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1 Introduction

The N = 8 supergravity theory in d = 4 [1] and d = 5 [2] dimensions is a remarkable

theory which unifies the gravitational fields with other lower spin particles in a rather

unique way, due to the high constraints of local N = 8 supersymmetry, the maximal one

realized in a 4d Lagrangian field theory. These theories, particularly in four dimensions,

are supposed to enjoy exceptional ultraviolet properties. For this reason, 4d supergravity

has been advocated not only as the simplest quantum field theory [3] but also as a

potential candidate for a finite theory of quantum gravity, even without its completion

into a larger theory [4]. Maximal supergravity in highest dimensions has a large number

of classical solutions [5] which may survive at the quantum level. Among them, there are

black p-branes of several types[6] and interestingly, 4d black holes of different nature.

On the other hand, theories with lower supersymmetries (such as N = 2) emerging

from Calabi-Yau compactifications of M-theory or superstring theory, admit extremal

black hole solutions that have been the subject of intense study, because of their wide

range of classical and quantum aspects. For asymptotically flat, stationary and spherically

symmetric extremal black holes, the attractor behaviour [7, 8] has played an important

role not only in determining universal features of fields flows toward the horizon, but also

to explore dynamical properties such as wall crossing[9] and split attractor flows[10], the

connections with string topological partition functions[11] and relations with microstates

counting[12] . Therefore, it has become natural to study the properties of extremal black

holes not only in the context of N = 2, but also in theories with higher supersymmetries,

up to N = 8[13]-[22].
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In N = 8 supergravity, in the Einsteinian approximation, there is a nice relation

between the classification of large black holes which undergo the attractor flow and charge

orbits which classify, in a duality invariant manner, the properties of the dyonic vector of

electric and magnetic charges Q = (pΛ, qΛ) (Λ = 0, ..., 27 in d = 4) [23, 24]. The attractor

points are given by extrema of the 4d black hole potential, which is given by [16, 17]

VBH =
1

2
ZABZ

∗AB = 〈Q, VAB〉 〈Q, V
AB〉 , (1.1)

where the central charge is the antisymmetric matrix (A,B = 1, ..., 8)

ZAB = 〈Q, VAB〉 = QT ΩVAB = fΛ
AB qΛ − hΛAB pΛ , (1.2)

the symplectic sections are

VAB = (fΛ
AB, hΛAB) , (1.3)

and Ω is the symplectic invariant metric.

An important role is played by the Cartan quartic invariant I4[25, 1] in that it only

depends on Q and not on the asymptotic values of the 70 scalar fields ϕ. This means

that if we construct I4 as a combination of quartic powers of the central charge matrix

ZAB(q, p, ϕ) [26], the ϕ dependence drops out from the final expression

∂

∂ϕ
I4(ZAB) = 0 . (1.4)

Analogue (cubic) invariants I3 exist for black holes and/or (black) strings in d = 5[8, 23].

These are given by

I3(p
I) =

1

3!
dIJKp

IpJpK , (1.5)

I3(qI) =
1

3!
dIJKqIqJqK , (1.6)

where dIJK , d
IJK are the (27)3 E6(6) invariants. Consequently, the d = 4 E7(7) quartic

invariant takes the form

I4(Q) = −(p0q0 + pIqI)
2 + 4

[

−p0I3(q) + q0I3(p) +
∂I3(q)

∂qI

∂I3(p)

∂pI

]

. (1.7)

On the other hand, in terms of the central charge matrices Zab(φ, q) (in d = 5 this

is the 27 representation of USp(8)) and ZAB(φ, p, q) (in d = 4 this is the 28 of SU(8)),

their expression is

I3(q) = ZabΩ
bcZcdΩ

dqZqpΩ
pa , ZabΩ

ab = 0 , (1.8)

I4(p, q) =
1

4

[

4 Tr(ZZ†ZZ†)− (Tr ZZ†)2 + 32Re (Pf ZAB)
]

, (1.9)
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where ZZ† = ZABZ̄
CB, Ωab is the 5d symplectic invariant metric, and the Pfaffian of the

central charge is [1]

Pf (ZAB) =
1

244!
ǫABCDEFGHZABZCDZEFZGH . (1.10)

In fact, these are simply the (totally symmetric) invariants which characterize the 27

dimensional representation of E6(6) and the 56 dimensional representation of E7(7), which

are the U -duality [27] symmetries of N = 8 supergravity in d = 5 and d = 4, respectively.

When charges are chosen such that I4 and I3 are not vanishing, one has large black

holes and in the extremal case the attractor behaviour may occur. However, while at d = 5

there is a unique (1
8
-BPS) attractor orbit with I3 6= 0, associated to the space[24, 28]

Od=5 =
E6(6)

F4(4)

, (1.11)

at d = 4 two orbits emerge, the BPS one

Od=4, BPS =
E7(7)

E6(2)

, (1.12)

and the non BPS one with different stabilizer

Od=4, non−BPS =
E7(7)

E6(6)

. (1.13)

Such orbits have further ramifications in theories with lower supersymmetry , but it is

the aim of this paper to confine our attention to the N = 8 theory.

In this paper, extending a previous result for N = 2 theories [29], we elucidate the

connection between these configurations and we relate the critical points of the N = 8

black hole potential of the 5d and 4d theories. To achieve this goal we use a formula-

tion of 4d supergravity in a E6(6) duality covariant basis [30], which is appropriate to

discuss a 4d/5d correspondence. This is not the same as the Cremmer-Julia[1] or de Wit-

Nicolai[31] manifest SO(8) (and SL(8,R)) covariant formulation, but it is rather related

to the Sezgin-Van Nieuwenhuizen 5d/4d dimensional reduction[32]. These two formula-

tions are related to one another by dualizing several of the vector fields and therefore

they interchange electric and magnetic charges of some of the 28 vector fields of the final

theory. The precise relation between these theories was recently discussed in [33].

The paper is organized as follows. In sec. 2 we rewrite the 4d black hole potential

in terms of central charges. This is essential in order to discuss the supersymmetry

properties of the solutions. In fact, in the specific solutions we consider in sec. 3 and 4,

BPS and non-BPS critical points are simply obtained by some charges sign flip. This will

manifest in completely different symmetry properties of the central charge matrix, in the

normal frame, at the fixed point. These properties reflect the different character of the

BPS and non BPS charge orbits.
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The solutions of the critical point equations are particularly simple in the “axion free”

case, discussed in sec. 3 and 4, which only occur for some chosen charge configurations.

In sec. 3 we derive critical point equations that are completely general and that may be

used to study any solution.

The formula for the N = 8 potential given in sec. 2 was obtained in an earlier work

[33], and it is identical to the N = 2 case [29]. The only difference relies in the kinetic

matrix aIJ which, in N = 2 is given by real special geometry while in N = 8 is given

in terms of the E6(6) coset representatives [32, 16]. However, in the normal frame, when

we suitably restrict to two moduli, this matrix does indeed become an N = 2 matrix,

although the interpretation in terms of central charges is completely different.

The supersymmetry properties of the solutions in the N = 8 and N = 2 theories are

compared in subsection 4.4. We will see that in the N = 2 interpretation, depending on

the sign of the charges, both a BPS and a non-BPS branch exist in d = 5 while two non

BPS branches exist in the d = 4 theory. In N = 8, the occurrence of one less branch

in both dimensions is due to the fact that the central and matter charges of the N = 2

theory are all embedded in the central charge matrix of the N = 8 theory. The higher

number of attractive orbits can also be explained by the different form of the relevant

non compact groups and their stabilizers for the moduli space of solutions.

2 4d/5d relations for the N = 8 extremal black hole

potential

In this section we remind the reader how the N = 8 potential was derived in a basis that

illustrates the relation between 4 and 5 dimensions [33].

Using known identities [17, 34], the black hole potential can be written as a quadratic

form in terms of the charge vector Q and the symplectic 56× 56 matrix M(N ), related

to the 4d vector kinetic matrix NΛΣ

VBH = −1

2
QTM(N )Q , (2.1)

where M is

M(N ) =





ImN + ReN (ImN)−1ReN −ReN (ImN )−1

−(ImN )−1ReN (ImN )−1



 . (2.2)

The indices Λ ,Σ of NΛΣ are now split as (0, I), according to the decomposition of 4d

charges with respect to 5d ones, thus NΛΣ assumes the block form

NΛΣ =

(

N00 N0 J

NI 0 NI J

)

, (2.3)
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The kinetic matrix depends on the 70 scalars of the N = 8 theory, which are given,

in the 5d/4d KK reduction, by the 42 scalars of the 5d theory (encoded in the 5d vector

kinetic matrix aIJ = aJI), by the 27 axions aI and the dilaton field eφ. In a normalization

that is suitable for comparison to N = 2 , it has the form

NΛΣ =

















1
3
d− i

(

e2φaIJa
IaJ + e6φ

)

−1
2
dJ + ie2φaKJa

K

−1
2
dI + ie2φaIKa

K dIJ − ie2φaIJ

















, (2.4)

where

d ≡ dIJKa
IaJaK , dI ≡ dIJKa

JaK , dIJ ≡ dIJKa
K . (2.5)

The black hole potential of [33], computed from (2.1) using the above formulas, can

be rearranged as

VBH =
1

2

(

p0eφaI
)

aIJ
(

p0eφaJ
)

+
1

2

(

p0e3φ
)2

+
1

2

(

d

6
p0e−3φ

)2

+

+
1

2

(

1

2
e−φp0dI

)

aIJ
(

1

2
e−φp0dJ

)

+
1

2
× 2

(

−p0eφaI
)

aIJ
(

pJeφ
)

+

+
1

2
× 2

(

d

6
p0e−3φ

)(

−1

2
pIdIe

−3φ

)

− 1

2
× 2

(

1

2
p0e−φdI

)

aIJ
(

pKdKJe
−φ
)

+

+
1

2

(

eφpI
)

aIJ
(

eφpJ
)

+
1

2

(

1

2
e−3φpKdK

)2

+

+
1

2

(

e−φpKdKI

)

aIJ
(

e−φpLdJL
)

+
1

2
× 2

(

q0e
−3φ
)

(

d

6
p0e−3φ

)

+

+
1

2
× 2

(

qIa
Ie−3φ

)

(

d

6
p0e−3φ

)

+
1

2
× 2

(

qIe
−φ
)

aIJ
(

1

2
p0dJe

−φ

)

+

−1

2
× 2

(

q0e
−3φ
)

(

1

2
pIdIe

−3φ

)

− 1

2
× 2

(

qIa
Ie−3φ

)

(

1

2
pJdJe

−3φ

)

+

−1

2
× 2

(

qIe
−φ
)

aIJ
(

pKdKJe
−φ
)

+
1

2

(

q0e
−3φ
)2

+
1

2
× 2

(

q0e
−3φ
) (

qIa
Ie−3φ

)

+

+
1

2

(

qIa
Ie−3φ

)2
+

1

2

(

qIe
−φ
)

aIJ
(

qJe
−φ
)

,

(2.6)

with aIJ = a−1
IJ . This form shows that it can be written in terms of squares of electric

and magnetic components as

VBH =
1

2
(Ze

0)
2 +

1

2

(

Z0
m

)2
+

1

2
Ze

Ia
IJZe

J +
1

2
ZI

maIJZ
J
m , (2.7)
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provided one defines,

Ze
0 = e−3φq0 + e−3φqIa

I + e−3φd

6
p0 − 1

2
e−3φpIdI ,

Z0
m = e3φp0 ,

Ze
I =

1

2
e−φp0dI − pJdIJe

−φ + qIe
−φ ,

ZI
m = eφpI − eφp0aI . (2.8)

In order to get the symplectic embedding of the four dimensional theory, we still need to

complexify the central charges. To this end, we define the two complex vectors

Z0 ≡ 1√
2
(Ze

0 + iZ0
m) ,

Za ≡ 1√
2
(Ze

a + iZa
m) , (2.9)

where

Ze
a = Ze

I (a
−1/2)Ia , Za

m = ZI
m(a

1/2)aI (2.10)

such that

VBH = |Z0|2 + ZaZ̄a , (2.11)

where now a = 1, ..., 27 is a flat index, which can be regarded as a USp(8) antisymmetric

traceless matrix.

The potential at the critical point gives the black hole entropy corresponding to the

given solution, which in d = 4 reads

SBH

π
=
√

|I4| = V crit.
BH , (2.12)

while in d = 5 it is [38]

SBH

π
= 33/2|I3|1/2 =

(

3 V crit
5

)3/4
, (2.13)

where I4 and I3 are the invariants of the N = 8 theory in d = 4 and d = 5 respectively.

2.1 Symplectic sections

In virtue of the previous discussion, we can trade the central charge (1.2)for the 28-

component vector

ZA = fΛ
AqΛ − hΛAp

Λ , (2.14)

where f and h are symplectic sections satisfying the following properties [40, 41]
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a) NΛΣ = hΛA(f
−1)AΣ ,

b) i(f †h− h†f) = Id ,

c) fTh− hT f = 0 .

Notice that one still has the freedom of a further transformation

h → hM ,

f → fM , (2.15)

as it leaves invariant the vector kinetic matrix N , as well as relations a)− c), when M is

a unitary matrix

MM † = 1 . (2.16)

Indeed, when the central charge transforms as

Z → ZM ,

ZZ† → ZMM †Z† = ZZ† , (2.17)

the black hole potential

VBH ≡ ZZ† (2.18)

is left invariant. In our case, we rearrange the 28 indices into a single complex vector index,

to be identified, for a suitable choice ofM , with the two-fold antisymmetric representation

of SU(8), according to the decomposition 28 → 27+ 1 of SU(8) → USp(8); we thus have

Z0 = fΛ
0qΛ − hΛ0p

Λ =

= f 0
0q0 + fJ

0qJ − h0 0p
0 − hJ 0p

J ,

Za = fΛ
aqΛ − hΛap

Λ =

= f 0
aq0 + fJ

aqJ − h0 ap
0 − hJ ap

J ;

(2.19)

which, from the definition in (2.9) yields

Z0 =
1√
2

[

e−3φq0 + e−3φaIqI +

(

e−3φd

6
+ ie3φ

)

p0 − 1

2

(

e−3φdI
)

pI
]

,

Za =
1√
2

[

e−φqI(a
−1/2)Ia +

(

1

2
e−φdI(a

−1/2)Ia − ieφaJ(a1/2) a
J

)

p0+

−
(

e−φdIJ(a
−1/2)Ia − ieφ(a1/2) a

J

)

pJ
]

.

(2.20)
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Thus we consider

fΛ
A =

1√
2

















e−3φ 0

e−3φaI e−φ(a−1/2)Ia

















, (2.21)

hΛA =
1√
2

















−e−3φ d
6
− ie3φ −1

2
e−φdK(a

−1/2)Ka + ieφaK(a1/2) a
K

1
2
e−3φdI e−φdIJ(a

−1/2)Ja − ieφ(a1/2) a
I

















. (2.22)

From f−1

(f−1) A
Λ =

√
2

















e3φ 0

−eφaI(a1/2) a
I eφ(a1/2) a

I

















, (2.23)

by matrix multiplication, we find that relations a) b) and c) are fulfilled by f and h, that

we now recognize to be the symplectic sections.

We finally perform the transformation f ′ = fM (where M = f−1f ′ = h−1h′), with M

unitary matrix, in virtue of identities a), b) and c), valid for both (f, h) and (f ′, h′). A

model independent formula for M valid for any N = 2 d-geometry (in particular, for any

truncation of N = 8 to an N = 2 geometry, such as the models treated in this paper) is

given by the matrix [42]

M = A1/2M̂G−1/2 , (2.24)

with

A =













1 0...0
0
.
.
0

aIJ













, G =













1 0...0
0
.
.
0

gIJ













, gIJ =
1

4
e−4φaIJ , (2.25)

where M̂ is given by

M̂ =
1

2

(

1 ∂J̄K
−iλIe−2φ e−2φδI

J̄
+ ie−2φλI∂J̄K

)

, (2.26)
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where “−λI” are the imaginary parts of the complex moduli zI = aI − iλI , and K is

the Kähler potential K = − ln(8V), with V = 1
3!
dIJKλ

IλJλK ; the matrix M̂ satisfies the

properties

AM̂G−1M̂ † = Id ,

G−1M̂ †AM̂ = Id . (2.27)

For the models considered below, this matrix M does indeed reproduce, for the given

special configurations, the formula in eq. (4.7).

Note that M̂ performs the change of basis between the central charges defined as

Z0 =
1√
2
(Ze

0 + iZ0
m) ,

ZI =
1√
2
(Ze

I + iaIJZ
J
m) , (2.28)

and the special geometry charges (Z, DĪZ), that is the charges in “curved” rather than

the “flat” indices.

3 Attractors in the 5 dimensional theory

It was shown in [23] that the cubic invariant of the five dimensions can be written as

I3 = Z5

1 Z
5

2 Z
5

3 , (3.1)

where Z5

a ’s are related to the skew eigenvalues of the USp(8) central charge matrix in

the normal frame

eab =









Z5

1 + Z5

2 − Z5

3 0 0 0
0 Z5

1 + Z5

3 − Z5

2 0 0
0 0 Z5

2 + Z5

3 − Z5

1 0
0 0 0 −(Z5

1 + Z5

2 + Z5

3 )









⊗
(

0 1
−1 0

)

.

(3.2)

We consider a configuration of only three non-vanishing electric charges (q1, q2, q3), that

we can take all non-negative. We further confine to two moduli λ1, λ2, describing a

geodesic submanifold SO(1, 1)2 ∈ E6(6)/USp(8) whose special geometry is determined by

the constraint

1

3!
dIJKλ̂

Iλ̂J λ̂K = λ̂1λ̂2λ̂3 = 1 , (3.3)

where λ̂I = V−1/3λI , defining the stu−model [29].
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The metric aIJ , restricted to this surface, takes the diagonal form

aIJ = − ∂2

∂λ̂I∂λ̂J
logV

∣

∣

V=1
=









1

λ̂2

1

0 0

0 1

λ̂2

2

0

0 0 1

λ̂2

3

= λ̂2
1λ̂

2
2









, (3.4)

and the five dimensional black hole potential for electric charges is1

V e
5 = qIa

IJqJ =

3
∑

a=1

Z5

a (q)Z
5

a (q) , (3.5)

with Z5

a (q) = (a−1/2)Ia qI ; the moduli at the attractor point of the 5-dimensional solution

are (see eq. 4.4 and 4.7 of [29])

λ̂I
crit =

I
1/3
3

qI
, (3.6)

and

V crit
5 = 3|q1q2q3|2/3 = 3I

2/3
3 ,

aIJcrit =
I
2/3
3

q2I
δIJ (3.7)

with no sum over repeated indices. We find

Z5 , crit
a = I

1/3
3 , I3 = Z5

1 Z
5

2 Z
5

3 . (3.8)

These relations also allow to connect the potential in (3.5)

V5 = (Z5

1 )
2 + (Z5

2 )
2 + (Z5

3 )
2 , (3.9)

with the form given in terms of the central charges [38], where it is the trace of the square

matrix

V5 =
1

2
Z5

abZ
5 ab . (3.10)

The eigenvalues of Z5

ab are written in (3.2) in terms of Z5

1 , Z
5

2 , Z
5

3 . The 5d central charge

matrix in the normal frame at the attractor point thus becomes

eab =











I
1/3
3 ǫ 0 0 0

0 I
1/3
3 ǫ 0 0

0 0 I
1/3
3 ǫ 0

0 0 0 −3I
1/3
3 ǫ











, (3.11)

which shows the breaking USp(8) → USp(6)× USp(2).

1In an analogous way, the black hole potential for magnetic charges, Vm
5

=
∑

3

a=1
Z5

a (p)Z
5

a (p), is
obtained by replacing qI → pI and aIJ → aIJ [29, 38], with Z5

a (p) = pI(a1/2) a
I .
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4 Attractors in the 4 dimensional theory

In this section we reconsider the attractor solutions found in [33, 29]and we reformulate

them in terms of the present formalism based on central charges. We separately examine

the three “axion free” configurations.

4.1 Electric solution Q = (p0 , qi)

Let us first compute the 4dim central charge for the electric charge configuration with

vanishing axions; using (2.20) we find

Z0 =
i√
2
e3φp0 , Za =

1√
2
e−φqI(a

−1/2)Ia . (4.1)

The 4-dim potential is

VBH =
1

2
e−2φV e

5 +
1

2
e6φ(p0)2 , (4.2)

(where φ is connected to the volume used in ref.[29] by the formula V = e6φ) and has the

same critical points of the 5 dimensional potential, since

∂VBH

∂λI
= 0 ⇐⇒ ∂V e

5

∂λ̂I
= 0 , ∀ I = 1, 2 . (4.3)

The attractor values of λ̂I are still given by (3.6), while the φ field at the critical point is

[29]

e8φ|crit. = I
2/3
3 (p0)−2 . (4.4)

This fixes the central charges at the attractor point to be

Z attr
0 =

i√
2
|p0q1q2q3|1/4sign(p0) =

i

2
|I4|1/4sign(p0) ,

Z attr
a =

1√
2
I
−1/12
3 (p0)1/4qI

I
1/3
3

qI
=

1

2
|I4|1/4 , (4.5)

where the quartic invariant is I4 = −4 p0q1q2q3. So we find

Zcrit
1 = Zcrit

2 = Zcrit
3 =

1

2
|I4|1/4 ≡ Z , Zcrit

0 =
i

2
|I4|1/4sign(p0) ≡ iZ0 . (4.6)

Let us define the 4d central charge matrix as

2ZAB = eAB − iZ0Ω , (4.7)

where eAB is the matrix in (3.2) in which, instead of Z5

1 , Z
5

2 , Z
5

3 of the 5d theory, we now

write the 4d Za’s defined in (2.20). it can be readily seen that for axion free solutions eq.

(4.7) correctly gives

VBH =
∑

i

|zi|2 = |Z0|2 +
∑

a

|Za|2 (4.8)

11



where zi’s, for i = 1, .., 4, are the (complex skew-diagonal) elements of ZAB. We then

have

2ZAB =









Zǫ 0 0 0
0 Zǫ 0 0
0 0 Zǫ 0
0 0 0 −3Zǫ









+









Z0ǫ 0 0 0
0 Z0ǫ 0 0
0 0 Z0ǫ 0
0 0 0 Z0ǫ









=

=









(Z + Z0)ǫ 0 0 0
0 (Z + Z0)ǫ 0 0
0 0 (Z + Z0)ǫ 0
0 0 0 (−3Z + Z0)ǫ









.

(4.9)

Since (4.5) and (4.6) yield that Z = |Z0|, depending on the choice p0 > 0 or p0 < 0, two

different solutions arise. In fact,

Z + Z0 = 0 → ZAB =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2Z0









⊗ ǫ , (4.10)

gives the 1
8
-BPS solution when p0 < 0 and shows SU(6)× SU(2) symmetry. Conversely,

Z = Z0 → ZAB =









Z0 0 0 0
0 Z0 0 0
0 0 Z0 0
0 0 0 −Z0









⊗ ǫ , (4.11)

is the non-BPS solution that corresponds to the choice p0 > 0, with residual USp(8)

symmetry.

4.2 Magnetic solution Q = (pi , q
0)

This case is symmetric to the electric solution of Section 4.1. If we take all positive

magnetic charges, then the cubic invariant is I3 = p1p2p3 , the quartic invariant is I4 =

4 q0 p
1p2p3 and the values of the critical 5d moduli are now (see eq. (5.3) of [29])

λ̂I =
pI

I
1/3
3

. (4.12)

The central charges for this configuration are, from (2.20),

Z0 =
1√
2
e−3φq0 , Za =

i√
2
eφpI(a1/2) a

I , (4.13)
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and the black hole potential is

VBH =
1

2
e2φV m

5 +
1

2
e−6φ(q0)

2 . (4.14)

This gives the attractor value of the φ field as

e8φ|crit. = I
−2/3
3 (q0)

2 . (4.15)

At the attractor point (a
1/2
crit.)IJ = (λ̂I)−1δIJ , and the magnetic central charges are

Zcrit
a =

i√
2
(I3)

1/4|q0|1/4 =
i

2
|I4|1/4 ≡ iZ , a = 1, 2, 3 . (4.16)

We can then write the central charge matrix corresponding to the 27 representation in

the normal frame as

eAB =









Zǫ 0 0 0
0 Zǫ 0 0
0 0 Zǫ 0
0 0 0 −3Zǫ









. (4.17)

To describe the four dimensional solution we need the electric central charge, that at the

attractor point is

Zcrit
0 =

1√
2
(I3)

1/4|q0|1/4 sign(q0) =
1

2
|I4|1/4 sign(q0) ≡ Z0 .

Then, using the definition(4.7) the complete 4d central charge matrix is

2ZAB = i









Zǫ 0 0 0
0 Zǫ 0 0
0 0 Zǫ 0
0 0 0 −3Zǫ









− i









Z0ǫ 0 0 0
0 Z0ǫ 0 0
0 0 Z0ǫ 0
0 0 0 Z0ǫ









=

= eiπ/2









(Z − Z0)ǫ 0 0 0
0 (Z − Z0)ǫ 0 0
0 0 (Z − Z0)ǫ 0
0 0 0 (−3Z − Z0)ǫ









.

(4.18)

The sign(q0) determines whether the solution is supersymmetric or not. We may have

q0 > 0 → Z = Z0 ,

ZAB = eiπ/2









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2Z0









⊗ ǫ (4.19)
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which is a magnetic 1
8
-BPS solutions with SU(6)× SU(2) symmetry, or

q0 < 0 → Z = −Z0 ,

ZAB = eiπ/2









−Z0 0 0 0
0 −Z0 0 0
0 0 −Z0 0
0 0 0 Z0









⊗ ǫ (4.20)

which is the non-BPS solution with USp(8) symmetry. These solutions have the same Z0

as the electric ones, but now the choice of positive q0 charge leads to the supersymmetric

solution while the negative q0 charge gives the non-supersymmetric one, in contrast with

what happened for the choice of p0 in the electric case in eq. (4.10) and (4.11).

4.3 KK dyonic solution Q = (p0 , q0)

This charge configuration also has vanishing axions, and the only non-zero charges give

Ze
0 = e−3φq0 , Z0

m = e3φp0 ,
⇓

Z0 =
1√
2
(e−3φq0 + ie3φp0) .

(4.21)

Since none of the 5 dimensional charges are turned on, the four dimensional black hole

potential is

VBH =
1

2

[

e−6φq20 + e6φ(p0)2
]

, (4.22)

which is extremized at the horizon by the value of the φ field

e6φ|crit. =
∣

∣

∣

∣

q0
p0

∣

∣

∣

∣

. (4.23)

We only focus on the case p0 > 0 and q0 > 0, since all the other choices are related to

this by a duality rotation. Evaluating the central charge at the attractor point we find

Zcrit
0 =

√

|p0q0|
1 + i√

2
=
√

|p0q0|eiπ/4 . (4.24)

Following the prescription in (4.7) we find that at the attractor point

2ZAB = −iZ0Ω =

= −ieiπ/4









√

|p0q0|ǫ 0 0 0

0
√

|p0q0|ǫ 0 0

0 0
√

|p0q0|ǫ 0

0 0 0
√

|p0q0|ǫ









(4.25)

that gives a non-BPS 4 dimensional black hole with I4 = −(p0q0)
2.

Note that eqs. (4.11), (4.20) and (4.25) imply that the sum of the phases of the four

complex skew entries is π, as appropriate to a non-BPS N = 8 solution [17]. Also, in all

cases, VBH |crit. =
√

|I4|.
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4.4 N = 8 and N = 2 attractive orbits at d = 5 and d = 4

We now compare the different interpretations in the N = 8 and N = 2 theories of the

critical points of the very same black hole 4d potential, in terms of the axion-free electric

solution (sec. 4.1) as discussed in this paper and in ref. [29].

Since the “normal frame” solution is common to all symmetric spaces (with rank

three), it can be regarded as the generating solution of any model. So we confine our

attention to the exceptional N = 2 (octonionic) E7(−25) model [39] which has a charge

vector in 5d and 4d of the same dimension as in N = 8 supergravity. At d = 5 the duality

group is E6(−26), with moduli space of vector multiplets E6(−26)/F4.

It is known [24, 35] that in d = 5 there are two different charge orbits,

ON=2
d=5, BPS =

E6(−26)

F4
, (4.26)

the BPS one, and the non BPS one

ON=2
d=5, non−BPS =

E6(−26)

F4(−20)

, (4.27)

The latter one precisely corresponds to the non supersymmetric solution and to (++ −),

(−− +) signs of the q1, q2, q3, charges (implying ∂Z 6= 0). For charges of the same sign

(+ + +), (−−−) one has the 1
8
BPS solution (∂Z = 0), as discussed in [29].

It is easy to see that in the N = 8 theory all these solutions just interchange Z1, Z2, Z3

and Z4 = −3Z3 but always give a normal frame matrix of the form

Zab =









Zǫ 0 0 0
0 Zǫ 0 0
0 0 Zǫ 0
0 0 0 −3Zǫ









, (4.28)

which has USp(6)× USp(2) ∈ F4(4) as maximal symmetry. Another related observation

is that while E6(−26) contains both F4 and F4(−20), so that one expects two orbits and

two classes of solution, in the N = 8 case E6(6) contains only the non compact F4(4), thus

only one class of solutions is possible.

These orbits and critical points at d = 5 have a further story when used to study the

d = 4 critical points with axion free solutions as it is the case for the electric (p0, q1, q2, q3)

configuration. Since in this case I4 = −4p0q1q2q3, in the N = 8 case, once one choose

q1, q2, q3 > 0, the I4 > 0, p0 < 0 solution is BPS, while the I4 < 0, p0 > 0 is non BPS.

Things again change in N = 2 [37], when now we consider the solution embedded in

the Octonionic model with 4d moduli space E7(−25)/E6 × U(1). A new non BPS orbit in

d = 4 is generated, corresponding to Z = 0 (∂Z 6= 0) solution, so three 4d orbits exist

in this case depending whether the (+ + +) and (+ + −) solutions are combined with
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−p0 ≶ 0. So

(+,+++) is BPS with I4 > 0 , O =
E7(−25)

E6

, (4.29)

(−,−++) is non BPS with I4 > 0 , O =
E7(−25)

E6(−14)

, (4.30)

(+,−++) or (−,+++) is non BPS with I4 < 0 , O =
E7(−25)

E6(−26)

. (4.31)

5 Maurer-Cartan equations of the four dimensional

theory

Let us call Maurer-Cartan equations[16] those which give the derivative of the central

charges (coset representatives) with respect to the moduli φ, aI , λi. Using (2.8) we have

∂φZ
e
0 = −3Ze

0 , ∂φZ
0
m = 3Z0

m ,

∂φZ
e
I = −Ze

I , ∂φZ
I
m = ZI

m , (5.1)

and

∂Ze
0

∂aI
= e−2φZe

I ,
∂Z0

m

∂aI
= 0 ,

∂ZI
m

∂aJ
= −δIJe

−2φZ0
e ,

∂Ze
I

∂aJ
= −e−2φdIJKZ

K
m . (5.2)

In our notation the 5d metric aIJ , (I, J = 1, .., 27) can also be rewritten with a pair of

antisymmetric (traceless) indices

aΛΣ ,∆Γ = Lab
ΛΣL∆Γ ab , (5.3)

where Lab
ΛΣ is the coset representative; in a fixed gauge (where a, b and Λ,Σ indices are

identified)

L a
I = (a1/2) a

I , (L̄Ia = LT
Ia) (5.4)

The object Pi ≡ a1/2∂ia
−1/2 can be regarded as the Maurer-Cartan connection (see ref-

erence [32]). In fact, by reminding that Ze
a = Ze

I (a
−1/2)Ia, we have ∂iZ

e
a = (∂ia

−1/2)IaZ
e
I

( since ∂iZ
e
I = 0). Since we can also write

∂iZ
e
a = (∂ia

−1/2)Ia(a
1/2) b

I Z
e
b (5.5)

we find that P b
i,a is such that

∂iZ
e
a = P

b
i,a Ze

b . (5.6)

Notice that using P
b

i,a = Q b
i,a + V b

i,a , we identify a connection which satisfies

∇iZ
e
a = V b

a Ze
b , (5.7)

with ∇i = ∂i −Qi.
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5.1 Attractor equations from Maurer-Cartan equations

We can now use this formalism to write the attractor equations for the potential

VBH =
1

2
(Ze

0)
2 +

1

2
(Z0

m)
2 +

1

2
Ze

Ia
IJZe

J +
1

2
ZI

maIJZ
J
m . (5.8)

By differentiating with respect to φ, aI , λi, we get

∂φVBH = −3(Ze
0)

2 + 3(Z0
m)

2 − Ze
Ia

IJZe
J + ZI

maIJZ
J
m = 0 , (5.9)

∂aIVBH = e−2φ
[

Ze
0Z

e
I − Ze

Ja
JKdIKLZ

L
m − Z0

maIJZ
J
m

]

= 0 , (5.10)

∂λiVBH ≡ ∂iVBH =
1

2
Ze

I ∂ia
IJ Ze

J +
1

2
ZI

m ∂iaIJ Z
J
m = 0 . (5.11)

From (5.10) we see that a solution with aI = 0 implies

∂aIVBH

∣

∣

aI=0
= 0 = e−2φ

[

e−4φq0qI − qJa
JKdIKLp

L − e4φp0aIJp
J
]

= 0 , (5.12)

which is trivially satisfied if we set 6= 0 (q0, p
0) or (q0, p

I) or (p0, qI).

From (5.9) we see that for an axion-free solution, if Ze
0 , Z

I
m = 0, we get

3(Z0
m)

2 = Ze
Ia

IJZe
J , (5.13)

and if aIJ is diagonal, I = J = 1, 2, 3, we obtain

3(Z0
m)

2 = (Ze
1)

2a11 + (Ze
2)

2a22 + (Ze
3)

2a33 , (5.14)

which is compatible with Ze
1 = Ze

2 = Ze
3 = ±Z0

m .

The derivative with respect to the 5d moduli λi, i = 1, .., 42 for N = 8 theory, only

receives contributions from the matrix aIJ . Indeed since Ze
I , Z

I
m do not depend on the

λi(see eq.2.8), one finds

∂iV4 = 0 = Ze
I ∂ia

IJ Ze
J + ZI

m ∂iaIJ Z
J
m . (5.15)

By rewriting the charges multiplied by (a−1/2)Ia and (a1/2) a
I so that

Ze
a ≡ Ze

I (a
−1/2)Ia , Za

m = ZI
m(a

1/2)aI , (5.16)

we have

∂iZ
e
a = P

b
i,a Ze

b , P
b

i,a = ∂i(a
−1/2)Ia(a

1/2) b
I ,

∂iZ
a
m = P

a
i bZ

b
m , P

a
i b = ∂i(a

1/2) a
I (a−1/2)Ib , (5.17)

where P
a
i b = −P

a
i b since ∂i(Z

e
aZ

a
m) = 0 . Then we also have

∂i(Z
e
aZ

e
a) = Ze

a(P
b

ia )Ze
b =

= Ze
aPi,abZ

e
b =

= Ze
aPi (ab)Z

e
b = 0 , (5.18)
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and if we split Pi,ab = Qi [ab] + Vi (ab), with

P
a
i b = Q a

i b + V a
i b ,

P
b

i,a = Q b
i,a − V b

i,a , (5.19)

the critical condition implies

∂i(Z
eZe) = Ze

aVi (ab)Z
e
b = 0 , (5.20)

and the analogue equation for magnetic charges

∂i(Z
mZm) = Za

mVi (ab)Z
b
m = 0 , (5.21)

so that only the vielbein Vi ,ab enters in the equations of motion.

The criticality condition on the potential of eq. (5.15) now gives

∂iVBH = 0 → Ze
aV

ab
i Ze

b + Za
mVi, abZ

b
m = 0 , (5.22)

thus, for electric configurations (Zb
m = 0) with aI = 0,

Ze
aV

ab
i Ze

b = 0 . (5.23)

Comparing results of [38] with our formulæ we see that V1, V2, V3, with V1+V2+V3 = 0,

in the case where the metric aIJ is diagonal, correspond to

(a−1/2)Ia∂i(a
1/2) a

J = (a−1/2)I∂i(a
1/2)I = P

I
i I = V I

i I ≡ V I
i , (5.24)

where (a−1/2)II ≡ (a−1/2)I , (a1/2) I
I ≡ (a1/2)I , I = 1, 2, 3, and using (3.4) we find

V I
1 =

(

1

λ̂1

, 0 ,− 1

λ̂1

)

,

V I
2 =

(

0 ,
1

λ̂2

,− 1

λ̂2

)

. (5.25)

Indeed,

∑

i=1,2,3

V I
i = 0 , (5.26)

so, by using eq. (2.31)-(2.33) of ref. [38] one gets the desired result. In fact, using the

definitions of PI
1 and P

I
2 we get from the λ̂i equations of motion

∑

I

Ze
IV

I
i Z

e
I = 0 , (5.27)

which explicitly gives

Ze
1Z

e
1 − Ze

3Z
e
3 = 0 ,

Ze
2Z

e
2 − Ze

3Z
e
3 = 0 , (5.28)

18



whose solution, combined with eq. (5.14), gives

(Ze
1)

2 = (Ze
2)

2 = (Ze
3)

2 = (Z0
m)

2 ,

⇓
Ze

1 = Ze
2 = Ze

3 = ±Z0
m , (5.29)

all the other sign choices being equivalent in the 5d theory.
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