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Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super

Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctua-

tions, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensi-

tive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment

at the SPS is also discussed.
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1. Introduction and motivation
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Figure 1: Chemical freeze-out points in NA49
(red) and those expected in NA61 (violet).CP1

andCP2 were considered in NA49 as possible lo-
cations of the critical point:µB(CP1) from lat-
tice QCD calculations [1] andCP2 assuming that
the chemical freeze-out point of p+p data at 158A
GeV may be located on the phase transition line.

Theoretical calculations suggest that the
critical point (CP) of strongly interacting matter
may be accessible in the SPS energy range [1].
We studied event-by-event averagepT and mul-
tiplicity fluctuations, as well as transverse mass
spectra of baryons and anti-baryons which are
suggested observables sensitive to effects of the
CP in ultra-relativistic heavy ion collisions.

The effects are expected to be maximal
when freeze-out happens near the critical point.
The position of chemical freeze-out point in the
(T � µB)diagram can be varied by changing the
energy and the size of the colliding system (Fig.
1). Therefore we analyzed in NA49 [2] the en-
ergy dependence of the proposed CP sensitive
observables for central Pb+Pb collisions (beam
energies 20A-158A GeV), and their system size dependence (p+p, C+C, Si+Si, andPb+Pb) at the
highest SPS energy.

2. Event-by-event averagepT and multiplicity fluctuations

Enlarged event-by-event fluctuations of multiplicity N andmeanpT were suggested as a sig-
nature of the critical point [3]. The NA49 experiment used the ΦpT correlation measure [4, 5] and
the scaled variance of the multiplicity distributionω [6, 7] to study averagepT andN fluctuations,
respectively. Forω , we selected very central collisions only (1% most central)due to its strong
dependence on fluctuations of the number of participantsNpart.

The energy (µB) dependence ofΦpT andω together with predictions forCP1 were presented at
this conference (see also [8]). The NA49 data show no significant peak in the energy dependence
of ΦpT andω at SPS energies thus providing no indications of the critical point atCP1 (see Fig. 1).

Figures 2 and 3 present the system size (Tchem
1) dependence ofΦpT andω . The lines corre-

spond to predictions forCP2 (see Fig. 1) with estimated magnitude of the effects2 for ΦpT and
ω atCP2 taken from Ref.[3, 9] assuming correlation lengthsξ decreasing monotonically with de-
creasing system size: a)ξ (Pb+Pb) = 6 fm andξ (p+p) = 2 fm (dashed lines) or b)ξ (Pb+Pb) = 3
fm andξ (p+p) = 1 fm (solid lines). The width of the enhancement due toCP in the (T;µB) plane
is based on Ref. [12] and taken asσ(T)� 10 MeV. A maximum ofΦpT andω is observed for
C+C and Si+Si interactions at the top SPS energy. It is two times higher for all charged than for
negatively charged particles, as expected for the effect ofthe CP [3]. Results presented in Figs. 2
and 3 suggest that the NA49 data are consistent withCP2 predictions.

1Tchemvalues were taken from fits of the hadron gas model [11] to particle yields.
2Predicted magnitudes include corrections by NA49 due to thelimited rapidity range (forward-rapidity) and az-

imuthal angle acceptance of the detector.
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Figure 2: System size dependence ofΦpT at 158A GeV (forward rapidity, NA49 azimuthal angle accep-
tance) showing results from p+p, semi-central C+C (15.3%) and Si+Si (12.2%), and 5% most central Pb+Pb
collisions [4]. Lines correspond toCP2 predictions (see text) shifted to reproduce theΦpT value for central
Pb+Pb collisions.
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Figure 3: System size dependence ofω at 158A GeV (forward rapidity, NA49 azimuthal angle acceptance)
for the 1% most central p+p [6], C+C and Si+Si [10], and Pb+Pb collisions [7]. Lines correspond toCP2

predictions (see text) shifted to reproduce theω value for central Pb+Pb collisions.

It is expected that fluctuations due to the CP originate mainly from low pT pions [3]. Therefore
the NA49 analysis ofΦpT was performed also for two separatepT regions (Figs. 4 and 5). Indeed,
the highpT region shows fluctuations consistent with zero (Fig. 4) and correlations are observed
predominantly at lowpT (Fig. 5). However, in lowpT region, data do not show a maximum of
ΦpT , but a continuous rise towards Pb+Pb collisions. The originof this behavior is currently being
analyzed (short range correlations are considered).

3. Transverse mass spectra of baryons and anti-baryons

It was suggested [13] that the critical point serves as an attractor of hydrodynamical trajecto-
ries in the(T;µB)phase diagram. This was conjectured to lead to a decrease of the anti-baryon
to baryon (̄B=B) ratio with increasing transverse momentum. The ¯p=p, Λ̄=Λ, andΞ̄+

=Ξ� ratios
versus reduced transverse massmT � m0 were studied by the NA49 experiment [8] and presented
at this conference. The slopes of all threeB̄=B ratios show no significant energy dependence, thus
implying that transverse mass spectra ofB andB̄ do not provide evidence for the critical point in
the SPS energy range.
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Figure 4: The same as Fig. 2 but highpT region shown (0:5< pT < 1:5 GeV/c).
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Figure 5: The same as Fig. 2 but lowpT region shown (0:005< pT < 0:5 GeV/c).

4. Summary of NA49 results and strategy of NA61/SHINE

The energy dependence of averagepT and multiplicity fluctuations, and ratios of the anti-
baryon/baryon transverse mass spectra in central Pb+Pb collisions provide no indications of the
critical point. The system size dependence at 158A GeV exhibits a maximum of meanpT and
multiplicity fluctuations in the completepT range (consistent withCP2 predictions) and an increase
(from p+p up to Pb+Pb) of meanpT fluctuations in the lowpT region. The lowpT region will be
carefully analyzed for the effects of short range correlations onΦpT andω .

A detailed energy and system-size scan is necessary to establish the existence of the critical
point. Therefore the CP search will be continued by the NA61/SHINE [14] experiment which is
based on the upgraded NA49 detector. We plan to perform a two-dimensional scan with lighter
ions (p+p, C+C, S+S, In+In) in a broad beam energy range (10A - 158A GeV). The hypothetical
chemical freeze-out points in the NA61 experiment are presented in Fig. 1.Together with existing
NA49 data the scan may help to locate the QCD critical point inthe(T;µB)phase diagram.
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