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I. INTRODUCTION

TheN ¼ 8 supergravity theory in d ¼ 4 [1] and d ¼ 5
[2] dimensions is a remarkable theory which unifies the
gravitational fields with other lower spin particles in a
rather unique way, due to the high constraints of local
N ¼ 8 supersymmetry, the maximal one realized in a
four-dimensional (4D) Lagrangian field theory. These
theories, particularly in four dimensions, are supposed to
enjoy exceptional ultraviolet properties. For this reason,
4D supergravity has been advocated not only as the sim-
plest quantum field theory [3], but also as a potential
candidate for a finite theory of quantum gravity, even
without its completion into a larger theory [4]. Maximal
supergravity in highest dimensions has a large number of
classical solutions [5] which may survive at the quantum
level. Among them, there are black p branes of several
types [6] and interestingly, 4D black holes (BH) of differ-
ent nature.

On the other hand, theories with lower supersymmetries
(such as N ¼ 2) emerging from Calabi-Yau compactifi-
cations of M theory or superstring theory admit extremal
black hole solutions that have been the subject of intense
study because of their wide range of classical and quantum
aspects. For asymptotically flat, stationary, and spherically
symmetric extremal black holes, the attractor behavior
[7,8] has played an important role not only in determining
universal features of fields flows toward the horizon, but
also to explore dynamical properties such as wall crossing
[9] and split attractor flows [10], the connections with
string topological partition functions [11], and relations
with microstates counting [12]. Therefore, it has become
natural to study the properties of extremal black holes not
only in the context of N ¼ 2, but also in theories with
higher supersymmetries, up to N ¼ 8 [13–22].

In N ¼ 8 supergravity, in the Einsteinian approxima-
tion, there is a nice relation between the classification of
large black holes which undergo the attractor flow and
charge orbits which classify, in a duality invariant manner,
the properties of the dyonic vector of electric and magnetic
charges Q ¼ ðp�; q�Þ (� ¼ 0; . . . ; 27 in d ¼ 4) [23,24].
The attractor points are given by extrema of the 4D black

hole potential, which is given by [16,17]

VBH ¼ 1
2ZABZ

�AB ¼ hQ;VABihQ; �VABi; (1.1)

where the central charge is the antisymmetric matrix
(A; B ¼ 1; . . . ; 8)

ZAB ¼ hQ;VABi ¼ QT�VAB ¼ f�ABq� � h�ABp
�;

(1.2)

the symplectic sections are

VAB ¼ ðf�AB; h�ABÞ; (1.3)

and � is the symplectic invariant metric.
An important role is played by the Cartan quartic invari-

ant I4 [1,25] in that it only depends on Q and not on the
asymptotic values of the 70 scalar fields ’. This means that
if we construct I4 as a combination of quartic powers of the
central charge matrix ZABðq; p; ’Þ [26], then the ’ depen-
dence drops out from the final expression

@

@’
I4ðZABÞ ¼ 0: (1.4)

Analogue (cubic) invariants I3 exist for black holes and/or
(black) strings in d ¼ 5 [8,23]. These are given by

I3ðpIÞ ¼ 1

3!
dIJKp

IpJpK; (1.5)

I3ðqIÞ ¼ 1

3!
dIJKqIqJqK; (1.6)

where dIJK, dIJK are the ð27Þ3 E6ð6Þ invariants.

Consequently, the d ¼ 4 E7ð7Þ quartic invariant takes the

form

I4ðQÞ ¼ �ðp0q0 þpIqIÞ2

þ 4

�
�p0I3ðqÞ þ q0I3ðpÞ þ @I3ðqÞ

@qI

@I3ðpÞ
@pI

�
: (1.7)

On the other hand, in terms of the central charge matri-
ces Zabð�; qÞ [in d ¼ 5 this is the 27 representation of
USpð8Þ] and ZABð�;p; qÞ [in d ¼ 4 this is the 28 of
SUð8Þ], their expression is
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I3ðqÞ ¼ Zab�
bcZcd�

dqZqp�
pa; Zab�

ab ¼ 0; (1.8)

I4ðp; qÞ ¼ 1
4½4TrðZZyZZyÞ � ðTrZZyÞ2
þ 32ReðPfZABÞ�; (1.9)

where ZZy ¼ ZAB
�ZCB, �ab is the 5D symplectic invariant

metric, and the Pfaffian of the central charge is [1]

PfðZABÞ ¼ 1

244!
�ABCDEFGHZABZCDZEFZGH: (1.10)

In fact, these are simply the (totally symmetric) invariants
which characterize the 27 dimensional representation of
E6ð6Þ and the 56 dimensional representation of E7ð7Þ, which
are the U-duality [27] symmetries of N ¼ 8 supergravity
in d ¼ 5 and d ¼ 4, respectively.

When charges are chosen such that I4 and I3 are not
vanishing, one has large black holes, and in the extremal
case, the attractor behavior may occur. However, while at
d ¼ 5 there is a unique ( 18 -BPS) attractor orbit with I3 �

0, associated to the space [24,28]

O d¼5 ¼
E6ð6Þ
F4ð4Þ

; (1.11)

at d ¼ 4 two orbits emerge, the BPS one

O d¼4;BPS ¼ E7ð7Þ
E6ð2Þ

; (1.12)

and the non-BPS one with different stabilizer

O d¼4;non-BPS ¼
E7ð7Þ
E6ð6Þ

: (1.13)

Such orbits have further ramifications in theories with
lower supersymmetry, but it is the aim of this paper to
confine our attention to the N ¼ 8 theory.

In this paper, extending a previous result for N ¼ 2
theories [29], we elucidate the connection between these
configurations, and we relate the critical points of the
N ¼ 8 black hole potential of the five-dimensional (5D)
and 4D theories. To achieve this goal, we use a formulation
of 4D supergravity in a E6ð6Þ duality covariant basis [30],

which is appropriate to discuss a 4D/5D correspondence.
This is not the same as the Cremmer-Julia [1] or de Wit-
Nicolai [31] manifest SOð8Þ [and SLð8;RÞ] covariant for-
mulation, but it is rather related to the Sezgin-Van
Nieuwenhuizen 5D/4D dimensional reduction [32].
These two formulations are related to one another by dual-
izing several of the vector fields, and therefore they inter-
change electric and magnetic charges of some of the 28
vector fields of the final theory. The precise relation be-
tween these theories was recently discussed in [33].

The paper is organized as follows. In Sec. II, we rewrite
the 4D black hole potential in terms of central charges.
This is essential in order to discuss the supersymmetry
properties of the solutions. In fact, in the specific solutions
we consider in Secs. III and IV, BPS and non-BPS critical
points are simply obtained by some charges sign flip. This
will manifest in completely different symmetry properties
of the central charge matrix, in the normal frame, at the
fixed point. These properties reflect the different character
of the BPS and non-BPS charge orbits.
The solutions of the critical point equations are particu-

larly simple in the ‘‘axion-free’’ case, discussed in Secs. III
and IV, which only occur for some chosen charge configu-
rations. In Sec. III, we derive critical point equations that
are completely general and that may be used to study any
solution.
The formula for the N ¼ 8 potential given in Sec. II

was obtained in an earlier work [33], and it is identical to
the N ¼ 2 case [29]. The only difference relies in the
kinetic matrix aIJ which, inN ¼ 2 is given by real special
geometry, while in N ¼ 8 is given in terms of the E6ð6Þ
coset representatives [16,32]. However, in the normal
frame, when we suitably restrict to two moduli, this matrix
does indeed become an N ¼ 2 matrix, although the in-
terpretation in terms of central charges is completely
different.
The supersymmetry properties of the solutions in the

N ¼ 8 and N ¼ 2 theories are compared in Sec. IVD.
We will see that in the N ¼ 2 interpretation, depending
on the sign of the charges, both a BPS and a non-BPS
branch exist in d ¼ 5, while two non-BPS branches exist in
the d ¼ 4 theory. In N ¼ 8, the occurrence of one less
branch in both dimensions is due to the fact that the central
and matter charges of theN ¼ 2 theory are all embedded
in the central charge matrix of the N ¼ 8 theory. The
higher number of attractive orbits can also be explained by
the different form of the relevant noncompact groups and
their stabilizers for the moduli space of solutions.

II. 4D/5D RELATIONS FOR THE N ¼ 8
EXTREMAL BLACK HOLE POTENTIAL

In this section, we remind the reader how the N ¼ 8
potential was derived in a basis that illustrates the relation
between 4 and 5 dimensions [33].
Using known identities [17,34], the black hole potential

can be written as a quadratic form in terms of the charge
vector Q and the symplectic 56� 56 matrix MðN Þ,
related to the 4D vector kinetic matrix N ��

VBH ¼ �1
2Q

TMðN ÞQ; (2.1)

where M is

M ðN Þ ¼ ImN þ ReN ðImNÞ�1 ReN �ReN ðImN Þ�1

�ðImN Þ�1 ReN ðImN Þ�1

� �
: (2.2)
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The indices �, � of N �� are now split as (0; I),
according to the decomposition of 4D charges with respect
to 5D ones, thus N �� assumes the block form

N �� ¼ N 00 N 0J
N I0 N IJ

� �
: (2.3)

The kinetic matrix depends on the 70 scalars of the
N ¼ 8 theory, which are given, in the 5D/4D Kaluza-
Klein reduction, by the 42 scalars of the 5D theory (en-
coded in the 5D vector kinetic matrix aIJ ¼ aJI), by the 27
axions aI and the dilaton field e�. In a normalization that is
suitable for comparison to N ¼ 2, it has the form

N �� ¼
1
3d� iðe2�aIJaIaJþe6�Þ �1

2dJþ ie2�aKJa
K

�1
2dIþ ie2�aIKa

K dIJ� ie2�aIJ

 !
;

(2.4)

where

d� dIJKa
IaJaK; dI � dIJKa

JaK; dIJ � dIJKa
K:

(2.5)

The black hole potential of [33], computed from (2.1)
using the above formulas, can be rearranged as

VBH ¼ 1

2
ðp0e�aIÞaIJðp0e�aJÞ þ 1

2
ðp0e3�Þ2 þ 1

2

�
d

6
p0e�3�

�
2 þ 1

2

�
1

2
e��p0dI

�
aIJ

�
1

2
e��p0dJ

�

þ 1

2
� 2ð�p0e�aIÞaIJðpJe�Þ þ 1

2
� 2

�
d

6
p0e�3�

��
� 1

2
pIdIe

�3�

�
� 1

2
� 2

�
1

2
p0e��dI

�
aIJðpKdKJe

��Þ

þ 1

2
ðe�pIÞaIJðe�pJÞ þ 1

2

�
1

2
e�3�pKdK

�
2 þ 1

2
ðe��pKdKIÞaIJðe��pLdJLÞ þ 1

2
� 2ðq0e�3�Þ

�
d

6
p0e�3�

�

þ 1

2
� 2ðqIaIe�3�Þ

�
d

6
p0e�3�

�
þ 1

2
� 2ðqIe��ÞaIJ

�
1

2
p0dJe

��

�
� 1

2
� 2ðq0e�3�Þ

�
1

2
pIdIe

�3�

�

� 1

2
� 2ðqIaIe�3�Þ

�
1

2
pJdJe

�3�

�
� 1

2
� 2ðqIe��ÞaIJðpKdKJe

��Þ þ 1

2
ðq0e�3�Þ2

þ 1

2
� 2ðq0e�3�ÞðqIaIe�3�Þ þ 1

2
ðqIaIe�3�Þ2 þ 1

2
ðqIe��ÞaIJðqJe��Þ; (2.6)

with aIJ ¼ a�1
IJ . This form shows that it can be written in

terms of squares of electric and magnetic components as

VBH ¼ 1
2ðZe

0Þ2 þ 1
2ðZ0

mÞ2 þ 1
2Z

e
Ia

IJZe
J þ 1

2Z
I
maIJZ

J
m; (2.7)

provided one defines

Ze
0 ¼ e�3�q0 þ e�3�qIa

I þ e�3� d

6
p0 � 1

2e
�3�pIdI;

Z0
m ¼ e3�p0; Ze

I ¼ 1
2e

��p0dI � pJdIJe
�� þ qIe

��;

ZI
m ¼ e�pI � e�p0aI: (2.8)

In order to get the symplectic embedding of the four
dimensional theory, we still need to complexify the central
charges. To this end, we define the two complex vectors

Z0 � 1ffiffiffi
2

p ðZe
0 þ iZ0

mÞ; Za � 1ffiffiffi
2

p ðZe
a þ iZa

mÞ; (2.9)

where

Ze
a ¼ Ze

I ða�1=2ÞIa; Za
m ¼ ZI

mða1=2ÞaI ; (2.10)

such that

VBH ¼ jZ0j2 þ Za
�Za; (2.11)

where now a ¼ 1; . . . ; 27 is a flat index, which can be
regarded as a USpð8Þ antisymmetric traceless matrix.

The potential at the critical point gives the black hole
entropy corresponding to the given solution, which in d ¼
4 reads

SBH
�

¼
ffiffiffiffiffiffiffi
jI4j

q
¼ Vcrit

BH ; (2.12)

while in d ¼ 5 it is [35]

SBH
�

¼ 33=2jI3j1=2 ¼ ð3Vcrit
5 Þ3=4; (2.13)

where I4 and I3 are the invariants of the N ¼ 8 theory in
d ¼ 4 and d ¼ 5, respectively.

Symplectic sections

In virtue of the previous discussion, we can trade the
central charge (1.2) for the 28-component vector

ZA ¼ f�Aq� � h�Ap
�; (2.14)

where f and h are symplectic sections satisfying the fol-
lowing properties [36,37]:
(a) N �� ¼ h�Aðf�1ÞA�,
(b) iðfyh� hyfÞ ¼ Id,
(c) fTh� hTf ¼ 0.

Notice that one still has the freedom of a further trans-
formation

h ! hM; f ! fM; (2.15)
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as it leaves invariant the vector kinetic matrix N , as well
as relations (a)–(c), when M is a unitary matrix

MMy ¼ 1: (2.16)

Indeed, when the central charge transforms as

Z ! ZM; ZZy ! ZMMyZy ¼ ZZy; (2.17)

the black hole potential

VBH � ZZy (2.18)

is left invariant. In our case, we rearrange the 28 indices
into a single complex vector index, to be identified, for a
suitable choice of M, with the two-fold antisymmetric
representation of SUð8Þ, according to the decomposition
28 ! 27þ 1 of SUð8Þ ! USpð8Þ; we thus have

Z0 ¼ f�0q� � h�0p
�

¼ f00q0 þ fJ0qJ � h00p
0 � hJ0p

J;

Za ¼ f�aq� � h�ap
�

¼ f0aq0 þ fJaqJ � h0ap
0 � hJap

J;

(2.19)

which, from the definition in (2.9) yields

Z0 ¼ 1ffiffiffi
2

p
�
e�3�q0 þ e�3�aIqI þ

�
e�3� d

6
þ ie3�

�
p0

� 1

2
ðe�3�dIÞpI

�
;

Za ¼ 1ffiffiffi
2

p
�
e��qIða�1=2ÞIa

þ
�
1

2
e��dIða�1=2ÞIa � ie�aJða1=2ÞJa

�
p0

� ðe��dIJða�1=2ÞIa � ie�ða1=2ÞJaÞpJ

�
: (2.20)

Thus we consider

f�A ¼ 1ffiffiffi
2

p e�3� 0
e�3�aI e��ða�1=2ÞIa

� �
; (2.21)

h�A ¼ 1ffiffiffi
2

p �e�3� d
6 � ie3� � 1

2 e
��dKða�1=2ÞKa þ ie�aKða1=2ÞKa

1
2 e

�3�dI e��dIJða�1=2ÞJa � ie�ða1=2ÞIa
 !

: (2.22)

From f�1

ðf�1Þ�A ¼ ffiffiffi
2

p e3� 0
�e�aIða1=2ÞIa e�ða1=2ÞIa

� �
; (2.23)

by matrix multiplication, we find that relations (a), (b), and
(c) are fulfilled by f and h, that we now recognize to be the
symplectic sections.

We finally perform the transformation f0 ¼ fM (where
M ¼ f�1f0 ¼ h�1h0), with M unitary matrix, in virtue of
identities (a), (b), and (c), valid for both (f; h) and (f0; h0).
A model independent formula forM valid for anyN ¼ 2
d geometry (in particular, for any truncation of N ¼ 8 to
an N ¼ 2 geometry, such as the models treated in this
paper) is given by the matrix [38]

M ¼ A1=2M̂G�1=2; (2.24)

with

A¼
1 0.. .0
0
:
:
0

aIJ

0
BBBB@

1
CCCCA; G¼

1 0.. .0
0
:
:
0

gIJ

0
BBBB@

1
CCCCA; gIJ¼1

4
e�4�aIJ;

(2.25)

where M̂ is given by

M̂ ¼ 1

2

1 @ �JK
�i�Ie�2� e�2��I

�J
þ ie�2��I@ �JK

 !
; (2.26)

where ‘‘��I’’ are the imaginary parts of the complex
moduli zI ¼ aI � i�I, and K is the Kähler potential K ¼
� lnð8V Þ, with V ¼ 1

3!dIJK�
I�J�K; the matrix M̂ satis-

fies the properties

AM̂G�1M̂y ¼ Id; G�1M̂yAM̂ ¼ Id: (2.27)

For the models considered below, this matrix M does
indeed reproduce, for the given special configurations,
the formula in Eq. (4.7).

Note that M̂ performs the change of basis between the
central charges defined as

Z0 ¼ 1ffiffiffi
2

p ðZe
0 þ iZ0

mÞ; ZI ¼ 1ffiffiffi
2

p ðZe
I þ iaIJZ

J
mÞ;
(2.28)

and the special geometry charges (Z;D �I
�Z), that is the

charges in ‘‘curved’’ rather than the ‘‘flat’’ indices.

III. ATTRACTORS IN THE FIVE-DIMENSIONAL
THEORY

It was shown in [23] that the cubic invariant of the five
dimensions can be written as

I3 ¼ Z5
1Z

5
2Z

5
3; (3.1)

ANNA CERESOLE, SERGIO FERRARA, AND ALESSANDRA GNECCHI PHYSICAL REVIEW D 80, 125033 (2009)

125033-4



where Z5
a’s are related to the skew eigenvalues of the USpð8Þ central charge matrix in the normal frame

eab ¼
Z1 þ Z2 � Z3 0 0 0

0 Z1 þ Z3 � Z2 0 0
0 0 Z2 þ Z3 � Z1 0
0 0 0 �ðZ1 þ Z2 þ Z3Þ

0
BBB@

1
CCCA � 0 1

�1 0

� �
: (3.2)

We consider a configuration of only three nonvanishing
electric charges (q1; q2; q3), that we can take all non-
negative. We further confine to two moduli �1, �2, describ-
ing a geodesic submanifold SOð1; 1Þ2 2 E6ð6Þ=USpð8Þ
whose special geometry is determined by the constraint

1

3!
dIJK�̂

I�̂J�̂K ¼ �̂1�̂2�̂3 ¼ 1; (3.3)

where �̂I ¼ V�1=3�I, defining the stu model [29].
The metric aIJ, restricted to this surface, takes the

diagonal form

aIJ ¼ � @2

@�̂I@�̂J
logV jV¼1 ¼

1
�̂2
1

0 0

0 1
�̂2
2

0

0 0 1
�̂2
3

¼ �̂2
1�̂

2
2

0
BBB@

1
CCCA;
(3.4)

and the five dimensional black hole potential for electric
charges is1

Ve
5 ¼ qIa

IJqJ ¼
X3
a¼1

Z5
aðqÞZ5

aðqÞ; (3.5)

with Za ¼ ða�1=2ÞIaZel:I and Zel:I ¼ qI; the moduli at the
attractor point of the five-dimensional solution are (see
Eqs. (4.4) and (4.7) of [29])

�̂ I
crit ¼

I1=33

qI
; (3.6)

and

Vcrit
5 ¼ 3jq1q2q3j2=3 ¼ 3I2=33 ; aIJcrit ¼

I2=33

q2I
�IJ (3.7)

with no sum over repeated indices. We find

Zcrit
a ¼ I1=33 ; I3 ¼ Z5

1Z
5
2Z

5
3: (3.8)

These relations also allow us to connect the potential in
(3.5)

V5 ¼ ðZ5
1Þ2 þ ðZ5

2Þ2 þ ðZ5
3Þ2; (3.9)

with the form given in terms of the central charges [35],
where it is the trace of the square matrix

V5 ¼ 1
2Z

5
abZ

5ab: (3.10)

The eigenvalues of Z5
ab are written in (3.2) in terms of Z5

1,

Z5
2, Z

5
3. The 5D central charge matrix in the normal frame at

the attractor point thus becomes

eab ¼
I1=33 � 0 0 0

0 I1=33 � 0 0

0 0 I1=33 � 0

0 0 0 �3I1=33 �

0
BBBB@

1
CCCCA; (3.11)

which shows the breaking USpð8Þ ! USpð6Þ �USpð2Þ.

IV. ATTRACTORS IN THE FOUR-DIMENSIONAL
THEORY

In this section, we reconsider the attractor solutions
found in [29,33], and we reformulate them in terms of
the present formalism based on central charges. We sepa-
rately examine the three axion-free configurations.

A. Electric solution Q ¼ ðp0; qiÞ
Let us first compute the four-dimensional central charge

for the electric charge configuration with vanishing axions;
using (2.20), we find

Z0 ¼ iffiffiffi
2

p e3�p0; Za ¼ 1ffiffiffi
2

p e��qIða�1=2ÞIa: (4.1)

The four-dimensional potential is

VBH ¼ 1
2e

�2�Ve
5 þ 1

2e
6�ðp0Þ2; (4.2)

(where � is connected to the volume used in Ref. [29] by
the formula V ¼ e6�) and has the same critical points of
the five-dimensional potential, since

@VBH

@�I
¼ 0 , @Ve

5

@�̂I
¼ 0; 8 I ¼ 1; 2: (4.3)

The attractor values of �̂I are still given by (3.6), while the
� field at the critical point is [29]

e8�jcrit ¼ I2=33 ðp0Þ�2: (4.4)

This fixes the central charges at the attractor point to be

Zattr
0 ¼ iffiffiffi

2
p jp0q1q2q3j1=4 signðp0Þ ¼ i

2
jI4j1=4 signðp0Þ;

Zattr
a ¼ 1ffiffiffi

2
p I�1=12

3 ðp0Þ1=4qI I
1=3
3

qI
¼ 1

2
jI4j1=4; (4.5)

1In an analogous way, the black hole potential for magnetic
charges, Vm

5 ¼ P
3
a¼1 Z

5
aðpÞZ5

aðpÞ, is obtained by replacing qI !
pI and aIJ ! aIJ [29,35] with Z5

aðpÞ ¼ pIða1=2ÞIa.
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where the quartic invariant is I4 ¼ �4p0q1q2q3. So we
find

Zcrit
1 ¼ Zcrit

2 ¼ Zcrit
3 ¼ 1

2
jI4j1=4 � Z;

Zcrit
0 ¼ i

2
jI4j1=4 signðp0Þ � iZ0:

(4.6)

Let us define the 4D central charge matrix as

2ZAB ¼ eAB � iZ0�; (4.7)

where eAB is the matrix in (3.2) in which, instead of Z5
1, Z

5
2,

Z5
3 of the 5D theory, we now write the 4D Za’s defined in

(2.20). It can be readily seen that for axion-free solutions,
Eq. (4.7) correctly gives

VBH ¼ X
i

jzij2 ¼ jZ0j2 þ
X
a

jZaj2; (4.8)

where zi’s, for i ¼ 1; ::; 4, are the (complex skew-diagonal)
elements of ZAB. We then have

2ZAB¼
Z� 0 0 0
0 Z� 0 0
0 0 Z� 0
0 0 0 �3Z�

0
BBB@

1
CCCAþ

Z0� 0 0 0
0 Z0� 0 0
0 0 Z0� 0
0 0 0 Z0�

0
BBB@

1
CCCA

¼
ðZþZ0Þ� 0 0 0

0 ðZþZ0Þ� 0 0
0 0 ðZþZ0Þ� 0
0 0 0 ð�3ZþZ0Þ�

0
BBB@

1
CCCA:

(4.9)

Since (4.5) and (4.6) yield that Z ¼ jZ0j, depending on the
choice p0 > 0 or p0 < 0, two different solutions arise. In
fact,

Zþ Z0 ¼ 0 ! ZAB ¼
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2Z0

0
BBB@

1
CCCA � �; (4.10)

gives the 1
8 -BPS solution when p0 < 0 and shows SUð6Þ �

SUð2Þ symmetry. Conversely,

Z ¼ Z0 ! ZAB ¼
Z0 0 0 0
0 Z0 0 0
0 0 Z0 0
0 0 0 �Z0

0
BBB@

1
CCCA � � (4.11)

is the non-BPS solution that corresponds to the choice
p0 > 0, with residual USpð8Þ symmetry.

B. Magnetic solution Q ¼ ðpi; q
0Þ

This case is symmetric to the electric solution of
Sec. IVA. If we take all positive magnetic charges, then
the cubic invariant is I3 ¼ p1p2p3, the quartic invariant is
I4 ¼ 4q0p

1p2p3, and the values of the critical 5D moduli
are now (see Eq. (5.3) of [29])

�̂ I ¼ pI

I1=33

: (4.12)

The central charges for this configuration are, from (2.20),

Z0 ¼ 1ffiffiffi
2

p e�3�q0; Za ¼ iffiffiffi
2

p e�pIða1=2ÞIa; (4.13)

and the black hole potential is

VBH ¼ 1
2e

2�Vm
5 þ 1

2e
�6�ðq0Þ2: (4.14)

This gives the attractor value of the � field as

e8�jcrit ¼ I�2=3
3 ðq0Þ2: (4.15)

At the attractor point ða1=2crit ÞIJ ¼ ð�̂IÞ�1�IJ, and the mag-

netic central charges are

Zcrit
a ¼ iffiffiffi

2
p ðI3Þ1=4jq0j1=4 ¼ i

2
jI4j1=4 � iZ; a ¼ 1; 2; 3:

(4.16)

We can then write the central charge matrix corresponding
to the 27 representation in the normal frame as

eAB ¼
Z� 0 0 0
0 Z� 0 0
0 0 Z� 0
0 0 0 �3Z�

0
BBB@

1
CCCA: (4.17)

To describe the four-dimensional solution, we need the
electric central charge, that at the attractor point is

Zcrit
0 ¼ 1ffiffiffi

2
p ðI3Þ1=4jq0j1=4 signðq0Þ ¼ 1

2
jI4j1=4 signðq0Þ

� Z0:

Then, using the definition (4.7), the complete 4D central
charge matrix is

2ZAB¼i

Z� 0 0 0
0 Z� 0 0
0 0 Z� 0
0 0 0 �3Z�

0
BBB@

1
CCCA�i

Z0� 0 0 0
0 Z0� 0 0
0 0 Z0� 0
0 0 0 Z0�

0
BBB@

1
CCCA

¼ei�=2

ðZ�Z0Þ� 0 0 0
0 ðZ�Z0Þ� 0 0
0 0 ðZ�Z0Þ� 0
0 0 0 ð�3Z�Z0Þ�

0
BBB@

1
CCCA:

(4.18)

The signðq0Þ determines whether the solution is supersym-
metric or not. We may have

q0 > 0 ! Z ¼ Z0;

ZAB ¼ ei�=2

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �2Z0

0
BBB@

1
CCCA � �;

(4.19)
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which is a magnetic 1
8 -BPS solutions with SUð6Þ � SUð2Þ

symmetry, or

q0 < 0 ! Z ¼ �Z0;

ZAB ¼ ei�=2

�Z0 0 0 0
0 �Z0 0 0
0 0 �Z0 0
0 0 0 Z0

0
BBB@

1
CCCA � �;

(4.20)

which is the non-BPS solution with USpð8Þ symmetry.
These solutions have the same Z0 as the electric ones,
but now the choice of positive q0 charge leads to the
supersymmetric solution, while the negative q0 charge
gives the nonsupersymmetric one, in contrast with what
happened for the choice of p0 in the electric case in
Eq. (4.10) and (4.11).

C. Kaluza-Klein dyonic solution Q ¼ ðp0; q0Þ
This charge configuration also has vanishing axions, and

the only nonzero charges give

Ze
0 ¼ e�3�q0; Z0

m ¼ e3�p0;
+

Z0 ¼ 1ffiffi
2

p ðe�3�q0 þ ie3�p0Þ:
(4.21)

Since none of the five-dimensional charges are turned on,
the four-dimensional black hole potential is

VBH ¼ 1
2½e�6�q20 þ e6�ðp0Þ2�; (4.22)

which is extremized at the horizon by the value of the �
field

e6�jcrit ¼
��������q0
p0

��������: (4.23)

We only focus on the case p0 > 0 and q0 > 0, since all of
the other choices are related to this by a duality rotation.
Evaluating the central charge at the attractor point, we find

Zcrit
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jp0q0j

q 1þ iffiffiffi
2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jp0q0j

q
ei�=4: (4.24)

Following the prescription in (4.7), we find that at the
attractor point,

2ZAB¼�iZ0�

¼�iei�=4

ffiffiffiffiffiffiffiffiffiffiffiffiffijp0q0j
p

� 0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffijp0q0j

p
� 0 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffijp0q0j

p
� 0

0 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffijp0q0j

p
�

0
BBBB@

1
CCCCA

(4.25)

that gives a non-BPS four-dimensional black hole with
I4 ¼ �ðp0q0Þ2.

Note that Eqs. (4.11), (4.20), and (4.25) imply that the
sum of the phases of the four complex skew entries is �, as

appropriate to a non-BPSN ¼ 8 solution [17]. Also, in all

cases, VBHjcrit ¼
ffiffiffiffiffiffiffijI4j

p
.

D. N ¼ 8 and N ¼ 2 attractive orbits at d ¼ 5 and
d ¼ 4

We now compare the different interpretations in the
N ¼ 8 and N ¼ 2 theories of the critical points of the
very same black hole 4D potential, in terms of the axion-
free electric solution (Sec. IVA) as discussed in this paper
and in Ref. [29].
Since the ‘‘normal frame’’ solution is common to all

symmetric spaces (with rank three), it can be regarded as
the generating solution of any model. So we confine our
attention to the exceptional N ¼ 2 (octonionic) E7ð�25Þ
model [39], which has a charge vector in 5D and 4D of the
same dimension as in N ¼ 8 supergravity. At d ¼ 5, the
duality group is E6ð�26Þ, with moduli space of vector

multiplets E6ð�26Þ=F4.

It is known [24,40] that in d ¼ 5, there are two different
charge orbits,

ON¼2
d¼5;BPS ¼

E6ð�26Þ
F4

; (4.26)

the BPS one, and the non-BPS one

ON¼2
d¼5;non-BPS ¼ E6ð�26Þ

F4ð�20Þ
; (4.27)

The latter one precisely corresponds to the nonsupersym-
metric solution and to (þþ� ), (��þ ) signs of the
q1, q2, q3 charges (implying @Z � 0). For charges of the
same sign (þþþ ), (��� ) one has the 1

8 -BPS solu-

tion (@Z ¼ 0), as discussed in [29].
It is easy to see that in the N ¼ 8 theory, all of these

solutions just interchange Z1, Z2, Z3, and Z4 ¼ �3Z3 but
always give a normal frame matrix of the form

Zab ¼
Z� 0 0 0
0 Z� 0 0
0 0 Z� 0
0 0 0 �3Z�

0
BBB@

1
CCCA; (4.28)

which has USpð6Þ �USpð2Þ 2 F4ð4Þ as maximal symme-

try. Another related observation is that while E6ð�26Þ con-
tains both F4 and F4ð�20Þ, so that one expects two orbits

and two classes of solution, in the N ¼ 8 case E6ð6Þ
contains only the noncompact F4ð4Þ, thus only one class

of solutions is possible.
These orbits and critical points at d ¼ 5 have a further

story when used to study the d ¼ 4 critical points with
axion-free solutions as it is the case for the electric
(p0; q1; q2; q3) configuration. Since in this case I4 ¼
�4p0q1q2q3, in the N ¼ 8 case, once one choose q1,
q2, q3 > 0, the I4 > 0, p0 < 0 solution is BPS, while the
I4 < 0, p0 > 0 is non-BPS.
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Things again change in N ¼ 2 [41], when now we
consider the solution embedded in the Octonionic model
with 4D moduli space E7ð�25Þ=E6 �Uð1Þ. A new non-BPS

orbit in d ¼ 4 is generated, corresponding to Z ¼ 0 (@Z �
0) solution, so three 4D orbits exist in this case depending
whether the (þþþ ) and (þþ� ) solutions are com-
bined with �p0 + 0. So

ðþ;þþþÞ is BPS with I4 > 0; O ¼ E7ð�25Þ
E6

;

(4.29)

ð�;�þþÞ is non-BPS with I4 > 0; O¼ E7ð�25Þ
E6ð�14Þ

;

(4.30)

ðþ;�þþÞ or ð�;þþþÞ

is non-BPS with I4 < 0; O ¼ E7ð�25Þ
E6ð�26Þ

:
(4.31)

V. MAURER-CARTAN EQUATIONS OF THE FOUR-
DIMENSIONAL THEORY

Let us call Maurer-Cartan equations [16] those which
give the derivative of the central charges (coset represen-
tatives) with respect to the moduli �, aI, �i. Using (2.8),
we have

@�Z
e
0 ¼ �3Ze

0; @�Z
0
m ¼ 3Z0

m;

@�Z
e
I ¼ �Ze

I ; @�Z
I
m ¼ ZI

m;
(5.1)

and

@Ze
0

@aI
¼ e�2�Ze

I ;
@Z0

m

@aI
¼ 0;

@ZI
m

@aJ
¼ ��I

Je
�2�Z0

e;
@Ze

I

@aJ
¼ �e�2�dIJKZ

K
m:

(5.2)

In our notation, the 5D metric aIJ, (I, J ¼ 1; ::; 27) can also
be rewritten with a pair of antisymmetric (traceless) in-
dices

a��;�� ¼ Lab
��L��ab; (5.3)

where Lab
�� is the coset representative; in a fixed gauge

(where a, b and �, � indices are identified)

LI
a ¼ ða1=2ÞIa; ð �LIa ¼ LT

IaÞ: (5.4)

The object Pi � a1=2@ia
�1=2 can be regarded as the

Maurer-Cartan connection (see Ref. [32]). In fact, by re-

minding that Ze
a ¼ Ze

I ða�1=2ÞIa, we have @iZ
e
a ¼

ð@ia�1=2ÞIaZe
I (since @iZ

e
I ¼ 0). Since we can also write 0

@iZ
e
a ¼ ð@ia�1=2ÞIaða1=2ÞIbZe

b; (5.5)

we find that Pi;a
b is such that

@iZ
e
a ¼ Pi;a

bZe
b: (5.6)

Notice that using Pi;a
b ¼ Qi;a

b þ Vi;a
b, we identify a con-

nection which satisfies

riZ
e
a ¼ Va

bZe
b; (5.7)

with ri ¼ @i �Qi.

Attractor equations from Maurer-Cartan equations

We can now use this formalism to write the attractor
equations for the potential

VBH ¼ 1
2ðZe

0Þ2 þ 1
2ðZ0

mÞ2 þ 1
2Z

e
Ia

IJZe
J þ 1

2Z
I
maIJZ

J
m: (5.8)

By differentiating with respect to �, aI, �i, we get

@�VBH ¼ �3ðZe
0Þ2 þ 3ðZ0

mÞ2 � Ze
Ia

IJZe
J þ ZI

maIJZ
J
m ¼ 0;

(5.9)

@aIVBH ¼ e�2�½Ze
0Z

e
I � Ze

Ja
JKdIKLZ

L
m � Z0

maIJZ
J
m� ¼ 0;

(5.10)

@�iVBH � @iVBH ¼ 1
2Z

e
I@ia

IJZe
J þ 1

2Z
I
m@iaIJZ

J
m ¼ 0:

(5.11)

From (5.10), we see that a solution with aI ¼ 0 implies

@aIVBHjaI¼0 ¼ e�2�½e�4�q0qI � qJa
JKdIKLp

L

� e4�p0aIJp
J�

¼ 0; (5.12)

which is trivially satisfied if we set� 0 (q0; p
0) or (q0; p

I)
or (p0; qI).
From (5.9), we see that for an axion-free solution, if Ze

0,

ZI
m ¼ 0, we get

3ðZ0
mÞ2 ¼ Ze

Ia
IJZe

J; (5.13)

and if aIJ is diagonal, I ¼ J ¼ 1, 2, 3, we obtain

3ðZ0
mÞ2 ¼ ðZe

1Þ2a11 þ ðZe
2Þ2a22 þ ðZe

3Þ2a33; (5.14)

which is compatible with Ze
1 ¼ Ze

2 ¼ Ze
3 ¼ �Z0

m.

The derivative with respect to the 5D moduli �i, i ¼
1; ::; 42 for N ¼ 8 theory, only receives contributions
from the matrix aIJ. Indeed, since Ze

I , Z
I
m do not depend

on the �i [see Eq. (2.8)], one finds

@iV4 ¼ 0 ¼ Ze
I@ia

IJZe
J þ ZI

m@iaIJZ
J
m: (5.15)

By rewriting the charges multiplied by ða�1=2ÞIa and

ða1=2ÞIa so that

Ze
a � Ze

I ða�1=2ÞIa; Za
m ¼ ZI

mða1=2ÞaI; (5.16)

we have

@iZ
e
a ¼ Pi;a

bZe
b; Pi;a

b ¼ @iða�1=2ÞIaða1=2ÞIb;
@iZ

a
m ¼ Pa

i bZ
b
m; Pa

i b ¼ @iða1=2ÞIaða�1=2ÞIb;
(5.17)
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where Pa
i b ¼ �Pib

a since @iðZe
aZ

a
mÞ ¼ 0: Then, we also

have

@iðZe
aZ

e
aÞ ¼ Ze

aðPia
bÞZe

b ¼ Ze
aPi;abZ

e
b ¼ Ze

aPiðabÞZe
b ¼ 0;

(5.18)

and if we split Pi;ab ¼ Qi½ab� þ ViðabÞ, with

P a
i b ¼ Qa

i b þ Va
i b; Pi;a

b ¼ Qi;a
b � Vi;a

b; (5.19)

then the critical condition implies

@iðZeZeÞ ¼ Ze
aViðabÞZe

b ¼ 0; (5.20)

and the analogue equation for magnetic charges

@iðZmZmÞ ¼ Za
mViðabÞZb

m ¼ 0; (5.21)

so that only the vielbein Vi;ab enters in the equations of

motion.
The criticality condition on the potential of Eq. (5.15)

now gives

@iVBH ¼ 0 ! Ze
aVi

abZe
b þ Za

mVi;abZ
b
m ¼ 0; (5.22)

thus, for electric configurations (Zb
m ¼ 0) with aI ¼ 0,

Ze
aVi

abZe
b ¼ 0: (5.23)

Comparing results of [35] with our formulas, we see that
V1, V2, V3, with V1 þ V2 þ V3 ¼ 0, in the case where the
metric aIJ is diagonal, correspond to

ða�1=2ÞIa@iða1=2ÞJa ¼ ða�1=2ÞI@iða1=2ÞI ¼ PI
i I ¼ VI

i I

� Vi
I; (5.24)

where ða�1=2ÞII � ða�1=2ÞI, ða1=2ÞII � ða1=2ÞI, I ¼ 1, 2, 3,
and using (3.4), we find

VI
1 ¼

�
1

�̂1

; 0;� 1

�̂1

�
; VI

2 ¼
�
0;

1

�̂2

;� 1

�̂2

�
: (5.25)

Indeed,

X
i¼1;2;3

VI
i ¼ 0; (5.26)

so, by using Eqs. (2.31)–(2.33) of Ref. [35], one gets the
desired result. In fact, using the definitions of PI

1 and PI
2,

we get from the �̂i equations of motion

X
I

Ze
IV

I
i Z

e
I ¼ 0; (5.27)

which explicitly gives

Ze
1Z

e
1 � Ze

3Z
e
3 ¼ 0; Ze

2Z
e
2 � Ze

3Z
e
3 ¼ 0; (5.28)

whose solution, combined with Eq. (5.14), gives

ðZe
1Þ2 ¼ ðZe

2Þ2 ¼ ðZe
3Þ2 ¼ ðZ0

mÞ2;
+

Ze
1 ¼ Ze

2 ¼ Ze
3 ¼ �Z0

m;
(5.29)

all the other sign choices being equivalent in the 5D theory.
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