking (starting with two loops, since it is decoupled at
the level of the superpotential), and might conceivably destabilize the metastable vacuum.
Another important issue is that there is a runaway direction in the potential. While the
metastable vacuum can be made long-lived, it is preferable to have a theory with a bona
fide stable vacuum, in addition to the metastable one. In fact, various such configurations
exist in the context of branes at singularities, see [52–55] for some simple examples that
fit naturally in our toric framework. In this section we will show how we can replace the
supersymmetry breaking sector in section 4 with the one proposed in [53]. Other cases can
be shown to work similarly.
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a b c d e f

C∗ 1 1 -1 -1 0 0
C∗ 0 1 0 4 -5 0
C∗ 4 0 1 0 0 -5

Table 1. GLSM description of the Z5 orbifold of the conifold.

bd

a c

e

f

Figure 16. Toric diagram for the Z5 orbifold of the conifold. The dashed blue line denotes the
action of the orientifold action on the geometry. We have also indicated which non-compact divisors
of the toric geometry are associated with the fields in the GLSM.

Let us start by recalling the proposal of [53]. Consider a Zn orbifold of the conifold,
with n ≥ 5. We take n = 5, for simplicity. The relevant dimer model is shown in figure 15a.
We also introduce an orientifold plane in the configuration, as shown in figure 15b. In [53] it
was shown that such a configuration gives rise to a metastable long-lived ISS vacuum [43],
in addition to the usual supersymmetric vacuum.

We choose the charges of the orientifold planes and the ranks of the faces such that we
have an Sp(0)× SU(N)× SU(N)× SU(N)× SU(1)× Sp(0) gauge theory with vector-like
matter. The different factors in the gauge group require some explanation. The SU(1)
gauge group denotes a face where there is a single fractional D3 brane. The Sp(0) factor
comes from a face mapped to itself under the orientifold action. The sign of the orientifold
is chosen in such a way that it gives rise to Sp(M) factors in the gauge theory. In this
example we put no fractional branes on the face, so we end up formally with a Sp(0)
factor. As it is well understood by now from a variety of different viewpoints (see for
example [53, 56–61], or [62] for a review), Sp(0) gauge groups give rise to non-perturbative
dynamics in string theory due to O(1) D-brane instantons wrapping the Sp(0) node. In our
case, the effect of the instanton is to give a small mass to the bifundamental fields between
the SU(1) node and its neighboring SU(N) node.

Let us see how we can construct a three sector model with this geometry as the
supersymmetry breaking sector, replacing the complex cone over dP1. Our first task is to
understand how the orientifold acts on the geometry. We can determine this as follows.
Consider the GLSM description of the Z5 orbifold of the conifold described in table 1. The
corresponding toric diagram is shown in figure 16. Note that the external nodes of the toric
diagram, which correspond to non-compact divisors of the toric geometry, are associated
with fields in the GLSM. As an example, the upper right hand node of the toric diagram
in figure 16 corresponds to the b = 0 divisor.
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Figure 17. Toric diagram of C3/Z3 after applying (5.6).

The gauge invariants describing the geometry are:

x = a5d5e4f4

y = b5c5ef

z = acf

w = bde

(5.3)

with the constraint xy = z5w5. As discussed in [28], the line orientifold in figure 15 acts as:

z ↔ w, x→ x, y → y (5.4)

We can easily read the action on the GLSM fields a, b, c, d from here, it is given by:

a↔ d, b↔ c, e↔ f (5.5)

Looking to the toric diagram in figure 16, this implies that the orientifold acts as a reflection
of the toric diagram along the dashed line. We will present further evidence for this action,
from the point of view of mirror symmetry, in section 6.3.

Let us now describe how to join the supersymmetry breaking sector to the visible and
dark matter sectors. As in previous sections, we model the latter by two copies of C3/Z3.
Looking to figure 10a, it is clear that we need to perform a SL(2,Z) transformation in order
to be able to join the subsectors. It is most convenient to transform the C3/Z3 geometry
using the following SL(2,Z) action:

T =

(
0 −1
1 1

)
(5.6)

This transformation brings the toric diagram in figure 10a into the form shown in figure 17.

Now we can easily attach the top of figure 17 to the bottom of 16. Due to the action
of the orientifold, we also need to attach a mirror copy on the top. The result of doing this
(including also another copy of C3/Z3 for the dark matter sector) is shown in figure 18.

First, notice that we cannot just join the three sectors and obtain a well defined toric
geometry, since the resulting toric diagram would not be convex. This is easily remedied
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Figure 18. Three sector moose with an improved supersymmetry breaking subsector. We have
denoted the orientifold point by the blue dashed horizontal line. The green dotted rectangle around
the figure denotes the Z5×Z7 orbifold of the conifold which can be used to obtain the gauge theory
of our model, as explained in the text.

by adding the piece in the lower right of figure 18 (and its image on the top right), which
corresponds to a C3/(Z3×Z4) orbifold of flat space. When assigning the ranks of the faces
of the daughter dimer models we can choose to put no branes in the daughter diagram
corresponding to this extra orbifold, so this part of the geometry does not contribute any
massless degrees of freedom. Nevertheless it modifies the details of the resulting theory, in
particular the couplings to the massive sector fields.

Even if the total geometry is complicated, it is actually straightforward to work out
the dimer model description for the joined singularity without having to go through the
joining algorithm. The basic observation is that the singularity that we get can be easily
embedded into a Z5 ×Z7 orbifold of the conifold, as shown by the dotted line in figure 18.
Taking orbifolds of dimer models is very simple, and reduces to increasing the size of the
unit cell [63]. Going from the orbifold of the conifold to our desired geometry involves
removing a C2/Z3×C on the top left (and its image), and a C3/(Z3×Z3) piece on the top
right (and its image). This is done in the dimer using the resolution algorithm described
in section 2.5, so we skip the detailed discussion.
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(2,2)

(1,0)

(0,1)
(1,1)

Figure 19. Toric diagram and web diagram for the C3/Z3 orbifold, also known as the complex cone
over dP0. The labels denote the positions in the square lattice of the nodes in the toric diagram.

6 Mirror description of the small resolution

So far we have focused on the type IIB picture, reviewing the set of rules that describe the
small resolution in terms of a Higgsing of the field theory living on the branes located at
the singularity.

Our type IIB system has a well known mirror description [64, 65]. In fact, as was shown
in [27], the dimer model construction admits a very natural interpretation in the mirror
picture. The effect of the small resolution on the field theory reviewed above can also be
motivated from the mirror [4]. In this section we describe the mirror type IIA intersecting
brane system, and in particular discuss in some detail how to obtain the complex structure
deformation that is mirror to the small resolution we want to perform in type IIB.

The dimer model is most naturally seen as a hybrid description of the system in the
sense that it encodes the relevant information for both sides of the mirror. Any statement
that we make in terms of the dimer model can be easily read in the mirror type IIA
language, and allows us to explicitly implement any of our modular constructions also in
the class of intersecting brane models mirror to branes at toric singularities.13

6.1 The mirror manifold

Let us review in this section the construction of the mirror manifold, referring the reader
to the original references [27, 64, 65] for more details.

Take any toric Calabi-Yau variety, described by a polytope in the two-dimensional
square lattice. For illustrative purposes we choose the complex cone over dP0, shown in
figure 19. It is useful to distinguish between external and internal points in the toric
diagram. In the case of dP0 we have the external points (1, 0), (0, 1), (2, 2), and a single
internal point at (1, 1).14

The type IIA mirror manifold is given by a double fibration over the complex plane
C. Let us denote the coordinate in the complex plane as W . The equations defining the

13See for example [66] for an example of some interesting model building possibilities using type IIA

geometries similar to the ones that we construct.
14Toric diagrams without internal points require extra care [27, 28]. Except for one of our examples in

section 6.2, we work with toric singularities with internal points.
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fibration are:

uv = W (6.1)

P (z, w) = W (6.2)

where u, v ∈ C and z, w ∈ C∗. Here, P (z, w), the Newton polynomial, is given by
the equation

P (z, w) =
∑

(p,q)∈D

c(p,q)z
pwq (6.3)

where the sum is over the positions of the points in the lattice belonging to the toric
diagram (including possible internal points), and c(p,q) are arbitrary complex numbers
parameterizing the complex structure moduli space of the mirror manifold. For dP0 we get
the following Newton polynomial:

P (z, w) = c(1,0)z + c(0,1)w + c(1,1)zw + c(2,2)z
2w2. (6.4)

Notice that there is an ambiguity in the definition of the polynomial, since we have to choose
a particular origin of the lattice, and a SL(2,Z) frame for the embedding. These choices
give rise to isomorphic geometries, since they both arise from the underlying SL(3,Z)
ambiguity of the toric description of the singularity. Acting with this SL(3,Z) changes the
coordinates which we use to describe the GLSM formulation of the toric singularity, but it
does not change the toric space itself.

Equation (6.1) describes a C∗ that degenerates over W = 0 into two intersecting
complex planes, while the most interesting part of the geometry comes from (6.2). This
equation describes a Riemann surface, Σ, of genus equal to the number of internal points
in the toric diagram, fibered over the complex plane W . Σ is actually non-compact, having
one puncture for each external leg of the web diagram. Note that this surface admits a nice
description as a thickening of the web diagram, an observation that we will use extensively
in section 6.2. For an illustration of the thickening in the case of C3/Z3, see figure 20.

The Riemann surface Σ degenerates at n critical points, W = W∗, where n is the
number of triangles in the toric diagram. For example, for C3/Z3 we have that the toric
diagram is made of 3 elementary triangles, so we expect (6.4) to degenerate at 3 points. It is
a simple matter to check that ∂zP (z, w) = ∂wP (z, w) = P (z, w)−W = 0 does indeed have
three different solutions for the three unknowns (z, w,W ). Notice that all the information
about where in the base Σ degenerates is encoded in the c(p,q) coefficients, so giving these
is sufficient to specify the geometry completely. Because of this fact, in the discussion
given below we will focus only on Σ itself, with the understanding that this information is
enough to define a mirror Calabi-Yau manifold via the construction given above.

Before proceeding with mapping Kähler deformations to complex structure deforma-
tions in the mirror manifold, for completeness let us say a few words about the mirror
description of the (fractional) D3 branes. As discussed above, there are n points W∗ on
the base where some one-cycle in Σ degenerates. We also have that the S1 circle in the
C∗ fiber degenerates over W = 0. If we connect W = 0 to any of the n points W∗ by a
segment in the W plane, and consider the total space of the fibration given by the two
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Figure 20. Thickening of the C3/Z3 web diagram, giving the mirror Riemann genus 1 surface Σ.
We have also superposed, using dotted lines, the skeleton web diagram.

S1 circles degenerating at the boundary of the segment, we obtain a S3. Since we have n
critical points W∗, we have n such three-spheres. The mirror of the n different fractional
branes in the original geometry15 are the different D6 branes wrapping these S3 cycles.
The dimer model then arises from the intersection of the S3 cycles over W = 0, and in
particular can be understood purely from intersections of one-cycles over Σ. We refer the
reader to [27] for further details on how this construction works, and how to understand
many of the features of the dimer model from it.

6.2 The amoeba map and small resolutions

Up to now we have described the mirror at a general point in complex structure moduli
space, without yet specifying the values of the c(p,q) coefficients in the Newton polynomial
P (z, w). Recall that we are interested in Kähler deformations that partially smooth out
the singularity, meaning that we blow up some internal two- (or four-) cycles, leaving
separated daughter singularities. In general, mapping Kähler deformations to complex
structure deformations of the mirror is a complicated problem. Fortunately, as we have
seen there is a deep relation between Σ and the web diagram of our singularity, and this
allows us to see which complex deformations do the job of splitting the Riemann surface
into two daughter Riemann surfaces with the right properties.

A tool that we find particularly useful is the amoeba map [67–71], defined as the image
in R2 of the points of Σ (defined as the locus P (z, w) = 0) under:

(z, w)→ (log |z|, log |w|) (6.5)

We illustrate the result of applying this map to the complex cone over dP0 in figure 21.
An important property of the amoeba is that its tentacles align with the external legs

of the web diagram (see figure 21). It is useful for us to work through some examples
15Remember that n is the number of triangles in the toric diagram, which coincides with the number of

nodes of the quiver.
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Figure 21. Amoeba for the Riemann surface mirror to the C3/Z3 orbifold. We have indicated the
web diagram skeleton by the dotted line.

explicitly, so let us show this for the dP0 singularity. (For a general proof, see [27].) Let
us take the following expression for the Newton polynomial defining Σ:

P (z, w) = z + w + dzw + z2w2 = 0, (6.6)

where we have used the freedom to redefine the coordinates in order to make three coeffi-
cients equal to 1. The Kähler deformation parameter of C3/Z3 is encoded in the value for
d. Let us focus on the lower left leg of the web diagram, see figure 19. It is perpendicular
to the edge going from (1, 0) to (0, 1) in the toric diagram. It is easy to see that there is
such a tentacle of the amoeba: it is given by the family of solutions z = −w → 0 (where we
discarded higher order terms in (6.6)). Under the amoeba map, (z,−z) with z → 0 maps
to (t, t) with t→ −∞, reproducing the proper spike.

The other two tentacles work in a similar way. Let us focus on the tentacle going
northwest. The corresponding leg in the web diagram is associated with the edge going
from (0, 1) to (2, 2). In terms of the Newton polynomial, these are the w and z2w2 terms.
Let us thus write the Newton polynomial equation in the following way:

P (z, w) = w(1 + z2w) + z + dzw = 0. (6.7)

Consider the branch of the solution with w →∞. In order to keep the product in the first
term finite, we need z2 = −1/w → 0. Note that the last term dzw, although divergent, is
subleading and can be ignored when computing the asymptotic behavior of the amoeba.
We end up with the following curve of solutions: (z,−1/z2) with z → 0, which maps to
(t,−2t) with t → −∞, matching the result from the web diagram. Finally, in order to
obtain the south-east tentacle, write the curve as:

P (z, w) = z(1 + zw2) + w + dzw = 0. (6.8)

There is a branch of solutions with z →∞ and zw2 = −1, in other words (−1/w2, w) with
w → 0, mapping to (2t,−t) with t→∞.
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The previous discussion can be seen as a way of “undoing mirror symmetry”, in the
sense that the skeleton of the amoeba is given by the web diagram, and represents faithfully
the original toric geometry. It is a natural question whether the same projection can be
used to map complex structure moduli deformations to Kähler moduli deformations. As
we will see in examples below, this is actually possible. In particular, we will argue that
it is possible to identify which complex structure deformations are dual to which Kähler
deformations splitting the original singularity into two smaller singularities.

Before explaining in some selected examples how this works, let us mention a couple
of limitations of the method we will present momentarily. First of all, we are computing
properties of the asymptotics of the amoeba, so we do not see any Kähler deformation that
leaves these invariant. Consider the C3/Z3 geometry we have been using to illustrate our
discussion. As we saw, the d parameter is subleading, and does not influence the asymp-
totics. This is also easy to see from the web diagram: we can blow up the collapsed 4-cycle
keeping the external legs fixed. Luckily, the kinds of the small resolutions that we deal with
in this paper are not of this kind: when we partially blow up the singularity the external
legs get displaced. This is in fact the basic idea of our method: we can compute this dis-
placement easily and reliably looking to the asymptotics. Whichever complex deformation
displaces the tentacles of the amoeba in the right way gets identified with the mirror of the
Kähler blow-up mode.

Secondly, when computing the behavior of the external tentacles the coefficients of
internal points are often subleading, and hard to determine looking only to asymptotics.
In complicated examples we just assume that we know their correct value so they reproduce
the right mirror for the singular daughter geometries. This is not a big problem for us,
since we are mostly interested in giving an explicit description of how to deform the mirror
so we end up with various decoupled (at the massless level) sectors. Knowing which moduli
we have to send to 0 or ∞ is enough for understanding this.

With these limitations in mind, let us discuss how we can understand the geometry of
the mirror better in a simple way in a few interesting examples.

The conifold. We start by considering our favorite example, the conifold. Its Newton
polynomial equation is:

P (z, w) = 1 + z + wz + aw = 0 (6.9)

where we have defined the variables in such a way that the last first coefficients are equal
to 1. The complexified resolution parameter of the conifold is then identified with the
complex structure modulus a. Let us see how we can see this using the amoeba projection.
The west spike of the amoeba is associated with the 1 + aw term. We can satisfy (6.9) by
setting z → 0, w = −1/a. Under the amoeba map, this maps to the line (t,− log |a|) with
t → −∞. It is easy to work out the locations of the other tentacles in a similar way, the
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a) b)

zww

azw2

z

bz2w
α

β

Figure 22. a) Toric diagram for the complex cone over F0. We have indicated the corresponding
terms in the Newton polynomial (6.15). b) Web diagram. The α and β parameters correspond to
the size of the two independent blow-up modes of F0.

result is:

South: (0, t), t→ −∞ (6.10)

West: (t,− log |a|), t→ −∞ (6.11)

North: (log|a|, t), t→∞ (6.12)

East: (t, 0), t→∞ (6.13)

Note that once we send log |a| → −∞ this exactly reproduces the web diagram description
(given in figure 6a) of the resolution of the conifold into two copies of flat space. This tells
us that the right limit of (6.9) to reproduce the splitting is a→ 0, and more generally that
we can identify the resolution parameter v of the conifold with − log |a|.

This is in fact also natural from the point of view of the toric diagram. Sending a→ 0
takes (6.9) into

P (z, w) = 1 + z + wz = 0 (6.14)

which reproduces the equation obtained from the toric diagram of flat space. This result
is general, at least for the examples that we will be dealing with, and can be stated very
simply as follows: in order to obtain the mirror of the resolved geometry, send to 0 the
coefficients of the Newton polynomial located purely on one side of the resolution.

The complex cone over F0. Let us check this rule in a couple of further examples.
The first example we want to discuss is the complex cone over F0 = P1×P1. The toric and
web diagrams are shown in figure 22.

The Newton polynomial equation defining the geometry can be taken to be:

P (z, w) = z + w + zw + azw2 + bz2w (6.15)

We can determine the slope and displacement of the external legs easily using the same
methods as above. For example, in order to compute the displacement of the south-east
tentacle, we need to center on the z + bz2w term in the Newton polynomial. Rewriting
(6.15) as:

P (z, w) = z(1 + bzw) + w + zw + azw2 (6.16)

we obtain a tentacle of the amoeba by sending z →∞ while keeping w = −1/bz. That is,
we obtain the line given by (t,−t− log |b|) with t→∞. We proceed similarly for the other
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azw3

zw2

z

w2z2

wz2zww

b)a)

α

Figure 23. a) Toric diagram for the MSSM and susy breaking sectors in section 4. We have
indicated the desired resolution mode by the dashed lines. We have also indicated which terms
in (6.21) correspond to which vertex. b) Corresponding web diagram. Note that we have not
resolved the internal four-cycles in order to make better contact with the text. We have denoted
the size of the resolved two-cycle by α.

external legs, obtaining:

South-West: (t, t), t→∞ (6.17)

South-East: (t− log |b|,−t) t→∞ (6.18)

North-East: (t− log |b|, t− log |a|) t→∞ (6.19)

North-West: (−t, t− log |a|) t→∞ (6.20)

It is easy to see that this is precisely the structure of external legs in the resolved web
diagram shown in figure 22b, once we identify α = − log |a| and β = − log |b|. This also
matches beautifully with the rule described above: if we wanted to resolve the geometry
into a couple of C2/Z2 × C singularities we tune the Kähler moduli to be α = 0, β → ∞.
This is precisely a = 1, b = 0, which removes the leftmost node in the toric diagram in
figure 22a from the Newton polynomial (6.15).

The X(3,1) geometry. Let us discuss another example, given by the mirror of the
X(3,1) geometry we used in section 4 for modelling the MSSM and susy breaking sectors
in our three sector dark matter model. We reproduce in figure 23 the relevant toric and
web diagrams.

We have a Newton polynomial given by:

P (z, w) = w + azw3 + w2z2 + wz2 + z = 0 (6.21)

where we have omitted the terms corresponding to the internal points, since they do not
modify the asymptotics. As described above, we expect that setting a → 0 splits the
Riemann surface into the two desired daughter Riemann surfaces. We obtain the following
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asymptotics for the tentacles of the amoeba:

North-West: (−2t− log |a|, t), t→∞
North-East: (t+ log |a|, t), t→∞

East: (0, t), t→∞
South-East: (t,−t), t→∞
South-West: (−t,−t), t→∞

It is easy to check that these lines reproduce the structure of the resolved web diagram for
X(3,1) shown in figure 23b, once we set α = − log |a|/3. In particular, the NW and NE
external legs intersect over (−α, 2α) in the plane where the amoeba is defined. The rest of
the legs intersect over (0, 0).

Let us discuss an important point that we have ignored until now, and which will
become useful in a moment. Notice that in doing the blow up both daughter sub-sectors
enter on an equal footing, while our construction seems to depend strongly on which sub-
sector contains the point that we want to “remove” by sending a → 0. However, there
is a way of rewriting things in such a way that the same resolution can be described by
sending the coefficients of the points on the other side of the resolution to zero. Let us
describe how this works in our X(3,1) example. The key observation is that the position
of the origin of the amoeba plane is conventional, so in particular we should be able to
scale our z, w variables in order to put the NW-NE intersection at the origin. The relevant
scaling is given by z̃ = z/ã, w̃ = wã2 with ã3 = a. In terms of these variables the Newton
polynomial equation becomes:

P (z̃, w̃) =
1
ã2

(z̃w̃3 + w̃ + w̃2z̃2) + ãz̃ + w̃z̃2 = 0. (6.22)

Multiplying the whole equation by ã2 we get:

P̃ (z̃, w̃) = z̃w̃3 + w̃ + w̃2z̃2 + ã3z̃ + ã2wz̃2 = 0. (6.23)

Notice how the resulting polynomial now agrees with the general prescription when applied
to the other side of the resolution: setting ã → 0 removes the terms in the Newton poly-
nomial corresponding to that side of the resolution, and indeed resolves the singularity as
desired. In this case the powers of ã are non-trivial, and are determined by imposing that
the external legs corresponding to the dP1 part of the geometry intersect at a single point.

The dark matter model. Just for completeness, let us include here the result for the
mirror of our three-sector dark matter model from section 4. The relevant toric diagram is
shown in figure 24. The Newton polynomial equation (omitting internal points, as usual)
is given by:

P (z, w) = bw2 + z2w3 + zw + w2z3 + a3z2 + a2wz3 = 0. (6.24)

The discussion proceeds just as in the examples given above, and we obtain the factorized
three-sector geometry by sending a→ 0, b→ 0.
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Figure 24. Toric diagram for the dark matter model in section 4. We have indicated the desired
resolutions by dashed lines, and we have associated monomials in (6.24) to their corresponding
edges.

As we have seen in the previous examples, looking to the displacement of the tentacles
via the amoeba map gives a simple way of determining how to deform the Newton poly-
nomial in order to split the system into decoupled sub-sectors. Our construction gives a
simple and very intuitive procedure for determining how to deform the Riemann surface.

6.3 Orientifolds and algae

In section 5.2 we discussed the geometric action of the orientifold in the toric diagram,
or equivalently in the web diagram, and argued from the defining GLSM that the proper
geometric action is a reflection along a horizontal line. Let us shortly describe how the
mirror picture supports this identification.

We described in the previous section how the amoeba map gives a way to map the
behavior of the Riemann surface to the mirror description in terms of the web diagram.
There is a complementary projection of the Riemann surface called the alga projection,
defined by:

(z, w) = (|z|eiα, |w|eiβ)→ (α, β). (6.25)

This projection defines a region on a two torus that turns out to be a thickening of the
dimer model [27]. Let us remark that the dimer model that we obtain is naturally “aligned”
with the web diagram, in the sense that if a leg of the web diagram goes in a (p, q) direction
in the amoeba plane, then the corresponding zig-zag path wraps a (p, q) cycle in the dimer
model T 2.

As described in [28], the above observation can be used to understand the behavior
of the mirror surface under the orientifold action. The basic idea is that the phases of
z, w must transform as the coordinates of the dimer T 2. Since we know the action of the
orientifold on the dimer we can infer its action on the phases of z, w. Combined with the
fact that the orientifold action on the mirror must be anti-holomorphic, we can determine
how z, w transform under the orientifold.
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Consider the configuration studied in section 5.2. The line orientifold reflects the dimer
horizontally, while leaving it invariant vertically. An anti-holomorphic involution that does
this is [28]:

z → z

w → 1
w

(6.26)

Notice that the phase of z changes sign, while the phase of w does not, according to the
fact that the reflection of the dimer model is along the horizontal direction.

It is easy to see the action that (6.26) induces on the amoeba. It is given by:

(log |z|, log |w|) = (s, t)→ (s,−t) (6.27)

The horizontal reflection has turned into a vertical one. Reading the action on the web
diagram from the action on the amoeba, this exactly reproduces the geometric action found
in section 5.2.

7 Conclusions and open questions

We have described a general procedure for joining arbitrary theories coming from branes
at toric singularities into a consistent local embedding which couples them via massive me-
diators. We have applied this technique for building a three sector model of dark matter
consisting of the standard model, a dark matter sector, and a supersymmetry breaking
sector, all interacting via massive mediators of a tunable scale. We have also constructed
some alternative models in order to illustrate the flexibility of our constructions. In par-
ticular, note that some of our examples can be naturally adapted (by forgetting about the
dark matter sector) to become GMSB scenarios with a nicely behaved susy breaking sector.
Finally, we have described the mirror picture of our construction, giving us a procedure
for joining a large class of intersecting brane configurations (specifically, those mirror to
branes at toric singularities).

There are various interesting directions in which our results can be extended. The most
obvious one is to generalize our construction to models of branes at non-toric singularities.
In particular, the case of branes at singular non-toric del Pezzos can be analyzed using
exceptional collections [72, 73]. It would be interesting to develop techniques to analyze
these cases in a way similar to the one we have developed in this paper.16 Being able to
handle higher del Pezzo singularities would allow for some very interesting model building
possibilities [33, 75].

Another related line of research concerns the relation to recent model building work
based on local F-theory constructions (see [76–80] for some of the original papers). Most
of the subsectors in this paper are based on blown down del Pezzo surfaces. The same kind
of geometry, but blown up and having a different choice of wrapped brane, can be used to

16The first four complex cones over del Pezzo are actually toric, and can be understood both from the

point of view of exceptional collections and dimer models. Furthermore, for these cases the map between

the two approaches is well understood by now [74].
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construct semi-realistic models of the MSSM GUTs in F-theory. It would be interesting to
construct “hybrid” models, having the visible sector coming from a D7 wrapping a large
blown-up del Pezzo, while having branes at singularities nearby providing for susy breaking
and interacting dark matter. In fact some of these hybrid models have already been studied
in the literature [3].

The models that we have constructed are based on small resolutions, and are thus
controlled by Kähler moduli. In our local constructions these are flat directions. We have
assumed that we can tune the Kähler moduli as we wish, but in any realistic setting one
must construct a detailed moduli stabilization scenario. This depends on global features
of our model, and is thus beyond the reach of the tools discussed in this paper. Related to
this last point, we expect the global embedding of our construction to introduce interesting
constraints in the local physics. It would thus be useful to have a better understanding of
possible global completions of our models.

There is an alternative to our construction which improves on this moduli stabilization
problem, at the cost of making the models less calculable. The idea is to trigger geometric
transitions by putting confining D-branes on the singularity. Once the branes confine, we
end up with daughter singularities separated by three cycles stabilized by the dual flux.
Similar techniques to the ones presented in this paper apply to this scenario [4, 5, 35]. The
problem with this setup is that one losses calculability of the mediator sector, which is
now determined by the spectrum of states in the confining theory. This is a well defined
question, but the answer is very hard to determine with available tools.

As we discussed in section 6, our analysis carries over easily to the context of intersect-
ing branes in type IIA. Under mirror symmetry, the resolutions that we have constructed
in type IIB map to complex structure deformations of the type IIA background. In type
IIA it is possible to stabilize complex structure moduli by the introduction of H3 and
geometric flux [81–84], so the problem of moduli stabilization may in principle be ame-
liorated. Unfortunately, studying in detail the backreaction of the flux on the type IIA
geometry is an involved problem, and thus it is hard to construct explicit models with all
moduli stabilized.

Finally, in this paper we have focused mainly on developing tools, and understanding
the construction better via some toy models. It would be interesting to construct more
realistic models of interacting dark matter and/or gauge mediated supersymmetry breaking
using these tools, and analyze their phenomenology in more detail.
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