# $FE\mathchar`-FE\mathchar`-I4$ -The New ATLAS Pixel Chip for Upgraded LHC Luminosities-

Marlon Barbero, Bonn University (for the FE-I4 Collaboration)

IEEE NSS 2009, Orlando, Florida, USA Oct. 25<sup>th</sup>-31<sup>st</sup> 2009





#### Contents

- Upgrades: IBL / sLHC.
  - → FE-I4, new ATLAS pixel FE for IBL & sLHC.
- Analog pixel.
- Digital pixel and digital Double-Column.
- Periphery.
- Yield.
- Conclusion and milestones.





#### FE-I4 for IBL & sLHC





ATLAS Pixel Detector

3 barrel layers / 3 end-caps end-cap: z $\pm$  49.5 / 58 / 65 cm barrel: r~ 5.0 / 8.8 / 12.2 cm

Present beam pipe & B-Layer

• <u>IBL (~2014)</u>: inserted layer • in current pixel detector.



IBL mounted on beam pipe



- All Silicon.
- Long Strips/ Short Strips / Pixels.
- Pixels
  - 2 or 3 fixed layers at 'large' radii (large area at 16 / 20 / 25 cms?)
    -2 removable layers at 'small' radii



Marlon Barbero, FE-I4 Chip, IEEE NSS 09, Orlando, Florida, USA, Oct. 27<sup>th</sup> 2009



## Motivation for Redesign of FE

#### • Need for a new FE? $\longrightarrow$ FE-I<sub>3</sub> $\rightarrow$ FE-I<sub>4</sub>

- Accommodate higher hit rate (smaller b-layer radius + luminosity increase)
   → Architecture based on local memories (no column-drain mechanism).
- Smaller pixel size: enhanced granularity and reduced cross-section.
- Reduced periphery & bigger chip: higher active area fraction (<75% → ~90%); cost down for sLHC (main driver is flip-chip, costs per chip).</li>
   Big chip a challenge: power (routing, start-up), clk. distrib., yield...
- Simple module: No Module Controller  $\rightarrow$  More digital functions into the FE.
- Power efficient design & new concepts: Analog design for reduced currents; decrease of digital activity (digital logic sharing for neighbor pixels); new powering concepts. 8 metal layers [2 thick Alu.] → Power routing.
- New technology:  $\longrightarrow$  0.25 µm  $\rightarrow$  130 nm
  - Higher integration density for digital circuits, radiation-hardness (no Enclosed Layout Transistor), availability on timescales of our experiments.





# Some Target Specs for FE-I4

- Rad.-hardness: >200 MRad ionizing dose (FE-I3: >50 Mrad). Minimal guidelines: no ELT, minimal size and guard rings only for analog & sensitive digital circuitry.
- ToT coded 4 bits.
- DC leakage current tolerant to > 100 nA.







# Analog Pixel





- In FE-I4 proto1 (FE-I4 prototype submitted in 2008):
- 2-stage architecture optimized for low power, low noise, fast rise time.  $\rightarrow$  regul. casc. preamp. nmos input.
  - $\rightarrow$  folded case. 2<sup>nd</sup> stage pmos input.
  - $\rightarrow$  Additional gain, Cc/Cf2~6.
  - $\rightarrow$  2<sup>nd</sup> stage decoupled from leakage related DC potential shift.

 $\rightarrow$  Cf1~17fF (~4 MIPs dyn. range).

#### 12b configuration:

- $\rightarrow$  FDAC: tuning feedback current.
- $\rightarrow$  TDAC: tuning of discriminator threshold.
- $\rightarrow$  Local charge injection circuitry.





Marlon Barbero, FE-I4 Chip, IEEE NSS 09, Orlando, Florida, USA, Oct. 27th 2009

#### Analog Pixel: Noise & Irradiation



# **Digital Pixel: Regional Architecture**

#### **4-Pixel Unit**



- Store hits locally in region until L1T.
- Only 0.25% of pixel hits are shipped to EoC  $\rightarrow$  DC bus traffic "low".
- Each pixel is tied to its neighbors -time info-(clustered nature of real hits). Small hits are close to large hits! To record small hits, use position instead of time. Handle on TW.

#### **Consequences:**

- Spatial association of digital hit to recover • lower analog performance.
- Lowers digital power consumption (below •  $10 \,\mu\text{W}$  / pixel at IBL occupancy).
- Physics simulation  $\rightarrow$  Efficient architecture. •





### Performance / Efficiency



ilizium Labor Bonr

| D        | D (C  | O       |
|----------|-------|---------|
| Regional | Duner | Overnow |

| Memories | Simulation |        | Analytical |        |
|----------|------------|--------|------------|--------|
|          | IBL        | 10xLHC | IBL        | 10xLHC |
| 5        | 0.047%     | 2.19%  | 0.029%     | 2.25%  |
| 6        | 0.011%     | 0.65%  | 0.003%     | 0.57%  |
| 7        | <0.01%     | 0.16%  | <0.01%     | 0.13%  |

#### **Inefficiency**:

- Pile-up inefficiency (related to pixel x-section • and return to baseline behavior of analog pixel)  $\rightarrow \sim 0.5\%$ .
- Regional buffer overflow  $\rightarrow \sim 0.05\%$ . •
- Inefficiency under control for IBL occupancy.



### Digital Column Architecture

• 168 regions + CLK + buffering scheme  $\rightarrow$  1 digital DC









### Pixel Layout



Power distribution and shield on top metals. Only vertical - no analog/digital crossing

Note: Digital ground tied to substrate, mixed signal environment BUT digital region placed in "T3" deep n-well.



Marlon Barbero, FE-I4 Chip, IEEE NSS 09, Orlando, Florida, USA, Oct. 27th 2009



















![](_page_19_Figure_0.jpeg)

# Yield

- Estimated from:
  - Small analog test chips.
  - 8 fully tested wafers of Medipix 3 ICs, assuming same defect density for synthesized logic.
- Expect of order ~39% digitally perfect chips.
- Yield enhancement:
  - Triple redundant read tokens.
  - Hamming coded pixel data and address (w. minimal # of gates).
  - Redundant configuration shift register.
- → Fully functional chips yield might be as high as 76%. (with isolated dead pixels at level <0.1%).</li>

![](_page_20_Picture_10.jpeg)

![](_page_20_Picture_12.jpeg)

### Test Chip Submission

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

Marlon Barbero, FE-I4 Chip, IEEE NSS 09, Orlando, Florida, USA, Oct. 27th 2009

![](_page_21_Picture_4.jpeg)

### Schedule and more information

**<u>Schedule</u>**: Submission planned for End 2009

(submission readiness review 3-4 Nov. 2009)

#### • <u>Few references</u>:

- "Development of the ATLAS FE-I4 pixel readout IC for b-layer Upgrade and Super-LHC", M. Karagounis *et al*, proceedings of TWEPP 2008.
- "Design and Measurements of SEU tolerant latches", M. Menouni *et al*, proceedings of TWEPP 2008.
- "New ATLAS Pixel Front-End IC for Upgraded LHC Luminosity", M. Barbero *et al*, submitted to Nucl. Instr. Meth. A, Sept. 2008.
- "Digital Architecture and Interface of the New ATLAS Pixel Front-End IC for Upgraded LHC Luminosity", D. Arutinov *et al*, IEEE Trans. Nucl. Sci. 56, 388 (2009).
- "An Integrated Shunt-LDO Regulator for Serial Powered Systems", M. Karagounis *et al*, Proceedings of the 35th European Solid-State Circuits Conference, 2009.
- "Charge Pump Clock Generation PLL for the Data Output Block of the Upgraded ATLAS Pixel Front-End in 130 nm CMOS", A. Kruth *et al*, Proceedings TWEPP 2009.
- "Low Power Discriminator for ATLAS Pixel Chip", M. Menouni *et al*, proceedings of TWEPP 2009.
- More information: <u>Poster later this morning</u>

"Digital Architecture of the new ATLAS Pixel Chip FE-I4" (Session N13, 'Posters I' Location: Grand Ballroom 4 / 5. Oct. 27, 10:30-12:00).

![](_page_22_Picture_13.jpeg)

![](_page_22_Picture_15.jpeg)

### backup

# BACKUP SLIDES

![](_page_23_Picture_2.jpeg)

Marlon Barbero, FE-I4 Chip, IEEE NSS 09, Orlando, Florida, USA, Oct. 27th 2009

![](_page_23_Picture_4.jpeg)