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Abstract

In the past decade, one of the major challenges of particle physics has been to gain an in-depth

understanding of the role of quark flavor. In this time frame, measurements and the theoretical

interpretation of their results have advanced tremendously. A much broader understanding of

flavor particles has been achieved, apart from their masses and quantum numbers, there now

exist detailed measurements of the characteristics of their interactions allowing stringent tests

of Standard Model predictions. Among the most interesting phenomena of flavor physics is

the violation of the CP symmetry that has been subtle and difficult to explore. In the past,

observations of CP violation were confined to neutral K mesons, but since the early 1990s, a

large number of CP-violating processes have been studied in detail in neutral B mesons. In

parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays
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in large samples of K,D, and B mesons have been greatly improved in accuracy and the results

are being used as probes in the search for deviations from the Standard Model.

In the near future, there will be a transition from the current to a new generation of experi-

ments, thus a review of the status of quark flavor physics is timely. This report is the result of

the work of the physicists attending the 5th CKM workshop, hosted by the University of Rome

”La Sapienza”, September 9-13, 2008. It summarizes the results of the current generation of

experiments that is about to be completed and it confronts these results with the theoretical

understanding of the field which has greatly improved in the past decade.
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1. Introduction

In the past decade, one of the major challenges of particle physics has been to gain
an in-depth understanding of the role of quark flavor. In this time frame, measurements
and the theoretical interpretation of their results have advanced tremendously. A much
broader understanding of flavor particles has been achieved, apart from their masses and
quantum numbers, there now exist detailed measurements of the characteristics of their
interactions allowing stringent tests of Standard Model predictions.
Among the most interesting phenomena of flavor physics is the violation of the CP

symmetry that has been subtle and difficult to explore. In the past, observations of CP
violation were confined to neutral K mesons, but since the early 1990s, a large number
of CP-violating processes have been studied in detail in neutral B mesons. In parallel,
measurements of the couplings of the heavy quarks and the dynamics for their decays in
large samples of K,D, and B mesons have been greatly improved in accuracy and the
results are being used as probes in the search for deviations from the Standard Model.
In the near future, there will be a transition from the current to a new generation of

experiments, thus a review of the status of quark flavor physics is timely. This report
is the result of the work of the physicists attending the 5th CKM workshop, hosted by
the University of Rome ”La Sapienza”, September 9-13, 2008. It summarizes the results
of the current generation of experiments that is about to be completed and it confronts
these results with the theoretical understanding of the field which has greatly improved
in the past decade.
In this section the basic formalism of the study of the quark couplings will be introduced

and the relationship between CKM matrix elements and observables will be discussed.
The last paragraph will then detail the plan of the report and the content of the rest of
the sections.

1.1. CKM matrix and the Unitarity Triangle

The unitary CKM matrix [1,2] connects the weak eigenstates (d′, s′, b′) and the corre-
sponding mass eigenstates d, s, b (in both basis the up-type mass matrix is diagonal and
the up-type quarks are unaffected by this transformation):




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d

s

b


 ≡ V̂CKM




d

s

b


 . (1)

The CKM matrix contains all the flavor-changing and CP-violating couplings of the
Standard Model.
Several parameterizations of the CKM matrix have been proposed in the literature.

This report will use the standard parametrization [3] recommended by the Particle Data
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Group [4]. We also introduce the generalization of the Wolfenstein parametrization [5]
presented in [6] and discuss its connection to the Unitarity Triangle parameters.

1.1.1. Standard parametrization
With cij = cos θij and sij = sin θij (i, j = 1, 2, 3), the standard parametrization is

given by:

V̂CKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −s23c12 − s12c23s13e

iδ c23c13


 , (2)

where δ is the phase necessary for CP violation. cij and sij can all be chosen to be positive
and δ may vary in the range 0 ≤ δ ≤ 2π. However, measurements of CP violation in
K decays force δ to be in the range 0 < δ < π, as the sign of the relevant hadronic
parameter is fixed.
From phenomenological studies we know that s13 and s23 are small numbers: O(10−3)

and O(10−2), respectively. Consequently, to a very good accuracy,

s12 ≃ |Vus|, s13 ≃ |Vub|, s23 ≃ |Vcb|. (3)

Thus these three parameters can be extracted from tree level decays mediated by the
transitions s→ u, b→ u and b→ c, respectively. The remaining parameter, the phase δ,
is responsible for the violation of the CP symmetry. It can clearly be extracted from CP-
violating transitions but also from CP-conserving ones using three-generation unitarity,
through the construction of the Unitarity Triangle, as discussed below.

1.1.2. Wolfenstein parametrization and its generalization
The absolute values of the elements of the CKM matrix show a hierarchical pattern

with the diagonal elements being close to unity, the elements |Vus| and |Vcd| being of
order 0.2, the elements |Vcb| and |Vts| of order 4 ·10−2 whereas |Vub| and |Vtd| are of order
5 · 10−3. The Wolfenstein parametrization [5] exhibits this hierarchy in a transparent
manner. It is an approximate parametrization of the CKM matrix in which each element
is expanded as a power series in the small parameter λ ∼ |Vus| ≈ 0.22,

V̂ =




1− λ2

2
λ Aλ3(̺− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ̺− iη) −Aλ2 1




+O(λ4) , (4)

and the set (3) is replaced by

λ, A, ̺, and η . (5)

Because of the smallness of λ and the fact that for each element the expansion parameter
is actually λ2, this is a rapidly converging expansion.
The Wolfenstein parametrization is certainly more transparent than the standard

parametrization. However, if one requires sufficient level of accuracy, the terms of O(λ4)
and O(λ5) have to be included in phenomenological applications. This can be done in
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many ways [6]. The point is that since (4) is only an approximation the exact definition
of the parameters in (5) is not unique in terms of the neglected order O(λ4). This situa-
tion is familiar from any perturbative expansion, where different definitions of expansion
parameters (coupling constants) are possible. This is also the reason why in different pa-
pers in the literature different O(λ4) terms in (4) can be found. They simply correspond
to different definitions of the parameters in (5). Since the physics does not depend on
a particular definition, it is useful to make a choice for which the transparency of the
original Wolfenstein parametrization is not lost.
In this respect a useful definition adopted by most authors in the literature is to go back

to the standard parametrization (2) and to define the parameters (λ,A, ̺, η) through [6]

λ ≡ s12 , Aλ2 ≡ s23 , Aλ3(̺− iη) ≡ s13e
−iδ (6)

to all orders in λ. It follows that

̺ =
s13

s12s23
cos δ, η =

s13
s12s23

sin δ. (7)

The expressions (6) and (7) represent simply the change of variables from (3) to (5). Mak-
ing this change of variables in the standard parametrization (2) we find the CKM matrix
as a function of (λ,A, ̺, η) which satisfies unitarity exactly. Expanding next each element
in powers of λ we recover the matrix in (4) and in addition find explicit corrections of
O(λ4) and higher order terms. Including O(λ4) and O(λ5) terms we find

V̂ =




1− 1

2
λ2 − 1

8
λ4 λ+O(λ7) Aλ3(̺− iη)

−λ+
1

2
A2λ5[1− 2(̺+ iη)] 1− 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2 +O(λ8)

Aλ3(1− ̺− iη) −Aλ2 + 1

2
Aλ4[1− 2(̺+ iη)] 1− 1

2
A2λ4




(8)

where

̺ ≃ ̺(1− λ2

2
) +O(λ4), η = η(1− λ2

2
) +O(λ4). (9)

An all-order definition of ̺ and η will be given in the next section. We emphasize here that
by definition the expression for Vub remains unchanged relative to the original Wolfenstein
parametrization and the corrections to Vus and Vcb appear only at O(λ7) and O(λ8),
respectively. The advantage of this generalization of the Wolfenstein parametrization is
the absence of relevant corrections to Vus, Vcd, Vub and Vcb and an elegant change in
Vtd which allows a simple connection to the Unitarity Triangle parameters, as discussed
below.

1.1.3. Unitarity Triangle
The unitarity of the CKM matrix implies various relations between its elements. In

particular, we have

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (10)

Phenomenologically this relation is very interesting as it involves simultaneously the
elements Vub, Vcb and Vtd which are under extensive discussion at present. Other relevant
unitarity relations will be presented as we proceed.
The relation (10) can be represented as a unitarity triangle in the complex plane.

The invariance of (10) under any phase-transformations implies that the corresponding
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triangle is rotated in the plane under such transformations. Since the angles and the
sides (given by the moduli of the elements of the mixing matrix) in this triangle remain
unchanged, they are phase convention independent and are physical observables. Conse-
quently they can be measured directly in suitable experiments. One can construct five
additional unitarity triangles [7, 8] corresponding to other orthogonality relations, like
the one in (10). Some of them should be useful when the data on rare and CP violating
decays improve. The areas (A∆) of all unitarity triangles are equal and related to the
measure of CP violation JCP [9]: | JCP |= 2 · A∆.
The relation (10) can be represented as the triangle in the complex plane as shown in

Fig. 1, where

̺+ iη ≡ −→
CA = −V

∗
ubVud
V ∗
cbVcd

(11)

and

−→
AB = −V ∗

tbVtd
V ∗
cbVcd

= 1− ̺− iη ,

−→
CB = 1 . (12)

ρ+iη 1−ρ−iη

βγ

α

C=(0,0) B=(1,0)

A=(ρ,η)

Fig. 1. Unitarity Triangle.

The parameters ̺ and η are the coordinates in the complex plane of the only non-trivial
apex of the Unitarity Triangle. Using their definition in Eq. (11), the exact relation to
the parameters ̺ and η as given in Eq. (6) can be easily found and reads

̺+ iη =

√
1−A2λ4

1− λ2
̺+ iη

1−A2λ4(̺+ iη)
≃
(
1 +

λ2

2

)
(̺+ iη) +O(λ4) . (13)

Phenomenological analyses of the Unitarity Triangles constrain the values of ̺ and
η. These can be translated to constraints on ̺ and η using Eq. (13) and then to the
standard parametrization using Eq. (6). All recent analyses determine the V̂CKM matrix
elements in this way, using no expansion whatsoever.
Let us collect useful formulae related to the Unitarity Triangle:

– We can express sin(2αi), αi = α, β, γ, in terms of (̺, η) using simple trigonometric
formulae:

sin(2α) =
2η(η2 + ̺2 − ̺)

(̺2 + η2)((1 − ̺)2 + η2)
, (14)

sin(2β) =
2η(1− ̺)

(1− ̺)2 + η2
, (15)
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sin(2γ) =
2̺η

̺2 + η2
. (16)

– The lengths of AC and AB, denoted by Rb and Rt respectively, are given by

Rb ≡
|V ∗
ubVud|

|V ∗
cbVcd|

=

√
̺2 + η2 ≃ (1 − λ2

2
)
1

λ

∣∣∣∣
Vub
Vcb

∣∣∣∣ , (17)

Rt ≡
|V ∗
tbVtd|

|V ∗
cbVcd|

=
√
(1− ̺)2 + η2 ≃ 1

λ

∣∣∣∣
Vtd
Vcb

∣∣∣∣ . (18)

– The unitarity relation (10) can be rewritten as

Rbe
iγ +Rte

−iβ = 1 . (19)

– The angle α can be obtained through the relation

α+ β + γ = π . (20)

– In the standard parametrization, the angles β and γ of the unitarity triangle are
approximately related to the complex phases of the CKM matrix elements Vtd and Vub
respectively. In particular,

Vtd ≃ |Vtd|e−iβ , Vub ≃ |Vub|e−iγ . (21)

1.2. Plan of the report

The goal of the latest generation of flavor experiments has been not only the mea-
surement of the angles and sides of the unitarity triangles, but the measurement of as
many redundant observables sensitive to the parameters of the unitarity triangle. On
one side in fact the consistency of this plethora of measurements is a signal that the CP-
violation mechanism is fully understood, on the other side possible deviations from the
Standard Model would spoil such a consistency. Sensitivity to ”New Physics” is therefore
proportional to the accuracy we are able to achieve on the Unitarity Triangle. Finally,
in case New Physics is observed, the Standard Model Unitarity Triangle will have to be
measured by means of a subset of observables , those that are not influenced by New
Physics itself, namely tree dominated processes.
In this report, we first describe general theoretical (Sec. 2) and experimental (Sec. 3)

tools. Next, the single measurements are described and averaged whenever possible. In
particular Sec. 4 discusses the measurements of the Cabibbo Angle, Sec. 5 the measure-
ment of |Vcx| and |Vub| in semileptonic decays. Rare decays and measurements of |Vtd|
and |Vub| are detailed in Sec. 6, while Sec. 7 reports on the mixing and lifetime related
measurements, including the time-dependent measurements of the phases of the mixing
diagram, both for Bd and Bs mesons. All other measurements of angles of the Unitarity
Triangle are described in Sec. 8 and 9: the former shows a large number of measurements
of the γ angle in tree dominated processes, while the latter comprises several techniques
to measure α, β, and γ in charmless B decays.
These measurements are interpreted altogether in Sec. 10. First the results of global

fits to all observables under the assumption that there is no deviation from the Standard
Model is presented. This fit returns a very accurate measurement of the position of the
apex of the unitarity triangle. Next, the redundancy of the measurements is exploited to
test the possibility of deviations from the Standard Model both in model independent
frames and under specific New Physics scenarios.
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2. Theory Primers

This section contains the description of theretical tools that are common to different
fields of flavor physics and that will therefore be used as starting point in the subsequent
sections.

2.1. Effective Weak Hamiltonians

Flavor-changing hadron transitions are multi-scale processes conveniently studied using
the operator product expansion (OPE) [10,11]. They involve at least two different energy
scales: the electroweak scale, given for instance by the W boson mass MW , relevant for
the flavor-changing weak transition, and the scale of strong interactions ΛQCD, related to
the hadron formation. Using the OPE, these processes can be described by effective weak
Hamiltonians where the W boson and all heavier particles are eliminated as dynamical
degrees of freedom from the theory [12–16]. These Hamiltonians are given by the first
term of an expansion in renormalized local operators of increasing dimensions suppressed
by inverse powers of the heavy scale.
The OPE realizes the scale separation between short-distance (high-energy) and long-

distance (low-energy) physics. The scale µ at which the local operators are renormalized
sets the threshold between the two regimes. The effect of particles heavier than MW

enters only through the Wilson coefficients, namely the effective couplings multiplying the
operators of the Hamiltonian. Short-distance strong-interaction effects are also contained
in the Wilson coefficients and can be computed using renormalization-group improved
perturbation theory. Indeed, Wilson coefficients obey a renormalization group equation
(RGE) allowing to resum large logs of the form αs(µ)

n+m log(MW /µ)
n to all orders

in n. The leading order (LO) resummation corresponds to m = 0, the next-to-leading
order (NLO) one to m = 1, and so on. Since the Wilson coefficients depend on short
distance physics only, they behave as effective couplings in the Hamiltonians. They can
be calculated once and for all, i.e. for any external state used to compute the Hamiltonian
matrix elements. Indeed, the complete definition of an effective weak Hamiltonian requires
the choice of the operators and the computation of the corresponding Wilson coefficients.
The dependence on external states, as well as long-distance strong-interaction effects,

is included in the hadronic matrix elements of the local operators and must be evaluated
with a non-perturbative technique (lattice QCD, QCD sum rules, QCDF, SCET, etc.).
As non-perturbative methods can typically compute matrix elements of local operators,
this is a major motivation for using the effective weak Hamiltonians.
We now illustrate the procedure to define the effective weak Hamiltonians and to com-

pute the Wilson coefficients discussing the case of ∆F = 1 transitions, namely processes
where the quark flavor quantum numbers change by one unit.
The starting point is a generic S matrix element given by the T -product of two weak

charged currents computed in the Standard Model (in the following called full theory to
distinguish it from the effective theory defined by the effective weak Hamiltonian)

〈F |S|I〉 =
∫
d4xDµν (x,MW ) 〈F |T

(
Jcc
µ (x), Jcc †ν (0)

)
|I〉 , (22)

where 〈F | and |I〉 are the generic final and initial states and
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Jcc
µ (x) =

g√
2

3∑

j=1

[(
2∑

i=1

Vuidj ū
i
L(x)γµd

j
L(x)

)
+ ējL(x)γµν

j
L(x)

]
, (23)

where V is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1, 2], ui = {u, c} 1 , di =
{d, s, b}, ei = {e, µ, τ}, νi = {νe, νµ, ντ} and the subscript L denotes the left-handed
component of the field.
Given that, using for instance the Feynman gauge,

Dµν (x,MW ) =

∫
d4q

(2π)4
e−iq·x

−gµν
q2 −M2

W + iε
= δ(x)

gµν

M2
W

+ . . . , (24)

the two weak currents go at short distances in the large MW limit. Thus the S matrix
element can be expanded in terms of local operators and gives

〈F |iS|I〉 = 4
GF√
2

∑

i

Ci(µ)〈F |Qi(µ)|I〉 + . . . , (25)

where GF is the Fermi constant GF /
√
2 = g2/8M2

W . The dots represent subdominant
terms suppressed by powers of Q2/M2

W where Q is the typical energy scale of the process
under study (ΛQCD for light hadron decays, mb for B decays, etc.).
The OPE in Eq. (25) is valid for all possible initial and final states. This allows for the

definition of the effective weak Hamiltonian, given by the operator relation

H∆F=1
W = 4

GF√
2

∑

i

Ci(µ)Qi(µ) = 4
GF√
2
QT (µ) ·C(µ) . (26)

The Qi(µ) are local, dimension-six operators renormalized at the scale µ and the Ci(µ)
are the corresponding Wilson coefficients. The set of operators Qi(µ) forms a complete
basis for the OPE. This set contains all the linearly-independent, dimension-six operators
with the same quantum numbers of the original weak current product, usually reduced
by means of the equations of motion (although off-shell basis can also be considered).
In practice, the operators generated by the expansion of the full amplitude (in the so-
called “matching” procedure described below) must be complemented by the additional
operators generated by the renormalization procedure. Notice that, in the absence of
QCD (and QED) corrections, the effective Hamiltonian in Eq. (26) reduces to the Fermi
theory of weak interactions. For instance, from the leptonic part of the charged currents,
one finds

HFermi =
GF√
2
ēγµ(1− γ5)νeν̄µγµ(1− γ5)µ , (27)

i.e. the Fermi Hamiltonian describing the muon decay.
For quark transitions, gluonic (and photonic) radiative corrections to amplitudes com-

puted in terms of local operators produce ultraviolet divergences which are not present
in the full theory. This implies that the local operators Qi need to be renormalized and
depend on the renormalization scale µ. Therefore µ-dependent Wilson coefficients must
be introduced to cancel this dependence.
Provided that one choses a large enough renormalization scale µ ≫ ΛQCD, short-

distance QCD (and QED) corrections to the Wilson coefficients can be calculated using
a renormalization-group-improved perturbation theory, resumming classes of large logs

1 The top quark is not included as we are building an effective theory valid for energies below MW .
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potentially dangerous for the perturbative expansion. All non-perturbative effects are
confined in the matrix elements of the local operators. Their calculation requires a non-
perturbative technique able to compute matrix elements of operators renormalized at the
scale µ. In the case of leptonic and semi-leptonic hadron decays, the hadronic effects are
confined to the matrix elements of a single current which can be conveniently written
using meson decay constants (for matrix elements between one hadron and the vacuum)
or form factors (for matrix elements between two hadron states) as for example

〈0|d̄Lγµγ5uL|π+(q)〉 = ifπq
µ ,

〈π0(p′)|s̄Lγµdl|K0(p)〉 = f0
+(q

2)(p+ p′)µ + f0
−(q

2)(p− p′)µ , q2 = (p− p′)2 . (28)

Appearing in different processes, they can be computed using non-perturbative tech-
niques or measured in one process and used to predict the others. Predictions for non-
leptonic decays, on the other hand, usually require non-perturbative calculations. Data-
driven strategies are possible in cases where many measurements related by flavor sym-
metries are available.
The determination of Wilson coefficients at a given order in perturbation theory re-

quires two steps: (i) the matching between the full theory and the effective Hamiltonian
at a scale M ∼ O(MW ) and (ii) the RGE evolution from the matching scale M down to
the renormalization scale µ.
Let’s discuss the second point first. Since H∆F=1

W in Eq. (26) is independent of µ, i.e.
µ2 d

dµ2H∆F=1
W = 0, the Wilson coefficients C(µ) = (C1(µ), C2(µ), . . . ) must satisfy the

RGE

µ2 d

dµ2
C(µ) =

1

2
γ̂TC(µ) , (29)

which can be conveniently written as
(
µ2 ∂

∂µ2
+ β(αs)

∂

∂αs
− 1

2
γ̂T (αs)

)
C(µ) = 0 , (30)

where

β(αs) = µ2 dαs
dµ2

(31)

is the QCD β function and

γ̂(αs) = 2Ẑ−1µ2 d

dµ2
Ẑ (32)

is the operator anomalous dimension matrix. The matrix Ẑ of the renormalization con-
stants is defined by the relation connecting the bare operators QB to the renormalized
ones Q(µ)

Q(µ) = Ẑ−1(µ, αs)Q
B . (33)

The solution of the system of linear differential equations (30) is found by introducing
a suitable evolution matrix U(µ,MW ) and by imposing an appropriate set of initial
conditions, usually called matching conditions. The coefficients C(µ) are given by 2

C(µ) = Û(µ,M)C(M) , (34)

2 The problem of the thresholds due to the presence of heavy quarks with a mass MW ≫ mQ ≫ ΛQCD

will be discussed below.
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with

Û(m1,m2) = Tαs
exp

(∫ αs(m2)

αs(m1)

dαs
β(αs)

γ̂T (αs)

)
. (35)

Tαs
is the ordered product with increasing couplings from right to left.

The matching conditions are found by imposing that, at µ =M ∼ O(MW ), the matrix
elements of the original T -product of the currents coincide, up to terms suppressed by
inverse powers of MW , with the corresponding matrix elements of H∆F=1

W . To this end,
we introduce the vector T defined by the relation

i〈α|S|β〉 = 4
GF√
2
〈α|QT |β〉0 · T (MW ,mt;αs) + . . . (36)

where 〈α|QT |β〉0 are matrix elements of the operators computed at the tree level and the
dots denote power-suppressed terms. The vector T contains the dependence on heavy
masses and has a perturbative expansion in αs

3 On dimensional basis, T can only
be a function of mt/MW and of log(p2/M2

W ) where p generically denotes the external
momenta.
We also introduce the matrix M̂(µ) such that

〈α|H∆F=1
W |β〉= 4

GF√
2
〈α|QT (µ)|β〉C(µ)

= 4
GF√
2
〈α|QT |β〉0M̂T (µ;αs)C(µ) . (37)

In terms of T and M̂ , the matching condition

i〈α|S|β〉 = 〈α|H∆F=1
W |β〉 (38)

fixes the value of the Wilson coefficients at the scale M as

C(M) = [M̂T (M ;αs)]
−1T (MW ,mt;αs) . (39)

As the full and the effective theories share the same infrared behavior, the dependence on
the external states on which the matching conditions are imposed drops in Eq. (39), so
that any matrix element can be used, even off-shell ones (with some caution), provided
the same external states are used for computing matrix elements in both theories. Notice
that the matching can be imposed at any scale M such that large logs do not appear in
the calculation of the Wilson coefficients at that scale, i.e. αs log(M/MW ) ≪ 1.
Equation (34) is correct if no threshold corresponding to a quark mass between µ and

MW is present. Indeed, as αs, γ̂ and β(αs) depend on the number of “active” flavors, it
is necessary to change the evolution matrix Û defined in Eq. (35), when passing quark
thresholds. The general case then corresponds to a sequence of effective theories with a
decreasing number of “active” flavors. By “active” flavor, we mean a dynamical massless
(µ ≫ mq) quark field. The theory with k “active” flavors is matched to the one with
k + 1 “active” flavors at the threshold. This procedure changes the solution for the
Wilson coefficients. For instance, if one starts with five “active” flavors at the scale MW

and chooses mc ≪ µ≪ mb, the Wilson coefficients become

C(µ) =W [µ,MW ]C(MW ) = Û4(µ,mb)T̂45Û5(mb,MW )C(MW ) . (40)

3 For simplicity, we discuss QCD corrections only. QED corrections can be considered as well and are
included in a similar way.
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Fig. 2. One-loop correction to the ∆F = 1 effective weak Hamiltonian.

The matrix T̂45 matches the four and five flavor theories so that the Wilson coefficients
are continuous across the threshold. The inclusion of the charm threshold proceeds along
the same lines.
So far we have presented the formal solution of the matching and the RGE for the

Wilson coefficients. In practice, we can calculate the relevant functions (β, γ̂, M̂ , T , etc.)
in perturbation theory only. At the LO, one has

β(αs) = −α
2
s

4π
β0 + . . . , γ̂ =

αs
4π
γ̂(0) + . . . T = T (0) + . . . , M̂ = 1̂ + . . . , (41)

so that the LO Wilson coefficients read

CLO(µ) =

(
αs(M)

αs(µ)

)γ̂(0)T /2β0

T 0 . (42)

The explicit solution can be found in the basis where the LO anomalous dimension
matrix γ̂(0) is diagonal. To go beyond the LO, we have to expand the relevant functions
to higher order in αs. Discussing the details on higher order calculations goes beyond the
purpose of this primer. They can be found in the original literature cited in the following
presentation of the actual effective Hamiltonians for ∆F = 1 and ∆F = 2 transitions.

2.1.1. ∆F = 1 effective weak Hamiltionians
Even restricting to processes which change each flavor number by no more than one

unit, namely ∆F = 1 transitions, several effective Hamiltonians can be introduced. We
start considering the Hamiltonian relevant for transtions with ∆B = 1, ∆C = 0, ∆S =
−1:
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H∆B=1 ,∆C=0 ,∆S=−1
W = 4

GF√
2

(
λsc
(
C1(µ)Q

c
1(µ) + C2(µ)Q

c
2(µ)

)
(43)

+λsu
(
C1(µ)Q

u
1 (µ) + C2(µ)Q

u
2 (µ)

)
− λst

10∑

i=3

Ci(µ)Qi(µ)
)
,

where the λsq = V ∗
qbVqs and the operator basis is given by

Qq1 = b̄αLγ
µqαL q̄

β
Lγµs

β
L Qq2 = b̄αLγ

µqβL q̄
β
Lγµs

α
L

Q3 = b̄αLγ
µsαL

∑

q

q̄βLγµq
β
L Q4 = b̄αLγ

µsβL
∑

q

q̄βLγµq
α
L

Q5 = b̄αLγ
µsαL

∑

q

q̄βRγµq
β
R Q6 = b̄αLγ

µsβL

∑

q

q̄βRγµq
α
R

Q7 =
3

2
b̄αLγ

µsαL
∑

q

eq q̄
β
Rγµq

β
R Q8 =

3

2
b̄αLγ

µsβL
∑

q

eq q̄
β
Rγµq

α
R

Q9 =
3

2
b̄αLγ

µsαL
∑

q

eq q̄
β
Lγµq

β
L Q10 =

3

2
b̄αLγ

µsβL
∑

q

eq q̄
β
Lγµq

α
L

(44)

The sum index q runs over the “active” flavors, α, β are color indices and eq is the electric
charge of the quark q. Besides Q1, which come from the matching, the above operators
are generated by gluon and photon exchanges in the Feynman diagrams of fig. 2. In
particular, Qq2 is generated by current–current diagrams while Q3–Q6 and Q7–Q10 are
generated by gluon and photon penguin diagrams respectively. Notice that the choice
of the operator basis in not unique. Different possibilities have been considered in the
literature [17–23].
The operators basis includes the ten independent operators in Eq. (44) in the five-flavor

effective theory. Below the bottom threshold, the following relation holds

Q10 −Q9 −Q4 +Q3 = 0 , (45)

so that the independent operators become nine. The basis is further reduced in the
three-flavor theory, i.e. below the charm threshold, due to the additional relations

Q4 −Q3 −Q2 +Q1 = 0 , Q9 −
3

2
Q1 +

1

2
Q3 = 0 . (46)

For b → s transitions with a photon or a lepton pair in the final state, additional
dimension-six operators must be included in the basis, namely

Q7γ =
e

16π2
mbb̄

α
Lσ

µνFµνs
α
L

Q8g =
gs

16π2
mbb̄

α
Lσ

µνGAµνT
AsαL

Q9V =
1

2
b̄αLγ

µsαL l̄γµl

Q10A =
1

2
b̄αLγ

µsαL l̄γµγ5l (47)

where GAµν (Fµν) is the gluon (photon) field strength tensor and TA are the SU(3)
generators. They contribute an additional term to the Hamiltonian in Eq. (44) so that,
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up to doubly Cabibbo-suppressed terms and neglecting the electroweak penguin operators
Q7–Q10, the effective weak Hamiltonian for these processes reads

HW =−4
GF√
2
λst

( 6∑

i=1

Ci(µ)Qi(µ) + C7γ(µ)Q7γ(µ) + C8g(µ)Q8g(µ)

+C9V (µ)Q9V (µ) + C10A(µ)Q10A(µ)
)
, (48)

with Q1,2 = Qc1,2 defined in Eq. (44).
At present, the ∆F = 1 effective weak Hamiltonian in Eq. 44, including electroweak

penguin operators (Q7–Q10 in Eq. (44)), is known at the NNLO in αs [24] and at the
NLO in αe [25,26]. The effective Hamiltonian in Eq. (48) has been fully computed at the
NNLO in the strong coupling constant [27–30].
Effective weak Hamiltonians for other transtions can be obtained by trivial changes

in the quark fields and in the CKM matrix elements entering eqs. (44) and (44). In
particular

∆B = 1 ,∆C = 0 ,∆S = 0 : s→ d

∆B = 0 ,∆C = 0 ,∆S = 1 : b→ s , s→ d

∆B = 0 ,∆C = 1 ,∆S = 0 : b→ c , s→ u , c→ s , u→ d . (49)

In other cases, for instance ∆B = 1, ∆C = −1, ∆S = 0 transitions, the Hamiltonian
has a simpler structure, namely

H∆B=1,∆C=−1,∆S=0
W = 4

GF√
2
V ∗
cbVud

(
C1(µ)Q

′
1(µ) + C2(µ)Q

′
2(µ)

)
(50)

with
Q′

1 = b̄αLγ
µcαL ū

β
Lγµd

β
L, Q′

2 = b̄αLγ
µcβL ū

β
Lγµd

α
L . (51)

Only current–current operators enter this Hamiltonian. Penguin operators are not gener-
ated as the considered transitions involve four different flavors. Other Hamiltonians share
this feature and can be obtained from eqs. (50) and (51) with the following replacements

∆B = 1 ,∆C = 1 ,∆S = 0 : c→ u , u→ c

∆B = 1 ,∆C = −1 ,∆S = −1 : d→ s

∆B = 1 ,∆C = 1 ,∆S = −1 : c→ u , u→ c , d→ s

∆B = 0 ,∆C = −1 ,∆S = 1 : b→ s

∆B = 0 ,∆C = 1 ,∆S = 1 : b→ s , c→ u , u→ c . (52)

Clearly the (omitted) Hermitean-conjugate terms in the Hamiltonians mediate transitions
with opposite ∆F .
Notice that physics beyond the SM could change not only the Wilson coefficients

through the matching conditions, but also the operator basis where new spinor and color
structures may appear. Indeed the most general ∆F = 1 basis contains a large number
of operators making it hardly useful. On the other hand, a possible definition of the class
of new physics models with minimal flavor violation is that these models produce only
real corrections to the SM Wilson coefficients without changing the operator basis of the
effective weak Hamitonian [31].
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2.1.2. ∆F = 2 effective weak Hamiltionians
The ∆F = 2 effective weak Hamiltionians are simpler than the ∆F = 1 ones. In the

SM, the operator basis includes one operator only. For example, the ∆S = 2 effective
Hamiltonian is commonly written as

H∆S=2
W =

G2
F

4π2
M2
W

(
λ2cη1S0(xc) + λ2t η2S0(xt) + λtλcη3S0(xt, xc)

)
Q̂s (53)

where λq = V ∗
qsVqd, the functions S0 of xq = m2

q/M
2
W come from the LO matching

conditions, the coefficents ηi account for the RGE running and NLO effects. Starting
from the dimension-six operator

Qs = s̄LγµdL s̄Lγ
µdL . (54)

Q̂s is defined as Q̂s = K(µ)Qs(µ), where K(µ) is the appropriate short-distance factor
which makes Q̂ independent of µ [32]. The matrix element of this operator between K0

and K̄0 is parameterised in terms of the RG-invariant bag parameter B̂K (see Sec. 7).
The Hamiltonian in Eq. (53) describes only the short-distance part of the ∆S = 2

amplitude. Long-distance contributions generated by the exchange of hadronic states are
also present. These contributions break the OPE producing additional terms which are
diffcult to estimate. This is the case of the K0–K̄0 mass difference ∆MK which therefore
cannot be reliably predicted. On the other hand, the CP-violation parameter ǫK , related
to Im〈K̄0|H∆S=2

W |K0〉, is short-distance dominated and thus calculable.
Concerning ∆B = 2 transitions, namely the B0

d–B̄
0
d and B0

s–B̄
0
s mixing amplitudes,

virtual top exchange gives the dominant contributions in the SM. Therefore these ampli-
tudes are short-distance dominated and described by matrix elements of the Hamiltonian

H∆B=2
W =

G2
F

4π2
M2
W (λqt )

2η2S0(xt)Q̂
q
b (55)

where
Qqb = b̄LγµqL b̄Lγ

µqL , q = {d, s} , (56)

and Q̂qb is defined similarly to the ∆S = 2 case in terms of the bag-parameter Q̂qb (see
Sec. 7).
At present, ∆F = 2 effective Hamiltonians are known at the NLO in the strong

coupling constants [33–35].
It is worth noting that, unlike ∆F = 1 Hamiltonians, generic new physics contributions

to ∆F = 2 transitions generate few additional operators allowing for model-independent
studies of ∆F = 2 processes where the Wilson coefficients at the matching scale are used
as new physics parameters [36].
Finally, we mention that the absorbtive part of ∆F = 2 amplitudes, related to the

neutral mesons width differences, can also be calculated using an OPE applied to the
rates rather than to the amplitudes. We refer the interested reader to Sec. 7. for details
on this calculation.

2.2. Factorization

In the previous section it was shown how to integrate out physics at the electroweak
scale, resulting in 10 four-fermion operators O1-O10. In order to measure the decay rates
or CP-asymmetries in non-leptonic decays of a B meson to two light pseudoscalar mesons
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(either π or K), one needs information about the matrix elements of these operators
between the initial B meson and the given final state. The nature of the strong interaction
implies that these matrix elements can not be calculated perturbatively, and one either
has to resort to non-perturbative methods to calculate these matrix elements or extract
them from data.
In order to determine the required matrix elements from data and still obtain infor-

mation about the electroweak physics requires to have more experimental input than
unknown matrix elements. It has been known for a long time that in the B → ππ system
there are more measurements than non-perturbative parameters, which allows to mea-
sure some fundamental parameters of the CKM matrix [37]. However, of the 8 possible
measurements, only 6 have been made to this point, one of which still has very large
uncertaities. Thus, in practice, even in the ππ system some additional information is re-
quired in order to have detailed information about the electroweak phases. The situation
is worse once we include Kaons in the final state, and without using additional theoretical
information, there are more unknown parameters than there are measurements.
Factorization utilizes an expansion in ΛQCD/mb in order to simplify the required matrix

elements, resulting in new relations in the limit ΛQCD/mb → 0. Theoretically, this limit
can be taken using diagrammatic factorization techniques (QCD factorization) [38–40] or,
equivalently, soft-collinear effective theory (SCET) [41–44], together with heavy quark
effective theory (HQET). Before detailing how the factorization theorems arise in the
effective field theory approach, we give a simple physical picture of factorization, known
as color transparency.
As discussed above, the decay B →M1M2 is described by the matrix elements of local

four-fermion operators, allowing the b quark to decay to three light quarks. Two of these
quarks will form the mesonM1, while the mesonM2 is formed from the third light quark
together with the spectator quark of the B meson. The dominant contribution to a given
decay arises from operators for which the two light quark forming M1 are in a color
singlet configuration.These two quarks in a color singlet configuration will only interact
non-perturbatively with the remaining system once their separation is of order 1/ΛQCD.
Due to the large energy E ∼ mb/2 of the light mesons, this separation only occurs when
the two quarks are a distance d ∼ Eπ/Λ

2
QCD from the origin of the decay, and therefore

out of the reach d ∼ 1/ΛQCD of the non-perturbative physics of the B meson. Thus, the
non-perturbative dynamics of one of the two mesons is independent of the rest of the
system. Since the second light meson requires the spectator quark of the B meson, no
such factorization should be expected.
Using effective field theory methods allows to prove this intuitive result rigorously,

while at the same time allowing in principle to go beyond the leading order result in
ΛQCD/mb. The first step in the factorization proof is to separate the different energy
scales in the system, by constructing the correct effective field theory. In the rest frame
of the B meson, the two light mesons decay back-to-back with energy mB/2, and we
label the directions of the two mesons by four-vectors n and n̄. To describe these two
energetic mesons we require collinear quark and gluon fields which are labeled by the
direction of flight n or n̄ of the meson. We will call the collinear quark fields χn/n̄ and
An/n̄, respectively. In order to describe the heavy B meson, we require soft heavy quark
and soft light quark and gluon fields, which we call hs, qs and As, respectively. Since it
is the two light quarks in the n direction that form the meson M1, we will also write
Mn ≡M1 and Mn̄ ≡M2.
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The important property of SCET/HQET that allows to prove the factorization theorem
is that to leading order in ΛQCD/mb the collinear fields in the different directions do not
interact with one another. Furthermore, all interactions between collinear and soft fields
can be removed from the Lagrangian by redefining the collinear fields to be multiplied by
a soft Wilson line Yn, which depends on the direction n of the collinear field it belongs
to. Since all interactions between the different sectors disappear at leading order, the
Lagrangian can be written as

Leff = Ln + Ln̄ + Ls +O(ΛQCD/mb) . (57)

The 4-quark operators Oi describing the decay of the heavy b quark are matched onto
operators in the effective field theory, which are constructed out of the collinear and soft
fields. This allows to write written as

Oi = Ci ⊗Onn̄i = Ci ⊗
[
h̄sΓiYn̄χn̄

] [
χ̄nY

†
nΓiYnχn

]
. (58)

Here Ci denotes the Wilson coefficient of the operators and describes the physics occur-
ring at the scale mb, and the different operators are distinguished by their Dirac and
color structure Γi. The symbol ⊗ denotes a convolution between the Wilson coefficients
and operators, which is due to the fact that the Wilson coefficients can depend on the
large energies of the light quarks. Note that if the two collinear quarks in the n direction
form a color singlet (meaning Γi is color singlet), then we can use the unitarity of Wilson
lines Y †

nYn = 1 to write

Oi = Ci ⊗
[
h̄sΓiYn̄χn̄

] [
χ̄nΓiχn

]
. (59)

Since the Wilson lines Yn describe the coupling of the collinear fields χn to the rest of
the system, their cancellation is the field theoretical realization of the physical picture
given before.
The absence of interactions between the fields in the n direction from the rest of the

system can be used to separate the matrix element of the operators Oi as

〈MnMn̄|Oi|Bs〉=Ci ⊗ 〈MnMn̄|Onn̄i |Bs〉 = Ci ⊗ 〈Mn|χ̄nΓiχn|0〉 〈Mn̄|hsΓiYn̄χn̄|Bs〉
=Ci ⊗ φMn

⊗ ζBMn̄
. (60)

Here φM denotes the light cone distribution function of the mesonM , while ζBM denotes
the matrix element describing the B → M transition. Thus, the matrix element of
the required operators factor into a convolution of a perturbatively calculable Wilson
coefficient Ci, a matrix element describing the B → M2 transition, as well as the wave
function of the meson M1. The wave functions of the light pseudoscalar mesons have
been measured in the past and are known relatively well, and some of the B → M2

matrix elements can be measured in semileptonic B decays. Thus, much information for
the matrix elements of the operators Oi can be measured in other processes, allowing to
use the non-leptonic data on to extract information about the weak scale physics.
There are several different approaches to understanding factorization and they go by

the names QCD Factorization (QCDF) [38–40], perturbative QCD (PQCD) [45–50] and
soft-collinear effective theory (SCET) [51–53] in the literature. All three approaches agree
with everything discussed up to this point, and the main differences arises when trying
to factorize the matrix elements ζBM further. This can be achieved by matching onto a
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Table 1
Comparison of the different approaches to Factorization

SCET QCDF PQCD

Expansion in αs(µi) No Yes Yes

Singular convolutions N/A New parameters ”Unphysical” kT

Charm Loop Non-perturbative Perturbative Perturbative

Number of paramterers Most Middle Least

second effective theory which integrates out physics at the scale µi ∼
√
ΛQCDmb, which

allows to write

ζBM = J ⊗ φB ⊗ φM . (61)

Here J is a matching coefficient that can be calculated perturbatively in an expansion in
αs(µi). A naive calculation of this function J unfortunately leads to a singular convolution
with the wave functions φM and φB, and it is the resolution of this problem that separates
the different approaches. The SCET approach to factorization simply never performs the
second step of the factorization theorem and uses directly the results in Eq. (60) but
requiring the most experimental information. The PQCD results regulate the singular
convolution with an unphysical transverse momentum of the light meson. These results
are therefore on less solid theoretical footing, but require the least amount of experimental
input. QCDF uses a mixture of both approaches and only uses Eq. (61) in cases where
no singular convolutions are obtained. Note however, that for power corrections included
into QCDF a different logic is used and a new non-perturbative parameter is included to
parameterize singular convolutions.
Besides the differences in the treatment of singular convolutions, there are also dif-

ferences in how matrix elements of operators containing charm quarks are treated. The
theoretical question is whether such contributions can be calculated perturbatively or
if they lead to new non-perturbative effects. The SCET approach does not attempt to
calculate these matrix elements perturbatively, while QCDF and PQCD do use perturba-
tion theory. The differences between the different approaches are summarized in Tab. 1.

2.3. Lattice QCD

The tools explained in the previous two sections are used to separate the physical scales
of flavor physics into the weak scale, the heavy-quark scale, and the nonperturbative QCD
scale. At the short distances of the first two, QCD effects can be treated with perturbation
theory, as part of the evaluation of the Wilson coefficients. At longer distances, where
QCD confines, perturbative QCD breaks down: to obtain the hadronic matrix elements
of the operators, one must tackle nonperturbative QCD.
In some cases general features of field theory—symmetry, analyticity and unitarity,

the renormalization group—are enough. For example, using the fact that QCD preserves
CP one can show that the nonperturbative hadronic amplitude drops out of the CP
asymmetry for a process like B → ψKS. Another set of examples entails using one
process to “measure” the hadronic matrix element, and then using this “measurement”
in other, more intriguing, processes.
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In general, however, one would like to compute hadronic matrix elements. The end
objective is to see whether new physics lurks at short distances, so it is essential that
one start with the QCD Lagrangian. Any approach will involve some approximation and
compromise—QCD is too hard otherwise, so it is just as essential that any uncertainties
be systematically reducible and under quantifiable control.
One method that has these aims is based on lattice gauge theory, which provides a

mathematically sound definition of the gauge theory. In QCD, or any quantum field
theory, anything of interest can be related to a correlation function

〈O1(x1)O2(x2) · · ·On(xn)〉 =
1

Z

∫ ∏

x,µ

dAµ(x)
∏

x

dq̄(x)dq(x)O1(x1)O2(x2) · · ·On(xn) e−S ,

(62)
where the Oi(x) are local, color singlet operators built out of quark fields q, antiquark
fields q̄, and gluon fields Aµ, and S is the classical action. The normalization factor Z is
defined so that 〈1〉 = 1. For brevity, color, flavor, and (for q, q̄) Dirac indices are implied
but not written out. As it stands, Eq. (62) requires a definition of the products over
the continuous spacetime label x. A mathematically sound way to do so is to start with
a discrete spacetime variable, labeling the sites of a four-dimensional spacetime lattice.
The idea goes back to Heisenberg, but for QCD and other gauge theories, the key came
when Wilson showed how to incorporate local gauge invariance with the lattice [54]. If
the lattice has N3

S ×L4 sites, the spatial size of the finite volume is L = NSa, where a is
the lattice spacing, and temporal extent L4 = N4a.
The lattice regulates the ultraviolet divergences that appear in quantum field theory

and reduces the mathematical problem to one similar to statistical mechanics. Familiar
perturbation theory can be derived starting with lattice field theory, but many other
theoretical tools from condensed matter theory are available [55]. In the years after
Wilson’s paper there were, for example, many attempts to calculate hadron masses with
strong coupling expansions.
If the lattice has a finite extent, then the system defined by Eq. (62) has a finite, albeit

large, number of degrees of freedom. That means that the integrals can, in principle, be
evaluated on a computer. In the rest of this report all applications of lattice QCD use this
approach. In this section we provide a summary of the methods and a guide to estimate
the inevitable errors that enter when mounting large-scale computing.
To start, let us leave the quarks and antiquarks aside and consider how many gluonic

integration variables are needed. One would like the lattice spacing a to be smaller than
a hadron, and the spatial volume should be large enough to contain at least one hadron.
A desirable target is then NS = L/a = 32, which is typical by now, and some groups use
even larger lattices. For reasons explained below, the temporal extent N4 is often taken
to be 2 or 3 times larger than NS . Taking the gluon’s 8 colors and the 4-fold Lorentz
index into account, the functional integral has 8 × 4 × 323 × 64 ∼ 108 dimensions. This
is practical with Monte Carlo methods, generating an ensemble of random values of the
fields and replacing the right-hand side of Eq. (62) with

〈O1(x1)O2(x2) · · ·On(xn)〉 =
1

C

∑

c

w(A(c))O1(x1)O2(x2) · · ·On(xn), (63)

where the weight w for the cth configuration is specified below, and C is chosen so that
〈1〉 = 1. If the weight e−S in Eq. (62) is real and positive, then the random fields can be
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generated with distribution e−S, in which case the weights are field independent. This is
called importance sampling, and without it numerical lattice field theory is impractical.
In Minkowski space the weight is actually a phase factor eiSM . That means that

the weight fluctuates wildly, leading to enormous cancellations that are impossible to
deal with numerically. For that reason, numerical LQCD calculations are carried out in
Euclidean space or, equivalently, with imaginary time. With this restriction it remains
straightforward to compute hadron masses and many matrix elements. If, however, the
coordinates xi in the original correlation function must have timelike or lightlike separa-
tion, then the function lies beyond current computational techniques.
Fermions, such as quarks, are special for several reasons. To impose the Pauli exclusion

principle, the quark fields are Grassman numbers, i.e., they anticommute with each other,
qiqj = −qjqi(1 − δij). The integration is a formal procedure called Berezin integration.
Fortunately, in cases of practical interest, the integration can be carried out by hand.
The quark part of the action takes the form

Sq̄q =
∑

ij

q̄jMjiqi, (64)

where i and j are multi-indices for spacetime, spin, color, and flavor. The matrix M is
some lattice version of the Dirac operator. It is easy to show that

∫ ∏

ij

dq̄jdqie
−Sq̄q = detM. (65)

Similarly, if quark fields appear in the operators, each instance of qiq̄j is replaced, using
the Wick contraction, by the quark propagator M−1

ij . The determinant and M−1 both
depend on the gauge field; we simply carry out the quark and antiquark integration by
hand and the gluon integration with the Monte Carlo, now with weight detM e−Sgauge .
The computation ofM−1

ij is demanding and the computation of detM is very demanding.
Another peculiar feature of fermions is an obstacle to realizing chiral symmetry on

the lattice [56,57], often called the fermion doubling problem, because a simple nearest-
neighbor version of the Dirac operator leads to a 16-fold duplication of states. As a
consequence, several formulations of lattice fermions are used in numerical lattice QCD.
With staggered fermions [58, 59] some of the doubling remains, but a subset of the chi-
ral symmetry is preserved. With Wilson fermions [60] all doubling is removed, but all
of the (softly broken) chiral symmetries are explicitly broken. The Ginsparg-Wilson re-
lation [61], which is derived from the renormalization group, shows how to preserve a
remnant of chiral symmetry. Specific solutions are the fixed-point action [62,63], domain-
wall fermions [64–67], and the overlap [68,69]. In the approaches satisfying the Ginsparg-
Wilson relation, the chiral transformation turns out to depend on the gauge field [70].
From a theoretical perspective these are the most attractive, but from a practical per-
spective the staggered and Wilson formulations are numerically faster.
To obtain a finite problem, numerical lattice QCD uses a finite spacetime volume, so

one must specify boundary conditions. In most cases, one identifies the field with itself,
up to a phase:

q(x+ Lµeµ) = eiθµq(x), (66)

where eµ is a unit vector and Lµ is the total extent, both in the µ direction. If θµ = 0
this is called a periodic boundary condition; if θµ = π this is called an antiperiodic
boundary condition; and otherwise this is called a twisted boundary condition [71, 72]
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(although “twisted boundary condition” has other meanings too [73]). In a finite volume,
the spectrum is discrete. The allowed 3-momenta are

p =
θ

L
+

2π

L
n, (67)

where n is a vector of integers. One should bear in mind the discrete momentum fol-
lows from the finite volume, not the lattice itself. For one-particle states finite-volume
effects are exponentially suppressed in periodic and antiperiodic [74], as well as (par-
tially) twisted [75], boundary conditions. For multi-particle states the boundary effects
are larger and more interesting [76], as discussed for K → ππ in Ref. [77].
To determine the CKM matrix we need the matrix elements of the electroweak Hamil-

tonian derived in Sec. 2.1. In most cases, we are interested in transitions with at most
one hadron in the initial or final state. These quantities are determined from 2- and
3-point correlation functions, as follows. A first step is to determine the mass. Let O be
an operator with the quantum numbers (JPC , etc.) of the state of interest. For large
temporal extent L4, and temporal separation x4 > 0, the 2-point correlation function

〈O(x)O†(0)〉 = 〈0|Ô(x)Ô†(0)|0〉, (68)

where |0〉 is the QCD vacuum state and the hat indicates an operator in Hilbert space.
Because these calculations are in Euclidean space, the time dependence of the annihilation
operator is

O(x) = ex4ĤÔe−x4Ĥ , (69)

where Ĥ is the Hamiltonian. In deriving Eq. (68) the eigenvalue of Ĥ in |0〉 is set to zero.
Inserting a complete set of eigenstates of Ĥ into Eq. (68), one has

〈O(x)O†(0)〉 =
∑

n

〈0|Ôe−x4Ĥ |n〉〈n|Ô†|0〉 =
∑

n

e−x4En |〈n|Ô†|0〉|2, (70)

where En is the energy of the nth state. If |n〉 is a single-particle state with zero 3-
momentum, this energy is the mass. Taking x4 large enough the state with the lowest-
lying mass dominates, and this is how masses are computed in lattice QCD: evaluate the
left-hand side of Eq. (70) with Monte Carlo techniques, and fit the right-hand side to a
sum of exponentials.
Now suppose that one would like to consider the case where one is interested in a

simple matrix element, one where an operator from the effective Hamiltonian annihilates
the hadron. One can obtain the matrix element by computing another 2-point correlation
function,

〈J(x)O†(0)〉 = 〈0|Ĵ(x)Ô†(0)|0〉 =
∑

n

e−x4En〈0|Ĵ |n〉〈n|Ô†|0〉. (71)

With the energies and overlaps 〈n|Ô†|0〉 from the mass calculation, this calculation yields
the transition matrix elements 〈0|Ĵ |n〉.
Most of the transitions of interest in flavor physics involve mesons, so it is worth

illustrating how the quark propagatorsM−1 come in. For the charged Kaon, for example,
we take the operator O = s̄γ5u, and the 2-point function is computed via

〈s̄γ5u(x)ūγ5s(0)〉 = −〈tr[Gu(x, 0)γ5Gs(0, x)γ5]〉A, (72)

where the trace is over color and Dirac indices, the average on the right-hand side is over
gluon fields, and the quark propagator Gf (x, y) is the solution of
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∑

x

M(w, x)Gf (x, y) = δwy (73)

for flavor f , with color and Dirac indices implied. For the decay of a Kaon to leptons,
the transition operator J = s̄γ4γ5u, and the computation of Eq. (71) simply replaces the
first γ5 on both sides of Eq. (72) with γ4γ5.
In neutral meson mixing and in semileptonic and radiative decays one encounters

hadronic matrix elements with one hadron in both the initial and final states. For these
one computes a 3-point correlation function,

〈Of (x)J(y)O†
i (0)〉 =

∑

mn

e−(x4−y4)Efme−y4Ein〈0|Ôf |fm〉〈fm|Ĵ |in〉〈in|Ô†
i |0〉. (74)

The energies Efm, Ein and amplitudes 〈0|Ôf |fm〉, 〈in|Ô†
i |0〉 are computed from 2-point

functions, so the 3-point function yields 〈fm|Ĵ |in〉. As before, for mesons (and baryons)
the left-hand side is computed by contracting quark and antiquark fields in favor of quark
propagators.
Hadron masses and decay amplitudes computed with lattice QCD depend on the bare

gauge coupling and the bare quark masses, 1 + nf free parameters, if nf flavors are
relevant to the problem at hand. The bare gauge coupling is related to the lattice spacing
via renormalization. Thus, all dimensional quantities are really ratios of the quantity of
interest compared to some fiducial quantity with dimensions of mass. This standard mass
should be one that is either not very sensitive to the quark masses, such as some of the
mass splitting in quarkonium, or whose mass dependence is seen to be under good control,
such as fπ. The bare quark masses are fixed through the simplest hadron masses: m2

π

and m2
K for the light and strange quarks, and the Ds and Bs or ηc and Υ masses for

charmed and bottom quarks.
In computational physics it is important to know how to estimate uncertainties. In

lattice QCD uncertainties arise, in principal, from the nonzero lattice spacing and the
finite volume. In practice, the algorithms for computing detM andM−1 slow down as the
quark masses are reduced. Consequently, the calculations cited elsewhere in this report
are based on simulations with light quark masses that are higher than those of the up
and down quarks in nature. Also in practice, one must be careful with heavy quarks,
because the ultraviolet cutoff of currently available lattices, 1/a or π/a, is not (much)
higher than the b-quark mass.
Fortunately, all these uncertainties may be assessed and quantified with effective field

theories. (For a review of lattice QCD developed from this perspective, see [78].) For
the so-called chiral extrapolation, lattice practitioners use chiral perturbation theory
(χPT) to extend the reach from feasible light quark masses down to the physical up-
and down-quark masses. This is the same χPT discussed in Sec. 2.4, although some
practical considerations differ. Often applications of χPT to lattice QCD incorporate the
leading discretization effects of the lattice. A chiral extrapolation entails a fit to numerical
lattice-QCD data, and the associated uncertainty is estimated from a combination of
quantitative measures, like goodness of fit, and qualitative considerations, such as the
smallness of the quark mass and the effect of higher-order terms. In addition, χPT
can be used to estimate finite-size effects, because the largest ones typically stem from
processes in which a virtual pion is emitted, traverses the (periodic) boundary, and is
then reabsorbed [74, 79, 80].
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Discretization effects can be understood and controlled with the Symanzik effective
field theory [81,82]. The central Ansatz here is that lattice gauge theory is described by
a continuum effective field theory. For QCD

LLGT
.
= LQCD +

∑

i

adimLi−4KiLi, (75)

where the sum runs over operators Li of dimension 5 or higher, and the power of a
follows from dimensional analysis. The coefficient Ki subsumes short-distance effects,
analogously to the Wilson coefficients in Sec. 2.1. The right-hand side of Eq. (75) is a tool
to analyze the left-hand side or, more precisely, numerical data generated with the lattice
Lagrangian LLGT. If a is small enough, the higher dimensional operators may be treated
as perturbations, leading to two key insights. The first is to justify an extrapolation in a
to the continuum limit. More powerfully, if one can show for any (expedient) observable
that, say, all the dimension-5Ki vanish, then one knows that they vanish for all processes.
The systematic reduction of the first several Ki is known as the Symanzik improvement
program. With chirally symmetric actions, the dimension-5 Ki vanish by symmetry, so
these are automatically O(a) improved.
For heavy quarks it is often the case that mQa 6≪ 1 and, hence, special care is needed.

It is often said that lattice gauge theory breaks down, but it is more accurate to say that
the most straightforward application of the Symanzik effective theory breaks down. For
most calculations relevant to the CKM unitarity triangle, it is simpler to use HQET as
a theory of cutoff effects [83–85]. This is possible because every (sensible) approach to
heavy quarks on the lattice enjoys the same static limit and heavy-quark symmetries. So
the same set-up as in Sec. 2.2 is possible, just with different short-distance structure—
because the lattice changes short distance. Analogously to Symanzik, one can set up
an improvement program. Now, however, the approach to the continuum limit is not so
simple as O(a) or O(a2). Nevertheless, most serious calculations with heavy-quarks use
this formalism, or something equivalent, to estimate heavy-quark discretization effects.
For further details on techniques for heavy quarks, see [86]. A more recent development
is to map out the mQa dependence in finite volume [87, 88], where both mQa ≪ 1 and
mQa ≈ 1 are feasible (cf. Sec. 5).
One uncertainty that is not amenable to effective field theory (and is, therefore, devilish

to quantify) stems from the so-called quenched approximation [89,90]. It corresponds to
replacing the computationally demanding detM in the weight by 1 and attempting to
compensate by shifts in the bare gauge coupling and bare quark masses. Physically this
corresponds to keeping valence quarks but treating sea quarks as a dielectric medium.
This approximation is, by now, a historical artifact. All calculations that aspire to play
a role in flavor physics now have either nf = 2 or 2 + 1 flavors of sea quarks. In both
cases the 2 light quarks are taken as light as possible, as a basis for chiral extrapolation.
For 2+1 the third flavor is tuned to have the mass of the strange quark, whereas nf = 2
means that the strange quark is quenched. A comparison of quenched and 2+1 flavor
QCD is shown in Fig. 3, adapted from Ref. [91].
The results shown in Fig. 3, and many quoted in the rest of this report, have been

obtained with staggered sea quarks [92,93], which provide the least computationally de-
manding method for computing detM [94]. A drawback in this method is that staggered
quarks come in four species, and a single quark flavor is simulated with [det4M ]1/4 [95],
where the subscript emphasizes the number of species in the determinant. There are con-
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Fig. 3. Comparison of quenched and 2+1 flavor lattice QCD, plotting the ratio of calculated results
to laboratory measurements [91]. The quenched results deviate by as much as 10–15%—not bad for a
strongly-coupled field theory, but not good enough for flavor physics. With 2+1 flavors of sea quarks,
however, the agreement is at the few-percent level.

cerns whether the fourth root really yields QCD in the continuum limit, although all pub-
lished criticisms [96–98] have been refuted [99,100]. The theoretical arguments [101,102]
in favor of this procedure are still being digested, although there is a significant body of
supporting circumstantial evidence [103–105]. Whatever one thinks of the rooted stag-
gered sea, it should be clear that these calculations should be confirmed. Other methods
for sea quarks are accumulating sufficiently high statistics, so one can anticipate compet-
itive results not only with staggered sea quarks [106], but also with Symanzik-improved
Wilson sea quarks [107, 108], twisted-mass Wilson sea quarks [109], domain-wall sea
quarks [110], and overlap sea quarks [111].
Calculations with 2 flavors of sea quarks have an uncertainty from quenching the

strange quark. The error incurred may be as large as 3–5%, but is again hard to pin
down. In many cases, for example the Ω− mass, no significant effect is seen. When using
2-flavor results in this report, we take the original authors’ estimates of the error for
quenching the strange quark. If they have omitted this line from the error budget, we
then assign a conservative 5% error.
Numerical lattice QCD has developed over the past thirty years, and much of the

literature has aimed to develop numerical methods. Such work is not limited to algo-
rithm development, but also to demonstrate how a phenomenologically relevant calcula-
tion could or should be carried out. Inevitably, some papers straddle the middle ground
between development and mature results, with the consequence that some interesting
papers have incomplete error budgets. Where such results are used later in the report,
we try to account for omitted uncertainties in a rational way.
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2.4. Chiral Perturbation Theory

Chiral perturbation theory (ChPT) is the effective field theory describing strong and
electroweak interactions of the light pseudo-scalar mesons (π, K, η) at low energy, in
a regime where standard perturbative methods are inapplicable [112–114]. ChPT relies
on our understanding of the chiral symmetry of QCD in the limit of massless light
quarks (mu = md = ms = 0), its spontaneous symmetry breaking according to the
pattern SU(3)L × SU(3)R → SU(3)V and its explicit breaking due to non-vanishing
quark masses.
In the massless limit mq = 0, the QCD Lagrangian for light quarks (q⊤ = (u, d, s))

LQCD = −1

4
GaµνG

µν
a + i q̄Lγ

µDµqL + i q̄Rγ
µDµqR − q̄Lmq qR − q̄Lmq qL (76)

is invariant under global independent SU(3)L × SU(3)R transformations of the left-
and right-handed quarks in flavor space: qL,R → gL,R qL,R , gL,R ∈ SU(3)L,R. The
absence of SU(3) multiplets of opposite parity in the hadronic spectrum suggests that
the chiral group G = SU(3)L×SU(3)R is spontaneously broken to the diagonal subgroup
H = SU(3)V , i.e. the symmetry is realized à la Nambu-Goldstone [115–117]. According
to Goldstone’s theorem [115] then, the spectrum of QCD should contain an octet of
pseudoscalar massless bosons, in one to one correspondence to the broken symmetry
generators. These are identified with the π, K, and η mesons, which would be massless
in the exact chiral limit of mu,d,s = 0, but acquire a finite mass in the real world due
to explicit chiral symmetry breaking induced by mq 6= 0. Pions, Kaons, and eta remain,
however, the lowest lying hadronic excitations. The existence of a gap separating π,K, η
from the rest of the spectrum makes it possible to build an effective theory involving
only Goldstone modes.
The basic building blocks of the effective theory are the Goldstone fields ϕ. Intuitively,

the massless Goldstone modes describe excitations of the system along the directions
in field space that connect degenerate vacuum configurations (think about the circle of
minima in a ”Mexican-hat” potential). Mathematically, this means that the Goldstone
fields parametrize the elements u(ϕ) of the coset space SU(3)L×SU(3)R/ SU(3)V [118,
119]. The transformation of ϕ under G is determined by the action of G on the elements
u(ϕ) of the coset space

u(ϕ) → u(ϕ′) = gRu(ϕ)h(g, ϕ)
−1 = h(g, ϕ)u(ϕ)g−1

L (77)

where g = (gL, gR) ∈ G. The explicit form of h(g, ϕ) ∈ SU(3)V will not be needed here.
An explicit parametrization of u(ϕ) is given by

u(ϕ) = exp

{
i√
2F

ϕ

}
, (78)

with

ϕ =




1√
2
π0 +

1√
6
η8 π+ K+

π− − 1√
2
π0 +

1√
6
η8 K0

K− K̄0 − 2√
6
η8




.
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The structure of the effective Lagrangian Leff is determined by chiral symmetry and
the discrete symmetries of QCD. Leff has to be invariant under chiral transformations,
up to explicit symmetry breaking terms that transform like the quark mass term in the
QCD Lagrangian (76). As a consequence, Leff is organized as an expansion in powers of
(i) derivatives (momenta) of the Goldstone fields and (ii) light quark masses (mq). Since
the meson masses squared are proportional to the quark masses, the two expansions are
related (mq ∼ O(M2

M ) ∼ O(p2)) and the mesonic effective chiral Lagrangian takes the
form

Leff =
∑

n≥1

L2n , L2n ∼ O(p2n) . (79)

The power counting parameter is given by the ratio p2 ∼ p2ext/Λ
2
χ of a typical external

momentum (or quark mass) over the intrinsic scale Λχ, set by the lightest non-Goldstone
states (Λχ ∼ 1 GeV). To each order in the expansion, the effective Lagrangian contains a
number of low-energy constants (LECs) not fixed by symmetry consideration, encoding
underlying QCD dynamics.
The leading order effective Lagrangian reads (in terms of U(ϕ) = u(ϕ)2),

L2 =
F 2

4
Tr

[
∂µU ∂

µU + 2Bmq

(
U + U †)

]
(80)

where mq = diag(mu,md,ms) and the trace is performed over the SU(3) indices. The
dimensionful constants F and B are related to the pion decay constant and the quark
condensate by Fπ = F (1 +O(mq)) and 〈0|ūu|0〉 = −F 2B (1 +O(mq)). L2 contains the
Gell-Mann-Oaks-Renner [120] and Gell-Mann-Okubo [121,122] mass relations and allows
one to calculate physical processes, such as ππ scattering, to O(p2) in terms of just Fπ
and M2

M (M2
π = B(mu +md), ...).

The power of the effective field theory approach is that it allows to systematically
improve the calculations of low-energy processes by considering higher-order terms in
the momentum/light-quark-mass expansion. As shown by Weinberg [112], at any given
order in this expansion only a finite number of couplings in (79) appear. For instance at
O(p4) a given amplitude receives contributions only from: (i) tree-level diagrams with one
insertion from L4; (ii) one-loop diagrams with all vertices from L2. The loop diagrams
perturbatively unitarize the theory and introduce physical infrared singularities due to
pseudoscalar meson intermediate states (the chiral logs, ∼ mq logmq). However, loops
also introduce ultraviolet divergences. Using a regularization compatible with chiral sym-
metry, the counterterms necessary to absorb the divergences must have the same form
as the terms present in L4: thus, one loop divergences simply renormalize the LECs of
O(p4). This argument generalizes to any order in the low-energy expansion: the effective
theory is renormalizable order by order in the low-energy expansion.
The finite parts of the LECs can be fitted to experiment or extracted by matching to

lattice QCD results (or other, less systematic approximations to non-perturbative QCD
dynamics). The accuracy of a given calculation is bounded by the size of higher order
terms in the low-energy expansion. State of the art calculations in the strong sector go
up to O(p6) [123].
To illustrate the general features discussed above, we report here the expression of the

the pion decay constant to O(p4) [114]
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Fπ = F

[
1− 2µπ − µK +

8B

F 2

(
m̂ Lr5(µ) + (mu +md +ms)L

r
4(µ)

)]
. (81)

Here µP = M2
P /(32π

2F 2) log(M2
P /µ

2), M2
π = B(mu + md), MK = B(ms + m̂), and

m̂ = 1/2(mu +md). Moreover, µ is the renormalization scale and Lr4,5(µ) are two finite
scale-dependent LECs. This expression illustrates the appearance of calculable chiral log-
arithms (with unambiguous coefficients) as well as polynomial terms in the quark masses
multiplied by a priori unknown coefficients. Expressions of this type are used to extrapo-
late lattice QCD results from unphysical quark masses to the physical point. Nowadays,
this is one of the most relevant applications of ChPT in CKM physics. An important
recent development in this area is the use of SU(2) ChPT [110,124], in which Kaons are
treated as external massive fields, to study the extrapolation of Kaon amplitudes in mu,d

(see Sec. 4.4.4 for discussion and applications)

The framework presented above describes the strong interactions of Goldstone modes.
It has been extended in several directions, highly relevant to CKM physics, to include:
– non-leptonic weak interactions of Goldstone modes (∆S = 1, 2) [125–128];
– interactions of soft Goldstone modes with heavy particles (heavy mesons [129,130] and
baryons [131, 132]);

– interaction of Goldstone modes with external electromagnetic fields and weak gauge
bosons (this is achieved by adding external sources that couple to quark bilinears in
the QCD Lagrangian [113, 114]);

– other dynamical fields in the low-energy theory, such as photons [133] and light lep-
tons [134] (the amplitudes are expanded to O(e2p2n), e being the electromagnetic
coupling).

2.5. Beyond the Standard Model

Despite its impressive phenomenological success, the SM should be regarded as a low-
energy effective theory. Viewing the SM as an effective theory poses two main questions:
which is the energy scale and which are the interactions and symmetries properties of the
new degrees of freedom. So far we have no unambiguous answer for both these questions;
however, a strong theoretical prejudice for new degrees of freedom around the TeV scale
follows from a natural stabilization of the mechanism of electroweak symmetry breaking.
In this perspective, low-energy flavor physics provide a powerful tool to address the second
question, and in particular to explore the symmetries properties of the new degrees of
freedom.
In order to describe New Physics (NP) effects in flavor physics we can follow two main

strategies, whose virtues and limitations can be summarised as follows:
– Generic Effective Field Theory (EFT) approaches.
Assuming the new degrees to be heavier than SM fields, we can integrate them out
and describe NP effects by means of a generalization of the Fermi Theory: the SM
Lagrangian becomes the renormalizable part of a more general local Lagrangian which
includes an infinite tower of higher-dimensional operators, constructed in terms of SM
fields and suppressed by inverse powers of an effective scale ΛNP > MW .
This general bottom-up approach allows us to analyse all realistic extensions of the SM
in terms of a limited number of parameters (the coefficients of the higher-dimensional
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operators). The drawback of this method is the impossibility to establish correla-
tions of NP effects at low and high energies: the scale ΛNP defines the cut-off of the
EFT. However, correlations among different low-energy processes can be established
implementing specific symmetry properties on the EFT, such as the Minimal Flavor
Violation hypothesis (see Sec. 2.5.1). The experimental tests of such correlations allow
us to test/establish general features of the new theory which holds independently of
the dynamical details of the model. In particular, B, D and K decays are extremely
useful in determining the flavor-symmetry breaking pattern of the NP model.

– Explicit Ultraviolet completions.
The generic EFT approach is somehow the opposite of the standard top-down strat-
egy, where a given NP theory –and a specific set of parameters– are employed to
evaluate possible deviations from the SM. The top-down approach usually allows us to
establish several correlations, both at low energies and between low- and high-energy
observables. In the following we will discuss in some detail this approach in the case of
Minimal Supersymmetric extension of the SM (see Sec. 2.5.2). The price to pay of this
strategy is the loss of generality. This is quite a high price given our limited knowledge
about the physics above the electroweak scale.

2.5.1. Model-independent approaches and the MFV hypothesis
The NP contributions should naturally induce large effects in processes which are

severely suppressed in the SM, such as meson-antimeson mixing (∆F = 2 amplitudes) or
flavor-changing neutral-current (FCNC) rare decays. Up to now there is no evidence of
deviations from the SM in these processes and this implies severe bounds on the effective
scale of various dimension-six operators in the EFT approach. For instance, the good
agreement between SM expectations and experimental determinations of K0–K̄0 mixing
leads to bounds above 104 TeV for the effective scale of ∆S = 2 operators, i.e. well above
the few TeV range suggested by a natural stabilization of the electroweak-symmetry
breaking mechanism.
The apparent contradiction between these two determinations of Λ is a manifestation

of what in many specific frameworks (supersymmetry, technicolor, etc.) goes under the
name of flavor problem: if we insist on the theoretical prejudice that new physics has to
emerge in the TeV region, we have to conclude that the new theory possesses a highly
non-generic flavor structure. Interestingly enough, this structure has not been clearly
identified yet, mainly because the SM (the low-energy limit of the new theory), doesn’t
possess an exact flavor symmetry. Within a model-independent approach, we should
try to deduce this structure from data, using the experimental information on FCNC
transitions to constrain its form.

2.5.1.1. Generic bounds on loop-mediated amplitudes. In several realistic NP models we
can neglect non-standard effects in all cases where the corresponding effective operator
is generated at the tree-level within the SM. This general assumption implies that the
experimental determination of the CKM matrix via tree-level processes is free from the
contamination of NP contributions. Using this determination we can unambiguously
predict meson-antimeson mixing and FCNC amplitudes within the SM. Comparing these
predictions with data allows to derive general constraints on NP which holds in a wide
class of models.
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The most constrained sector is the one of ∆F = 2 transitions, where almost all the
interesting amplitudes have been measured with good accuracy. An updated analysis of
the present constraints from these measurements will be presented in Sec. 10.2. The main
conclusions that can be drawn form this analysis can be summarized as follows:
– In all the three accessible short-distance amplitudes (K0–K̄0, Bd–B̄d, and Bs–B̄s)
the magnitude of the new-physics amplitude cannot exceed, in size, the SM short-
distance contribution. The latter is suppressed both by the GIM mechanism and by
the hierarchical structure of the CKM matrix. As a result, new-physics models with
TeV-scale flavored degrees of freedom and O(1) flavor-mixing couplings are essentially
ruled out. For instance, considering a generic ∆F = 2 effective Lagrangian of the form

L∆F=2 =
∑

i6=j

cij
Λ2

(d̄iLγ
µdjL)

2 , (82)

where di denotes a generic down-type quark (i = 1, 2, 3) and cij are dimensionless
couplings, the condition |A∆F=2

NP | < |A∆F=2
SM | implies

Λ <
3.4 TeV

|V ∗
tiVtj |/|cij |1/2

≈





9× 103 TeV × |csd|1/2

4× 102 TeV × |cbd|1/2

7× 101 TeV × |cbs|1/2
(83)

– In the case of Bd–B̄d and K0–K̄0 mixing, which are both well measured, there is
still room for a new-physics contribution comparable to the SM one. However, this is
possible only if the new-physics contribution is aligned in phase with respect to the SM
amplitude. The situation is quite different in the case of Bs–B̄s mixing, where present
measurements allow a large non-standard CP violating phase.

As we will discuss in the following, a natural mechanism to reconcile the stringent bounds
in Eq. (83) with the expectation Λ ∼ few TeV is obtained with the Minimal Flavor
Violation hypothesis.

2.5.1.2. Minimal Flavor Violation. A very reasonable, although quite pessimistic, so-
lution to the flavor problem is the so-called Minimal Flavor Violation (MFV) hypothesis.
Under this assumption, flavor-violating interactions are linked to the known structure
of Yukawa couplings also beyond the SM. As a result, non-standard contributions in
FCNC transitions turn out to be suppressed to a level consistent with experiments even
for Λ ∼ few TeV. One of the most interesting aspects of the MFV hypothesis is that it
can naturally be implemented within the EFT approach to NP. The effective theories
based on this symmetry principle allow us to establish unambiguous correlations among
NP effects in various rare decays. These falsifiable predictions are the key ingredients to
identify in a model-independent way which are the irreducible sources of flavor symmetry
breaking.
The MFV hypothesis consists of two ingredients [135]: i) a flavor symmetry and ii) a

set of symmetry-breaking terms. The symmetry is defined from the SM Lagrangian in
absence of Yukawa couplings. This is invariant under a large gbobal symmetry of flavor
transformations: Gq ⊗ Gℓ ⊗ U(1)5, where

Gq = SU(3)QL
⊗ SU(3)UR

⊗ SU(3)DR
, Gℓ = SU(3)LL

⊗ SU(3)ER
. (84)
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The SU(3) groups refer to a rotation in flavor space (or a flavor mixing) among the
three families of basic SM fields: the quark and lepton doublets, QL and LL, and the
three singlets UR, DR and ER. Two of the five U(1) groups can be identified with the
total baryon and lepton number (not broken by the SM Yukawa interaction), while an
independent U(1) can be associated to the weak hypercharge. Since hypercharge is gauged
and involves also the Higgs field, it is more convenient not to include it in the flavour
group, which would then be defined as GSM = Gℓ ⊗ U(1)4 [136].
Within the SM this large global symmetry, and particularly the SU(3) subgroups

controlling flavor-changing transitions, is explicitly broken by the Yukawa interaction

LY = Q̄LYDDRH + Q̄LYUURHc + L̄LYEERH + h.c. (85)

The most restrictive hypothesis we can make to protect in a consistent way quark-flavor
mixing beyond the SM is to assume that YD and YU are the only sources of Gq breaking
also in the NP model. To implement and interpret this hypothesis in a consistent way,
we can assume that Gq is a good symmetry, promoting YU,D to be non-dynamical fields
(spurions) with non-trivial transformation properties under this symmetry

YU ∼ (3, 3̄, 1)Gq
, YD ∼ (3, 1, 3̄)Gq

. (86)

If the breaking of the symmetry occurs at very high energy scales at low-energies we
would only be sensitive to the background values of the Y , i.e. to the ordinary SM
Yukawa couplings. Employing the effective-theory language, we then define that an ef-
fective theory satisfies the criterion of Minimal Flavor Violation in the quark sector if
all higher-dimensional operators, constructed from SM and Y fields, are invariant under
CP and (formally) under the flavor group Gq [135].
According to this criterion one should in principle consider operators with arbitrary

powers of the (dimensionless) Yukawa fields. However, a strong simplification arises by
the observation that all the eigenvalues of the Yukawa matrices are small, but for the top
one, and that the off-diagonal elements of the CKM matrix are very suppressed. Y As a
consequence, in the limit where we neglect light quark masses, the leading ∆F = 2 and
∆F = 1 FCNC amplitudes get exactly the same CKM suppression as in the SM:

A(di → dj)MFV = (V ∗
tiVtj) A(∆F=1)

SM

[
1 + a1

16π2M2
W

Λ2

]
, (87)

A(Mij − M̄ij)MFV = (V ∗
tiVtj)

2A(∆F=2)
SM

[
1 + a2

16π2M2
W

Λ2

]
. (88)

where the A(i)
SM are the SM loop amplitudes and the ai are O(1) real parameters. The ai

depend on the specific operator considered but are flavor independent. This implies the
same relative correction in s→ d, b→ d, and b→ s transitions of the same type.
As pointed out in Ref. [31], within the MFV framework several of the constraints used

to determine the CKM matrix (and in particular the unitarity triangle) are not affected
by NP. In this framework, NP effects are negligible not only in tree-level processes but
also in a few clean observables sensitive to loop effects, such as the time-dependent CPV
asymmetry in Bd → J/ΨKL,S. Indeed the structure of the basic flavor-changing coupling
in Eq. (88) implies that the weak CPV phase of Bd–B̄d mixing is arg[(VtdV

∗
tb)

2], exactly
as in the SM. This construction provides a natural (a posteriori) justification of why no
NP effects have been observed in the quark sector: by construction, most of the clean
observables measured at B factories are insensitive to NP effects in the MFV framework.
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Table 2
Bounds on the scale of new physics for some representative ∆F = 2 [36] and ∆F = 1 [137] MFV

operators (assuming effective coupling 1/Λ2).

Operator Λi@95% prob. [TeV] Observables

H†
(
D̄RλdλFCσµνQL

)
(eFµν) 6.1 B → Xsγ, B → Xsℓ+ℓ−

1
2
(Q̄LYUY

†
UγµQL)

2 5.9 ǫK , ∆mBd
, ∆mBs(

Q̄LλFCγµQL
)
(ĒRγµER) 2.7 B → Xsℓ+ℓ−, Bs → µ+µ−

In Tab. 2 we report a few representative examples of the bounds on the higher-dimen-
sional operators in the MFV framework. As can be noted, the built-in CKM suppression
leads to bounds on the effective scale of new physics not far from the TeV region. These
bounds are very similar to the bounds on flavor-conserving operators derived by precision
electroweak tests. This observation reinforces the conclusion that a deeper study of rare
decays is definitely needed in order to clarify the flavor problem: the experimental preci-
sion on the clean FCNC observables required to obtain bounds more stringent than those
derived from precision electroweak tests (and possibly discover new physics) is typically
in the 1%− 10% range.
Although the MFV seems to be a natural solution to the flavor problem, it should be

stressed that we are still very far from having proved the validity of this hypothesis from
data. 4 A proof of the MFV hypothesis can be achieved only with a positive evidence of
physics beyond the SM exhibiting the flavor-universality pattern (same relative correction
in s → d, b → d, and b → s transitions of the same type) predicted by the MFV
assumption.
The idea that the CKM matrix rules the strength of FCNC transitions also beyond the

SM has become a very popular concept in the recent literature and has been implemented
and discussed in several works. It is worth stressing that the CKM matrix represents
only one part of the problem: a key role in determining the structure of FCNCs is
also played by quark masses, or by the Yukawa eigenvalues. In this respect, the MFV
criterion illustrated above provides the maximal protection of FCNCs (or the minimal
violation of flavor symmetry), since the full structure of Yukawa matrices is preserved.
At the same time, this criterion is based on a renormalization-group-invariant symmetry
argument, which can be implemented independently of any specific hypothesis about
the dynamics of the new-physics framework. The only difference between weakly- and
strongly-iteracting theories at the TeV scale is that in the latter case the expansion in
powers of the Yukawa spurions cannot be truncated to the first non-trivial terms [139,140]
(leaving more freedom for non-negligible effects also in up-type FCNC amplitudes [140]).
This model-independent structure does not hold in most of the alternative definitions of
MFV models that can be found in the literature. For instance, the definition of Ref. [141]
(denoted constrained MFV, or CMFV) contains the additional requirement that the
effective FCNC operators playing a significant role within the SM are the only relevant
ones also beyond the SM. This condition is realized only in weakly coupled theories at
the TeV scale with only one light Higgs doublet, such as the MSSM with small tanβ. It
does not hold in several other frameworks, such as Higgsless models, or the MSSM with
large tanβ.

4 In the EFT language we can say that there is still room for sizable new sources of favour symmetry
breaking beside the SM Yukawa couplings [138].
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2.5.1.3. MFV at large tanβ. If the Yukawa Lagrangian contains only one Higgs field,
we can still assume that the Yukawa couplings are the only irreducible breaking sources
of Gq, but we can change their overall normalization.
A particularly interesting scenario is the two-Higgs-doublet model where the two Hig-

gses are coupled separately to up- and down-type quarks:

L2HDM
Y = Q̄LYDDRHD + Q̄LYUURHU + L̄LYEERHD + h.c. (89)

This Lagrangian is invariant under an extra U(1) symmetry with respect to the one-
Higgs Lagrangian in Eq. (85): a symmetry under which the only charged fields are DR

and ER (charge +1) and HD (charge −1). This symmetry, denoted UPQ, prevents tree-
level FCNCs and implies that YU,D are the only sources of Gq breaking appearing in
the Yukawa interaction (similar to the one-Higgs-doublet scenario). Coherently with the
MFV hypothesis, we can then assume that YU,D are the only relevant sources of Gq
breaking appearing in all the low-energy effective operators. This is sufficient to ensure
that flavor-mixing is still governed by the CKM matrix, and naturally guarantees a good
agreement with present data in the ∆F = 2 sector. However, the extra symmetry of the
Yukawa interaction allows us to change the overall normalization of YU,D with interesting
phenomenological consequences in specific rare modes.
The normalization of the Yukawa couplings is controlled by the ratio of the vacuum

expectation values (vev) of the two Higgs fields, or by the parameter tanβ = 〈HU 〉/〈HD〉.
For tanβ >> 1 the smallness of the b quark and τ lepton masses can be attributed to the
smallness of 1/ tanβ rather than to the corresponding Yukawa couplings. As a result, for
tanβ >> 1 we cannot anymore neglect the down-type Yukawa coupling. Moreover, the
U(1)PQ symmetry cannot be exact: it has to be broken at least in the scalar potential
in order to avoid the presence of a massless pseudoscalar Higgs. Even if the breaking
of U(1)PQ and Gq are decoupled, the presence of U(1)PQ breaking sources can have
important implications on the structure of the Yukawa interaction, especially if tanβ is
large [135, 142–144]. We can indeed consider new dimension-four operators such as

ǫ Q̄LYDDR(HU )
c or ǫ Q̄LYUY

†
UYDDR(HU )

c , (90)

where ǫ denotes a generic MFV-invariant U(1)PQ-breaking source. Even if ǫ ≪ 1, the
product ǫ×tanβ can be O(1), inducing large corrections to the down-type Yukawa sector:

ǫ Q̄LYDDR(HU )
c vev−→ ǫ Q̄LYDDR〈HU 〉 = (ǫ × tanβ) Q̄LYDDR〈HD〉 . (91)

Since the b-quark Yukawa coupling becomes O(1), the large-tanβ regime is particularly
interesting for helicity-suppressed observables in B physics.
One of the clearest phenomenological consequences is a suppression (typically in the

10− 50% range) of the B → ℓν decay rate with respect to its SM expectation [145,146].
Potentially measurable effects in the 10− 30% range are expected also in B → Xsγ [147,
148] and ∆MBs

[149, 150]. The most striking signature could arise from the rare decays
Bs,d → ℓ+ℓ− whose rates could be enhanced over the SM expectations by more than
one order of magnitude [151–153]. An enhancement of both Bs → ℓ+ℓ− and Bd → ℓ+ℓ−

respecting the MFV relation Γ(Bs → ℓ+ℓ−)/Γ(Bd → ℓ+ℓ−) ≈ |Vts/Vtd|2 would be an
unambiguous signature of MFV at large tanβ [137].
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2.5.2. The Minimal Supersymmetric extension of the SM (MSSM)
The MSSM is one of the most well-motivated and definitely the most studied extension

of the SM at the TeV scale. For a detailed discussion of this model we refer to the
specialised literature (see e.g. Ref. [154]). Here we limit our self to analyse some properties
of this model relevant to flavor physics.
The particle content of the MSSM consist of the SM gauge and fermion fields plus a

scalar partner for each quark and lepton (squarks and sleptons) and a spin-1/2 partner
for each gauge field (gauginos). The Higgs sector has two Higgs doublets with the corre-
sponding spin-1/2 partners (higgsinos) and a Yukawa coupling of the type in Eq. (89).
While gauge and Yukawa interactions of the model are completely specified in terms
of the corresponding SM couplings, the so-called soft-breaking sector 5 of the theory
contains several new free parameters, most of which are related to flavor-violating ob-
servables. For instance the 6 × 6 mass matrix of the up-type squarks, after the up-type
Higgs field gets a vev (HU → 〈HU 〉), has the following structure

M̃2
U =


 m̃2

QL
AU 〈HU 〉

A†
U 〈HU 〉 m̃2

UR


 + O (mZ ,mtop) , (92)

where m̃QL
, m̃UR

, and AU are 3× 3 unknown matrices. Indeed the adjective minimal in
the MSSM acronyms refers to the particle content of the model but does not specify its
flavor structure.
Because of this large number of free parameters, we cannot discuss the implications

of the MSSM in flavor physics without specifying in more detail the flavor structure of
the model. The versions of the MSSM analysed in the literature range from the so-called
Constrained MSSM (CMSSM), where the complete model is specified in terms of only
four free parameters (in addition to the SM couplings), to the MSSSM without R parity
and generic flavor structure, which contains a few hundreds of new free parameters.
Throughout the large amount of work in the past decades it has became clear that

the MSSM with generic flavor structure and squarks in the TeV range is not compatible
with precision tests in flavor physics. This is true even if we impose R parity, the discrete
symmetry which forbids single s-particle production, usually advocated to prevent a too
fast proton decay. In this case we have no tree-level FCNC amplitudes, but the loop-
induced contributions are still too large compared to the SM ones unless the squarks
are highly degenerate or have very small intra-generation mixing angles. This is nothing
but a manifestation in the MSSM context of the general flavor problem illustrated in
Sec. 2.5.1.
The flavor problem of the MSSM is an important clue about the underling mechanism

of supersymmetry breaking. On general grounds, mechanisms of SUSY breaking with
flavor universality (such as gauge mediation) or with heavy squarks (especially in the
case of the first two generations) tends to be favoured. However, several options are still
open. These range from the very restrictive CMSSM case, which is a special case of

5 Supersymmetry must be broken in order to be consistent with obsevations (we do not observe degen-
erate spin partners in nature). The soft breaking terms are the most general supersymmetry-breaking
terms which prserve the nice ultraviolet properties of the model. They can be divided into two main
classes: 1) mass terms which break the mass degeneracy of the spin partenrs (e.g. sfermion or gaugino
mass terms); ii) trilinear couplings among the scalar fields of the theory (e.g. sfermion-sfermion-Higgs
couplings).
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MSSM with MFV, to more general scenarios with new small but non-negligible sources
of flavor symmetry breaking.

2.5.2.1. Flavor Universality, MFV, and RGE in the MSSM. Since the squark fields
have well-defined transformation properties under the SM quark-flavor group Gq, the
MFV hypothesis can easily be implemented in the MSSM framework following the general
rules outlined in Sec. 2.5.1.2.
We need to consider all possible interactions compatible with i) softly-broken super-

symmetry; ii) the breaking of Gq via the spurion fields YU,D. This allows to express the
squark mass terms and the trilinear quark-squark-Higgs couplings as follows [135, 155]:

m̃2
QL

= m̃2
(
a11l + b1YUY

†
U + b2YDY

†
D + b3YDY

†
DYUY

†
U + b4YUY

†
UYDY

†
D + . . .

)
,

m̃2
UR

= m̃2
(
a21l + b5Y

†
UYU + . . .

)
, AU = A

(
a31l + b6YDY

†
D + . . .

)
YU , (93)

and similarly for the down-type terms. The dimensionful parameters m̃ and A, expected
to be in the range few 100 GeV – 1 TeV, set the overall scale of the soft-breaking terms.
In Eq. (93) we have explicitly shown all independent flavor structures which cannot be
absorbed into a redefinition of the leading terms (up to tiny contributions quadratic in
the Yukawas of the first two families), when tanβ is not too large and the bottom Yukawa
coupling is small, the terms quadratic in YD can be dropped.
In a bottom-up approach, the dimensionless coefficients ai and bi should be considered

as free parameters of the model. Note that this structure is renormalization-group invari-
ant: the values of ai and bi change according to the Renormalization Group (RG) flow,
but the general structure of Eq. (93) is unchanged. This is not the case if the bi are set to
zero, corresponding to the so-called hypothesis of flavor universality. In several explicit
mechanism of supersymmetry breaking, the condition of flavor universality holds at some
high scale M , such as the scale of Grand Unification in the CMSSM (see below) or the
mass-scale of the messenger particles in gauge mediation (see Ref. [156]). In this case
non-vanishing bi ∼ (1/4π)2 lnM2/m̃2 are generated by the RG evolution. As recently
pointed out in Ref. [157, 158], the RG flow in the MSSM-MFV framework exhibit quasi
infra-red fixed points: even if we start with all the bi = O(1) at some high scale, the only

non-negligible terms at the TeV scale are those associated to the YUY
†
U structures.

If we are interested only in low-energy processes we can integrate out the supersym-
metric particles at one loop and project this theory into the general EFT discussed in
the previous sections. In this case the coefficients of the dimension-six effective operators
written in terms of SM and Higgs fields (see Tab. 2) are computable in terms of the
supersymmetric soft-breaking parameters. The typical effective scale suppressing these
operators (assuming an overall coefficient 1/Λ2) is Λ ∼ 4πm̃. Looking at the bounds
in Tab. 2, we then conclude that if MFV holds, the present bounds on FCNCs do not
exclude squarks in the few hundred GeV mass range, i.e. well within the LHC reach.

2.5.2.2. The CMSSM framework. The CMSSM, also known as mSUGRA, is the su-
persymmetric extension of the SM with the minimal particle content and the maximal
number of universality conditions on the soft-breaking terms. At the scale of Grand
Unification (MGUT ∼ 1016 GeV) it is assumed that there are only three independent
soft-breaking terms: the universal gaugino mass (m̃1/2), the universal trilinear term (A),
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and the universal sfermion mass (m̃0). The model has two additional free parameters in
the Higgs sector (the so-called µ and B terms), which control the vacuum expectation
values of the two Higgs fields (determined also by the RG running from the unification
scale down to the electroweak scale). Imposing the correctW - and Z-boson masses allow
us to eliminate one of these Higgs-sector parameters, the remaining one is usually chosen
to be tanβ. As a result, the model is fully specified in terms of the three high-energy
parameters {m̃1/2, m̃0, A}, and the low-energy parameter tanβ. 6 This constrained ver-
sion of the MSSM is an example of a SUSY model with MFV. Note, however, that the
model is much more constrained than the general MSSM with MFV: in addition to be
flavor universal, the soft-breaking terms at the unification scale obey various additional
constraints (e.g. in Eq. (93) we have a1 = a2 and bi = 0).

In the MSSM with R parity we can distinguish five main classes of one-loop diagrams
contributing to FCNC and CP violating processes with external down-type quarks. They
are distinguished according to the virtual particles running inside the loops: W and
up-quarks (i.e. the leading SM amplitudes), charged-Higgs and up-quarks, charginos
and up-squarks, neutralinos and down-squarks, gluinos and down-squarks. Within the
CMSSM, the charged-Higgs and chargino exchanges yield the dominant non-standard
contributions.
Given the low number of free parameters, the CMSSM is very predictive and phe-

nomenologically constrained by the precision measurements in flavor physics. The most
powerful low-energy constraint comes from B → Xsγ. For large values of tanβ, strong
constraints are also obtained from Bs → µ+µ−, ∆Ms and from B(B → τν). If these
observables are within the present experimental bounds, the constrained nature of the
model implies essentially no observable deviations from the SM in other flavor-changing
processes. Interestingly enough, the CMSSM satisfy at the same time the flavor con-
straints and those from electroweak precision observables for squark masses below 1 TeV
(see e.g. [159, 160]).
In principle, within the CMSSM the relative phases of the free parameters leads to

two new observable CP-violating phases (beside the CKM phase). However, these phases
are flavor-blind and turn out to be severely constrained by the experimental bounds on
the electric dipole moments. In particular, the combination of neutron and electron edms
forces these phases to be at most of O(10−2) for squark masses masses below 1 TeV.
Once this constraints are satisfied, the effects of these new phases in the B, D and K
systems are negligible.

2.5.2.3. The Mass Insertion Approximation in the general MSSM. Flavor universality
at the GUT scale is not a general property of the MSSM, even if the model is embedded
in a Grand Unified Theory. If this assumption is relaxed, new interesting phenomena
can occur in flavor physics. The most general one is the appearance of gluino-mediated
one-loop contributons to FCNC amplitudes [161, 162].
The main problem when going beyond simplifying assumptions, such as flavor univer-

sality of MFV, is the proliferation in the number of free parameters. A useful model-
independent parameterization to describe the new phenomena occurring in the gen-

6 More precisely, for each choice of {m̃1/2, m̃0, A, tan β} there is a discrete ambiguity related to the sign
of the µ term.
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Table 3
Upper bounds at 95% C.L. on the dimensionless down-type mass-insertion parameters (see text) for

squark and gluino masses of 350 GeV (from Ref. [167]).

|(δd12)LL,RR| < 1 · 10−2 |(δd12)LL=RR| < 2 · 10−4 |(δd12)LR| < 5 · 10−4 |(δd12)RL| < 5 · 10−4

|(δd13)LL,RR| < 7 · 10−2 |(δd13)LL=RR| < 5 · 10−3 |(δd13)LR| < 1 · 10−2 |(δd13)RL| < 1 · 10−2

|(δd23)LL| < 2 · 10−1 |(δd23)RR| < 7 · 10−1 |(δd23)LL=RR| < 5 · 10−2 |(δd23)LR,RL| < 5 · 10−3

eral MSSM with R parity conservation is the so-called mass insertion (MI) approxima-
tion [163]. Selecting a flavor basis for fermion and sfermion states where all the couplings
of these particles to neutral gauginos are flavor diagonal, the new flavor-violating effects
are parametrized in terms of the non-diagonal entries of the sfermion mass matrices.
More precisely, denoting by ∆ the off-diagonal terms in the sfermion mass matrices (i.e.
the mass terms relating sfermions of the same electric charge, but different flavor), the
sfermion propagators can be expanded in terms of δ = ∆/m̃2, where m̃ is the average
sfermion mass. As long as ∆ is significantly smaller than m̃2 (as suggested by the ab-
sence of sizable deviations form the SM), one can truncate the series to the first term
of this expansion and the experimental information concerning FCNC and CP violating
phenomena translates into upper bounds on these δ’s [164].
The major advantage of the MI method is that it is not necessary to perform a full

diagonalization of the sfermion mass matrices, obtaining a substantial simplification in
the comparison of flavor-violating effects in different processes. There exist four type of
mass insertions connecting flavors i and j along a sfermion propagator: (∆ij)LL, (∆ij)RR,
(∆ij)LR and (∆ij)RL. The indices L and R refer to the helicity of the fermion partners.
In most cases the leading non-standard amplitude is the gluino-exchange one, which

is enhanced by one or two powers of the ratio (αstrong/αweak) with respect to neutralino-
or chargino-mediated amplitudes. When analysing the bounds, it is customary to con-
sider one non-vanishing MI at a time, barring accidental cancellations. This procedure
is justified a posteriori by observing that the MI bounds have typically a strong hierar-
chy, making the destructive interference among different MIs rather unlikely. The bound
thus obtained from recent measurements in B and K physics 7 are reported in Tab. 3. 8

The bounds mainly depend on the gluino and on the average squark mass, scaling as
the inverse mass (the inverse mass square) for bounds derived from ∆F = 2 (∆F = 1)
observables.
The only clear pattern emerging from these bounds is that there is no room for siz-

able new sources of flavor-symmetry breaking. However, it is too early to draw definite
conclusions since some of the bounds, especially those in the 2-3 sector, are still rather
weak. As suggested by various authors (see e.g. ), the possibility of sizable deviations

7 The bounds on the 1-2 sector are obtained from the measurements of ∆MK , ε and ε′/ε. In particular
∆MK and ε bound the real and imaginary part of the product (δd12δ

d
12), while ε′/ε puts a bound

on Im(δd12). The bounds on the 1-3 sector are obtained from ∆MBd
(modulus) and the CP violating

asymmetry in B → J/ΨK (phase). The bounds on the 2 − 3 sector are derived mainly from ∆MBs ,
B → Xsγ and B → Xsℓ+ℓ−.
8 The leading ∆F = 1 and ∆F = 2 gluino-mediated amplitudes in the MI approximation can be
found in Ref. [164]. In the ∆F = 2 case also the NLO QCD corrections to effective Hamiltonian are
known [165]. A more complete set of supersymmetric amplitudes in the MI approximation, including
chargino-mediated relevant in the large-tanβ limit, can be found in Ref. [166].
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from the SM in the 2-3 sector could fit well with the large 2-3 mixing of light neutrinos,
in the context of a unification of quark and lepton sectors [168, 169].

2.5.3. Non-supersymmetric extensions of the Standard Model
We conclude this chapter outlining two of the general features of flavor physics ap-

pearing in non-supersymmetric extensions of the Standard Model, without entering the
details of specific theories.
In models with generic flavor structure, the most stringent constraints on the new

flavor-violating couplings are tipically derived from Kaon physics (as it also happens for
the bounds in Tab. 3). This is a consequence of the high suppression, within the SM, of
short-distance dominated FCNC amplitudes between the first two families:

A(s→ d)SM = O(λ5) , A(b → d)SM = O(λ3) , A(b→ s)SM = O(λ2) . (94)

As a result, a natural place to look for sizable deviations from the SM are rare decays
K → πνν̄ and KL → π0ℓ+ℓ− (see for instance the expectations for these decays in the
Littlest Higgs model without [170] and with [171–174]) T-parity. These decays allow us
to explore the sector of ∆F = 1 s→ d transitions, that so far is only loosely tested.
An interesting alternative to MFV, which naturally emerges in models with Extra

Space-time Dimensions (or models with strongly interacting dynamics at the TeV scale),
is the hypothesis of hierarchical fermion profiles [175–179] (which is equivalent to the
hypothesis of hierarchical kinetic terms [180]). Contrary to MFV, this hypothesis (often
denoted as NMFV or RS-GIM mechanism) is not a symmetry principle but a dynamical
argument: light fermions are weakly coupled to the new TeV dynamics, with a strength
inversely proportional to their Yukawa coupling (or better the square root of their SM
Yukawa coupling). Also in the case the most significant constraints are derived from
Kaon physics. However, in this case the stringent constraints from ǫK and ǫ′K generically
disfavour visible effects in other observables, although it is still possible to have some
effect, in particular in the phase of the Bs mixing amplitude [181, 182]. In view of the
little CP problem in the kaon, several modifications of the quark-flavor sector of warped
extra-dimensional models have been proposed. Most of them try to implement the notion
of MFV into the RS framework [183–185] by using flavor symmetries. The downside of
these constructions is that they no longer try to explain the fermion mass hierarchy,
but only accommodate it with the least amount of flavor structure, making this class of
models hard to probe via flavor precision tests.

3. Experimental Primers

This section contains all the relevant information on experiments and experimental
techniques which are needed throughout the report.

3.1. Overview of experiments

3.1.1. Kaon experiments
In recent years, many experiments have been performed to precisely measure many

Kaon decay parameters. Branching ratios (BR’s) for main, subdominant, and rare decays,
lifetimes, parameters of decay densities, and charge asymmetries have been measured
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with unprecedented accuracy for KS, KL, and K
±. Different techniques have been used,

often allowing careful checks of the results from experiments with independent sources
of systematic errors.
In the approach of NA48 [186] at the CERN SPS and KTeV [187] at the Fermilab

Tevatron, Kaons were produced by the interactions of intense high-energy proton beams
on beryllium targets (see Tab. 4). Both experiments were designed to measure the direct
CP violation parameter Re(ε′/ε) via the double ratio of branching fractions for KS

and KL decays to π+π− and π0π0 final states. In order to confirm or disprove the
conflicting results of the former-generation experiments, NA31 [188] and E-731 [189], the
goal was to reach an uncertainty of a few parts in 104. This not only requires intense KL

beams, so as to guarantee the observation of at least 108 decays of the rarest of the four
modes, i.e., KL → π0π0; it also made it necessary to achieve a high level of cancelation
of the systematic uncertainties for KL and KS detection, separately for neutral and
charged decay modes, as well as rejection of the order of 106 for the most frequent KL

backgrounds, KL → 3π0 and KL → πℓν.
In both setups, the target producing the KL beam is the origin of coordinates. KL’s

are transported by a ∼ 100-m long beam line, with magnetic filters to remove unwanted
particles and collimators to better define the Kaon-beam direction, to a fiducial decay
volume (FV). The FV is surrounded by veto detectors, for rejecting decay products
emitted at large angles and therefore with relatively low energy; this is particularly
useful for the rejection of KL → 3π0 background. The FV is followed by a tracker to
measure the charge, multiplicity, and momentum of charged decay products, and by a fast
scintillator hodoscope to provide the first-level trigger and determine the event time. The
tracking resolution σp/p is (4⊕p[GeV]/11)×10−3 for NA48 and (1.7⊕p[GeV]/14)×10−3

for KTeV. In the downstream (forward) region, both experiments use fine-granularity,
high-efficiency calorimeters to accurately measure multiplicity and energy of photons and
electrons for the identification of KL → 2π0. The KTeV calorimeter is made of pure CsI,
while the NA48 calorimeter is made of liquid krypton. The energy resolution σE/E is
3.2%/

√
E[GeV] ⊕ 9%/E[GeV] ⊕ 0.42% for NA48 and 2%

√
E[GeV] ⊕ 0.4% for KTeV.

Behind the calorimeter, the detectors are completed by calorimeters for muon detection.
Different methods are used for the production of a KS beam. In NA48, a channeling
crystal bends a small and adjustable fraction of protons that do not interact in the KL

target to a dedicated beam line; these protons are then transported and collimated to
interact with a second target located few meters before the FV, thus producing a KS/KL

beam with momentum and direction close to those of the KL beam, so that most of KS

decays are in the FV. KS decays are identified by tagging protons on the secondary beam
line using time of flight. In KTeV, two KL beams are produced at the first target, with
opposite transverse momenta in the horizontal direction, and a thick regenerator is placed
in one of the two beams to produce KS, again a few meters before the FV. KS and KL

decays are distinguished by their different transverse position on the detector. In both
setups, one measures decays from a KL beam with <∼ 10−6 contamination from KS ,
and from an enriched-KS beam contaminated by a KL component, which is determined
very precisely during analysis.
The KTeV experiment at Fermilab underwent different phases. The E-799 KTeV phase-

I used the apparatus of the E-731 experiment [189], upgraded to handle increased KL

fluxes and to study multibody rare KL and π0 decays. In phase-II of E-799, a new beam
line and a new detector were used, including a new CsI calorimeter and a new tran-
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Table 4
Typical beam parameters for K production in the NA48, KTeV, ISTRA+, and E787/E949 experiments.

Experiment proton energy (GeV) K, spill/cycle K momentum Beam type

NA48 450 1.5× 1012, 2.4 s/14.4 s (70–170) GeV KS–KL

NA48/1 400 5× 1010, 4.8 s/16.2 s (70–170) GeV KS

NA48/2 400 7× 1011, 4.8 s/16.8 s 60 GeV K±

KTeV 450–800 3× 1012, 20 s/60 s (40–170) GeV KS–KL, KL

ISTRA+ 70 3× 106, 1.9 s/9.7 s 25 GeV K−

E787 24 4–7×106, 1.6 s/3.6 s 710/730/790 MeV, stopped K+

E949 21.5 3.5×106, 2.2 s/5.4 s 710 MeV, stopped K+

sition radiation detector, thus allowing a sensitivity of 10−11 on the BR of many KL

decay channels and improving by large factors the accuracy on the ratio of BR’s of all of
the main KL channels. Finally, using the E-832 experimental configuration Re(ε′/ε) was
measured to few parts in 10−4 [187]. The NA48 program involved different setups as well.
After operating to simultaneously produce KL’s and KS’s, the beam parameters were
optimized in the NA48/1 phase to produce a high-intensity KS beam for the study of
rareKS decays, reaching the sensitivity of 10−10 for some specific channels and especially
improving knowledge on those with little background from the accompanying KL decay
to the same final state. Subsequent beam and detector upgrades, including the inser-
tion of a Cerenkov beam counter (“NA48/2 setup”) allowed production of simultaneous
unseparated charged Kaon beams for the measurement of CP violation from the charge
asymmetry in the Dalitz densities for three-pion decays [190]. The NA48/2 phase allowed
the best present sensitivities for many rare K± decays to be reached, with BR’s as low
as 10−8 and improved precision for the ratios of BR’s of the main K± channels. A recent
run made in 2007 by the NA62 collaboration using the NA48/2 setup was dedicated to
a precision measurement of the ratio Γ(Ke2)/Γ(Kµ2). A future experiment is foreseen at
the CERN SPS for the measurement of the ultra-rare decay K+ → π+νν with a 10%
accuracy [191, 192].
An unseparated charged Kaon beam was also exploited for study of charged Kaon

decay parameters with the ISTRA+ detector [193] at the U-70 proton synchrotron in
IHEP, Protvino, Russia. A beam (see Tab. 4), with ∼ 3% K− abundance is analyzed by
a magnetic spectrometer with four proportional chambers and a particle identification is
provided by three Cerenkov counters. The detector concept is similar to those presented
above, with the tracking of charged decay products provided by drift chambers, drift
tubes, and proportional chambers and with the calorimetry for photon vetoing at large
angle or energy measurement at low angle performed by lead-glass detectors.
A different approach for the study of the ultra-rare K → πνν decay and the search

for lepton-flavor violating transitions was taken by the E787 [194–196] and E949 [197]
experiments at the Alternating Gradient Synchrotron (AGS) of the Brookhaven National
Laboratory. Charged Kaons were produced by 24-GeV protons interacting on a fixed
target. A dedicated beam line transported, purified and momentum selected Kaons. The
beam (see Tab. 4) had adjustable momenta from 670 MeV to 790 MeV and a ratio of
Kaons to pions of ∼ 4/1.
The detector design was optimized to reach sensitivities of the order of 10−10 on the
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BR’s for decays of K± to charged particles, especially lepton-flavor violating decays, such
as K → πµe: for this purpose, redundant and independent measurements for particle
identification and kinematics were provided, as well as efficient vetoing for photons. The
beam was first analyzed by Cerenkov and wire-chamber detectors, and later slowed down
by a passive BeO degrader and an active lead-glass radiator, the Cerenkov light of which
was used to veto pions and early K decays. Kaons were then stopped inside an active
target made of scintillating fibers. The charged decay products emitted at large angle
were first analyzed in position, trajectory, and momentum by a drift chamber; their range
and kinetic energy was then measured in a Range Stack alternating plastic scintillator
with passive material. The readout of the Range Stack photomultipliers was designed to
record times and shapes of pulses up to 6.4 µs after the trigger, thus allowing the entire
chain of π → µ→ e decays to be detected and allowing clean particle identification. The
detector was surrounded by electromagnetic calorimeters for hermetic photon vetoing: a
lead/scintillator barrel and two CsI-crystal endcaps. Two lead/scintillating-fiber collars
allowed vetoing of charged particles emitted at small angles. Using this setup, the best
sensitivity to date was obtained for the BR for K → πνν, reaching the 10−10 level.
Precision studies of KS, KL, and K

± main and subdominant decays were performed
with a different setup using the KLOE detector at the DAΦNE. DAΦNE, the Frascati
φ factory, is an e+e− collider working at

√
s ∼ mφ ∼ 1.02 GeV. φ mesons are produced

essentially at rest with a visible cross section of ∼ 3.1 µb and decay into KSKL and
K+K− pairs with BR’s of ∼ 34% and ∼ 49%, respectively. During KLOE data taking,
which started in 2001 and concluded in 2006, the peak luminosity of DAΦNE improved
continuously, reaching ∼ 2.5×1032 cm−2 s−1 at the end. The total luminosity integrated
at the φ peak is ∼ 2.2 fb−1, corresponding to ∼ 2.2 (∼ 3.3) billion K0K0 (K+K−) pairs.
Kaons get a momentum of ∼ 100 MeV/c which translates into a low speed, βK ∼ 0.2.

KS and KL can therefore be distinguished by their mean decay lengths: λS ∼ 0.6 cm
and λL ∼ 340 cm. K+ and K− decay with a mean length of λ± ∼ 90 cm and can be
distinguished from their decays in flight to one of the two-body final states µν or ππ0.
The Kaon pairs from φ decay are produced in a pure JPC = 1−− quantum state, so

that observation of a KL (K+) in an event signals, or tags, the presence of a KS (K−)
and vice versa; highly pure and nearly monochromatic KS , KL, and K

± beams can thus
be obtained and exploited to achieve high precision in the measurement of absolute BR’s.
The analysis of Kaon decays is performed with the KLOE detector, consisting essen-

tially of a drift chamber, DCH, surrounded by an electromagnetic calorimeter, EMC. A
superconducting coil provides a 0.52 T magnetic field. The DCH [198] is a cylinder of
4 m in diameter and 3.3 m in length, which constitutes a fiducial volume for KL and K±

decays extending for ∼ 0.5λL and ∼ 1λ±. The momentum resolution for tracks at large
polar angle is σp/p ≤ 0.4%. The invariant mass reconstructed from the momenta of the
two pion tracks of a KS → π+π− decay peaks aroundmK with a resolution of ∼800 keV,
thus allowing clean KL tagging. The c.m. momenta reconstructed from identification of
1-prong K± → µν, ππ0 decay vertices in the DC peak around the expected values with
a resolution of 1–1.5 MeV, thus allowing clean and efficient K∓ tagging.
The EMC is a lead/scintillating-fiber sampling calorimeter [199] consisting of a barrel

and two endcaps, with good energy resolution, σE/E ∼ 5.7%/
√
E(GeV), and excellent

time resolution, σT = 54 ps/
√
E(GeV)⊕ 50 ps. About 50% of the KL’s produced reach

the EMC, where most interact. A signature of these interactions is the presence of an
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Table 5
Accelerator parameters of the B-Factories. The design parameters are given for PEP-II and KEK-B. The

final running parameters for CESR are given.

CESR KEK-B PEP-II

LER HER LER HER

Energy (GeV) 5.29 3.5 8.0 3.1 9.0

Collision mode 2 mrad 11mrad Head-on

Circumference (m) 768 3018 2199

β∗
x/β

∗
y ( cm) 100/1.8 100/1 100/1 37.5/1.5 75/3

ξ∗x/ξ
∗
y 0.03/0.06 0.05/0.05 0.03/0.03

ǫ∗x/ǫ
∗
y (πrad− nm) 210/1 19/0.19 19/0.19 64/2.6 48.2/1.9

relative energy spread (10−4) 6.0 7.7 7.2 9.5 6.1

Total Current (A) 0.34 2.6 1.1 2.14 0.98

number of bunches 45 5120 1658

RF Frequency (MHz)/ Voltage (MV ) 500/5 508/22 508/48 476/9.5 476/17.5

number of cavities 4 28 60 10 20

high-energy cluster not connected to any charged track, with a time corresponding to
a low velocity: the resolution on βK corresponds to a resolution of ∼ 1 MeV on the
KL momentum. This allows clean KS tagging. The timing capabilities of the EMC are
exploited to precisely reconstruct the position of decay vertices of KL and K± to π0’s
from the cluster times of the emitted photons, thus allowing a precise measurement of
the KL and K± lifetimes.
With this setup, KLOE reached the best sensitivity for absolute BR’s of the main

K±, KL, and KS channels (dominating world data in the latter case) and improved the
knowledge of semileptonic decay rate densities and lifetimes for K± and KL.

3.1.2. B Factories
The high statistics required to perform precise flavor physics with B mesons has been

accomplished by B-Factories colliding electrons and positrons at the energy of the Υ (4S)
resonance (e+e− → Υ (4S)BB): CESR at LEPP (Cornell, USA), PEP-II [200] at SLAC
(Stanford, USA) and KEK-B [201] at KEK (Tsukuba, Japan). Measurements that ex-
ploit the evolution of the observables with the decay time of the mesons also require
asymmetric beams in order to ensure a boost to the produced mesons.
To this aim PEP-II (KEK-B) collide 3.1 (3.5) GeV positrons on 9.0 (8.0) GeV electrons,

thus achieving a boost βγ = 0.56(0.43). The other design parameters of the B-Factories
are listed in Tab: 5. The design instantaneous luminosities were 1033, 3 × 1033, and
1× 1034 cm−2 s−1 for CESR, PEP-II and KEK-B, respectively.
The accelerator performances have actually overcome the design: CESR has ceased its

operations as B-Factory in 1999 with a peak luminosity L = 1.2×1033 cm−2 s−1, PEP-II
has ended its last run in April 2008 with a peak luminosity of 12 × 1033 cm−2 s−1 and
KEK-B, which is still operational and awaits an upgrade (Super-KEK-B), has achieved
a luminosity as high as 1.7 × 1034 cm−2 s−1. The total collected luminosities are 15.5,
553 and 895 fb−1 for CESR, PEP-II and KEK-B, respectively.
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The detectors installed on these accelerators, CLEO-II/II.V/III 9 [202–206] at CESR,
BaBar [207] at PEP-II and Belle [208] at KEK-B, are multipurpose and require exclusive
and hermetic reconstruction of the decay products of all generated particles. To this
aim the following requirements must be met: (1) accurate reconstruction of charged-
particle trajectories; (2) precise measurement of neutral particle energies; and (3) good
identification of photons, electrons, muons, charged Kaons, K0

S
mesons and K0

L
mesons.

The most challenging experimental requirement is the detection of the decay points of
the short-lived B mesons. CLEO, BaBar and Belle use double-sided silicon-strip detectors
allowing full tracking of low-momentum tracks. Four, three and five cylindrical layers are
used at CLEO, Belle and BaBar, respectively. To minimize the contribution of multiple
scattering, these detectors are located at small radii close to the interaction point. For
tracking outside the silicon detector, and the measurement of momentum, all experiments
use conventional drift chambers with a helium-based gas mixture to minimize multiple
scattering and synchrotron radiation backgrounds.
The other difficult requirement for the detectors is the separation of Kaons from pi-

ons. At high momentum, this is needed to distinguish topologically identical final states
such as B0 → π+π− and B0 → K+π− from one another. At lower momenta, particle
identification is essential for B flavor tagging.
Three different approaches to high-momentum particle identification have been imple-

mented, all of which exploit Cerenkov radiation. At CLEO a proximity focusing RICH
with CH4/TEA as the photosensitive medium and LiF as the radiator. The system relies
on an expansion gap between the radiator and photon detector to separate the Cherenkov
light without the use of additional focusing elements. The RICH has good K-π separa-
tion for charged tracks above 700 MeV/c; below this momenta dE/dx measurements in
the drift chamber are used for particle identification.
At Belle, aerogel is used as a radiator. Blocks of aerogel are read out directly by

fine-mesh phototubes that have high gain and operate reliably in a 1.5-Tesla magnetic
field. Because the threshold momentum for pions in the aerogel is 1.5 GeV/c, below this
momentum K/π separation is carried out using high-precision time-of-flight (TOF) scin-
tillators with a resolution of 95 ps. The aerogel and TOF counter system is complemented
by dE/dx measurements in the central drift chamber. The dE/dx system provides K/π
separation below 0.7 GeV/c and above 2.5 GeV/c in the relativistic rise region.
At BaBar, Cerenkov light is produced in quartz bars and then transmitted by total

internal reflection to the outside of the detector through a water tank to a large array
of phototubes where the ring is imaged. The detector is called DIRC (Detector of In-
ternally Reflected Cerenkov light). It provides particle identification for particles above
700 MeV/c. Additional particle identification is provided by dE/dx measurements in the
drift chamber and the five-layer silicon detector.
To detect photons and electrons, all detectors use large arrays of CsI(Tl) crystals

located inside the coil of the magnet. In BABAR and Belle, another novel feature is the
use of resistive plate chambers (RPC) inserted into the steel return yoke of the magnet.
This detector system is used for both muon and K0

L
detection. At CLEO the iron return

yoke of the solenoid is instrumented with plastic streamer counters to identify muons.

9 The detector went through several major upgrades during its lifetime. In this section only the final
configuration, CLEO-III, is described. The size of the Υ (4S) data-sets collected were 4.7 fb−1, 9.0 fb−1,
9.1 fb−1 with CLEO-II, CLEO-II.V and CLEO-III, respectively.
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Table 6
Accelerator parameters of τ -charm factories.

BEPC CESR-c BEPC-II

Max. energy (GeV) 2.2 2.08 2.3

Collision mode Head-on ±3.3 mrad 22 mrad

Circumference (m) 240 768 240

β∗
x/β

∗
y ( cm) 120/5 94/1.2 100/1.5

ξ∗x/ξ
∗
y (10−4) 350/350 420/280 400/400

ǫ∗x/ǫ
∗
y(π rad− nm) 660/28 120/3.5 144/2.2

relative energy spread (10−4) 5.8 8.2 5.2

Total Current (A) 0.04 0.072 0.91

number of bunches 1 24 93

RF Frequency (MHz)/ Voltage (MV ) 200/0.6-1.6 500/5 500/1.5

number of cavities 4 4 2

To read out the detectors, BABAR uses electronics based on digital pipelines and
incurs little or no dead-time. Belle uses charge-to-time (Q-to-T) converters that are then
read out by multihit time-to-digital counters (TDCs). This allows a uniform treatment of
timing and charge signals. Details of the CLEO data-acquisition system can be found in
Ref. [204]; the system can handle trigger rates of 1 kHz well above the normal operating
conditions (100 Hz).

3.1.3. τ -charm Factories
Recently there have been two accelerators that have been operating near the τ -charm

threshold: BEPC at IHEP (Beijing, China) and CESR-c [209] at LEPP (Cornell, USA).
The center-of-mass-energy ranges covered are 3.7 − 5.0 GeV and 3.97 − 4.26 GeV by
BEPC and CESR-c, respectively. The peak instantaneous luminosities achieved are 12.6×
1030 cm−2 s−1 and 76 × 1030 cm−2 s−1. The other parameters of BEPC and CESR-c
are given in Tab. 6.
At CESR-c the CLEO-III detector, described in Sec. 3.1.2, was modified for lower en-

ergy data-taking and renamed CLEO-c [209]. The principal differences were the reduction
of the magnetic field from 1.5 T to 1 T and the replacement of the silicon vertex detector
by a six-layer inner drift chamber. Both these modifications improved the reconstruc-
tion of low momentum tracks. CLEO-c collected 27 million ψ(2S) events, 818 pb−1 of
integrated luminosity at the ψ(3770) and 602 pb−1 of integrated luminosity at a center-
of-mass energy of 4.17 GeV. The latter data set includes a over half a million DsD

∗
s

events.
The most recent detector installed on BEPC is BES-II [210, 211]. BES-II collected

samples of 58 million J/ψ and 14 million ψ(2S) events. In addition, an energy scan was
performed between center-of-mass energies 3.7 to 5.0 GeV to determine both R and
the resonances parameters of the higher-mass charmonium states. BES-II tracking was
performed by a drift chamber surrounding a straw tube vertex detector. 10 A scintillating

10The vertex detector was originally operated at Mark III.
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time-of-flight detector with 180 ps resolution is used for particle identification along with
dE/dx measurements in the drift chamber. There are sampling electromagnetic-shower
counters in the barrel and endcap made from layers of streamer tubes sandwiched between
lead absorbers. Outside the 0.4 T solenoid the iron flux return is instrumented with
proportional tubes to detect muons.
BEPC and BES-III have recently undergone significant upgrades (see for example

[212]). The BEPC-II accelerator has a design luminosity 100 times greater than BEPC
with a peak of 1033 cm−2 s−1. The other parameters of BEPC-II are given in Tab. 6. The
BES-III detector has the following components: a He-based drift-chamber, a time-of-flight
system with ∼100 ps resolution, a CsI(Tl) crystal calorimeter, a 1 T superconducting
solenoid and the return yoke is instrumented with RPCs for muon identification. BES-
III began taking data in the summer of 2008 and a ψ(2S) data sample of 10 pb−1 has
already been collected. The collection of unprecedented samples of J/ψ , ψ(2S) and D
mesons produced just above open-charm threshold are expected in the coming years.

3.1.4. Hadron Colliders
High energy proton-(anti)proton collisions offer superb opportunities for beauty and

charm physics due to large production cross section and, in contrast to electron-positron
colliders running at the Υ (4S), the possibility of studying all species of b-mesons and
baryons. Present generation experiments, CDF and D0 operate at the Fermilab Tevatron
providing pp collisions at

√
s = 1.96TeV in the Run II started in 2002, while experiments

at the soon to be operated LHC collider at CERN will study proton-proton collisions
at

√
s = 14TeV. The Tevatron collides pp bunches every 396 ns, corresponding to an

average of 2 inelastic collisions per crossing at a luminosity of L = 1 × 1032 cm−2s−1,
typical of the data used to produce the physics results discussed here. More recently
Tevatron provided peak luminosities in excess of 3×1032 cm−2s−1, and delivered in total
6.5 fb−1as of this writing.
The cross section for centrally produced b-hadrons has been measured with a variety

of techniques at Tevatron and found to be consistent with NLO theoretical calculations:
an early measurement using inclusive J/ψ down to PT = 0 in the rapidity range |y| < 0.6
found σ(pp→ b+X) = 17.6±0.4(.stat.) +2.5

−2.3(sys.) µb [213], while a more recent one using
fully reconstructed B+ → J/ψK+ measured σ(pp→ B+ +X,PT > 6 GeV/c, |y| ≤ 1) =
2.78 ± 0.24 µb [214] which gives more of an idea of the usable cross-section for central
detectors like CDFII and D0. The fragmentation fraction of b-quarks in Bu,d and Bs
mesons has been measured to be consistent at Tevatron and at LEP, with roughly 1 Bs
meson produced every 4 B+ or B0, while the rate of b-baryons has been reported to be
higher at Tevatron with a possible mild PT dependence [215].
The huge production rate for heavy flavored particles has to be contrasted, however,

with the overwhelming inelastic proton-(anti)proton interaction rate which is typically
three order of magnitudes higher. This poses a fundamental experimental challenge for
detectors ad hadron colliders, which needs to devise trigger strategies in order to be able
to record as pure a signal as possible while discarding uninteresting events.
The Tevatron experiments exploit conceptually similar, multi-purpose central detectors

with a cylindrical symmetry around the beam axis, in contrast the dedicated future
experiment at LHC collider (LHCb) employs a radically different forward geometry, in
order to exploit the rapidly increasing bb cross section at high rapidity.
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Key elements in the design of detectors for heavy flavor physics at hadron colliders
are: large magnetic spectrometers for charged particle momentum measurements; pre-
cision vertex detectors for proper decay time determination and signal separation, low
energy electron and muon identification for triggering, flavor tagging, and identification
of rare leptonic decays; high rate capability for data acquisition and trigger systems.
Additionally π-K identification is crucial for flavor tagging and signal separation, and,
thus, a significant part of the design of the dedicated LHCb detector, while in central
muti-purpose detectors limited particle id is available with the exception of CDF-II which
benefits from dE/dx and TOF measurements. In the following we will briefly describe
the CDF [213] and D0 [216] detectors relevant for the experimental results discussed in
this report.
CDF and D0 detectors
The CDF-II detector spectrometer is built around an axially symmetric Central Outer

Tracker (COT), a open-cell drift chamber that provides charged track identification
and measurement of the momentum transverse to the pp̄ beams (pT ) in the central
region(|η| ≤ 1.2) for tracks with pT > 400MeV/c. The active volume of the COT covers
extends from a radius of 40 to 140 cm, with up to 96 axial and stereo measurement points
inside a superconducting solenoid that provides a 1.4T axial magnetic field. D0 Central
Fiber Tracker fills a significant smaller space inside a 2 T solenoid, 20 to 50 cm, with
16000 channel organized in 8 alternating axial and stereo layers each providing a doublet
of measurement points. The pT resolution is found to be δpT /pT ∼ 0.001 · pT (GeV/c)
in the CDF tracker. This results in precise invariant mass reconstruction which provides
excellent signal-to-background ratio for fully reconstructed B and D decay modes.
Tracks found in the central tracker are extrapolated inward and matched to hits in

silicon microvertex detectors in both CDF and D0. The CDF detector (SVX II + ISL)
uses double sided silicon microstrip technology providing tracking information in the r-φ
and r-z planes in the pseudo-rapidity range |η| < 2. The detector has up to 7 layers of
double-sided silicon at radial distances ranging from 2.5 cm to 28 cm from the beamline.
Within the SVX is the innermost single-sided, radiation hard silicon layer (Layer 00),

which is mounted directly onto the beam pipe at a radius of 1.35 to 1.62 cm [217]. The
impact parameter resolution of the tracking system with, and without, the inclusion of
Layer 00 is shown in Figure 4. The impact parameter resolution for high pT charged
tracks is ∼ 25µm taking in to account the 32µm contribution from the transverse size of
the interaction region [217].
D0 silicon microstrip tracker (SMT) is composed of cylindrical barrels with 4 layers of

double-sided detectors interspersed with disks in the central part, and complemented with
large forward disk at both ends, a design optimized for tracking up to |η| < 3. In addition,
in 2006 a new innermost layer (Layer 0) was installed inside the existing detector. This
has improved the impact parameter resolution and will prevent the expected performance
degradation due to radiation damage of the innermost SMT layer during the rest of the
Tevatron run [218].
The silicon vertex detectors are crucial for precise decay length determination of b de-

cays in time dependent measurement. Moreover the 3D vertex reconstruction allowed by
the combined r-φ and r-z measurements provides efficient background rejection against
the large background of prompt events.
Particle identification in CDF is provided by dE/dx in the central drift chamber and a

time-of-flight (TOF) system consisting of 216 scintillator bars located between the COT
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Fig. 4. CDF impact parameter resolution tracking tracks with Layer 00 hits (blue points) and without
Layer 00 hits (red points.) a) and Silicon Vertex Trigger (SVT) impact parameter distribution for a
generic sample of tracks b).

and the solenoid [219]. The TOF, with a resolution of around 110 ps, provides at least
2σ K/π separation for pT < 1.5 GeV/c. For pT > 2.0 GeV/c, the separation provided by
dE/dx between pions and Kaons is equivalent to 1.4σ between two Gaussians while the
separation for pions and electrons is 2.5 σ at pT = 1.5 GeV/c.
Outside the solenoid are electromagnetic and hadronic calorimeters covering the pseudo-

rapidity region |η| < 3.5 in CDF and up to|η| < 4.0 in D0.
Muon detectors are located behind the hadron calorimeters, The CDF muon systems

are segmented into four components, the Central Muon system (CMU) provides coverage
for |η| < 0.6 and pT > 1.5GeV/c and sits behind ∼5.5 interaction lengths (λ) of material
primarily consisting of the iron of the hadronic calorimeter. The Central Muon upgrade
(CMP) sits behind an additional 60 cm, ∼3λ of steel, providing identification for muons
with pT > 3.0GeV/c in |η| < 0.6, with higher purity than muons identified only in
the CMU. The Central Muon extension (CMX) consists of eight layers drift chambers
arranged in conic sections and provides coverage for 0.6 < |η| < 1.1 and pT > 2.0 GeV/c,
and is located behind absorber material corresponding to ∼ 6 up to ∼ 10 interaction
lengths. The D0 muon system sits outside of a thick absorber (> 10 λ), and consists of
a layer of tracking detectors and scintillation trigger counters inside a 1.8T iron toroid,
followed by two additional layers outside the toroid. The muon coverage extends to
|η| = 2. Magnet polarities are regularly reversed during data collection, thus providing
an important way to control charge dependent effects in muon reconstruction that might
affect semileptonic asymmetry measurement.
Triggers
Data acquisition and trigger system for experiments at hadron colliders have to sustain

an extremely high collision rate, 7.6(40) MHz at Tevatron(LHC), and reduce it to ap-
proximately 100-1000 Hz of interesting events that can be saved permanently for physics
analysis, thus providing rejection factor > 104 against uninteresting proton-(anti)proton
collisions. The most straightforward way to achieve such a goal is to design electron and
muon based triggers, using single or multi-lepton signatures, that allow to select signif-
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icantly pure samples of heavy flavor decays thanks to the large semileptonic branching
ratios, or by isolating final states containing e.g. J/ψ . Rate is controlled primarily with
lepton transverse momentum requirement, that has to be kept as low as possible in order
to maximize signal efficiency. Inclusive electron and muon selection with a threshold of
6-8 GeV/c are typical at Tevatron. Much lower thresholds are possible for events with two
leptons, approaching the minimum detectable transverse momentum in each detector (
2 GeV/c at Tevatron).
This strategy has been implemented by all the present and forthcoming experiments

and provided the majority of the result for rare decays and lifetime measurements at
Tevatron in the last decade. A clear limitation of this approach is that it lacks the ability
to select fully hadronic decays of b-hadrons. In the context of CKM-related physics the
latter are important for the study of either 2 body charmless decays, or B → DK decays
involved in the measurement of the angle γ in tree processes, and, most importantly,
for selecting large samples of fully reconstructed Bs → D+

s π
− and Bs → D+

s π
+π−π+

that lead to the first observation of B0
s − B

0

s mixing in 2006 [220]. To overcome this
limitation the CDF collaboration pioneered the technique of online reconstruction of
charged tracks originating from decay vertexes far from the collision point due to the
significant boost and lifetime of B-mesons produced at high energy hadron colliders. The
key innovation introduced for Run II in the CDF trigger was in fact the Silicon Vertex
Trigger (SVT) [221] processor. At the second level of the trigger system, information from
the silicon vertex detector is combined with tracks reconstructed at the first level trigger
in the drift chamber. High resolution SVT-tracks are then provided within the latency
of ≈ 20µs, and are used to select events characterized by two tracks with high impact
parameter and vertex decay length greater than 200 µm, thus providing a rejection
factor of 100-1000 while maintaining a significant efficiency for B decays. The impact
parameter resolution of the SVT, shown in Figure 4, is approximately 50µm, which
includes a contribution of 32µm from the width of the pp̄ interaction region. It has to be
noted, however, that selecting events based upon decay length information, introduces
an important inefficiency at small values of proper decay time. We will describe how this
bias has been incorporated in the analysis in Section 3.2.3.

3.2. Common experimental tools

In the following the most relevant experimental techniques for flavor physics will be
briefly discussed. Time dependent measurements require excellent vertexing and flavor
tagging capabilities, crucial in the latter case is particle identification and π-K separation.
Finally noise suppression, recoil tagging technique and Dalitz-plot analysis techniques will
be discussed.

3.2.1. Time-dependent measurements
It is possible to measure phases of the CKM matrix elements, and therefore CP vio-

lating quantities, by exploiting the different time evolution of the two mass eigenstates
of the B0 meson system, BL and BH . At B-Factories, where a B0 meson is produced
coherently with its antiparticle, the probability density function of observing a B decay
into a flavor eigenstate (called Btag) and for whom η = −1(+1) if B0 (B0) and the other
one, called Breco, in a given final state f at times that differ by ∆t is
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fη(∆t) =
Γ

4
e−Γ|∆t| {1 + η [S sin∆m∆t− C cos∆m∆t]} , (95)

where the decay width difference between the two mass eigenstates is neglected, ∆m is
the mass difference,

S =
2Imλ

1 + |λ|2 C =
1− |λ|2
1 + |λ|2 , (96)

and

λ = −|
〈
B0
∣∣H∆B=2

∣∣B0
〉
|

〈B0| H∆B=2

∣∣B0
〉 〈f |H∆B=1

∣∣B0
〉

〈f |H∆B=1 |B0〉 . (97)

Depending on the choice of the final state f , S can be related to different phases of the
CKM matrix elements. In particular if f is a flavor eigenstate then λ = 0 and C = 1 and
S = 0, no phase can be measured but there is sensitivity to ∆m; likewise if f is a CP
eigenstate, λ is a pure phase and this is usually the cleanest configuration to measure
CP violation parameters, although all non-zero values of λ allow such measurements.
At hadron colliders the same considerations apply, a part from the fact that ∆t mea-

sures the time between the B meson production and its decay and that η = −1(+1) for
an initially produced B0 (B0). The initial B flavor can be measured either by observ-
ing the decay products of the other hadron with a b quark in the event, or by utilizing
information on the jet of particles the B meson is contained into.
There are therefore three key ingredients in these measurements: the identification of

the flavor of the meson produced in association with the one reconstructed in the channel
f (the so-called B-tagging), the measurement of ∆t which requires the reconstruction of
the decay vertex of at least one B meson (both mesons in the case of B-factories), and
the reconstruction of the B meson in the final state f with the least possible background.
The experimental uncertainties on these quantities alter the probability density func-

tion of the measured quantities, function which is used in the likelihood fits implemented
to perform these measurements. Instead of Eq. 95 one can then write

fη(∆t) =
Γ

4
e−Γ|∆ttrue| {1 + ηD [S sin∆m∆ttrue − C cos∆m∆ttrue]}⊗R(∆t−∆ttrue)+f

bkg
η (∆t),

(98)
where⊗ indicates the convolution,D = 1−pw is the tagging dilution (pw is the probability
of incorrectly tagging a meson), R is the vertexing resolution function, and f bkgη is the
probability density function for the background.
The next sections describe the techniques adopted for tagging, vertexing reconstruction

and background rejection and the means available to estimate the quantities that enter
into Eq. 98.

3.2.2. B Flavor Tagging
One of the key components in the measurement of neutral B meson flavor oscillations

or time dependent CP asymmetries is identifying the flavor of the B meson (containing a
b̄ antiquark) or B̄ meson (containing a b quark) at production, in the case of incoherent
mixing at hadronic colliders, or at the moment the other b-meson decays in the case of
B0B0 from Υ (4S). We refer to this method of identifying the B hadron flavor as “B flavor
tagging”. The figure of merit to compare different tagging methods or algorithms is the
so-called effective tagging power εD2 = ε(1−2 pW )2, where the efficiency ε represents the
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fraction of events for which a flavor tag exists and pW is the mistag probability indicating
the fraction of events with a wrong flavor tag. The mistag probability is related to the
dilution: D = 1 − 2 pW . The experimentally observed mixing or CP asymmetries are, in
fact, proportional to the dilution D. A flavor tag which always returns the correct tag
has a dilution of 1, while a random tag yielding the correct flavor 50% of the time has a
dilution of zero.
Several methods to tag the initial b quark flavor have been used both at B-factories and

hadron collider experiments. The flavor tagging methods can be divided into two groups,
those that identify the flavor of the other b-hadron produced in the same event (opposite
side tag - OST), and those that tag the initial flavor of the B candidates itself (same
side tag - SST). The latter, being based on charge correlation between initial b quark
and fragmentation particles is only possible at hadron colliders or Z-pole experiments.
Fig. 5 is a sketch of a bb̄ event showing the B and B̄ mesons originating from the

primary pp̄ interaction vertex and decaying at a secondary vertex indicating possible
flavor tags on the decay vertex side (SST) as well as opposite side tags.
In the following the main aspects of the opposite side taggers used at both Tevatron

and B-Factories and of the SST used for the B0
s -B

0

s oscillation observation and in the
first φs determination at Tevatron will be briefly discussed.
Opposite Side Tags
Both experiments at hadron colliders and B-Factories exploit three feature of B decays

to estimate the flavour of the opposite B meson.
The “lepton tagging” looks for an electron or muon from the semileptonic decay of the

opposite side B hadron in the event. The charge of this lepton is correlated with the flavor
of the B hadron: an ℓ− comes from a b→ c ℓ−ν̄X transition, while an ℓ+ originates from
a b̄ quark. Since the semileptonic B branching fraction is small, B(B → ℓX) ∼ 20%,
lepton tags are expected to have low efficiency but high dilution because of the high
purity of lepton identification.
The strangeness of Kaons or Λ from the subsequent charm decay c → sX is also

correlated with the B flavor, e.g. a K− results from the decay chain b → c → s while
a K+ signals a b̄ flavor. Searching for a charged Kaon from the opposite side B hadron
decay is referred to as “Kaon tagging”. This method is expected to have high efficiency
but low dilution at hadron colliders since the challenge is to first identify Kaons among
a vast background of pions through particle-id techniques, and then to discriminate the
B decay Kaon candidates from all prompt Kaons produced in the collision by relying
on Kaon impact parameter and reconstruction of secondary vertexes in the opposite
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side [222].
Finally all other information carried by the tracks among the decays of the B mesons

constitutes the third large tagging category. On average in fact the most energetic charged
decay product carries the charge of the original b quark. At Tevatron the “jet charge
tagging” exploits the fact that the sign of the momentum weighted sum of the particle
charges of the opposite side secondary vertex from b (D0 [223]) or b jet (CDF [224]) is
correlated to the charge of the b quark. Jet charge tags can reach very high efficiency
but with low dilution. Furthermore, more than 20% of B decays contain charged D∗

mesons which decay 66% of the times into a soft pion with the same charge. Soft pions
can therefore also have a high charge correlation with the original b quark. The Belle
and BaBar experiments input to multivariate tagging algorithms the charge of all tracks,
with special treatment for the softest in the event to take into account this effect.
The algorithms to combine all the information use multivariate technique either ex-

ploiting directly the available output of the various tagging algorithms or starting by
assigning each track candidate of coming from the ”tagging” B meson into one category
between lepton, kaon, soft pion (only for B-Factories) or generic track. Each experiment
then has a different approach to exploit the information.
The BaBar experiment uses one Neural Network (NN) per category with different

quantities in input depending on the category (see Ref. [225] for details): for instance the
”Lepton” category would contain lepton identification quantities and the momentum.
The output of these NNs based on single-particle information are themselves combined
into several event-by-event NNs, that assess the likelihood of the flavor assignment. The
tagging categories are mutually exclusive and for each event only one NN is evaluated.
The algorithm of the Belle experiment is similar but exploits likelihood instead of NNs
and has a single output (called r). In both cases the algorithms are tuned on MC, but
the mistag probability is estimated on data control samples.
The experimental sensitivity is maximized upon using the expected dilution on an event

by event basis, employing parameterizations derived by a combination of simulation and
real data. As an example, the dilution of the lepton tagging is parameterized as a function
of the lepton identification quality and of the prelT of the tagging lepton (CDF [226,227])
or of the lepton jet-charge (D0 [223]). The quantity prelT is defined as the magnitude
of the component of the tagging-lepton momentum that is perpendicular to the axis of
the jet associated with the lepton tag. Variation of the dilution as a function of prelT is
shown left side of Fig. 6 for electron tags in CDF. The dilution is lower for low prelT
because fake leptons and leptons from sequential semileptonic decay (b → c → ℓ+) tend
to have relatively low prelT values. Also, to maximize the tagging power the dilution
of the jet charge tags can be calculated separately for different quality of the opposite
side secondary vertex information and parametrized as a linear function in the quantity
|Qjet| · Pnn, where Pnn expresses a probability for the jet to be a b jet, as displayed
in Fig. 6 for jets containing a well separated secondary vertex in the CDF case. Flavor
misidentification can occur because the jet charge does not reflect perfectly the true
charge of the original b quark, due e.g. to mixing. In addition, the selected tagging jet
may contain only a few or no tracks from the actual opposite side B hadron decay.
At Tevatron, the typical flavor tagging power of a single tagging algorithm is O(1%).

Limitations in opposite side tagging algorithms arise because the second bottom hadron
is inside the detector acceptance in less than 40% of the time or it is possible that the
second B hadron is a neutral B meson that mixed into its antiparticle. For example, the
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low efficiency of an opposite side lepton tag of ∼ 20% from the semileptonic B hadron
branching fraction together with a dilution of ∼ 30% results in an estimated εD2 ∼
0.4× 0.2× 0.32 ∼ 0.01. At B-factories, better hermeticity of detectors, enhanced particle
identification capability, and the absence of incoherent mixing as a source of dilution
makes it possible to reach combining all the information together en effective tagging
power εD2 ∼ 0.30 in both Belle and Babar. As an example of tagging performances for
each experiment considered here, the obtained efficiencies ε, effective dilutions 〈D〉, and
effective tagging powers εD2 are shown in Table 7.
In the case of opposite side flavor tags, the dilution is expected to be independent of

the type of B meson (B0,B+,Bs) under study, hence can be studied on large inclusive
semileptonic samples (CDF) or on B0 or B+ samples (D0) and then applied in Bs related
measurement. The final calibration of the opposite side tagging methods come from a
measurement of the B0 oscillation frequency ∆md in hadronic and semileptonic samples
of B mesons at both B-factories and Tevatron experiments. A perfectly calibrated tagging
method applied to a large sample of B0 mesons should result in a precise measurement
of ∆md. In turn one can use the well known world average value of ∆md to check and
re-calibrate the predicted dilutions of the opposite side tagging algorithms.

Same Side Flavor Tagging
The initial flavor of a B meson can additionally be tagged by exploiting correlations

of the B flavor with the charge of particles produced in association with it (SST). Such
correlations arise from b quark hadronization and from B∗∗ decays. In the case of a B−

or B0 mesons, the fragmentation particles are mainly pions while Bs meson are primarily
accompanied by fragmentation Kaons. In the Bs meson case we thus refer to this method
as “same side Kaon tagging” (SSKT). In the simplest picture, where only pseudo-scalar
mesons are produced directly by the fragmentation process, the following charged stable
mesons are expected: a B0 will be produced along with π−, a B− will be produced with
a π+ or a K+, and a Bs will be produced with a K−. Corresponding relations are true
for the charge conjugated B mesons. The idea of the same side tagging algorithm is to
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Table 7
Tagging performances of the opposite side tagging algorithms at BaBar [228], Belle [229], D0 [223], and

CDF [230]. Note that the individual tagger performance in the latter case are determined in non-exclusive
sample so their sum is greater than the neural network (NN) based combined opposite side tagging for
CDF. All errors given are statistical.

Category Efficiency ε [%] Effect. dilution 〈D〉 [%] Tagging Power εD2 [%]

BaBar Belle (r ∈) BaBar Belle BaBar Belle BaBar Belle

Lepton 0.875-1 8.96±0.07 14.4±0.9 99.4±0.3 97.0±0.5 7.98±0.11 13.5±0.9

Kaon I 0.75-0.875 10.82±0.07 9.8±0.7 89.4±0.3 78.2±0.9 8.65±0.3 6.0±0.5

Kaon II 0.625-0.75 17.19±0.09 10.7±0.8 71.0±0.4 68.4±1.0 8.68±0.17 5.0±0.5

Kaon-Pion 0.5-0.625 13.67±0.08 10.8±0.8 53.4±0.4 55.0±1.1 3.91±0.12 3.3±0.4

Pion 0.25-0.5 14.18±0.08 14.6±0.9 35.0±0.4 36.0±0.8 1.73±0.09 1.9±0.2

Other 0-0.25 9.54±0.07 39.7±1.5 17.0± 0.5 7.2±0.7 0.27 ±0.04 0.2±0.1

Total Tagging Power 31.2± 0.3 29.9±1.2

CDF D0 CDF D0 CDF D0

Muon 5.5± 0.1 6.6± 0.1 35.3± 1.1 47.3± 2.7 0.68± 0.05 1.48± 0.17

Electron 3.1± 0.1 1.8± 0.1 30.7± 1.1 34.1± 5.8 0.29± 0.01 0.21± 0.07

Jet Charge 90.5± 0.1 2.8± 0.1 9.5± 0.5 42.4± 4.8 0.80± 0.05 0.50± 0.11

Kaon 18.1± 0.1 N/A 11.1± 0.9 N/A 0.23± 0.02 N/A

Total Tagging Power 1.81± 0.10 2.19± 0.22

identify the leading fragmentation track charge and to determine the B initial flavor
accordingly.
Several advantages compared to the opposite side tagging algorithms are worth men-

tioning. The SST shows a high efficiency since the leading fragmentation track is in the
same detector region as the signal B hadron, thus, within the detector acceptance, and
there are also no limitations due to branching ratios. The search region for same side
tagging tracks is limited near the signal B direction. Due to this geometrical restriction,
the SST is robust against background from the underlying event or multiple interac-
tions. Finally neutral meson mixing does not dilute the useful charge correlation. These
advantages are reflected in an higher flavor tagging dilution.
Unlike the opposite side flavor tagging algorithms, the performance of the same side al-

gorithm cannot easily be quantified using data. Since SST is based on information from
the signal B fragmentation process, its performance depends on the signal B species.
Therefore, B+ and B0 modes can not be used to calibrate the same side tagging per-
formance for Bs mesons. Instead, prior to the actual observation of Bs mixing, the
experiments had to rely upon Monte Carlo simulation to quantify the performance of
same side tagging for Bs mesons. High statistics B+ and B0 modes have been used to
verify that specifically tuned Monte Carlo program accurately model the fragmentation
process.
The CDF algorithm [231] starts selecting charged tracks with pT ≥ 450MeV/c, good

momentum and impact parameter resolution as potential tagging tracks. Fragmentation
tracks originate from the primary vertex, therefore an impact parameter significance
less than 4 is required. To reject background from multiple interactions, the tracks are
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required to be close to the Bs candidates both along the beam direction and in ∆R =√
∆η2 +∆φ2 ≤ 0.7.
About 60% of the tagged events have one and only one tagging track. Of the remaining

events approximately one-third have all tagging tracks with the same charge. Therefore,
the subsequent tagging algorithm makes a choice between multiple, oppositely charged
tracks in about one-fourth of all tagged events. Several variables have been employed.
The most sensitive was found to be the maximum longitudinal component of the tagging
tracks with respect to the B momentum, and after that the largest likelihood to be a Kaon
based on TOF and dE/dx measurements. A neural network is finally used to combine
the available information. Examples of the dependence of the dilution on the variables
discussed above are given in Fig. 7 for the subsample with only one tagging track.

Fig. 7. (Left panel) Dilution of the maximum prelL algorithm as a function of tagging track pT . (Middle
panel) Dilution for the Kaon identification based algorithm as function of Kaon likelihood. (Right panel)
Dilution of the NN algorithm as a function of NN variable. The dots represent Monte Carlo data, the
line is the parametrization, which has been used to determine the event-by-event dilution. Events with
only one tagging track candidate around the Bs meson are displayed.

The performance of the SSKT algorithm has been evaluated for B+, B0 and Bs modes
on several decay channels (see Table 8). The agreement between simulation and data in
B+ and B0 modes suggests that the simulation can predict the tagger performance across
all B species. The measured differences are used to evaluate a systematic uncertainty on
SSKT for Bs mesons. Since the algorithm rely on the number of Kaons produced in the
fragmentation process leading to the production of Bs mesons an additional important
uncertainty is derived by the difference in data and simulation of the number of Kaons
around the Bs direction of flight. Smaller systematic uncertainties arise considering b-
quark production mechanism, fragmentation models, B∗∗ rate and event pile-up.

Table 8
Performance of the NN based algorithm in data and Monte Carlo. Only statistical uncertainties are
quoted.

[%] B− → D0π− B0 → D+π− Bs → D+
s π

−

MC ǫ 55.9 ± 0.1 56.6 ± 0.1 52.1 ± 0.3

〈D〉 26.8 ± 0.2 16.1 ± 0.6 29.2 ± 0.7

data (1 fb−1) ǫ 58.2 ± 0.3 57.2 ± 0.3 49.3 ± 1.3

〈D〉 26.4 ± 0.8 15.2 ± 1.7 —
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The tagging dilution evaluated for the Bs → D+
s π

− sample using the event-by-event
predicted dilution derived from Monte Carlo yields 〈D〉 = 24.9− 29.3+3.3

−4.3% (for compar-

ison using the maximum prelL only gives 〈D〉 = 23.7+2.6
−4.5 %). The overall SSKT tagging

figure of merit is ε 〈D〉2 = 3.1−4.3+1.0
−1.4, including statistical and systematic uncertainties

(the given range reflect the performance of the CDF TOF system in different data taking
periods). This result can be compared to the overall OST εD2 = 1.8 ± 0.1% for oppo-
site side tagging on the same channel (note the significant channel dependence of the
measured εD2, mostly related to the B meson pT spectrum of the reconstructed decays).
Also the D0 experiment recently introduced a same side tagger [232]. The track with

pT > 500MeV/c closest in ∆R to the Bs candidate flight direction is selected for tagging.
Dilution is studied as a function of the product of the tagging track charge and ∆R, as
well as forming a same side jet charge from the transverse momentum weighted sum of all
tracks within a narrow cone around the Bs flight direction. The combined εD2 from OST
and SST quoted by the D0 collaboration is 4.68± 0.54% to be compared to 2.48± 0.22%
from the OST alone.

3.2.3. Vertexing
For time dependent measurements determining the elapsed times (∆t in Sec. 3.2.1)

is crucial. This is obtained by first measuring a length L and then computing ∆t =
L/(c β γ). The vertexing techniques utilized to measure L are significantly different at B-
Factories and hadron colliders because of the different boost and because time dependent
measurements have two different needs: measure the difference in time between the two B
mesons in an event at the B-Factories and measure the time of flight since the production
of the B meson of insterest at the hadron colliders. The two approaches are therefore
described separatetly in the following.
Vertex reconstruction at B-Factories

 

Fig. 8. Schematic view of the vertexing algorithm at B-Factories.

The Breco vertex is reconstructed from charged tracks and photon candidates that
are combined to make up intermediate mesons (e.g., J/ψ, D, K0

S
) and then treated as

virtual particles. The trajectory of these virtual particles is computed from those of their
decay particles, and, when appropriate, mass constraints are imposed to improve the
knowledge of the kinematics. In the case of charmonium states such as J/ψK0

S
, Belle

uses only the dileptons from the J/ψ decay. In Belle, the vertex of the signal candidate
is constrained to come from the beam-spot in the x-y plane and convolved with the
finite B-meson lifetime. BABAR uses the beam-spot information only in the tag vertex
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reconstruction. The resulting spatial resolution depends on the final state; it is typically
65 µm in BABAR and 75µm in Belle.
BABAR determines the Btag vertex by exploiting the knowledge of the center-of-

mass four-momentum and an estimate of the interaction point or beam-spot position.
This information, along with the measured three-momentum of the fully reconstructed
Breco candidate, its decay vertex, and its error matrix, permits calculation of the Btag
production point and three-momentum, with its associated error matrix (see Fig. 8). All
tracks that are not associated with the Breco reconstruction are considered; K0

S
and Λ

candidates are used as input to the fit in place of their daughters, but tracks consistent
with photon conversions are excluded. To reduce the bias from charm decay products,
the track with the largest χ2 vertex contribution if greater than 6 is removed and the fit
is iterated until no track fails this requirement.
Belle reconstructs the Btag vertex from well-reconstructed tracks that have hits in

the silicon vertex detector and are not assigned to the Breco vertex. Tracks from K0S
candidates and tracks farther than 1.8 mm in z or 500 µm in r from the Breco vertex are
excluded. An iterative fit to these tracks is performed with the constraint that the vertex
position be consistent with the beam spot. If the overall χ2 is poor, the track with the
worst χ2 contribution is removed, unless it is identified as a high-momentum lepton. In
this case, the lepton is retained and the track with the second-largest χ2 is removed.
The resolution on ∆z is dominated by the Btag vertex reconstruction and therefore is

nearly independent of the reconstructed CP decay mode. Based on Monte Carlo simula-
tion, it is estimated to be 190 µm. The ∆z measurement is converted to a ∆t measure-
ment, and the corresponding resolution is 1.1 ps in BABAR and 1.43 ps in Belle because
of the different center-of-mass boosts.
Decay Length Measurements at Tevatron In the Tevatron detectors, with a

central geometry, the decay length is best measured in the transverse plane, the proper
time t is computed from the flight distance in the transverse plane, Lxy. Thus, the
expression for t and its resolution are:

t=
L

cβγ
= Lxy

mB

c pT
; σt = σLxy

mB

c pT
⊕ σpT

pT
t (99)

For fully reconstructed decays, the only significant uncertainty is from the decay dis-
tance measurement. Partially reconstructed decays have an additional term from pT
uncertainty which grows linearly with t.
The transverse flight distance of the B-meson, Lxy, is given by the transverse distance

between the location of pp̄ interaction, the Primary Vertex (PV), and the Secondary
Vertex (SV), i.e. the decay point of the B-meson. The position of the PV is determined
for each event by fitting the tracks in the underlying event to a common origin, exluding
the tracks belonging to the B candidate.
The secondary vertex is determined by fitting to a common vertex the B dauther

charged tracks, considering tertiary vertex from charm decay, and mass constraints on
intermediate resonances where applicable. The error estimate on Lxy is obtained by
combining the PV uncertainty with that provided by the SV fit. A gaussian resolution
function is normally a good approximation but the error estimate from the vertex fit needs
to be multiplied by a scale factor for a correct measurement. This rescaling is typically
calculated from the lifetime distribution of prompt background (e.g. from prompt J/ψ
and underlying event tracks for decays involving J/ψ , or from prompt charm production
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and fake leptons for semileptonic decays). A peculiar situation arise when data biased in
lifetime, due e.g. to trigger requirements, are used. In this case special samples can be
manufactured combining a prompt charm meson with a randomly selected charged track,
consistent with coming from the PV. The pseudo-decay length of this events is expected
to peak at 0 and can be used to measure the decay length resolution scale factor.
The proper decay time resolution for fully reconstructed Bs → D+

s π
− and Bs →

D+
s π

+π−π+ decays with the CDF detector is shown in Fig. 9 (left). The mean proper
decay time uncertainty corresponds to 86 fs, which has to be compared with the oscillation
period for Bs mesons ≈ 350 fs, and shows the ability of the current Tevatron experiment
vertex detectors to resolve the fast Bs oscillations.

proper time resolution [cm]
0 0.002 0.004 0.006 0.008 0.01

mµ
pr

ob
ab

ili
ty

 p
er

 5
 

0

0.1

0.2

)-π +π (-π +
s D→ 0

sB

mµ> = 25.9 ctσ<

Proper decay time [ps]
0 1 2 3

P
ro

pe
r 

de
ca

y 
tim

e 
re

so
lu

tio
n 

[fs
]

0

200

400

600

800

π s D→ 0
sB

ρ s / Dπ *
s D→ 0

sB

2 5.1 GeV/c≤ lsD, 4.9 < mν l (*)
s D→ 0

sB

2 4.5 GeV/c≤ lsD, 4.3 < mν l (*)
s D→ 0

sB

2 3.1 GeV/c≤ lsD, 2.0 < mν l (*)
s D→ 0

sB

Fig. 9. The decay time resolution for fully reconstructed Bs decays in CDF (left) and the effective
resolution for different values of missing (unreconstructed) semileptonic mass, as a function of the proper
decay time (right).

For partially reconstructed decays, like semileptonic decays, there is an important addi-
tional uncertainty in the decay time due to the incompletely measured pT of the B meson
(Eq. 99). The distribution F (k) of the fractional missing momentum k = pobsT /pT (B) is
extracted from Monte Carlo simulations and is rather wide with a typical RMS of 10
to 20%. The gaussian resolution function has to be convoluted with the distribution of
this k factor in any time dependent measurement involving partially reconstructed or
semi-leptonic decays. In semileptonic decays the missing neutrino momentum is corre-
lated with the visible mass D + ℓ, MDℓ, hence it is useful to divide the data in bins of
MDℓ taking advantage of the narrower width of F (k) for higher MDℓ as shown in Fig. 9
(right).
An important complication in time dependent measurement is introduced by recon-

struction or trigger bias on proper time (see e.g. section 3.1.4). To take in to account this
effect a function ξ(t), that describes the acceptance as a function of proper decay time
and is derived from simulations, multiply proper time related terms in the likelihood
fits. To derive it CDF assumes that for each accepted event i, the expected ct distribu-
tion without any bias is an exponential smeared by the experimental resolution function,
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Fig. 10. A representative example of the dependence of trigger and selection efficiency on proper decay
time from the displaced track trigger in CDF, vertical scale in arbitrary units (left). Lifetime fit to
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− sample from CDF (right)

where the width is the ct error (σcti) of that event. The denominator is the sum of the
N expected distributions without any bias,

ξ(ct)≡ reconstructed ct after trigger + selection
N∑

i=1

1

τ
exp

(
− ct

cτ

)
⊗G(ct;σcti)⊗k F(k)

, (100)

where the smearing with the k-factor distribution F(k) has to be included for incom-
pletely reconstructed decays. The shape of the proper decay length efficiency curve is
parametrized using analytically integrable functions and used to multiply proper time
related terms in the likelihood fits. Fig. 10 shows a representative example of the proper
time efficiency from the CDF experiment. The rapid turn-on of the curve is due to
minimum impact parameter and Lxy significance requirements at the trigger and recon-
struction level, while the turn-off at larger proper decay length is due to upper cut on
impact parameter at the trigger level. Because each B decay mode has its own kine-
matic characteristics and selection requirements, an efficiency curve has to be derived
separately for each channel.
The method has been extensively validated with Tevatron data, measuring B0, B+

and Bs and Λb lifetime a variety of fully adronic modes. As an example, a recent prelim-
inary determination of the Bs lifetime in the Bs → D+

s π
− channel is shown in Fig. 10

right [233], giving cτ(Bs) = 455.0 ± 12.2st ± 8.2sy µm, in good agreement with PDG
averages.

3.2.4. Charged Particle Identification
Identification (ID) of charged particles (e, µ, π, K, p) plays a crucial role in flavor

physics, in many cases π/K separation being both the most important and experimentally
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challenging. Some of the most important PID techniques are sensitive to the particle’s
velocity; working in tandem with tracking, which provides a measurement of the particle’s
momentum, they separate the particles by mass. Other techniques exploit the unique
interaction properties of specific particles.
The purpose of this primer is to describe conceptually the PID techniques employed

in the detector experiments that provided the results included in this report. For a
more general discussion, please see Chapters “Passage of particles through matter” and
“Particle Detectors” in Ref. [4].
At the track momenta relevant to flavor physics, the rate of ionization energy loss,

usually denoted dE/dx, to a good approximation is a constant for e± and a function
only of the particle’s velocity (but not its type) for the others. Measurements of dE/dx
are naturally provided by nearly all types of tracking detectors. The type of information
provided is either the collected charge or time-over-threshold for each of the detector
elements crossed by the track (which typically number from 8–10 to a few dozen). The
truncated-mean algorithm, which discards a fixed fraction (typically ∼ 30%) of the sam-
ples with the highest dE/dx values, is usually used to mitigate the effect of the long tail
of the Landau–Vavilov distribution of the individual dE/dx samples.
As a function of particle’s velocity, the dE/dx truncated mean reaches a minimum at

βγ = p/m ≈ 3.5–4.5 and rises rapidly as the particle’s velocity decreases (dE/dx ∝ 1/β2

for βγ . 1). For this reason, dE/dx is the most useful for µ/π/K/p separation at the
momenta where for at least one of the particle types being separated p/m . 1.4 (e.g., at
p . 0.7 GeV/c for K/π separation). At βγ & 6, the dE/dx truncated mean experiences
a “relativistic rise”, which is mild in gases, allowing weak (1-2 σ) π/K separation at
p & 1.4 GeV/c, but nearly non-existent in liquids and solids. Depending on the detec-
tor and the environment, measurements of dE/dx can be affected by a large variety of
sizable systematic effects, including aging, and thus development of a dE/dx calibration
technique that can reliably predict the dE/dx mean value and resolution for a particle
of a given type anywhere in the detector can be a great challenge, particularly when one
wishes to exploit for PID the dE/dx “relativistic rise” in a gaseous tracking system.
Examples of dE/dx use in PID include the drift chambers in BABAR [207,234], Belle [235],

BESII [211], CDF [236], CLEO-II [203], CLEO-III and CLEO-c [205], and KLOE [237].
In BABAR and Belle, dE/dx K/π separation at low momenta is very important to B flavor
tagging, and in CDF the dE/dx “relativistic rise” is critically important to the study
of B0, Bs, Λb → h+h′− (h = π,K, p) decays. The BABAR silicon vertex tracker [207],
with its 5 double-sided Si layers, is unique among Si vertex detectors at e+e− machines
in its ability to provide useful dE/dx information, which is particularly valuable for π/e
separation at p . 0.2GeV/c (e.g., in charm physics).
Time-of-flight (TOF) PID systems combine knowledge of the particle’s creation time

and trajectory with a high-precision measurement of its arrival time at the TOF detector,
thus proving a measurement of its velocity. Given the time resolution of the currently
deployed TOF detectors (∼ 100-200 ps), they are limited in π/K separation of at least
2σ to p . 1.5 GeV/c. Examples include the TOF systems at Belle [238], BESII [211],
CDF [219], and KLOE [237]. Complementarity of TOF and dE/dx measurements is
evident from the fact that dE/dx separation in gas vanishes for π/K at 1.1 GeV/c, for
e/π at 0.16 GeV/c, for e/K at 0.63 GeV/c, and for e/p at 1.2 GeV/c.
Detectors that exploit theCherenkov–Vavilov radiation by charged particles moving

faster than vcrit = c/n, where n is the refraction coefficient of a solid, liquid or gaseous
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radiator, tend to provide the best velocity-based PID at p & 1GeV/c. The cheapest
and most simple are Cherenkov threshold detectors, where the refraction index of the
radiator is chosen in such a way that in the kinematic range of interest the lighter of
the two particle types being distinguished would be superluminal while the other one
would not; additional information may be provided by comparing the observed number
of Cherenkov photons with the one expected for each of the particle types. Belle employs
silica aerogel with refraction indices varying from 1.01 to 1.03 [239].
Since Cherenkov radiation is emitted in a cone with an opening angle θC = cos−1 1

nβ ,
the particle’s velocity can be determined by measuring the cone’s opening angle. The most
common, moderately expensive such technology is RICH (Ring-Imaging CHerenkov),
where the cone is produced in a transparent solid, liquid or gaseous radiator (LiF in
CLEO-III and CLEO-c, [206]) and projected onto a planar photon detector a certain dis-
tance away. Another, more expensive but space-saving ring-imaging technology is DIRC,
used in BABAR [240], where the cone of Cherenkov light is produced and captured within
a bar of synthetic fused silica running the length of the BABAR detector. The π/K separa-
tion achieved in B → Xh± decays in BABAR by the DIRC (DCH dE/dx) varies from 13σ
(1.0σ) at 1.5 GeV/c to 2.5σ (1.9σ) at 4.5 GeV/c [241]. However, due to the DIRC’s me-
chanical complexity about 18% of reconstructed high-momentum tracks in BABAR miss
the DIRC; similar coverage limitations are usually suffered by RICH and TOF systems
as well.
For dedicated e± ID, the most distinctive and frequently used feature of their in-

teractions with matter is the development of electromagnetic (EM) showers in thick
absorbers. EM calorimeters seek to contain and measure the total shower energy Ecal.
For e±, the ratio Ecal/p is close to 1, while for the other charged particles the Ecal/p
ratio will be either much smaller than 1 (“minimum-ionizing”), have a broad distribu-
tion mostly below 1 for those that shower hadronically, or have a poorly defined broad
distribution for the antiprotons that annihilate in the calorimeter. Since the shapes of
the EM showers produced by high-energy e± and photons are quite similar, the match-
ing of calorimeter clusters to tracks extrapolated from the tracking system is of critical
importance. The materials used in EM calorimeters the most frequently are blocks of
heavy inorganic scintillators with no longitudinal segmentation. Thallium-doped CsI is
used in BABAR [207], Belle [208, 242], CLEO [243], and BESIII. Even in the absence of
longitudinal segmentation, limited information on the longitudinal shower shape (which
is different for e/µ/π/K/p) can be obtained for particles of sufficiently low momenta
(which enter the calorimeter at an angle sufficiently different from 90◦) by combining
tracking and lateral cluster-shape information with a technique recently introduced in
BABAR [244]. KLOE has a lead–scintillating fiber sampling EM calorimeter [245], which,
thanks to its longitudinal segmentation, also provides good muon-hadron separation.
Unlike the other long-lived charged particles, muons do not shower. Hence, dedicated

muon ID relies on muons’ long path length in absorber thick enough to stop hadronic
showers (5-8 hadronic interaction lengths is common). Instrumentation of the magnet’s
iron flux return with several layers of charged-particle detectors is a good approach since it
allows monitoring of hadron-shower development (which also enables K0

L
ID) and precise

matching of tracks with hits in the muon system. This approach is used in BABAR [207],
Belle [246], BESII [211], and CLEO [203,247].
Response of the detector as a whole, and each of the subdetectors individually, to

the passage of charged particles of a given type can be studied with high-purity, high-
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statistics calibration samples selected on the basis of the physics and kinematics of certain
decays, with PID applied to the other particles in the decay to further enhance purity. In
calibrating the PID response of a given subdetector, PID information from the rest of the
detector can be used as well. Examples of calibration samples used in e+e− B factories
include protons from Λ → pπ−, pions and Kaons from D∗+ → D0π+ (D0 → K−π+),
pions from K0

S
→ π+π−, electrons and muons from e+e− → ℓ+ℓ−γ.

The best PID performance is achieved by combining information from all subdetectors.
The TOF, dE/dx and ring-imaging Cherenkov measurements can be conveniently repre-
sented in the form of probability-distribution functions (PDFs), which makes likelihood-
based hadron ID quite close to optimal. On the other hand, the calorimeter and muon-
system quantities, which are more numerous and can be highly correlated, are either very
difficult or impossible to adequately describe with PDFs. For this reason, the best PID
performance can be achieved by advanced multivariate techniques such as neural nets
and bagged decision trees.

3.2.5. Background suppression
The isolation of signal events in the presence of significant sources of backgrounds is

critical for almost all measurements. This usually is achieved by an optimization of the
event selection process designed to maximize the experimental sensitivity by suppressing
the backgrounds effectively while retaining a sizable fraction of the signal. The choice
of the method depends on both the nature of the signal and background events, and
critically on the signal over background ratio which may vary from more than 100 to
10−6 or less.
The separation of signal and background processes relies both on the detector perfor-

mance as well as kinematics of the final state produced. Large acceptance and the high
resolution and efficiencies for the reconstruction of charged and neutral particles and the
identification of leptons and hadrons over a wide range of energies are very important.
A low rate of the misidentification of charged hadrons as leptons is critical, in particular
for rare processes involving leptons.
Though the cross sections for heavy flavor particle production in hadronic interactions

exceed the cross sections at e+e− colliders by several orders of magnitude, their fraction
of the total interaction rate is small. Furthermore, the multiplicity of the final states
is very large, and thus the combinatorial background to charm and beauty particles is
extremely large for experiments at hadron colliders and for fixed-target experiments in
high momentum hadron beams. Typical event triggers rely on the detection of charged
hadrons and leptons of large transverse momentum and in some cases also on the isolation
of decay vertices that are displaced from the primary interaction point. The analyses often
focus on decays involving two- or three-body decays to intermediate states of narrow
width, for instance J/ψ , D or D∗ mesons. Because of the very large momenta of these
intermediate states, the identification of particles that do not originate form the primary
interaction point is a very powerful tool to suppress backgrounds.
Background conditions for the detection of charm and beauty particles at e+e− colliders

are markedly different. There are two dominant sources of background, the so-called
continuum background and combinatorial background from other particles in the final
states from decays of resonances under study, for instance J/ψ , ψ(3770), or Υ (nS) mesons.
Two types of processes contribute to continuum background, QED processes, e+e− →
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ℓ+ℓ−(γ) with ℓ = e, µ, or τ , and quark-pair production, e+e− → qq with q = u, d, s, (c).
Both of these processes are impacted by energy losses due to initial state radiation.
At e+e− colliders operating near kinematic thresholds for pair production of charm or

beauty particles, for instance the B Factories at Υ (4S) and the Charm Factories at the
ψ(3770) or above, the primary particles pairs are produced at very low momenta, leading
to event topologies that are spherical, not jet-like.
Continuum background is characterized by lower multiplicities and higher momenta of

charged and neutral particles. To suppress QED background, selected events are usually
required to have at least three reconstructed charged particles. At sufficiently high c.m.
energies, the fragmentation of the light quarks leads to a two-jet topology. Such events
are characterized by variables that measure the alignment of particles within an event
along a common axis. Among the variables that show sharply peaked distributions for
jet-like events are:
– thrust, the maximum sum of the longitudinal momenta of all particles relative to a
chosen axis; the trust distribution peaks at or just below 1.0 for two-body final states
and two-jet events;

– cos∆θthrust, where ∆θthrust is the angle between the thrust axis of one or the sum
of all particles associated with the signal candidate and the thrust axis of the rest of
the event; this distribution is flat for signal events and peaked near 1.0 for continuum
background;

– the energy flow in conical shells centered on the thrust axis, typically nine double cones
of 10 degrees; for continuum events most of the energy is contained in the inner cones,
while for the more spherical signal events the energy is shared more uniformly among
all cones;

– normalized Legendre moments can be viewed as continuous generalizations of the en-
ergy cones, typically the first and second of these moments are used, Lj =

∑
i pi| cos θi|j

with j = 0 or j = 2, where pi and θi are the momentum and angle of any particles,
except those related to the signal decay, relative to the thrust axis of the signal decay.
In many cases these moments provide better discrimination of continuum events than
the energy cones.

– R2 = H2/H0, the ratio of second to zeroth Fox-Wolfram movements, with H2 =∑
i,j |pi||pj |L2(cos θij), calculated for all particles in the event, charged and neutral.

The nth Fox-Wolfram moment is the momentum-weighted sum of Legendre polynomial
of the nth order, computed for the cosine of the angles between all pairs of particles;
the ratio R2 peaks close to 1.0 for jet-like continuum events.

In practice the suppression of the continuum background is achieved by imposing restric-
tion on many of these variables, either as sequential individual cuts, or by constructing
a multivariable discriminant, a decision tree, or employing a neural network.
Fig. 11 shows examples of distributions for two of these variables for selected BB

events.
For the isolation of exclusive decays of B orD mesons that are pair-produced at Beauty

or Charm Factories two kinematic variables are commonly used to separate signal from
background events. These variables make optimum use of the measured beam energies
and are largely uncorrelated. The difference of the reconstructed and expected energy
for the decay of a meson M is defined as ∆E = (qMq0− s/2)/

√
s, where

√
s = 2E∗

beam is
the total energy of the colliding beams in the c.m. frame, and qM and q0 are the Lorentz
vectors representing the momentum of the candidate M and of the e+e− system, q0 =
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Fig. 11. Distribution of variables used to suppress continuum background in selected candidates for
B0 → K−π+π0 decays [248] a) cos∆θthrust, b) the normalized Legendre moments L2. The solid lines
show the expectation for continuum background, the dotted lines represent the background distributions.

qe− + qe+ . In the c.m. system,

∆E = E∗
M − E∗

beam, (101)

where E∗
M is the energy of the reconstructed meson M .

The second variable is often referred to as the energy-substituted mass, mES . In the
laboratory frame, it can be determined from the measured three-momentum, pM , of the
candidate M , without explicit knowledge of the masses of the decay products, mES =√
(s/2 + pM · p0)2/E2

0 − p2
M . In the c.m. frame (p0 = 0), this variable takes the familiar

form,

mES =
√
E∗2
beam − p∗2

M , (102)

where p∗
M is the c.m. momentum of the mesonM , derived from the momenta of its decay

products, and its energy is substituted by E∗
beam.

An example of ∆E and mES distributions is given in Fig. 12 for a selected sample
of rare B decays. ∆E is centered on zero and the mES distribution peaks at the B-
meson mass. While resolution in ∆E is dominated by detector resolution, the resolution
in mES is determined by the spread in the energy of the colliding beams, typically a
few MeV. The flat background is composed of both continuum and BB events, its size
depends on the decay mode under study and the overall event selection. There is a small
component of peaking background due to backgrounds with kinematics very similar to
the true decays.
For decays that cannot be fully reconstructed because of an undetected neutrino orK0

L
,

the separation of signal and backgrounds is more challenging. The energy and momentum
of the missing particle can be inferred from the measurement of all other particles in the
event and the total energy and momentum of the colliding beams,

(Emiss,pmiss) = (E0,p0)− (
∑

i

Ei,
∑

i

pi). (103)

If the only missing particle in the event is a neutrino or K0
L
, the missing mass should be

close to zero or the Kaon mass and the missing momentum should be non-zero. Fig. 13a
shows an example of a missing mass squared distribution, E2

miss − |pmiss|2 for B− →
D0ℓ−ν decays, selected in BB events tagged by a hadronic decay of the second B meson
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Fig. 12. Distributions of a) ∆E and b) mES for a sample of B0 → ωK0
S candidates [249]. The solid

line represents the result of the fit to the data, the dotted line marks the background contributions.

in the event. There is a narrow peak at zero for events in which the only missing particle
is the neutrino, and a broad enhancement due to B− → D∗0ℓ−ν decays, in which the low
energy pion or photon from the decay D∗0 → D0π0 or D∗0 → D0γ escaped detection.
Since the second B is fully reconstructed, there is very little combinatorial background.
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Fig. 13. Distributions of the a) the missing mass squared for selected B → Dℓν candidates, in BB
events tagged by a hadronic decay of the second B meson in the event [250], b) cos θBY , for a sample
of B0 → D∗+ℓ−ν candidates [251] Her the unshaded histrogram indicates the signal distribution, on
top of background contributions, mostly from other semileptonic B decays.

For semileptonic B or D decays, M → Hℓν, a variable first introduced by the CLEO
Collaboration is used to suppress background,

cos θBY =
(2EBEY −M2

M −M2
Y )

2|pM ||pY |
. (104)

For a true semileptonic decay in which the only missing particle is the neutrino, θBY
is the angle between the momentum vectors pM and pY = pH + pℓ, and the condi-
tion | cos θBY | ≤ 1.0 should be fulfilled, while for background events or incompletely
reconstructed semileptonic decays the distribution extends to much larger values, thus
enabling a clear separation from the signal decays (see Fig. 13b).
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3.2.6. Recoil Tagging Technique
At e+e− colliders charged leptons and heavy flavor particles are produced in pairs, thus

the detection of one member of the pair can be used to tag the presence of the other. In
particular at Charm and B at B-Factories, operating at or near the threshold for charm or
beauty particles tagging techniques not only identify the second member of the pair, they
also can be used to measure their momentum and energy and uniquely determine their
charge and flavor quantum numbers. Furthermore, near threshold, there are no other
particle produced, and therefore the combinatorial background is significantly reduced.
In addition, the kinematics of the final state are constrained such that given a fully
reconstructed tag of one decays, the presence of a missing or undetectable particle like
ν or K0

L
meson can be identified from the missing momentum and missing energy of the

whole event (see for example [252]).
The tagging technique for ψ(3770) → DD events was first developed by the Mark III

collaboration [253] at SLAC, and has since been exploited in many analyses based on
data from by CLEOc, BES,KLOE, and the B Factories. For ψ(3770) → D0D0 events
there are several tag modes, which can be divided into three categories: pure flavor tags
such as D0 → K−e+νe and D0 → π−µ+νµ; quasi-flavor tags for neutral mesons, such as
D0 → K−π+, D0 → K−π+π0 and D0 → K−π+π+π−, for which there is a small doubly-
Cabibbo-suppressed contribution, and tags for CP-eigenstates such as D0 → K+K− and
K0

L
π0. The quasi-flavor tags can be used to make precision measurements of branching

fractions [254] and partial rates [255]. The three decays listed correspond to 25% of the
total branching fraction. Since the ψ(3770) is a C = −1 state, the detection of a tag
with definite CP means that the other D meson in the event must be of opposite CP.
Studies combined flavor and CP-tagged samples of Kπ events [256] and K0

S
π+π− [257]

have resulted in the determination of the strong-phase parameters in D decay. Using low-
multiplicity decays, such as D+ → K−π+π+ and D+ → K0

S
π+ has resulted in extremely

clean samples, even for rare signal decays, and thus precise branching fraction and partial
rate measurements.
Single-tag efficiencies and purities vary considerably depending on the number of tracks

and neutrals in the decay. For example, D0 → K−π+ and D+ → K0
S
π+π0 tags have

efficiencies of 65% and 22% and sample purities of ∼ 5% and ∼ 50%, respectively. For
fully reconstructed hadronic tags the discriminating variable (shown in Fig. 14) is the
beam-constrained mass (see Sec. 3.2.5 and Eq. 102).
The recoil technique has also been used successfully in e+e− → D+

s D
∗−
s events at

CLEO-c to measure branching fractions ( [258]). Tag decays include D−
s → K+K−π−,

D−
s → K0

S
K−, D−

s → K+K−π−π0 and D−
s → π+π−π− and correspond to approxi-

mately 20% of the total D−
s branching fraction. The D∗−

s → D−
s γ/π

0 candidates are
identified with or without the explicit reconstruction of the photon or π0.
At the Υ (4S) resonance, the higher mass of the b mesons lead to much smaller individ-

ual branching fractions for individual decays, which means that the achievable tagging
efficiencies are much lower. Nevertheless, both BABAR and Belle have developed and em-
ployed several tagging techniques. The cleanest samples are possible for tree-mediated
hadronic decays of the form B → D(∗)X , where X refers a hadronic state of one or
more hadrons, up to five charged mesons (pions or Kaons), up to two neutral pions or a

K0
S
, and the D0,(∗), D+,(∗)or D+,(∗)

s mesons are reconstructed in many different decays
modes. The kinematic variables ∆E and mES, introduced in Sec. 3.2.5, are used to iso-
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late the true tag decays from combinatorial background and to estimate the purity of
the tag samples. The purity of a given tag mode is used to separate the cleaner samples
from those with high background, the actual choice usually depends on the signal mode
under study. The tag efficiency is typically 0.3% and has a signal-to-noise ratio of 0.5
(see Fig. 14).
Significantly higher tag efficiencies can be obtained for semileptonic B decays, for

instance B → D(∗)ℓν (ℓ = e, µ), with a branching fraction of more than 7% for each
lepton. For D mesons the same decays listed above are used, are reconstructed and for
the D∗ mesons the decays are D∗+ → D0π+, D+π0 and D∗0 → D0π0, D0γ. Due to the
very small mass difference of the D∗ and D mesons, the pions and photons from its
decay are of low energy, and thus the mass difference ∆M = m(Dπ) − m(D) can be
very well measured. The presence of a neutrino in the decay can be checked using the
variable cosθBY defined in Eq. 104. As for hadronic tags, tag selection and its efficiency
and purity are strongly dependent on the signal decay recoiling against the tag. Typical
efficiencies are of order 0.5-1%.
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Fig. 14. Distribution of the energy substituted mass for selected hadronic tag decays a) for D mesons in
ψ(3770) events at CLEO, and b) for B mesons in Υ (4S) decays at BABAR.

The biggest advantage of the hadronic B tags over the semileptonic B tags is the
better measurement of the reconstructed B momentum. This permits constraints on the
signal decays in the recoil and precise reconstruction of the kinematic variables even in
decays with a neutrino or missing neutral Kaon. Otherwise the two tags have similar
performance. They are completely orthogonal samples and thus can be combined .

3.2.7. Dalitz Plot Analysis
The partial decay rate of a particle into a multi-body final state depends on the square

of a Lorentz invariant matrix element M. Such matrix element can be independent of
the specific kinematic configuration of the final state or otherwise reveal a non-trivial
structure in the dynamics of the decay. In the case, for instance, of a three-body decay
P → 123, invariant masses of pair of particles can be defined as m2

ij = |pi + pj |2 where

pj (j=1,2,3) are the four-momenta of the final states particle. A plot of m2
ij versus m2

ik

is commonly referred as Dalitz plot [259].
Dalitz plots distributions have been used since several decades to study the strong

interaction dynamics in particle decays or in scattering experiment. In a three body
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Fig. 15. Dalitz plot distribution of a high purity sample of D0 → KSπ
+π−, with m2

− = |pKS
+ pπ− |2

and m2
+ = |pKS

+ pπ+ |2 from [260]. The most visible features are described by a K∗−(892) resonance
(vertical band with two lobes) and a ρ(770) resonance (diagonal band with two lobes). Interferences
between resonances are distorting the distribution. The contours (solid red line) represent the kinematic
limits of the decay.

decay of a meson, the underlying dynamics can be therefore represented by intermediate
resonances. As an example in Fig.15 a Dalitz plot for the decay D0 → KSπ

+π− is shown:
there are several visible structures due to competing and interfering resonances.
It is therefore a common practice to parameterize the matrix element as a coherent

sum of two-body amplitudes (subscript r) [261],

M ≡
∑

r

are
iφrAr(m

2
13,m

2
23) (105)

An additional constant ”non-resonant” term aNRe
iφNR is sometimes included.

The parameters ar and φr are the magnitude and phase of the amplitude for the
component r. In the case of a D0 decay the function Ar = FD × Fr × Tr × Wr is a
Lorentz-invariant expression where FD (Fr) is the Blatt-Weisskopf centrifugal barrier
factor for the D (resonance) decay vertex [262] Tr is the resonance propagator, and Wr

describes the angular distribution in the decay.
For Tr a relativistic Breit-Wigner (BW) parameterization with mass-dependent width

is commonly used (for definitions see review in [261]). BW mass and width values are
usually taken from scattering experiment or world averages provided by Particle Data
Group.
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The angular dependence Wr reflects the spin of the resonance and is described using
either Zemach tensors [263–265] where transversality is enforced or the helicity formal-
ism [266,267] when a longitudinal component in the resonance propagator is allowed (see
Ref. [261] for a comprehensive summary).
Alternative parameterizations have been used especially to represent spin zero (S-wave)

resonances. For this component the presence of several broad and overlapping resonances
makes a simple BW model not adequate.For instance, K-matrix formalism with the P-
vector approximation [268, 269] was used for ππ S-wave components.
In the context of flavor physics Dalitz model have been used as effective parameteri-

zations to derive strong phase dependence. The knowledge of strong phases is relevant
for analysis where the extraction of weak phases can be obtained through interferences
between different resonances. Moreover, in the case of neutral meson decays the interfer-
ence between flavor mixing and decay leads to time-dependent analyses (either for CP or
flavor mixing measurements). For this reason Dalitz models have been included in such
analyses (that are frequently referred for short as time-dependent Dalitz analyses).

4. Determination of |Vud| and |Vus|.

Unitarity of the bare (unrenormalized) CKM [1, 2] 3 × 3 quark mixing matrix V 0
ij ,

i = u, c, t j = d, s, b implies the orthonormal tree level relations

∑

i

V 0∗
ij V

0
ik =

∑

i

V 0∗
ji V

0
ki = δjk (106)

Standard Model quantum loop effects are important and corrected for such that
Eq. (106) continues to hold at the renormalized level [270]. That prescription gener-
ally involves normalization of all charged current semileptonic amplitudes relative to the
Fermi constant

Gµ = 1.166371(6)× 10−5GeV−2 (107)

obtained from the precisely measured (recently improved) muon lifetime [271]

τµ = Γ−1(µ+ → e+νeν̄µ(γ)) = 2.197019(21)× 10−6sec (108)

In all processes, Standard Model SU(3)C×SU(2)L×U(1)Y radiative corrections are
explicitly accounted for [272].
Of particular interest here is the first row constraint

|Vud|2 + |Vus|2 + |Vub|2 = 1 (109)

An experimental deviation from that prediction would be evidence for “new physics”
beyond Standard Model expectations in the form of tree or loop level contributions to
muon decay and/or the semileptonic processes from which the Vij are extracted. Of
course, if Eq. (109) is respected at a high level of certainty, it implies useful constraints
on various “new physics” scenarios.
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4.1. Vud from nuclear decays

Nuclear beta decays between 0+ states sample only the vector component of the
hadronic weak interaction. This is important because the conserved vector current (CVC)
hypothesis protects the vector coupling constantGV from renormalization by background
strong interactions. Thus, the GV that occurs in nuclei should be the same as the one
that operates between free up and down quarks. In that case, one can write GV = GFVud,
which means that a measurement of GV in nuclei, when combined with a measurement
of the Fermi constant GF in muon decay, yields the value of the CKM matrix element
Vud. To date, precise measurements of the beta decay between isospin analog states of
spin, Jπ = 0+, and isospin, T = 1, provide the most precise value of Vud.
A survey of the relevant experimental data has recently been completed by Hardy

and Towner [273]. Compared to the previous survey [274] in 2005 there are 27 new
publications, many with unprecedented precision. In some cases they have improved
the average results by tightening their error assignments and in others by changing their
central values. Penning-trapmeasurements of decay energies have been especially effective
in this regard.
For each transition, three experimental quantities have to be determined: the decay

energy, Qec; the half-life of the decaying state, t1/2; and the branching ratio, R, for
the particular transition under study. The decay energy is used to calculate the phase
space integral, f , where it enters as the fifth power. Thus, if f is required to have 0.1%
precision then the decay energy must be known to 0.02% – a demand that is currently
being surpassed by Penning-trap devices. The partial half-life is defined as t = t1/2/R
and the product ft is

ft =
K

G2
FV

2
ud 〈τ+〉2

, (110)

where K/(~c)6 = 2π3
~ ln 2/(mec

2)5 = 8120.2787(11)× 10−10 GeV−4 s. When isospin is
an exact symmetry the initial and final states, being isospin analogs, are identical except
that a proton has switched to a neutron. Since the operator describing the transition is
simply the isospin ladder operator, τ+, its matrix element, 〈τ+〉, is independent of nuclear
structure and is given by an isospin Clebsch-Gordan coefficient, which for isospin T = 1
states has the value

√
2. Hence,

ft =
K

2G2
FV

2
ud

, (111)

and according to CVC the ft value is a constant independent of the nucleus under study.
In practice, however, isospin is always a broken symmetry in nuclei, and beta decay
occurs in the presence of radiative corrections, so a ‘corrected’ ft value is defined by

Ft ≡ ft(1 + δ′R) (1− (δC − δNS)) =
K

2G2
FV

2
ud (1 + ∆V

R)
; (112)

so it is this corrected Ft that is a constant. Here the radiative correction has been
separated into three components: (i) ∆V

R is a nucleus-independent part that includes
the universal short-distance component SEW affecting all semi-leptonic decays, defined
later in Eq. (128). Being a constant, ∆V

R is placed on the right-hand-side of Eq. (112);
(ii) δ′R is transition dependent, but only in a trivial way, since it just depends on the
nuclear charge, Z, and the electron energy, Ee; while δNS is a small nuclear-structure
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Table 9
Experimental ft values for 0+ → 0+ superallowed Fermi beta decays, the trivial nucleus-dependent

component of the radiative correction, δ′R, the nuclear-structure dependent isospin-symmetry-breaking
and radiative correction taken together, δC − δNS , and the corrected Ft values. The last line gives the
average Ft value and the χ2 of the fit.

Parent ft(s) δ′R(%) δC − δNS(%) Ft(s)

10C 3041.7 ± 4.3 1.679 ± 0.004 0.520± 0.039 3076.7 ± 4.6

14O 3042.3 ± 2.7 1.543 ± 0.008 0.575± 0.056 3071.5 ± 3.3

22Mg 3052.0 ± 7.2 1.466 ± 0.017 0.605± 0.030 3078.0 ± 7.4

26Alm 3036.9 ± 0.9 1.478 ± 0.020 0.305± 0.027 3072.4 ± 1.4

34Cl 3049.4 ± 1.2 1.443 ± 0.032 0.735± 0.048 3070.6 ± 2.1

34Ar 3052.7 ± 8.2 1.412 ± 0.035 0.845± 0.058 3069.6 ± 8.5

38Km 3051.9 ± 1.0 1.440 ± 0.039 0.755± 0.060 3072.5 ± 2.4

42Sc 3047.6 ± 1.4 1.453 ± 0.047 0.630± 0.059 3072.4 ± 2.7

46V 3050.3 ± 1.0 1.445 ± 0.054 0.655± 0.063 3074.1 ± 2.7

50Mn 3048.4 ± 1.2 1.444 ± 0.062 0.695± 0.055 3070.9 ± 2.8

54Co 3050.8 ± 1.3 1.443 ± 0.071 0.805± 0.068 3069.9 ± 3.3

62Ga 3074.1 ± 1.5 1.459 ± 0.087 1.52± 0.21 3071.5 ± 7.2

74Rb 3084.9 ± 7.8 1.50± 0.12 1.71± 0.31 3078 ± 13

Average Ft 3072.14 ± 0.79

χ2/ν 0.31

dependent term that requires a shell-model calculation for its evaluation. (iii) Lastly, δC
is an isospin-symmetry breaking correction, typically of order 0.5%, that also requires a
shell-model calculation for its evaluation.
In Tab. 9 are listed the experimental ft values from the survey of Hardy and Towner

[273] for 13 transitions, of which 10 have an accuracy at the 0.1% level, and three at
up to the 0.4% level. Also listed are the theoretical corrections, δ′R and δC − δNS , taken
from Ref. [275], and the corrected Ft values. This data set is sufficient to provide a
very demanding test of the CVC assertion that the Ft values should be constant for
all nuclear superallowed transitions of this type. In Fig. 16 the uncorrected ft values in
the upper panel show considerable scatter, the lowest and highest points differing by 50
parts in 3000. This scatter is completely absent in the corrected Ft values shown in the
lower panel of Fig. 16, an outcome principally due to the nuclear-structure-dependent
corrections, δC − δNS , thus validating the theoretical calculations at the level of current
experimental precision. The data in Tab. 9 and Fig. 16 are clearly satisfying the CVC
test. The weighted average of the 13 data is

Ft = 3072.14± 0.79 s, (113)

with a corresponding chi-square per degree of freedom of χ2/ν = 0.31. Eq. (113) confirms
the constancy of GV – the CVC hypothesis – at the level of 1.3× 10−4.
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Before proceeding to a determination of Vud it has to be noted that the isospin-
symmetry-breaking correction, δC , is taken from Towner and Hardy [275] who calculated
proton and neutron radial functions as eigenfunctions of a Saxon-Woods potential. An
alternative procedure used in the past by Ormand and Brown [276–278] takes the radial
functions as eigenfunctions of a Hartree-Fock mean-field potential. The corrections ob-
tained by Ormand and Brown were consistently smaller than the Saxon-Woods values
and this difference was treated as a systematic error in previous surveys. In their most
recent survey, though, Hardy and Towner [273] repeated the Hartree-Fock calculations,
but with a change in the calculational procedure, and obtained results that were closer
to the Saxon-Woods values. Even so, when these Hartree-Fock δC values are used in
Eq. (112) the χ2 of the fit to Ft = constant becomes a factor of three larger. This in
itself might be sufficient reason to reject the Hartree-Fock values, but to be safe an aver-
age of the Hartree-Fock and Saxon-Woods Ft values was adopted and a systematic error
assigned that is half the spread between the two values. This leads to

Ft= 3071.83± 0.79stat ± 0.32syst s

= 3071.83± 0.85 s. (114)

In the second line the two errors have been combined in quadrature.
Recently, Miller and Schwenk [279] have explored the formally complete approach to

isospin-symmetry breaking, but produced no numerical results. The Towner-Hardy [273]
values quoted here are based on a model whose approximations can be tested for A = 10
by comparing with the large no-core shell-model calculation of Caurier et al [280], which
is as close to an exact calculation as is currently possible. The agreement between the
two suggests that any further systematic error in the isospin-breaking correction is likely
to be small.
The CKM matrix element Vud is then obtained from

V 2
ud =

K

2G2
F (1 + ∆V

R)Ft
, (115)

where ∆V
R is the nucleus-independent radiative correction taken from Marciano and Sirlin

[281]: viz.
∆V

R = (2.631± 0.038)%. (116)

With Ft obtained from Eq. (114), the value of Vud becomes

Vud = 0.97425± 0.00022. (117)

Compared to the Hardy-Towner survey [274] of 2005, which obtained Vud = 0.97380(40),
the central value has shifted by about one standard deviation primarily as a result of
Penning-trap decay-energy measurements and a reevaluation of the isospin-symmetry
breaking correction in 2007 [275]. The error is dominated by theoretical uncertainties;
experiment only contributes 0.00008 to the error budget. Currently the largest contribu-
tion to the error budget comes from the nucleus-independent radiative correction ∆V

R –
recently reduced by a factor of two by Marciano and Sirlin [281]. Further improvements
here will need some theoretical breakthroughs. Second in order of significance are the
nuclear-structure-dependent corrections δC and δNS . So long as 0+ → 0+ nuclear decays
provide the best access to Vud, these corrections will need to be tested and honed. Here
is where nuclear experiments will continue to play a critical role.
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Fig. 16. In the top panel are plotted the uncorrected experimental ft values as a function of the charge
on the daughter nucleus. In the bottom panel, the corresponding Ft values as defined in Eq. (112) are
given. The horizontal grey band in the bottom panel gives one standard deviation around the average
Ft.

4.2. Vud from neutron decay

Although the result is not yet competitive, to extract Vud from neutron β-decay is
appealing because it does not require the application of corrections for isospin-symmetry
breaking effects, δC , or nuclear-structure effects, δNS , as defined in the previous section
on nuclear β-decay. However, it should be noted that the transition-dependent radiative
correction, δ′R, and the nucleus-independent radiative correction, ∆V

R, must still be ap-
plied to neutron β-decay observables; and the latter is, in fact, the largest contributor to
the uncertainty in the nuclear value for Vud.
In contrast to nuclear β-decays between 0+ states, which sample only the weak vector
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interaction, neutron β-decay proceeds via a mixture of the weak vector and axial-vector
interactions. Consequently, three parameters are required for a description of neutron
β-decay: GF , the fundamental weak interaction constant; λ ≡ gA/gV , the ratio of the
weak axial-vector and vector coupling constants; and the parameter of interest, Vud.
Thus, measurements of at least two observables (treating GF as an input parameter) are
required for a determination of Vud.
A value for λ can be extracted from measurements of correlation coefficients in po-

larized neutron β-decay. Assuming time-reversal invariance, the differential decay rate
distribution of the electron and neutrino momenta and the electron energy for polarized
β-decay is of the form [282]

dW

dEedΩedΩν
∝ peEe(E0 − Ee)

2

[
1 + a

pe · pν
EeEν

+ 〈σn〉 ·
(
A
pe
Ee

+B
pν
Eν

)]
, (118)

where Ee (Eν) and pe (pν) denote, respectively, the electron (neutrino) energy and
momentum; E0 (= 782 keV + me) denotes the β-decay endpoint energy, with me the
electron mass; and 〈σn〉 denotes the neutron polarization. Neglecting recoil-order correc-
tions, the correlation coefficients a (the e-νe-asymmetry), A (the β-asymmetry), and B
(the νe-asymmetry) can be expressed in terms of λ as [283, 284]

a =
1− λ2

1 + 3λ2
, A = −2

λ2 + λ

1 + 3λ2
, B = 2

λ2 − λ

1 + 3λ2
. (119)

At present, these correlation parameters have values a = −0.103± 0.004, A = −0.1173±
0.0013, and B = 0.983 ± 0.004 [285]. Although B has been measured to the highest
precision (0.41%), the sensitivity of B to λ is a factor ∼ 10 less than that of a and A.
Thus, the neutron β-asymmetry A yields the most precise result for λ.
A second observable is the neutron lifetime, τn, which can be written in terms of the

above parameters as [281, 286, 287]

1

τn
=
G2
Fm

5
e

2π3
|Vud|2(1 + 3λ2)f(1 + RC). (120)

Here, f = 1.6887 ± 0.00015 is a phase space factor, which includes the Fermi function
contribution [283], and (1 + RC) = 1.03886 ± 0.00039 denotes the total effect of all
electroweak radiative corrections [281, 286]. After insertion of the numerical factors in
Eq. (120), a value for Vud can be determined from τn and λ according to [281, 286]

|Vud|2 =
4908.7± 1.9 s

τn(1 + 3λ2)
. (121)

The current status of a neutron-sector result for Vud is summarized in Fig. 17, where |λ|
is plotted on the horizontal axis, and Vud on the vertical axis. At present, the Particle Data
Group [285] averages the four most recent measurements of the neutron β-asymmetry,
A, performed with beams of polarized cold neutrons [288–291], and one combined mea-
surement of A and B [292], to obtain their recommended value of λ = −1.2695± 0.0029
(shown as the vertical error band). It should be noted that the error on the PDG average
for λ (0.23%) is greater than that of the most precise individual result (0.15%) [291],
because the error on the average has been increased by a

√
χ2/(N − 1) scale factor of

2.0 to account for the spread among the individual data points. Constraints between the
values for Vud and λ, computed according to Eq. (121) for two different values for the
neutron lifetime, are shown as the angled error bands. The band labeled “PDG 2008”
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represents the PDG’s recommended value for τn = 885.7± 0.8 s, whereas the other band
relies solely on the most recent result reported for τn of 878.5± 0.7± 0.3 s [293], which
disagrees by 6σ with the PDG average. Note that the PDG deliberately chose not to
include this discrepant result in their most recent averaging procedure.
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V
ud

Fig. 17. Current status of Vud from neutron β-decay. The vertical error band indicates the current PDG
error on λ. The angled error bands show the constraints between Vud and λ for two values of the neutron
lifetime: the PDG recommended value, and that from a recent 6σ-discrepant result. For comparison,
the horizontal error band denotes the value of Vud from 0+ nuclear β-decays discussed in the previous
section.

The intersection of the error band for λ with the error band defined by the neutron
lifetime determines the value for Vud. Assuming the PDG value of τn = 885.7 ± 0.8 s
yields [285]

Vud = 0.9746± 0.0004τn ± 0.0018λ ± 0.0002RC, (122)

where the subscripts denote the error sources. If the discrepant neutron lifetime result of
878.5± 0.7 ± 0.3 s were employed instead, it would suggest a considerably larger value,
Vud = 0.9786± 0.0004τn ± 0.0018λ ± 0.0002RC. For comparison, the value for Vud from
nuclear β-decay discussed in the previous section is shown as the horizontal band. The
neutron β-decay result derived from the PDG’s recommended values for τn and λ is seen
to be in excellent agreement with that from nuclear β-decay, albeit with an error bar
that is a factor ∼ 7–8 larger.
An ongoing series of precision measurements of neutron β-decay observables aims to

reduce the error on λ and resolve the lifetime discrepancy. The goal of two currently
running experiments, the PERKEO III experiment at the Institut Laue-Langevin [287]
(using a beam of cold neutrons) and the UCNA experiment at Los Alamos National
Laboratory [294] (using stored ultracold neutrons), are sub-0.5% measurements of the
neutron β-asymmetry, A. Since these two experiments employ different experimental
approaches, they are sensitive to different systematic uncertainties. The combination of
their results will reduce the λ-induced uncertainty for Vud by up to a factor of ∼ 3.
Finally, although the error on τn is not the dominant uncertainty, the 6σ discrepancy

between the PDG average and the most recent result is clearly unsatisfactory. Indeed,
multiple groups are now attempting to measure τn to a level of precision ranging between
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1 s and 0.1 s. Hence, the next round of experiments should reach sufficient precision to
definitively discriminate between the PDG average and the recent discrepant result.

4.3. Vud from pionic beta decay

Vud can also be obtained from the pion beta decay, π+ → π0e+νe[γ], which is a pure
vector transition between two spin-zero members of an isospin triplet and is therefore
analogous to the superallowed nuclear decays. Like neutron decay, it has the advantage
that there are no nuclear-structure dependent corrections to be applied. Its major dis-
advantage, however, is that it is a very weak branch, O(10−8), in the decay of the pion.
The corresponding decay width can be decomposed as

Γπe3 =
G2
FM

5
π±

64π3
SEW

∣∣∣Vudf+(0)
∣∣∣
2

Iππ0 (1 + δEM) . (123)

In the above equation SEW represents the universal short-distance electroweak correction
(Eq. 128), f+(0) is the vector form-factor at zero momentum transfer, Iππ0 the phase
space factor, and δEM the long-distance electromagnetic correction. As far as the strong
interaction is concerned, the Ademollo-Gatto theorem [295] requires the deviation of
f+(0) from its value 1 in the isospin limit to be quadratic in the quark mass difference
md−mu. This results in a very tiny correction f+(0)−1 = −7×10−6 at one-loop [296] and
leads to the expectation that higher order strong interaction corrections will not disturb
this nice picture. The corrections in (123) are therefore dominated by electromagnetic
contributions. The long-distance electromagnetic corrections can be separated into a
shift to the phase space integral δIππ/Iππ0 = 1.09×10−3 as well as a structure dependent
term [296]

1

2
· δEM

∣∣
str.dep.

=−4πα

{
2

3
X1 +

1

2
Xphys

6 (µ) +
1

32π2

(
3 + log

m2
e

M2
π±

+ 3 log
M2
π±

µ2

)}

= (5.11± 0.25)× 10−3 , (124)

where we have used the recent results of [297] for the electromagnetic coupling constants
X1,6 entering in (124) (with a fractional uncertainty of 100%) to update the numerical
result of Ref. [296]. Higher order corrections are expected to be strongly suppressed by
∼ (Mπ/4πfπ)

2. Combining the updated theory with the branching fraction BR(π+ →
π0e+νe[γ]) = (1.040±0.004(stat±0.004(syst))×10−8 from the PIBETA experiment [298],
we find:

Vud = 0.9741(2)th(26)exp. (125)

Vud from pion beta decay is in agreement with the more precise result, Eq. (117), from nu-
clear decays. A tenfold improvement on the experimental measurement would be needed
to make this extraction competitive with nuclear decays.

4.4. Determination of |Vus| from Kℓ2 and Kℓ3

Here we discuss the determination of |Vus| from the combination of leptonic pion and
Kaon decay and from semileptonic Kaon decay. We start with the status of the theoretical
description of leptonic pion and Kaon decays and of semileptonic Kaon decays within
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the SM, and the report on the status of the experimental results, particularly for the
semileptonic decay.

4.4.1. Pℓ2 (P = π,K) rates within the SM
Including all known short- and long-distance electroweak corrections, and parame-

terizing the hadronic effects in terms of a few dimensionless coefficients, the inclusive
P → ℓν̄ℓ(γ) decay rate can be written as [299, 300]

ΓPℓ2(γ)
=Γ

(0)
Pℓ2
SEW

{
1 +

α

π
F (m2

ℓ/M
2
P )

}{
1− α

π

[
3

2
log

Mρ

MP
+ c

(P )
1

+
m2
ℓ

M2
ρ

(
c
(P )
2 log

M2
ρ

m2
ℓ

+ c
(P )
3 + c

(P )
4 (mℓ/MP )

)

− M2
P

M2
ρ

c̃
(P )
2 log

M2
ρ

m2
ℓ

]}
, (126)

where the decay rate in the absence of radiative corrections is given by

Γ
(0)
Pℓ2

=
G2
F |VP |2f2

P

4π
MP m

2
ℓ

(
1− m2

ℓ

M2
P

)2

, Vπ = Vud, VK = Vus . (127)

The factor SEW describes the short-distance electromagnetic correction [301, 302] which
is universal for all semileptonic processes. To leading order it is given by

SEW = 1 +
2α

π
log

MZ

Mρ
. (128)

Including also the leading QCD corrections [299], it assumes the numerical value
SEW = 1.0232. The first term in curly brackets is the universal long-distance correc-
tion for a point-like meson. The explicit form of the one-loop function F (x) can be found

in [299]. The structure dependent coefficients c
(P )
1 are independent of the lepton mass

mℓ and start at order e2p2 in chiral perturbation theory. The other coefficients appear

only at higher orders in the chiral expansion. The one-loop result (order e2p2) for c
(P )
1 is

given by [134],

c
(π)
1 =−4π2Er(Mρ)−

1

2
+
Z

4

(
3 + 2 log

M2
π

M2
ρ

+ log
M2
K

M2
ρ

)
, (129)

c
(K)
1 =−4π2Er(Mρ)−

1

2
+
Z

4

(
3 + 2 log

M2
K

M2
ρ

+ log
M2
π

M2
ρ

)
, (130)

where the electromagnetic low-energy coupling Z arising at order e2p0 can be expressed
through the pion mass difference by the relation

M2
π± −M2

π0 = 8παZf2
π + . . . . (131)

The quantity Er(Mρ), being a certain linear combination of e2p2 low-energy couplings
[134], cancels in the ratio ΓKℓ2(γ)

/Γπℓ2(γ)
. As suggested by Marciano [303], a determination

of |Vus/Vud| can be obtained by combining the experimental values for the decay rates
with the lattice determination of fK/fπ via
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|Vus|fK
|Vud|fπ

= 0.23872(30)

(
ΓKℓ2(γ)

Γπℓ2(γ)

)1/2

. (132)

The small error is an estimate of unknown electromagnetic contributions arising at order
e2p4.

In the standard model, the ratios R
(P )
e/µ = ΓP→eν̄e(γ)/ΓP→µν̄µ(γ) are helicity suppressed

as a consequence of the V − A structure of the charged currents, constituting sensitive
probes of new physics. In a first systematic calculation to order e2p4, the radiative correc-

tions to R
(P )
e/µ have been obtained with an unprecedented theoretical accuracy [300,304].

The two-loop effective theory results were complemented with a matching calculation of
an associated counterterm, giving

R
(π)
e/µ = (1.2352± 0.0001)× 10−4 , R

(K)
e/µ = (2.477± 0.001)× 10−5 . (133)

The central value of R
(π)
e/µ agrees with the results of a previous calculations [299, 305],

pushing the theoretical uncertainty below the 0.1 per mille level. The discrepancy with

a previous determination of R
(K)
e/µ can be traced back to inconsistencies in the analysis

of [305].

4.4.2. Kℓ3 rates within the SM
The photon-inclusive Kℓ3 decay rates are conveniently decomposed as [285]

ΓKℓ3(γ)
=
G2
FM

5
K

192π3
C2
KSEW

∣∣∣VusfK
0π−

+ (0)
∣∣∣
2

IℓK(λ+,0)
(
1 + δKℓEM + δKπSU(2)

)
, (134)

where C2
K = 1 (1/2) for the neutral (charged) Kaon decays, SEW is the short distance

electroweak correction, fK
0π−

+ (0) is the K → π vector form factor at zero momentum
transfer, and IℓK(λ+,0) is the phase space integral which depends on the (experimentally
accessible) slopes of the form factors (generically denoted by λ+, 0). Finally, δ

Kℓ
EM represent

channel-dependent long distance radiative corrections and δKπSU(2) is a correction induced
by strong isospin breaking.

Electromagnetic effects in Kℓ3 decays
The results of the most recent calculation [306] of the four channel-dependent long-

distance electromagnetic corrections δKℓEM are shown in Tab. 10. The values given here
were obtained to leading nontrivial order in chiral effective theory, working with a fully
inclusive prescription of real photon emission. For the electromagnetic low-energy cou-
plings appearing in the structure dependent contributions, the recent determinations
of [297,307] were employed. The errors in Tab. 10 are estimates of (only partially known)
higher order contributions. The associated correlation matrix was found [306]




1.0 0.081 0.685 −0.147

1.0 −0.147 0.764

1.0 0.081

1.0




. (135)
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Table 10
Summary of the electromagnetic corrections to the fully-inclusive Kℓ3(γ) rate [306].

δKℓEM(%)

K0
e3 0.99 ± 0.22

K±
e3 0.10 ± 0.25

K0
µ3 1.40 ± 0.22

K±
µ3 0.016 ± 0.25

It is also useful to record the uncertainties on the linear combinations of δKℓEM that are
relevant for lepton universality and strong isospin-breaking tests [306]:

δK
0e

EM − δK
0µ

EM = (−0.41± 0.17)% (136)

δK
±e

EM − δK
±µ

EM = (0.08± 0.17)% (137)

δK
±e

EM − δK
0e

EM = (−0.89± 0.32)% (138)

δK
±µ

EM − δK
0µ

EM = (−1.38± 0.32)% . (139)

The corresponding electromagnetic corrections to the Dalitz plot densities can also be
found in [306]. It is important to notice that the corrections to the Dalitz distributions
can be locally large (up to ∼ 10%) with considerable cancellations in the integrated
electromagnetic corrections.

Isospin breaking correction in Kℓ3 decays
In (134), the same form factor fK

0π−

+ (0) (at zero-momentum transfer) is pulled out
for all decay channels, where

δK
0π−

SU(2) = 0 , δK
±π0

SU(2) =

(
fK

±π0

+ (0)

fK
0π−

+ (0)

)2

− 1 . (140)

Note that the form factors denote the pure QCD quantities plus the electromagnetic
contributions to the meson masses and to π0-η mixing. The isospin breaking parameter
δK

±π0

SU(2) is related to the π0-η mixing angle via [308]

δK
±π0

SU(2) = 2
√
3
(
ε(2) + ε

(4)
S + ε

(4)
EM + . . .

)
(141)

The dominant lowest-order contribution can be expressed in terms of quark masses [309]:

ε(2) =

√
3

4

md −mu

ms − m̂
, m̂ =

mu +md

2
. (142)

The explicit form of the strong and electromagnetic higher-order corrections in Eq. (141)
can be found in [308]. The required determination of the quark mass ratio

R =
ms − m̂

md −mu
(143)

uses the fact that the double ratio

Q2 =
m2
s − m̂2

m2
d −m2

u

= R
ms/m̂+ 1

2
(144)
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can be expressed in terms of pseudoscalar masses and a purely electromagnetic contri-
bution [309]:

Q2 =
∆KπM

2
K

(
1 +O(m2

q)
)

M2
π

[
∆K0K+ +∆π+π0 − (∆K0K+ +∆π+π0)EM

] , ∆PQ =M2
P −M2

Q . (145)

Due to Dashen’s theorem [310], the electromagnetic term vanishes to lowest order e2p0.
At next-to-leading order it is given by [133, 311]

(∆K0K+ +∆π+π0)EM = e2M2
K

[
1

4π2

(
3 ln

M2
K

µ2
− 4 + 2 ln

M2
K

µ2

)
+

4

3
(K5 +K6)

r(µ)

− 8(K10 +K11)
r(µ) + 16ZLr5(µ)

]
+O(e2M2

π) . (146)

Based on their estimates for the electromagnetic low-energy couplings entering in (146),
Ananthanarayan and Moussallam [307] found a rather large deviation from Dashen’s
limit, (∆K0K+ + ∆π+π0)EM = −1.5∆π+π0 , which corresponds to [312] Q = 20.7 ± 1.2
(the error accounts for the uncertainty due to higher order corrections). Such a small value
for Q (compared to QDashen = 24.2) is also supported [313–315] by previous studies 11 .
Together with [312] ms/m̂ = 24.7 ± 1.1 (see also [317]) one finds R = 33.5 ± 4.3 and

finally, together with a determination of ε
(4)
S and ε

(4)
EM, the result [312]

δK
±π0

SU(2) = 0.058(8) . (147)

4.4.3. Kℓ3 form factors
The hadronic K → π matrix element of the vector current is described by two form

factors (FFs), f+(t) and f−(t)

〈π− (pπ) |s̄γµu|K0 (pK)〉 = (pK + pπ)
µf+(t) + (pK − pπ)

µf−(t) (148)

where t = (pK − pπ)
2 = (pℓ + pν)

2. The vector form factor f+(t) represents the P-
wave projection of the crossed channel matrix element 〈0|s̄γµu|Kπ〉 whereas the S-wave
projection is described by the scalar form factor defined as

f0(t) = f+(t) +
t

m2
K −m2

π

f−(t) . (149)

By construction, f0(0) = f+(0).
In order to compute the phase space integrals appearing in Eq. (134) we need exper-

imental or theoretical inputs about the t-dependence of f+,0(t). In principle, chiral per-
turbation theory (ChPT) and lattice QCD are useful tools to set theoretical constraints.
However, in practice the t-dependence of the FFs at present is better determined by
measurements and by combining measurements and dispersion relations. To that aim,
we introduce the normalized FFs

f̃+(t) =
f+(t)

f+(0)
, f̃0(t) =

f0(t)

f0(0)
, f̃+(0) = f̃0(0) = 1 . (150)

11Note however that a recent analysis of η → 3π at the two-loop level [316] favors the value Q = 23.2.
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Whereas f̃+(t) is accessible in theKe3 andKµ3 decays, f̃0(t) is more difficult to measure
since it is only accessible in Kµ3 decays, being kinematically suppressed in Ke3 decays,

and is strongly correlated with f̃+(t).
Moreover, measuring the scalar form factor is of special interest due to the existence

of the Callan-Treiman (CT) theorem [318] which predicts the value of the scalar form
factor at the so-called CT point, namely t ≡ ∆Kπ = m2

K −m2
π,

C ≡ f̃0(∆Kπ) =
fK
fπ

1

f+(0)
+ ∆CT , (151)

where ∆CT ∼ O(mu,d/4πFπ) is a small correction. ChPT at NLO in the isospin limit [309]
gives

∆CT = (−3.5± 8)× 10−3 , (152)

where the error is a conservative estimate of the higher order corrections [319]. A complete
two-loop calculation of ∆CT [320], as well as a computation at O(p4, e2p2, (md −mu))
[312], consistent with this estimate, have been recently presented.
The measurement of C provide a powerful consistency check of the lattice QCD cal-

culations of fK/fπ and f+(0), as will be discussed in Sec. 4.6.2.
Another motivation to measure the shape of the scalar form factor very accurately is

that knowing the slope and the curvature of the scalar form factor allows one to perform
a matching with the 2-loop ChPT calculations [321] and then determine fundamental
constants of QCD such as f+(0) or the low-energy constants (LECs) C12, C34 which
appear in many ChPT calculations.

Parametrization of the form factors and dispersive approach
To determine the FF shapes, different experimental analyses of Kℓ3 data have been

performed in the last few years, by KTeV, NA48, and KLOE for the neutral mode and
by ISTRA+ for the charged mode.
Among the different parameterizations available, one can distinguish two classes [322].

The class called class II in this reference contains parameterizations based on mathemat-
ical rigorous expansions where the slope, the curvature and all the higher order terms of
the expansion are free parameters of the fit. In this class, one finds the Taylor expansion

f̃Tayl+,0 (t) = 1 + λ′+,0
t

M2
π

+
1

2
λ′′+,0

(
t

m2
π

)2

+
1

6
λ′′′+,0

(
t

m2
π

)3

+ . . . , (153)

where λ′+,0 and λ′′+,0 are the slope and the curvature of the FFs respectively, but also the
so-called z-parametrization [323].
As for parameterizations belonging to class I, they correspond to parameterizations for

which by using physical inputs, specific relations between the slope, the curvature and
all the higher order terms of the Taylor expansion, Eq. (153) are imposed. This allows
to reduce the correlations between the fit parameters since only one parameter is fitted
for each FF. In this class, one finds the pole parametrization

f̃Pole+,0 (t) =
M2
V,S

M2
V,S − t

, (154)

in which dominance of a single resonance is assumed and its mass MV,S is the fit pa-
rameter. Whereas for the vector FF a pole parametrization with the dominance of the
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K∗(892) (MV ∼ 892 MeV) is in good agreement with the data, for the scalar FF there
is no such obvious dominance. One has thus to rely, at least for f̃0(t), on a dispersive
parametrization. In such a construction, in addition to guarantee the good properties of
analyticity and unitarity of the FFs, physical inputs such as the low energy Kπ data
and, in the case of the vector form factor, the dominance of K*(892) resonance are used.
The vector and scalar form factors are analytic functions in the complex t-plane, except

for a cut along the positive real axis, starting at the first physical threshold where they
develop discontinuities. They are real for t < tth = (mK + mπ)

2. Cauchy’s theorem
implies that f̃+,0(t) can be written as a dispersive integral along the physical cut

f̃+,0(t) =
1

π

∞∫

tth

ds′
Imf̃+,0(s

′)

(s′ − t− i0)
+ subtractions , (155)

where all the possible on-shell states contribute to its imaginary part Imf̃+,0(s
′). A

number of subtractions is needed to make the integral convergent.
A particularly appealing dispersive parametrization for the scalar form factor is the one

proposed in Ref. [324]. Two subtractions are performed, one at t = 0 where by definition
f̃0(0) = 1, see Eq. (150), and the other one at the CT point. This leads to

f̃Disp0 (t) = exp
[ t

∆Kπ
(lnC −G(t))

]
, (156)

with

G(t) =
∆Kπ(∆Kπ − t)

π

∫ ∞

(mK+mπ)2

ds

s

φ0(s)

(s−∆Kπ)(s− t− iǫ)
, (157)

assuming that the scalar FF has no zero. In this case the only free parameter to be
determined from a fit to the data is C. φ0(s) represents the phase of the form factor.
According to Watson’s theorem [325], this phase can be identified in the elastic region
with the S-wave, I = 1/2 Kπ scattering phase. The fact that two subtractions have
been made in writing Eq. (156) allows to minimize the contributions from the unknown
high-energy phase in the dispersive integral. The resulting function G(t), Eq. (157), does
not exceed 20% of the expected value of lnC limiting the theoretical uncertainties which
represent at most 10% of the value of G(t) [324].
A dispersive representation for the vector FF has been built in a similar way [326]. Since

there is no analog of the CT theorem, in this case, the two subtractions are performed
at t = 0. Assuming that the vector FF has no zero, one gets

f̃Disp+ (t) = exp
[ t

m2
π

(Λ+ +H(t))
]
, H(t) =

m2
πt

π

∫ ∞

(mK+mπ)2

ds

s2
φ+(s)

(s− t− iǫ)
. (158)

with Λ+ ≡ m2
πdf̃+(t)/dt|t=0 is the fit parameter and φ+(s) the phase of the vector form

factor. Here, in the elastic region, φ+(t) equals the I = 1/2, P-wave Kπ scattering phase
according to Watson’s theorem [325]. Similarly to what happens for G, the two subtrac-
tions minimize the contribution coming from the unknown high energy phase resulting
in a relatively small uncertainty on H(t). Since the dispersive integral H(t) represents
at most 20% of the expected value of Λ+, the latter can then be determined with a high
precision knowing H(t) much less precisely. For more details on the dispersive repre-
sentations and a detailed discussion of the different sources of theoretical uncertainties
entering the dispersive parametrization via the function G and H , see [324] and [326].
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Using a class II parametrization for the FFs in a fit to Kℓ3 decay distribution, only two
parameters (λ′+ and λ′′+ for a Taylor expansion, Eq. (153)) can be determined for f̃+(t)

and only one parameter (λ′0 for a Taylor expansion) for f̃0(t). Moreover these parameters
are strongly correlated. It has also been shown in Ref. [324] that in order to describe
the FF shapes accurately in the physical region, one has to go at least up to the second
order in the Taylor expansion. Neglecting the curvature in the parametrization of f̃0(t)
generates a bias in the extraction of λ′0 which is then overestimated [324]. Hence, using
a class II parametrization for f̃0(t) doesn’t allow it to be extrapolated from the physical
region (m2

ℓ < t < t0 = (mK − mπ)
2) up to the CT point with a reliable precision. To

measure the FF shapes from Kℓ3 decays with the precision demanded in the extraction
of |Vus|, it is preferable to use a parametrization in class I.

4.4.4. Lattice determinations of f+(0) and fK/fπ
In this section we summarize the status of results of lattice QCD simulations for the

semileptonic Kaon decay form factor f+(0) and for the ratio of Kaon and pion leptonic
decay constants, fK/fπ. For a brief introduction to lattice QCD we refer the reader to
section 2.3.

Theoretical estimates of f+(0)
The vector form factor at zero-momentum transfer, f+(0), is the key hadronic quantity

required for the extraction of the CKMmatrix element |Vus| from semileptonicKℓ3 decays
(cf. equation (134)). Within SU(3) ChPT one can perform a systematic expansion of
f+(0) of the type

f+(0) = 1 + f2 + f4 + ... , (159)

where fn = O[Mn
K,π/(4πfπ)

n] and the first term is equal to unity due to the vector current
conservation in the SU(3) limit. Because of the Ademollo-Gatto (AG) theorem [295], the
first non-trivial term f2 does not receive contributions from the local operators of the
effective theory and can be computed unambiguously in terms of the Kaon and pion
masses (MK and Mπ) and the pion decay constant fπ. It takes the value f2 = −0.023 at
the physical point [327]. The task is thus reduced to the problem of finding a prediction
for the quantity ∆f , defined as

∆f ≡ f4 + f6 + ... = f+(0)− (1 + f2) , (160)

which depends on the low-energy constants (LECs) of the effective theory and cannot be
deduced from other processes.
The original estimate made by Leutwyler and Roos [327] was based on the quark

model yielding ∆f = −0.016(8). More recently other analytical approaches have tried to
determine the next-to-next-to-leading order (NNLO) term f4 by writing it as

f4 = L4(µ) + f loc4 (µ) , (161)

where µ is the renormalization scale, L4(µ) is the loop contribution computed in Ref. [328]
and f loc4 (µ) is the O(p6) local contribution. For the latter various models have been
adopted, namely the quark model in Ref. [328], the dispersion relations in Ref. [329] and
the 1/Nc expansion in Ref. [330], obtaining ∆f = 0.001(10), − 0.003(11), 0.007(12),
respectively. These values are compatible with zero within the uncertainties and are
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significantly larger than the LR estimate, leading to smaller SU(3)-breaking effects on
f+(0).
Notice that in principle the next-to-next-to-leading order (NNLO) term f4 may be

obtained from the slope and the curvature of the scalar form factor f0(q
2), but present

data from K → πµν̄µ decays are not precise enough for an accurate determination.
A precise evaluation of f+(0), or equivalently ∆f , requires the use of non-perturbative

methods based on the fundamental theory of the strong interaction, such us lattice
QCD simulations. Such determinations started recently with the quenched simulations of
Ref. [331], where it was shown that f+(0) can be determined at the physical point with
a ≃ 1% accuracy. The findings of Ref. [331] triggered various unquenched calculations of
f+(0), namely those of Refs. [332–334] with Nf = 2 with pion masses above ≃ 500 MeV
and two very recent ones from Ref. [335] with Nf = 2 + 1 and Ref. [336] with Nf = 2.
In the former the simulated pion masses start from 330 MeV, while in the latter, they
start from 260 MeV. In both cases the error associated with the chiral extrapolation was
significantly reduced with respect to previous works thanks to the lighter pion masses.
In Ref. [336] the chiral extrapolation was performed using both SU(3) and SU(2)

ChPT for f2 (see Ref. [337]). In the latter case the Kaon field is integrated out and
the effects of the strange quark are absorbed into the LECs of the new effective theory.
The results obtained using SU(2) and SU(3) ChPT are found to be consistent within
the uncertainties, giving support to the applicability of chiral perturbation theory at
this order. We note that since no predictions in chiral perturbation theory for ∆f as a
function of the quark masses exists in a closed form, the lattice data for ∆f is currently
extrapolated to the physical point using phenomenologically motivated ansätze.
The results for f+(0) and ∆f are summarized in Tab. 11, together with some relevant

details concerning the various lattice set-ups, and those of f+(0) are shown in Fig. 18. It
can be seen that:
i) all lattice results suggest a negative, sizable value for ∆f in agreement with the LR

estimate, but at variance with the results of the analytical approaches of Refs. [328–
330], and

ii) the two recent lattice calculations of Refs. [335, 336] have reached an encouraging
precision of ≃ 0.5% on the determination of f+(0).
Since simulations of lattice QCD are carried out in a finite volume, the momentum

transfer q2 for the conventionally used periodic fermion boundary conditions takes values
corresponding to the Fourier modes of the Kaon or pion. Using a phenomenological
ansatz for the q2-dependence of the form factor one interpolates to q2 = 0 where f+(0) is
extracted, thereby introducing a major systematic uncertainty. A new method based on
the use of partially twisted boundary conditions (cf. section 2.3) has been developed [338]
which allows this uncertainty to be entirely removed by simulating directly at the desired
kinematic point q2 = 0.
Although the impact of discretization effects is expected to be small 12 , we emphasize

that all available lattice calculations have been carried out at a single lattice spacing.
A systematic study of the scaling behavior of f+(0), using partially twisted boundary

conditions and the extension of the simulations to lighter pion masses in order to improve

12The analysis from ETM [336], with fixed simulated quark mass, confirms that discretization effects
are small with respect to present uncertainty.
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Table 11
Summary of model and lattice results for f+(0) and ∆f . The lattice errors include both statistical and

systematic uncertainties.

Ref. Model/Lattice f+(0) ∆f Mπ (MeV)MπL a (fm) Nf

[327] LR 0.961 ( 8) −0.016 ( 8)

[328] ChPT + LR 0.978 (10) +0.001 (10)

[329] ChPT + disp. 0.974 (11) −0.003 (11)

[330] ChPT + 1/Nc 0.984 (12) +0.007 (12)

[331] SPQcdR 0.960 ( 9) −0.017 ( 9) & 500 & 5 ≃ 0.07 0

[332] JLQCD 0.967 ( 6) −0.010 ( 6) & 550 & 5 ≃ 0.09 2

[333] RBC 0.968 (12) −0.009 (12) & 490 & 6 ≃ 0.12 2

[334] QCDSF 0.965 ( ?) −0.012 ( ?) & 590 & 6 ≃ 0.08 2

[336] ETMC 0.956 ( 8) −0.021 ( 8) & 260 & 4 ≃ 0.07 2

[335] RBC + UKQCD 0.964 ( 5) −0.013 ( 5) & 330 & 4 ≃ 0.11 2 + 1
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Fig. 18. Results of model (squares) and lattice (dots) calculations of f+(0).

the chiral extrapolation will be the priorities for the upcoming lattice studies of Kℓ3

decays.

Theoretical estimates of fK/fπ
As was pointed out in Ref. [303], an alternative to Kℓ3 decays for obtaining a precise

determination of |Vus| is provided by the Kaon(pion) leptonic decays K(π) → µν̄µ(γ). In
this case, the key hadronic quantity is the ratio of the Kaon and pion decay constants,
fK/fπ.
In contrast to f+(0), the pseudoscalar decay constants are not protected by the AG
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theorem [295] against corrections linear in the SU(3) breaking. Moreover the first non-
trivial term (of order O(p4)) in the chiral expansion of fK/fπ depends on the LECs and
therefore it cannot be predicted unambiguously within ChPT. This is the reason why
the most precise determinations of fK/fπ come from lattice QCD simulations.
During the recent years various collaborations have provided new results for fK/fπ

using unquenched gauge configurations with both 2 and 2+1 dynamical flavors. They
are summarized in Tab. 12, together with some relevant details concerning the various
lattice set-ups. They are shown graphically in Fig. 19.

Table 12
Summary of lattice results for fK/fπ. The errors include both statistical and systematic uncertainties.

Ref. Collaboration fK/fπ Mπ (MeV)MπL a (fm) Nf

[106, 339] MILC 1.197 + 7
−13 & 240 & 4 → 0 2 + 1

[340] HPQCD 1.189 ( 7) & 250 & 4 → 0 2 + 1

[341] BMW 1.185 (15) & 190 & 5 → 0 2 + 1

[342] Aubin et al. 1.191(23) & 240 & 3.8 → 0 2 + 1

[343] ETMC 1.210 (18) & 260 & 4 → 0 2

[344] NPLQCD 1.218 +11
−24 & 290 & 4 ≃ 0.13 2 + 1

[110] RBC/UKQCD 1.205 (65) & 330 & 4 ≃ 0.11 2 + 1

[107] PACS − CS 1.189 (20) & 160 & 2 ≃ 0.09 2 + 1
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Fig. 19. Results of lattice calculations of fK/fπ.

A few comments are in order:
i) finite size effects are kept under good control by the constraint MπL & 4, which is

adopted by all collaborations except Ref. [107];
ii) the continuum extrapolation, which allows discretization effects to be safely removed,

has been performed by several collaborations;
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iii) the convergence of the SU(3) chiral expansion for fK/fπ appears to be questionable,
mainly because large NLO corrections are already required to account for the large
difference between the experimental value of fπ and the value of the decay constant in
the massless SU(3) limit;

iv) the convergence of the SU(2) chiral expansion is much better and thanks to the light
pion masses reached in the recent lattice calculations, the uncertainty related to the
chiral extrapolation to the physical point is kept to the percent level [110];

v) little is known about the details of the chiral and continuum extrapolation in Ref. [340]
(HPQCD) which is currently the most precise lattice prediction for fK/fπ; in particular
about the priors on many parameters that have been introduced;

vi) It is worth repeating (cf. section 2.3) that there exist conceptional concerns about
the staggered fermion formulation - the results by MILC, HPQCD, Aubin et al. and
NPLQCD use staggered fermions and need to be confirmed by conceptually clean
fermion formulations.

Summary of lattice results
We note that the Flavia Net Lattice Averaging Group (FLAG) has just started to pe-

riodically compile and publish (web and journal) lattice QCD results for SM observables
and parameters. In addition, averages will be computed where feasible and a classifica-
tion of the quality of lattice results by means of a simple color coding will be provided
in order to facilitate understanding of lattice results for non-experts. For a first status
report see [345].
Hence, no average over lattice results will be provided here. We merely identify those

results that have a good control over systematic uncertainties and have been published
in journals and refer the reader to the forthcoming FLAG document for averages.
For f+(0) the 2+1 flavor result by the RBC+UKQCD [335] collaboration is the most

advanced calculation,

f+(0) = 0.964(5) Nf = 2 + 1 . (162)

while for 2 flavors it is the result by ETM [336],

f+(0) = 0.956(8) Nf = 2 . (163)

For fK/fπ with Nf = 2 + 1 dynamical quarks, the currently most precise predictions
are by MILC [106]

fK/fπ = 1.197(+7
−13) Nf = 2 + 1 , (164)

and HPQCD [340]

fK/fπ = 1.189(7) Nf = 2 + 1 , (165)

both using the same set of staggered sea quark configurations.
For illustrative purposes the latter result will be used later in section 4.6. We also

emphasize the currently most precise result with Nf = 2 dynamical quarks by the ETM
collaboration [343]:

fK/fπ = 1.210(18) (Nf = 2) . (166)
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At the current level of precision the comparison of the Nf = 2 and Nf = 2 + 1 result
indicates a rather small contribution of the strange sea quarks to the ratio of decay
constants.

4.4.5. Data Analysis
We perform fits to world data on the BRs and lifetimes for the KL and K±, with the

constraint that BRs add to unity. This is the correct way of using the new measurements.
A detailed description of the fit is given in Ref [346]. The present version of our fits uses
only published measurements.

KL leading branching ratios and τL
Numerous measurements of the principal KL BRs, or of various ratios of these BRs,

have been published recently. For the purposes of evaluating |Vus|f+(0), these data can
be used in a PDG-like fit to the KL BRs and lifetime, so all such measurements are
interesting.
KTeV has measured five ratios of the six main KL BRs [347]. The six channels in-

volved account for more than 99.9% of the KL width and KTeV combines the five mea-
sured ratios to extract the six BRs. We use the five measured ratios in our analysis:
B(Kµ3)/B(Ke3) = 0.6640(26), B(π+π−π0)/B(Ke3) = 0.3078(18), B(π+π−)/B(Ke3) =
0.004856(28), B(3π0)/B(Ke3) = 0.4782(55), and B(2π0)/B(3π0) = 0.004446(25). The
errors on these measurements are correlated; this is taken into account in our fit.
NA48 has measured the ratio of the BR for Ke3 decays to the sum of BRs for all decays

to two tracks, giving B(Ke3)/(1− B(3π0)) = 0.4978(35) [348].
Using φ → KLKS decays in which the KS decays to π+π−, providing normalization,

KLOE has directly measured the BRs for the four main KL decay channels [349]. The
errors on the KLOE BR values are dominated by the uncertainty on the KL lifetime τL;
since the dependence of the geometrical efficiency on τL is known, KLOE can solve for τL
by imposing

∑
x B(KL → x) = 1 (using previous averages for the minor BRs), thereby

greatly reducing the uncertainties on the BR values obtained. Our fit makes use of the
KLOE BR values before application of this constraint: B(Ke3) = 0.4049(21), B(Kµ3) =
0.2726(16), B(3π0) = 0.2018(24), and B(π+π−π0) = 0.1276(15). The dependence of these
values on τL and the correlations between the errors are taken into account. KLOE has
also measured τL directly, by fitting the proper decay time distribution for KL → 3π0

events, for which the reconstruction efficiency is high and uniform over a fiducial volume
of ∼0.4λL. They obtain τL = 50.92(30) ns [350].
There are also two recent measurements of B(π+π−)/B(Kℓ3), in addition to the KTeV

measurement of B(π+π−)/B(Ke3) discussed above. The KLOE collaboration obtains
B(π+π−)/B(Kµ3) = 7.275(68) × 10−3 [351], while NA48 obtains B(π+π−)/B(Ke3) =
4.826(27) × 10−3 [352]. All measurements are fully inclusive of inner bremsstrahlung.
The KLOE measurement is fully inclusive of the direct-emission (DE) component, DE
contributes negligibly to the KTeV measurement, and a residual DE contribution of
0.19% has been subtracted from the NA48 value to obtain the number quoted above.
We fit the 13 recent measurements listed above, together with eight additional ratios of

the BRs for subdominant decays. The complete list of 21 inputs is given in Table 14. As
free parameters, our fit has the seven largest KL BRs (those to Ke3, Kµ3, 3π

0, π+π−π0,
π+π−, π0 and γγ) and the KL lifetime, as well as two additional parameters necessary for
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Table 13
Results of fit to KL BRs and lifetime.

Parameter Value S

B(Ke3) 0.4056(9) 1.3

B(Kµ3) 0.2704(10) 1.5

B(3π0) 0.1952(9) 1.2

B(π+π−π0) 0.1254(6) 1.1

B(π+π−) 1.967(7) × 10−3 1.1

B(π+π−γ) 4.15(9) × 10−5 1.6

B(π+π−γ) DE 2.84(8) × 10−5 1.3

B(2π0) 8.65(4) × 10−4 1.4

B(γγ) 5.47(4) × 10−4 1.1

τL 51.16(21) ns 1.1

the treatment of the direct emission (DE) component in the radiation-inclusive π+π− de-
cay width. Our definition of B(π+π−) is now fully inclusive of inner bremsstrahlung (IB),
but exclusive of the DE component. The fit also includes B(π+π−γ) and B(π+π−γDE),
the branching ratios for decays to states with a photon with E∗

γ > 20 MeV, and with a
photon from DE with E∗

γ > 20 MeV, respectively. Other parameterizations are possible,
but this one most closely represents the input data set and conforms to recent PDG
usage. With 21 input measurements, 10 free parameters, and the constraint that the sum
of the BRs (except for B(π+π−γ), which is entirely included in the sum of B(π+π−)
and B(π+π−γDE)) equal unity, we have 12 degrees of freedom. The fit gives χ2 = 19.8
(P = 7.1%).
The evolution of the average values of the BRs for KLℓ3 decays and for the important

normalization channels is shown in Fig. 21.
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Fig. 20. Evolution of average values for main KL BRs.

KS leading branching ratios and τS
KLOE has measured the ratio BR(KS → πeν)/BR(KS → π+π−) with 1.3% preci-

sion [353], making possible an independent determination of |Vus| f+(0) to better than
0.7%. In [354], KLOE combines the above measurement with their measurement rmB(KS →
π+π−)/rmB(KS → π0π0) = 2.2459(54). Using the constraint that the KS BRs sum to
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Table 14
Input data used for the fit to KL BRs and lifetime (all the references refer to PDG08 [285]).

Parameter Value Source

τKL
50.92(30) ns Ambrosino 05C

τKL
51.54(44) ns Vosburgh 72

BKe3 0.4049(21) Ambrosino 06

BKµ3 0.2726(16) Ambrosino 06

BKµ3/BKe3 0.6640(26) Alexopoulos 04

B3π0 0.2018(24) Ambrosino 06

B3π0/BKe3 0.4782(55) Alexopoulos 04

Bπ+π−π0 0.1276(15) Ambrosino 06

Bπ+π−π0/BKe3 0.3078(18) Alexopoulos 04

Bπ+π−/BKe3 0.004856(29) Alexopoulos 04

Bπ+π−/BKe3 0.004826(27) Lai 07

Bπ+π−/BKµ3 0.007275(68) Ambrosino 06F

BKe3/B2 tracks 0.4978(35) Lai 04B

Bπ0π0/B3π0 0.004446(25) Alexopoulos 04

Bπ0π0/Bπ+π− 0.4391(13) PDG etafit [285]

Bγγ/B3π0 0.00279(3) Adinolfi 03

Bγγ/B3π0 0.00281(2) Lai 03

Bπ+π−/Bπ+π−(γ) 0.0208(3) Alavi-Harati 01B

Bπ+π−γDE/Bπ+π−γ 0.689(21) Abouzaid 06A

Bπ+π−γDE/Bπ+π−γ 0.683(11) Alavi-Harati 01B

Bπ+π−γDE/Bπ+π−γ 0.685(41) Ramberg 93

unity and assuming the universality of lepton couplings, they determine the BRs for
π+π−, π0π0, Ke3, and Kµ3 decays.
Our fit is an extension of the analysis in [354]. We perform a fit to the data on the KS

BRs to π+π−, π0π0, and Ke3 that uses, in addition to the above two measurements:
– the measurement from NA48, ΓKS → πeν/ΓKL → πeν [355], where the denominator
is obtained from the results of our KL fit;

– the measurement of τS (not assuming CPT ) from NA48 [285], 89.589(70) ps;
– the measurement of τS (not assuming CPT ) from KTeV [285], 89.58(13) ps;
– the result BRKµ3/BRKe 3 = 0.66100(214), obtained from the assumption of universal
lepton couplings, the values of the quadratic (vector) and linear (scalar) form-factor
parameters from our fit to form-factor data, and the long-distance electromagnetic
corrections discussed in Sec. 4.4.2.

The free parameters are the four BRs listed above plus τS . With six inputs and one
constraint (on the sum of the BRs), the fit has one degree of freedom and gives χ2 =
0.0038 (P = 95%). The results of the fit are listed in Table 15.
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Table 15
Results of fit to KS BRs and lifetime

Parameter Value S

Bπ+π− 0.6920(5) 1.0

Bπ0π0 0.3069(5) 1.0

BKe3 7.05(8) × 10−4 1.0

BKµ3 4.66(6) × 10−4 1.0

τS 4.66(6) × 10−4 1.0

K± leading branching ratios and τ±

There are several new results providing information on K±
ℓ3 rates. The NA48/2 collab-

oration has published measurements of the three ratios B(Ke3/ππ
0), B(Kµ3/ππ

0), and
B(Kµ3/Ke3) [356]. These measurements are not independent; in our fit, we use the values
B(Ke3/ππ

0) = 0.2470(10) and B(Kµ3/ππ
0) = 0.1637(7) and take their correlation into

account.
KLOE has measured the absolute BRs for the Ke3 and Kµ3 decays [357]. In φ →

K+K− events, K+ decays into µν or ππ0 are used to tag a K− beam, and vice versa.
KLOE performs four separate measurements for each Kℓ3 BR, corresponding to the
different combinations of Kaon charge and tagging decay. The final averages are B(Ke3) =
4.965(53)(38)% and B(Kµ3) = 3.233(29)(26)%. KLOE has also measured the absolute
branching ratio for the ππ0 [358] and µν decay [359].
Our fit takes into account the correlation between these values, as well as their de-

pendence on the K± lifetime. The world average value for τ± is nominally quite precise.
However, the PDG error is scaled by 2.1; the confidence level for the average is 0.17%.
It is important to confirm the value of τ±. The new measurement from KLOE, τ± =
12.347(30) ns, agrees with the PDG average.
Our fit for the six largest K± branching ratios and lifetime uses the measurements in

Table 17, including the six measurements noted above. We have recently carried out a
comprehensive survey of the K± data set, which led to the elimination of 11 measure-
ments currently in the 2008 PDG fit. Finally, we note that after the elimination of the
1970 measurement of Γ(π±π±π∓) from Ford et al.( Ford70 in Ref. [285]), the input data
set provides no strong constraint on the π±π±π∓ branching ratio, which increases the
uncertainties on the resulting BR values. The fit uses 17 input measurements, seven free
parameters, and one constraint, giving 11 degrees of freedom. We obtain the results in
Table 16. The fit gives χ2 = 25.8 (P = 0.69%). The comparatively low P -value reflects
some tension between the KLOE and NA48/2 measurements of the Kℓ3 branching ratios.
Both the significant evolution of the average values of the Kℓ3 BRs and the effect of

the correlations with B(ππ0) are evident in Fig. 21.

Measurement of BR(Ke2)/BR(Kµ2)
Experimental knowledge of Ke2/Kµ2 was poor until recently. The current world aver-

age RK = B(Ke2)/B(Kµ2) = (2.45± 0.11)× 10−5 dates back to three experiments of the
1970s [285] and has a precision of about 5%. Two new measurements were reported re-
cently by NA62 and KLOE (see Tab. 18). A preliminary result based on about 14,000Ke2

events, was presented at the 2009 winter conferences by the KLOE collaboration [360].
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Table 16
Results of fit to K± BRs and lifetime.

Parameter Value S

B(Kµ2) 63.47(18)% 1.3

B(ππ0) 20.61(8)% 1.1

B(πππ) 5.573(16)% 1.2

B(Ke3) 5.078(31)% 1.3

B(Kµ3) 3.359(32)% 1.9

B(ππ0π0) 1.757(24)% 1.0

τ± 12.384(15) ns 1.2

0.045 0.05

PDG ’04

PDG ’06

PDG ’08

This fit

BR(Ke3)

0.03 0.035

PDG ’04

PDG ’06

PDG ’08
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0.62 0.63 0.64
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BR(Kµ2)

0.195 0.205 0.215

PDG ’04
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PDG ’08

This fit

BR(Kπ2)

Fig. 21. Evolution of average values for main K± BRs.

Preliminary result from NA62, based on about 50,000 Ke2 events from the 2008 data set
was presented in at KAON 2009 [361]. Both the KLOE and the NA62 measurements are
inclusive with respect to final state radiation contribution due to bremsstrahlung. The
small contribution of Kl2γ events from direct photon emission from the decay vertex was
subtracted by each of the experiments. Combining these new results with the current
PDG value yields a current world average of

RK = (2.498± 0.014)× 10−5, (167)

in good agreement with the SM expectation [300] and, with a relative error of 0.56%, an
order of magnitude more precise than the previous world average.

Measurements of Kℓ3 slopes
For Ke3 decays, recent measurements of the quadratic slope parameters of the vector

form factor (λ′+, λ
′′
+), see Eq. 153 are available from KTeV [362], KLOE [363], ISTRA+

[364], and NA48 [365].
We show the results of a fit to the KL and K− data in the first column of Tab. 19,

and to only the KL data in the second column. With correlations correctly taken into
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Table 17
Input data used for the fit to K± BRs and lifetime (all the references refer to PDG08 [285]). The two

1995 values of the K± lifetime from Koptev et al. are averaged with S = 1.6 before being included in
the fit as a single value.

Parameter Value Source

τK± 12.368(41) ns Koptev 95 (*)

τK± 12.380(16) ns Ott 71

τK± 12.443(38) ns Fitch 65B

τK± 12.347(30) ns Ambrosino 08

BKµ2 0.6366(17) Ambrosino 06A

Bππ0 0.2066(11) [358]

Bππ0/BKµ2 0.3329(48) Usher 92

Bππ0/BKµ2 0.3355(57) Weissenberg 76

Bππ0/BKµ2 0.3277(65) Auerbach 67

BKe3 0.04965(53) Ambrosino 08A

BKe3/Bππ0+Kµ3 +π2π0 0.1962(36) Sher 03

BKe3/Bππ0 0.2470(10) Batley 07A

BKµ3 0.03233(39) Ambrosino 08A

BKµ3/Bππ0 0.1636(7) Batley 07A

BKµ3/BKe3 0.671(11) Horie 01

Bππ0π0 0.01763(26) Aloisio 04A

Bππ0π0/Bπππ 0.303(9) Bisi 65

Table 18
Results and prediction for RK = B(Ke2)/B(Kµ2).

RK [10−5]

PDG 2.45± 0.11

NA48/2 2.500 ± 0.016

KLOE 2.493 ± 0.031

SM prediction 2.477 ± 0.001

account, both fits give good values of χ2/ndf. The significance of the quadratic term is
4.2σ from the fit to all data, and 3.5σ from the fit to KL data only.
Including or excluding the K− slopes has little impact on the values of λ′+ and λ′′+; in

particular, the values of the phase-space integrals change by just 0.07%. The errors on
the phase-space integrals are significantly smaller when the K− data are included in the
average.
KLOE, KTeV, and NA48 also quote the values shown in Tab. 20 for MV from pole

(see Eq. 154) fits to KL e3 data. The average value of MV from all three experiments is
MV = 875±5 MeV with χ2/ndf = 1.8/2. The three values are quite compatible with each
other and reasonably close to the known value of theK±∗(892) mass (891.66±0.26MeV).
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Table 19
Average of quadratic fit results for Ke3 slopes.

KL and K− data KL data only

4 measurements 3 measurements

χ2/ndf = 5.3/6 (51%) χ2/ndf = 4.7/4 (32%)

λ′+ × 103 25.2± 0.9 24.9± 1.1

λ′′+ × 103 1.6± 0.4 1.6± 0.5

ρ(λ′+, λ+
′′) −0.94 −0.95

I(K0
e3) 0.15463(21) 0.15454(29)

I(K±
e3) 0.15900(22) 0.15890(30)

Table 20
Pole fit results for K0

e3 slopes.

Experiment MV (MeV) 〈MV 〉 = 875± 5 MeV

KLOE 870 ± 6± 7 χ2/ndf = 1.8/2

KTeV 881.03 ± 7.11 λ′+ × 103 = 25.42(31)

NA48 859 ± 18 λ′′+ = 2× λ′ 2+

I(K0
e3) = 0.15470(19)

The values for λ′+ and λ′′+ from expansion of the pole parametrization are qualitatively
in agreement with the average of the quadratic fit results. More importantly, for the
evaluation of the phase-space integrals, using the average of quadratic or pole fit results
gives values of I(K0

e3) that differ by just 0.03%.
ForKµ3 decays, recent measurements of the slope parameters (λ′+, λ

′′
+, λ0) are available

from KTeV [362], KLOE [366], ISTRA+ [367], and NA48 [368]. We will not use the
ISTRA+ result for the average because systematic errors have not been provided. We
use the Ke3 − Kµ3 averages provided by the experiments for KTeV and KLOE. NA48
does not provide such an average, so we calculate it for inclusion in the fit.
We have studied the statistical sensitivity of the form-factor slope measurements using

Monte Carlo techniques. The conclusions of this study are a) that neglecting a quadratic
term in the parametrization of the scalar form factor when fitting results leads to a shift
of the value of the linear term by about 3.5 times the value of the quadratic term; and b)
that because of correlations, it is impossible to measure the quadratic slope parameter
from quadratic fits to the data at any plausible level of statistics. The use of the linear
representation of the scalar form factor is thus inherently unsatisfactory. The effect is
relevant when testing the CT theorem Eq. (151) discussed in section 4.6.2.
The results of the combination are listed in Tab. 21.
The value of χ2/ndf for all measurements is terrible; we quote the results with scaled

errors. This leads to errors on the phase-space integrals that are ∼60% larger after
inclusion of the new Kµ3 NA48 data.
The evaluations of the phase-space integrals for all four modes are listed in each case.

Correlations are fully accounted for, both in the fits and in the evaluation of the integrals.
The correlation matrices for the integrals are of the form
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Table 21
Averages of quadratic fit results for Ke3 and Kµ3 slopes.

χ2/ndf 29/8 (3× 10−4)

λ′+ × 103 24.5± 0.9 (S = 1.1)

λ′′+ × 103 1.8± 0.4 (S = 1.3)

λ0 × 103 11.7± 1.4 (S = 1.9)

ρ(λ′+, λ
′′
+) −0.94

ρ(λ′+, λ0) +0.44

ρ(λ′′+, λ0) −0.52

I(K0
e3) 0.15449(20)

I(K±
e3) 0.15885(21)

I(K0
µ3) 0.10171(32)

I(K±
µ3) 0.10467(33)

ρ(Ie3, Iµ3) +0.53

+1 +1 ρ ρ

+1 +1 ρ ρ

ρ ρ +1 +1

ρ ρ +1 +1

where the order of the rows and columns is K0
e3, K

±
e3, K

0
µ3, K

±
µ3, and ρ = ρ(Ie3, Iµ3) as

listed in the table.
Adding the Kµ3 data to the fit does not cause drastic changes to the values of the
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phase-space integrals for the Ke3 modes: the values for I(K0
e3) and I(K

±
e3) in Tab. 21 are

qualitatively in agreement with those in Tab. 19. As in the case of the fits to the Ke3

data only, the significance of the quadratic term in the vector form factor is strong (3.6σ
from the fit to all data).

4.5. |Vus| determination from tau decays

A very precise determination of Vus can be obtained from the semi-inclusive hadronic
decay width of the τ lepton into final states with strangeness [369,370]. The ratio of the
Cabibbo-suppressed and Cabibbo-allowed τ decay widths directly measures (Vus/Vud)

2,
up to very small SU(3)-breaking corrections which can be theoretically estimated with
the needed accuracy.
The inclusive character of the total τ hadronic width renders possible an accurate

calculation of the ratio [371–375]

Rτ ≡ Γ[τ− → ντ hadrons (γ)]

Γ[τ− → ντe−ν̄e(γ)]
= Rτ,V +Rτ,A +Rτ,S , (168)

using analyticity constraints and the operator product expansion. One can separately
compute the contributions associated with specific quark currents: Rτ,V and Rτ,A corre-
spond to the Cabibbo-allowed decays through the vector and axial-vector currents, while
Rτ,S contains the remaining Cabibbo-suppressed contributions.
To a first approximation the Cabibbo mixing can be directly obtained from experimen-

tal measurements, without any theoretical input. Neglecting the small SU(3)-breaking
corrections from the ms −md quark-mass difference, one gets:

|Vus|SU(3) = |Vud|
(

Rτ,S
Rτ,V+A

)1/2

= 0.210± 0.003 . (169)

We have used |Vud| = 0.97425 ± 0.00022 (cf. Eq. (117)), Rτ = 3.640 ± 0.010 and the
value Rτ,S = 0.1617± 0.0040 [370], which results from the recent BaBar [376] and Belle
[377] measurements of Cabibbo-suppressed tau decays [378]. The new branching ratios
measured by BaBar and Belle are all smaller than the previous world averages, which
translates into a smaller value of Rτ,S and |Vus|. For comparison, the previous value
Rτ,S = 0.1686± 0.0047 [379] resulted in |Vus|SU(3) = 0.215± 0.003.
This rather remarkable determination is only slightly shifted by the small SU(3)-

breaking contributions induced by the strange quark mass. These corrections can be
theoretically estimated through a QCD analysis of the difference [369, 370, 380–387]

δRτ ≡ Rτ,V+A

|Vud|2
− Rτ,S

|Vus|2
. (170)

Since the strong interactions are flavor blind, this quantity vanishes in the SU(3) limit.
The only non-zero contributions are proportional to the mass-squared difference m2

s−m2
d

or to vacuum expectation values of SU(3)-breaking operators such as δO4 ≡ 〈0|mss̄s−
mdd̄d|0〉 = (−1.4 ± 0.4) · 10−3 GeV4 [369, 380]. The dimensions of these operators are
compensated by corresponding powers of m2

τ , which implies a strong suppression of δRτ
[380]:

δRτ ≈ 24SEW

{
m2
s(m

2
τ )

m2
τ

(
1− ǫ2d

)
∆(αs)− 2π2 δO4

m4
τ

Q(αs)

}
, (171)

98



where ǫd ≡ md/ms = 0.053± 0.002 [317]. The perturbative QCD corrections ∆(αs) and
Q(αs) are known to O(α3

s) and O(α
2
s), respectively [380, 387].

The theoretical analysis of δRτ involves the two-point vector and axial-vector corre-
lators, which have transverse (J = 1) and longitudinal (J = 0) components. The J = 0
contribution to ∆(αs) shows a rather pathological behavior, with clear signs of being a
non-convergent perturbative series. Fortunately, the corresponding longitudinal contribu-
tion to δRτ can be estimated phenomenologically with a much better accuracy, δRτ |L =
0.1544±0.0037 [369,388], because it is dominated by far by the well-known τ → ντπ and
τ → ντK contributions [389]. To estimate the remaining L + T component, one needs
an input value for the strange quark mass. Taking the range ms(mτ ) = (100± 10) MeV
[ms(2GeV) = (96±10)MeV], which includes the most recent determinations of ms from
QCD sum rules and lattice QCD [388], one gets finally δRτ,th = δRτ |L + δRτ |L+T =
0.216± 0.016, which implies [370]

|Vus| =
(

Rτ,S
Rτ,V +A

|Vud|2 − δRτ,th

)1/2

= 0.2165± 0.0026 exp ± 0.0005 th . (172)

A larger central value, |Vus| = 0.2212 ± 0.0031, is obtained with the old world average
for Rτ,S .
Notice that the theoretical input only appears through the quantity δRτ,th, which is

one order of magnitude smaller than the ratio Rτ,V+A/|Vud|2 = 3.665 ± 0.012. Theo-
retical uncertainties are thus very suppressed, although a number of issues deserve fur-
ther investigation. These include (i) an assessment of the uncertainty due to different
prescriptions (Contour Improved Perturbation Theory versus Fixed Order Perturbation
Theory) for the slow-converging D = 2, L+T correlator series, which could shift |Vus| by
up to ∼ 0.0020 [390]; (ii) addressing the stability of the extracted |Vus| by using alter-
nate sum rules that involve different weights, w(s), and/or spectral integral endpoints
s0 < mτ2 [384, 391]. With theory errors at the level of Eq. (172), experimental errors
would dominate, in contrast to the situation encountered in Kℓ3 decays.
The phenomenological determination of δRτ |L contains a hidden dependence on Vus

through the input value of the Kaon decay constant fK . Although the numerical impact of
this dependence is negligible, it can be taken explicitly into account. Using the measured
K−/π− → ν̄µµ

− decay widths and the τ lifetime [285], one can determine the Kaon and
pion contributions toRτ with better accuracy than the direct τ decay measurements, with
the results Rτ |τ

−→ντK
−

= (0.04014±0.00021) and Rτ |τ
−→ντπ

−

= (0.6123±0.0025). The

corresponding longitudinal contributions are just given by Rτ |τ
−→ντP

−

L
≡ Rτ |τ

−→ντP
−−

Rτ |τ
−→ντP

−

L+T
= −2(m2

P /m
2
τ)Rτ |τ

−→ντP
−

(P = K,π).
Subtracting the longitudinal contributions from Eq. (172), one gets an improved for-

mula to determine Vus with the best possible accuracy [370]:

|Vus|2 =
R̃τ,S

R̃τ,V +A

|Vud|2 − δR̃τ,th
≡ Rτ,S −Rτ |τ

−→ντK
−

L

Rτ,V +A−Rτ |τ
−→ντπ−

L

|Vud|2 − δR̃τ,th

, (173)

where δR̃τ,th ≡ δR̃τ |L + δRτ,th|L+T = (0.033± 0.003)+ (0.062± 0.015) = 0.095± 0.015.

The subtracted longitudinal correction δR̃τ |L is now much smaller because it does not
contain any pion or Kaon contribution. Using the same input values for Rτ,S and Rτ,V+A,
one recovers the Vus determination obtained before in Eq. (172), with an error of± 0.0030.
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Table 22
Summary of |Vus| × f+(0) determination from all channels.

mode |Vus| × f+(0) % err BR τ ∆ Int

KL → πeν 0.2165(5) 0.26 0.09 0.20 0.11 0.06

KL → πµν 0.2175(6) 0.32 0.15 0.18 0.15 0.16

KS → πeν 0.2157(13) 0.61 0.60 0.03 0.11 0.06

K± → πeν 0.2162(11) 0.52 0.31 0.09 0.41 0.06

K± → πµν 0.2168(14) 0.65 0.47 0.08 0.42 0.16

average 0.2166(5)

Sizable changes on the experimental determination of Rτ,S are to be expected from
the full analysis of the huge BaBar and Belle data samples. In particular, the high-
multiplicity decay modes are not well known at present and their effect has been just
roughly estimated or simply ignored. Thus, the result (172) could easily fluctuate in the
near future. However, it is important to realize that the final error of the Vus determi-
nation from τ decay is likely to remain dominated by the experimental uncertainties. If
Rτ,S is measured with a 1% precision, the resulting Vus uncertainty will get reduced to
around 0.6%, i.e. ±0.0013, making τ decay the competitive source of information about
Vus.
An accurate measurement of the invariant-mass distribution of the final hadrons in

Cabibbo-suppressed τ decays could make possible a simultaneous determination of Vus
and the strange quark mass, through a correlated analysis of several SU(3)-breaking
observables constructed with weighted moments of the hadronic distribution [369, 380,
381]. However, the extraction of ms suffers from theoretical uncertainties related to the
convergence of the associated perturbative QCD series. A better understanding of these
QCD corrections is needed in order to improve the present determination of ms [369,
380, 384–387].

4.6. Physics Results

In this section we summarize the results for |Vus| discussed in the previous sections and
based on these results we give constraints on physics beyond the SM. Instead of averages
for lattice results for fK/fπ we use fK/fπ = 1.189(7) by HPQCD [340] for illustrative
purposes (cf. the discussion at the end of section 4.4.4).

4.6.1. Determination of |Vus| × f+(0) and |Vus|/|Vud| × fK/fπ
This section describes the results that are independent of the theoretical parameters

f+(0) and fK/fπ.

Determination of |Vus| × f+(0)
The value of |Vus| × f+(0) has been determined from (134) using the world average

values reported in section 4.4.5 for lifetimes, branching ratios and phase space integrals,
and the radiative and SU(2) breaking corrections discussed in section 4.4.2.
The results are given in Tab. 22, and are shown in Fig. 23 for KL → πeν, KL → πµν,

KS → πeν, K± → πeν, K± → πµν, and for the combination. The average,
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Fig. 23. Display of |Vus| × f+(0) for all channels.

|Vus| × f+(0) = 0.2166(5), (174)

has an uncertainty of about of 0.2%. The results from the five modes are in good agree-
ment, the fit probability is 55%. In particular, comparing the values of |Vus| × f+(0)
obtained from K0

ℓ3 and K±
ℓ3 we obtain a value of the SU(2) breaking correction

δKSU(2)exp.
= 5.4(8)%

in agreement with the CHPT calculation reported in Eq. 147: δKSU(2) = 5.8(8)%.

4.6.2. A test of lattice calculation: the Callan-Treiman relation
As described in Sec. 4.4.3 the Callan-Treiman relation fixes the value of scalar form

factor at t = m2
K −m2

π (the so-called Callan-Treiman point) to the ratio (fK/fπ)/f+(0).
The dispersive parametrization for the scalar form factor proposed in [324] and dis-
cussed in Sec. 4.4.3 allows the available measurements of the scalar form factor to be
transformed into a precise information on (fK/fπ)/f+(0), completely independent of the
lattice estimates.
Very recently KLOE [392], KTeV [393], ISTRA+ [394], and NA48 [368] have produced

results on the scalar FF behavior using the dispersive parametrization. The results are
given in Tab. 23 for all four experiments.
Fig. 24 shows the values for f+(0) determined from the scalar form factor slope mea-

surements obtained using the Callan-Treiman relation and fK/fπ = 1.189(7). The value
of f+(0) = 0.964(5) from UKQCD/RBC is also shown. As already noted in Sec. 4.4.5,
the NA48 result is difficult to accommodate. Here one can see that this results is also
inconsistent with the theoretical estimates of f+(0). In particular, it violates the Fubini-
Furlan bound f+(0) < 1 [395]. For this reason, the NA48 result will be excluded when
using the Callan-Treiman constraint.
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Table 23
Experimental results for log(C).

Experiment log(C) mode

KTeV 0.195(14) KLµ3

KLOE 0.217(16) KLµ3 and KLe3

NA48 0.144(14) KLµ3

ISTRA+ 0.211(13) K−
µ3

0.9 0.95 1 1.05

UKQCD/RBC

KLOE

ISTRA+

NA48

KTeV

f+(0)

laviF AnetKaon WG

Fig. 24. Values for f+(0) determined from the scalar form factor slope using the Callan-Treiman relation
and fK/fπ = 1.189(7). The UKQCD/RBC result f+(0) = 0.964(5) is also shown.

We combine the average of the above results, logC = 0.207± 0.008, with the lattice
determinations of fK/fπ = 1.189(7) and f+(0) = 0.964(5) using the constraint given by
the Callan-Treiman relation. The results of the combination are given in Tab. 24. The fit

Table 24
Results from the form factor fit.

logC f+(0) fK/fπ

0.204(6) 0.964(4) 1.187(6)

correlation matrix

1. -0.44 0.52

1. 0.28

1.

probability is 99%, confirming the agreement between experimental measurements and
lattice determinations. The accuracies of fK/fπ and f+(0) are also slightly improved,
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and this effect can be better seen in the ratio f+(0)/(fK/fπ), which is directly related
to the Callan-Treiman constraint.

Determination of |Vus|/|Vud| × fK/fπ
An independent determination of |Vus| is obtained from Kℓ2 decays. The most impor-

tant mode is K+ → µ+ν, which has been measured by KLOE with a relative uncertainty
of about 0.3%. Hadronic uncertainties are minimized by making use of the ratio Γ(K+ →
µ+ν)/Γ(π+ → µ+ν).
Using the world average values of BR(K± → µ±ν) and of τ± given in Sec. 4.4.5 and

the value of Γ(π± → µ±ν) = 38.408(7) µs−1 from [285] we obtain:

|Vus|/|Vud| × fK/fπ = 0.2758± 0.0007 . (175)

4.6.3. Test of Cabibbo Universality or CKM unitarity
To determine |Vus| and |Vud| we use the value |Vus| × f+(0) = 0.2166(5) reported in

Tab. 22, the result |Vus|/|Vud|fK/fπ = 0.2758(7) discussed in Sec. 4.6.2, f+(0) = 0.964(5),
and fK/fπ = 1.189(7). From the above we find:

|Vus|= 0.2246± 0.0012 [Kℓ3 only] , (176)

|Vus|/|Vud|= 0.2319± 0.0015 [Kℓ2 only] . (177)

A slightly less precise determination of |Vus|/|Vud| = 0.2304(+0.0026
−0.0015) is obtained using

the value of fK/fπ from MILC [106]. These determinations can be used in a fit together
with the the evaluation of |Vud| from 0+ → 0+ nuclear beta decays quoted in section 4.1:
|Vud|=0.97425±0.00022. The global fit gives

|Vud| = 0.97425(22) |Vus| = 0.2252(9) [Kℓ3,ℓ2 + 0+ → 0+] , (178)
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with χ2/ndf = 0.52/1 (47%). This result does not make use of CKM unitarity. If the
unitarity constraint is included, the fit gives

|Vus| = sin θC = λ = 0.2253(6) [with unitarity] (179)

Both results are illustrated in Fig. 25.
Using the (rather negligible) |Vub|2 ≃ 1.5× 10−5 in conjunction with the above results

leads to

|Vud|2 + |Vus|2 + |Vub|2 = 0.9999(4)Vud
(4)Vus

= 0.9999(6) (180)

The outstanding agreement with unitarity provides an impressive confirmation of Stan-
dard Model radiative corrections [281, 286](at about the 60 sigma level!). It can be used
to constrain “new physics” effects which, if present, would manifest themselves as a
deviation from 1, i.e. what would appear to be a breakdown of unitarity.
We will give several examples of the utility Eq. (180) provides for constraining “new

physics”. Each case is considered in isolation, i.e. it is assumed that there are no accidental
cancellations.

Exotic Muon Decays
If the muon can undergo decay modes beyond the Standard Model µ+ → e+νeν̄µ and

its radiative extensions, those exotic decays will contribute to the muon lifetime. That
would mean that the “real” Fermi constant, GF , is actually smaller than the value in
Eq. (107) and we should be finding

|Vud|2 + |Vus|2 + |Vub|2 = 1−BR(exotic muon decays) (181)

A unitarity sum below 1 could be interpreted as possible evidence for such decays.
Alternatively, Eq. (180) provides at (one-sided) 95% CL

BR(exotic muon decays) < 0.001 (182)

That is, of course, not competitive with, for example, the direct bound BR(µ+ →
e+γ) < 1 × 10−11 [285]. However, for decays such as µ+ → e+ν̄eνµ (wrong neutrinos),
Eq. (182) is about a factor of 10 better than the direct constraint [285] BR(µ+ →
e+ν̄eνµ) < 0.012. That constraint is useful for possible future neutrino factories where
the neutrino beams originate from muon decays. If such a decay were to exist, it would
provide a background to neutrino oscillations.
Another way to illustrate the above constraint is to extract the Fermi constant from

nuclear, K and B decays assuming the validity of CKM unitarity without employing
muon decay. Values in Eq. 178 give

GCKM
F = 1.166279(261)× 10−5GeV−2 CKM Unitarity (183)

which is in fact the second best determination of GF , after Eq. (107). The comparison
between Gµ in Eq. (107) and GCKM

F in Eq. (183) is providing the constraints on “new
physics”, if it affects them differently. So far, they are equal to within errors.

Heavy Quarks and Leptons
As a second example, consider the case of new heavy quarks or leptons that couple to

the ordinary 3 generations of fermions via mixing [270]. For a generic heavy charge −1/3
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D quark from a 4th generation, mirror fermions, SU(2)L singlets etc., one finds at the
one-sided 95% CL

|VuD| ≤ 0.03 (184)

Considering that |Vub| ≃ 0.004, such an indirect constraint appears not to be very
stringent but it can be useful in some models to rule out large loop induced effects from
mixing. In the case of heavy neutrinos with mN > mµ, one finds similarly

|VℓN | < 0.03 , ℓ = e, µ (185)

Four Fermion Operators
If there are induced dim. 6 four fermion operators of the form

∓i2π
Λ2
ūγµdēLγ

µνe (186)

where Λ is a high effective mass scale due to compositeness, leptoquarks, excited W ∗

bosons (e.g. extra dimensions) or even heavy loop effects, they will interfere with the

Standard Model beta decay amplitudes and give GCKM
F = Gµ

(
1±

√
2π

GµΛ2

)
. One finds at

90%CL

Λ > 30 TeV (187)

Similar constraints apply to new 4 fermion lepton operators that contribute to µ+ →
e+νeν̄µ. Of course, in some cases there can be a cancellation between semileptonic and
purely leptonic effects and no bound results.
The high scale bounds in Eq. (187) apply most directly to compositeness because no

coupling suppression was assumed. For leptoquarks, W ∗ bosons etc. the bounds should
be about an order of magnitude smaller due to weak couplings. A mW∗ bound of about
4∼6 TeV results if we assume it affects leptonic and semileptonic decays very differently;
but that assumption may not be valid and may need to be relaxed (see below). In the
case of new loop effects, those bounds should be further reduced by another order of
magnitude. For example, we next consider the effect of heavy Z ′ bosons in loops that
enter muon and charged current semileptonic decays differently where a bound of about
400 GeV is obtained.

Additional Z ′ Gauge Bosons
As next example, we consider the existence of additional Z ′ bosons that influence

unitarity at the loop level by affecting muon and semi-leptonic beta decays differently
[396]. In general, we found that the unitarity sum was predicted to be greater than one
in most scenarios. In fact, one expects

|Vud|2 + |Vus|2 + |Vub|2 = 1+ 0.01λℓn X/(X − 1)

X =m2
Z′/m2

W (188)

where λ is a model dependent quantity of O(1). It can have either sign, but generally
λ > 0.
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In the case of SO(10) grand unification Z ′ = Zχ with λ ≃ 0.5, one finds at one-sided
90% CL

mZχ
> 400GeV (189)

That bound is somewhat smaller than tree level bounds on Z ′ bosons from atomic
parity violation and polarized Moller scattering [397, 398] as well as the direct collider
search bounds [285] mZχ

> 720 GeV.

Charged Higgs Bosons
A particularly interesting test is the comparison of the |Vus| value extracted from the

helicity-suppressed Kℓ2 decays with respect to the value extracted from the helicity-
allowed Kℓ3 modes. To reduce theoretical uncertainties from fK and electromagnetic
corrections in Kℓ2, we exploit the ratio Br(Kℓ2)/Br(πℓ2) and we study the quantity

Rl23 =

∣∣∣∣
Vus(Kℓ2)

Vus(Kℓ3)
× Vud(0

+ → 0+)

Vud(πℓ2)

∣∣∣∣ . (190)

Within the SM, Rl23 = 1, while deviation from 1 can be induced by non-vanishing scalar-
or right-handed currents. Notice that in Rl23 the hadronic uncertainties enter through
(fK/fπ)/f+(0).
Effects of scalar currents due to a charged Higgs give [346]

Rl23 =

∣∣∣∣1−
m2
K+

M2
H+

(
1− md

ms

)
tan2 β

1 + ǫ0 tanβ

∣∣∣∣ , (191)

whereas for right-handed currents we have

Rl23 = 1− 2 (ǫs − ǫns) . (192)

In the case of scalar densities (MSSM), the unitarity relation between |Vud| extracted
from 0+ → 0+ nuclear beta decays and |Vus| extracted from Kℓ3 remains valid as soon
as form factors are experimentally determined. This constrain together with the experi-
mental information of logCMSSM can be used in the global fit to improve the accuracy
of the determination of Rl23, which in this scenario turns to be

Rl23|expscalar = 1.004± 0.007 . (193)

Here (fK/fπ)/f+(0) has been fixed from lattice. This ratio is the key quantity to be
improved in order to reduce present uncertainty on Rl23.
The measurement of Rl23 above can be used to set bounds on the charged Higgs mass

and tanβ. Fig. 26 shows the excluded region at 95% CL in the MH–tanβ plane (setting
ǫ0 = 0.01). The measurement of BR(B → τν) [145, 146, 399] can be also used to set a
similar bound in the MH–tanβ plane. While B → τν can exclude quite an extensive
region of this plane, there is an uncovered region in the exclusion corresponding to a
destructive interference between the charged-Higgs and the SM amplitude. This region
is fully covered by the K → µν result.
In the case of right-handed currents [324], Rl23 can be obtained from a global fit to

the values of eqs. (174) and (175). Here logCexp is free of new physics effects and can be
also used to constrain (fK/fπ)/f+(0) together with lattice results (namely the values in
Tab. 24). The result is

Rl23|expRHcurr. = 1.004± 0.006 . (194)
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Fig. 26. Excluded region in the charged Higgs mass-tanβ plane. The region excluded by B → τν is also
indicated.

In addition, interesting unitarity constraints can be placed on supersymmetry [400–402]
where SUSY loops affect muon and semileptonic decays differently. Again, one expects
constraints up to mass scales of O(500 GeV), depending on the degree of cancellation
between squark and slepton effects.
In the future, the unitarity constraint could improve from ±0.0006 to ±0.0004 if f+(0)

and fK/fπ errors as well as uncertainties from radiative corrections can be reduced. Such
an improvement will be difficult, but particularly well motivated if an apparent violation
starts to emerge or the LHC makes a relevant “new physics” discovery.
As an added comment, we again mention that eqs. (107) and (183) represent our two

best measurements of the Fermi constant. Their agreement reinforces the validity of using
Gµ to normalize electroweak charged and neutral current amplitudes in other precision
searches for “new physics”. In fact, either Gµ or GCKM

F could be used without much
loss of sensitivity, since all other experiments are currently less precise than both. For
example, one of the next best determinations of the Fermi constant (which is insensitive
to mt) comes from [286]

G
(2)
F =

πα√
2m2

W sin2 θW (mZ)MS(1−∆r(mZ)MS)
(195)

where
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α−1 = 137.035999084(51) (196a)

mW = 80.398(25) GeV (196b)

sin2 θW (mZ)MS = 0.23125(16) (196c)

∆r(mZ)MS = 0.0696(2) (196d)

One finds

G
(2)
F = 1.165629(1100)× 10−5 GeV−2 (197)

with an uncertainty about 180 times larger than Gµ and about 4 times larger than
GCKM
F . The value in Eq. (197) is, nevertheless, very useful for constraining “new physics”

that affects it differently than Gµ or GCKM
F . Perhaps the two best examples are the S

parameter [403, 404]

S ≃ 1

6π
ND (198)

which depends on the number of new heavy SU(2)L doublets (e.g. ND = 4 in the case
of a 4th generation) and a generic W ∗ Kaluza-Klein excitation associated with extra
dimensions [286] that has the same quark and lepton couplings. Either would contribute

to Gµ or GCKM
F but not to G

(2)
F . Therefore, one has the relation

Gµ ≃ GCKM
F ≃ G

(2)
F (1 + 0.0085S +O(1)

m2
W

m2
W∗

) (199)

The good agreement among all three Fermi constants then suggests mW∗ > 2
∼ 3 TeV and S ≃ 0.1 ± 0.1 (consistent with zero). Those constraints are similar to
what is obtained from global fits to all electroweak data. Taken at face value they sug-
gest any “new physics” near the TeV scale that we hope to unveil at the LHC is hiding
itself quite well from us in precision low energy data. It will be interesting to see what
the LHC finds.

4.6.4. Tests of Lepton Flavor Universality in Kℓ2 decays
The ratio RK = Γ(Kµ2)/Γ(Ke2) can be precisely calculated within the Standard

Model. Neglecting radiative corrections, it is given by

R
(0)
K =

m2
e

m2
µ

(m2
K −m2

e)
2

(m2
K −m2

µ)
2
= 2.569× 10−5, (200)

and reflects the strong helicity suppression of the electron channel. Radiative corrections
have been computed with effective theories [300], yielding the final SM prediction

RSM
K =R

(0)
K (1 + δRrad.corr.

K )

= 2.569× 10−5 × (0.9622± 0.0004) = (2.477± 0.001)× 10−5 . (201)

Because of the helicity suppression within then SM, the Ke2 amplitude is a prominent
candidate for possible sizable contributions from physics beyond the SM. Moreover, when
normalizing to the Kµ2 rate, we obtain an extremely precise prediction of the Ke2 width
within the SM. In order to be visible in the Ke2/Kµ2 ratio, the new physics must violate
lepton flavor universality.
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Fig. 27. Exclusion limits at 95% CL on tanβ and the charged Higgs mass MH± from RK for different
values of ∆13.

Recently it has been pointed out that in a supersymmetric framework sizable violations
of lepton universality can be expected in Kl2 decays [405]. At the tree level, lepton flavor
violating terms are forbidden in the MSSM. However, these appear at the one-loop level,
where an effective H+lντ Yukawa interaction is generated. Following the notation of
Ref. [405], the non-SM contribution to RK can be written as

RLFV
K ≈ RSM

K

[
1 +

(
m4
K

M4
H±

)(
m2
τ

m2
e

)
|∆13|2 tan6 β

]
. (202)

The lepton flavor violating coupling ∆13, being generated at the loop level, could reach
values of O(10−3). For moderately large tanβ values, this contribution may therefore
enhance RK by up to a few percent. Since the additional term in Eq. 202 goes with the
fourth power of the meson mass, no similar effect is expected in πl2 decays.
The world average result for RK presented in Sec. 4.4.5 gives strong constraints for

tanβ and MH± , as shown in Fig. 27. For values of ∆13 ≈ 10−3 and tanβ > 50 the
charged Higgs masses is pushed above 1000 GeV/c2 at 95% CL.

5. Semileptonic B and D decays: |Vcx| and |Vub|

In this section, we address semileptonic decays that proceed at the tree level of the
weak interaction. We focus on decays of the lightest pseudoscalar mesons, D for charm
and B for bottom, because higher excitations decay hadronically (or, in case of the B∗,
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radiatively) to the D and B and thus have negligibly small semileptonic partial widths.
The amplitude for quark flavor change in these processes is proportional to a CKMmatrix
element, providing a direct way to “measure” the CKM matrix.
Purely leptonic decays of pseudoscalars are, of course, also directly sensitive to the

CKM matrix, but they require a spin flip. Their rate is, hence, helicity suppressed by
a factor (mℓ/mP )

2, where mP is the pseudoscalar meson mass and mℓ the mass of the
daughter lepton. This suppression makes purely leptonic decays more sensitive to non-
Standard processes, and therefore less reliable channels for the determination of CKM
matrix elements than semileptonic decays.
As with the determination of |Vus| in the semileptonic decay K → πℓν, discussed in

Sec. 4, one can determine |Vcs| from D → Kℓν, |Vcd| from D → πℓν, |Vub| from B →
πℓν, and |Vcb| from B → D(∗)ℓν, by combining measurements of the differential decay
rate with lattice-QCD calculations for the hadronic part of the transition, commonly
described with form factors. This section starts with the three heavy-to-light decays,
and then proceeds to heavy-to-heavy decays for which heavy-quark symmetry plays a
crucial role. |Vcb| and |Vub| can also be determined from inclusive semileptonic B decays,
because the large energy scale mb and the inclusion of all final-state hadrons makes
these processes amenable to the operator-product expansion (OPE). Within the OPE
the short-distance QCD can be calculated in perturbation theory, and the long-distance
QCD can be measured from kinematic distributions. While this is rather straightforward
for |Vcb| it is more subtle |Vub| so these two topics are treated in separate subsections.

5.1. Exclusive semileptonic B and D decays to light mesons π and K

5.1.1. Theoretical Background
Heavy-to-light semileptonic decays, in which a B or D meson decays into a light

pseudoscalar or vector meson (such as a pion or ρ meson), are sensitive probes of quark
flavor-changing interactions. The decay rate for H → Pℓν semileptonic decay is given by

dΓ

dq2
=
G2
F |VqQ|2
24π3

(q2 −m2
ℓ)

2
√
E2
P −m2

P

q4m2
H

{(
1 +

m2
ℓ

2q2

)
m2
H(E2

P −m2
P )
[
f+(q

2)
]2

+
3m2

ℓ

8q2
(m2

H −m2
P )

2
[
f0(q

2)
]2
}
, (203)

where q ≡ pH − pP is the momentum transferred to the lepton pair and |VqQ| is the
relevant CKM matrix element. The form factors, f+(q

2) and f0(q
2), parametrize the

hadronic matrix element of the heavy-to-light vector current, V µ ≡ iq̄γµQ:

〈P |V µ|H〉 = f+(q
2)

(
pµH + pµP − m2

H −m2
P

q2
qµ
)
+ f0(q

2)
m2
H −m2

P

q2
qµ, (204)

where EP = (m2
H +m2

P − q2)/2mH is the energy of the light meson in the heavy me-
son’s rest frame. The kinematics of semileptonic decay require that the form factors are
equal at zero momentum-transfer, f+(0) = f0(0). In the limit mℓ → 0, which is a good
approximation for ℓ = e, µ, the form factor f0(q

2) drops out and the expression for the
decay rate simplifies to

dΓ

dq2
=
G2
F |VqQ|2

192π3m3
H

[
(m2

H +m2
P − q2)2 − 4m2

Hm
2
P

]3/2 |f+(q2)|2. (205)
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Using the above expression, a precise experimental measurement of the decay rate, in
combination with a controlled theoretical calculation of the form factor, allows for a clean
determination of the CKM matrix element |VqQ|.
Analyticity and unitarity
It is well-established that the general properties of analyticity and unitarity largely

constrain the shapes of heavy-to-light semileptonic form factors [406–410]. All form fac-
tors are analytic in q2 except at physical poles and threshold branch points. Because
analytic functions can always be expressed as convergent power series, this allows the
form factors to be written in a particularly useful manner.
Consider a change of variables that maps q2 in the semileptonic region onto a unit

circle:

z(q2, t0) =

√
1− q2/t+ −

√
1− t0/t+√

1− q2/t+ +
√
1− t0/t+

, (206)

where t+ ≡ (mH +mP )
2, t− ≡ (mH −mP )

2, and t0 is a constant to be discussed later.
In terms of this new variable, z, the form factors have a simple form:

P (q2)φ(q2, t0)f(q
2) =

∞∑

k=0

ak(t0)z(q
2, t0)

k. (207)

In order to preserve the analytic structure of f(q2), the function P (q2) vanishes at poles
below the H-P pair-production threshold that contribute to H-P pair-production as vir-
tual intermediate states. For example, in the case of B → πℓν decay, P (q2) incorporates
the location of the B∗ pole:

PB→πℓν
+ (q2) = z(q2,mB∗). (208)

For the case of D meson semileptonic decays, the mass of the D∗ meson is above the
D-π production threshold, but the D∗

s is below D-K production threshold. Hence

PD→πℓν
+ (q2) = 1, (209)

PD→Kℓν
+ (q2) = z(q2,mD∗

s
). (210)

In the expression for f(q2), Eq. (207), φ(q2, t0) is any analytic function. It can be chosen,
however, to make the unitarity constraint on the series coefficients have a simple form.
The standard choice for φ+(q

2, t0), which enters the expression for f+(q
2), is [410]:

φ+(q
2, t0) =

√
3

96πχ
(0)
J

(√
t+ − q2 +

√
t+ − t0

)(√
t+ − q2 +

√
t+ − t−

)3/2

×
(√

t+ − q2 +
√
t+

)−5 (t+ − q2)

(t+ − t0)1/4
, (211)

where χ
(0)
J is a numerical factor that can be calculated using perturbation theory and

the operator product expansion. A similar function can be derived for the irrelevant form
factor f0(q

2).
Given the above choices for P (q2) and φ(q2, t0), unitarity constrains the size of the

series coefficients:
N∑

k=0

a2k . 1, (212)
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Table 25
Physical region in terms of the variable z for various semileptonic decays given the choice t0 = 0.65t−.

B → πlν −0.34 < z < 0.22

D → πlν −0.17 < z < 0.16

D → Klν −0.04 < z < 0.06

where this holds for any value of N . In the case of the B → πℓν form factor, the sizes
of the series coefficients (aks) turn out to be much less than 1 [411]. Becher and Hill
recently pointed out that this is due to the fact that the b-quark mass is so large, and
used heavy-quark power-counting to derive a tighter constraint on the aks:

N∑

k=0

a2k ≤
(
Λ

mQ

)3

, (213)

where Λ is a typical hadronic scale [412]. The above expression suggests that the series
coefficients should be larger for D-meson form factors than for B-meson form factors.
This, however, has not been tested.
In order to accelerate the convergence of the power-series in z, the free parameter

t0 in Eq. (206) can be chosen to make the range of |z| as small as possible. For the
value t0 = 0.65t− used in Ref. [410], the ranges of |z| for some typical heavy-to-light
semileptonic decays are given in Tab. 25. The tight heavy-quark constraint on the size of
the coefficients in the z-expansion, in conjunction with the small value of |z|, ensures that
only the first few terms in the series are needed to describe heavy-to-light semileptonic
form factors to a high accuracy.
Other model-independent parameterizations of heavy-to-light semileptonic form fac-

tors base on analyticity and unitarity have been proposed and applied to the case of B →
πℓν decay by Bourrely, Caprini, and Lellouch [413] and by Flynn and Nieves [414, 415].
Bourrely et al. use the series expansion in z described above, but choose simpler outer
function, φ(q2, t0) = 1. This leads, however, to a more complicated constraint on the
series coefficients, which is no longer diagonal in the series index k. Flynn and Nieves use
multiply-subtracted Omnès dispersion relations to parametrize the form factor shape in
terms of the elastic B-π scattering phase shift and the value of f+(q

2) at a few subtraction
points below the B-π production threshold.
Lattice QCD
In lattice-QCD calculations and in heavy-quark effective theory (HQET), it is easier

to work with a different linear combination of the form factors:

〈P |V µ|H〉 =
√
2mH

[
vµf‖(EP ) + pµ⊥f⊥(EP )

]
, (214)

where vµ = pµH/mH is the velocity of the heavy meson, pµ⊥ = pµP − (pP · v)vµ is the
component of the light meson momentum perpendicular to v, and EP = pP · v = (m2

H +
m2
P − q2)/(2mH) is the energy of the light meson in the heavy meson’s rest frame. In the

heavy meson’s rest frame, the form factors f‖(EP ) and f⊥(EP ) are directly proportional
to the hadronic matrix elements of the temporal and spatial vector current:
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f‖(EP ) =
〈P |V 0|H〉√

2mH
(215)

f⊥(EP ) =
〈P |V i|H〉√

2mH

1

piP
. (216)

Lattice QCD simulations therefore typically determine f‖(EP ) and f⊥(EP ), and then cal-
culate the form factors that appear in the heavy-to-light decay width using the following
equations:

f0(q
2) =

√
2mH

m2
H −m2

P

[
(mH − EP )f‖(EP ) + (E2

P −m2
P )f⊥(EP )

]
, (217)

f+(q
2) =

1√
2mH

[
f‖(EP ) + (mH − EP )f⊥(EP )

]
. (218)

These expressions automatically satisfy the kinematic constraint f+(0) = f0(0).
The goal is to evaluate the hadronic matrix elements on the right-hand side of Eqs.(215)

and (216) via numerical simulations in lattice QCD. Such simulations are carried out with
operators, V Lµ , written in terms of the lattice heavy and light quark fields appearing in
the lattice actions. Hence, an important step in any lattice determination of hadronic
matrix elements is the matching between continuum operators such as Vµ and their lattice
counterparts. The matching takes the form

〈P |Vµ|H〉 = ZQqVµ
〈P |V Lµ |H〉. (219)

For heavy-light currents with dynamical (as opposed to static) heavy quarks, the match-

ing factors ZQqVµ
have been obtained to date either through a combination of perturbative

and nonperturbative methods or via straight one-loop perturbation theory. Uncertainties
in ZQqVµ

can be a major source of systematic error in semileptonic form factor calculations
and methods are being developed for complete nonperturbative determinations in order
to reduce such errors in the future.
Another important feature of lattice simulations is that calculations are carried out at

nonzero lattice spacings and with up- and down-quark masses mq that are larger than in
the real world. Results are obtained for several lattice spacings and for a sequence of mq

values and one must then extrapolate to both the continuum and the physical quark mass
limits. These two limits are intimately connected to each other, and it is now standard
to use chiral perturbation theory (χPT) that has been adapted to include discretization
effects [416–421].
The initial pioneering work on B and D meson semileptonic decays on the lattice

were all carried out in the quenched approximation [422–426]. This approximation which
ignores effects of sea quark-antiquark pairs has now been overcome and most recent
lattice calculations include vacuum polarization from Nf = 2 + 1 or Nf = 2 dynamical
light quark flavors. Unquenched calculations of B → πℓν semileptonic decays have been
carried out by the Fermilab/MILC and the HPQCD collaborations using the MILC
collaboration Nf = 2+1 configurations [411,427,428]. Both collaborations use improved
staggered (AsqTad) quarks for light valence and sea quarks. They differ, however, in their
treatment of the heavy b quark. Fermilab/MILC employs the heavy clover action and
HPQCD the nonrelativistic NRQCD action. The dominant errors in both calculations are
due to statistics and the chiral extrapolation. The next most important error stems from
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discretization corrections for the Fermilab/MILC and operator matching for the HPQCD
collaborations, respectively. It is important that simulations based on other light quark
lattice actions be pursued in the future as a cross check.
In the case of D → K and D → π semileptonic decays, there exists to-date only one

Nf = 2 + 1 calculation, again based on AsqTad light and clover heavy quarks, by the
Fermilab Lattice and MILC collaborations [427]. Recently two groups have initiatedNf =
2 calculations, and their results are still at a preliminary stage. The ETM collaboration
uses “twisted mass” light and charm quarks at maximal twist [429], whereas Bećirević,
Haas and Mescia use improved Wilson quarks and configurations created by the QCDSF
collaboration [430, 431]. The latter group employs double ratio methods and twisted
boundary conditions to allow more flexibility in picking out many values of q2. There has
also been a recent exploratory study with improved Wilson quark action which, although
still quenched, is at a very small lattice spacing of around 0.04 fm [432]. These authors
have considered both B and D decays.
Light-cone QCD Sum Rules
Light-cone sum rules (LCSR) [433–435] combine the idea of the original QCD sum

rules [436, 437] with the elements of the theory of hard exclusive processes. LCSR are
used in a wide array of applications (for a review, see [438]), in particular, for calculating
B → π,K, η, ρ,K∗ andD → π,K form factors [439–449]. The starting point is a specially
designed correlation function where the product of two currents is sandwiched between
the vacuum and an on-shell state. In the case of B̄0 → π+ form factor

Fµ(p, q) = i

∫
d4xeiqx〈π+(p) | T {ūγµb(x),mbb̄iγ5d(0)} | 0〉

=

(
2fBf

+
Bπ(q

2)m2
B

m2
B − (p+ q)2

+
∑

Bh

2fBh
f+
Bhπ

(q2)m2
Bh

m2
Bh

− (p+ q)2

)
pµ +O(qµ) , (220)

where the factor proportional to pµ is transformed into a hadronic sum by inserting a
complete set of hadronic states between the currents. This sum also represents, schemat-
ically, a dispersion integral over the hadronic spectral density. The lowest-lying B-state
contribution contains the desired B → π form factor multiplied by the B decay constant.
At spacelike (p+ q)2 ≪ m2

b and at small and intermediate q2 ≪ m2
b , the time ordered

product in Eq. (220) may also be expanded near the light-cone x2 ∼ 0, thereby resumming
local operators into distribution amplitudes:

F ((p+ q)2, q2) =
∑

t=2,3,4

∫
Dui

∑

k=0,1

(αs
π

)k
T

(t)
k ((p+ q)2, q2, ui,mb, µ)ϕ

(t)
π (ui, µ) . (221)

This generic expression is a convolution (at the factorization scale µ) of calculable short-

distance coefficient functions T
(t)
k and universal pion light-cone distribution amplitudes

(DA’s) ϕ
(t)
π (ui, µ) of twist t ≥ 2. The integration goes over the pion momentum fractions

ui = u1, u2, ... distributed among quarks and gluons. Importantly, the contributions
to Eq. (221) corresponding to higher twist and/or higher multiplicity pion DA’s are
suppressed by inverse powers of the b-quark virtuality ((p + q)2 −m2

b), allowing one to
retain a few low twist contributions in this expansion. Currently, analyses of Eq. (220)
can include all LO contributions of twist 2,3,4 quark-antiquark and quark-antiquark-
gluon DA’s of the pion and the O(αs) NLO corrections to the twist 2 and 3 two-particle
coefficient functions.
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Furthermore, one uses quark-hadron duality to approximate the sum over excited Bh
states in Eq. (220) by the result from the perturbative QCD calculation introducing
the effective threshold parameter sB0 . The final step involves a Borel transformation
(p + q)2 → M2, where the scale of the Borel parameter M2 reflects the characteristic
virtuality at which the correlation function is calculated. The resulting LCSR for the
B → π form factor has the following form

f+
Bπ(q

2) =
em

2
B/M

2

2m2
BfB

1

π

∫ sB0

m2
b

ds ImF (OPE)(s, q2)e−s/M
2

, (222)

where ImF (OPE) is directly calculated from the double expansion (221). The intrinsic
uncertainty introduced by the quark-hadron duality approximation is minimized by cal-
culating the B meson mass using the derivative of the same sum rule. The main input
parameters, apart from αs and b quark mass (taken in the MS scheme), include the non-
perturbative normalization constants and nonasymptotic coefficients for each given twist
component, e.g., for the twist-2 pion DA ϕπ these are fπ and the Gegenbauer moments
ai. For twist-3,4 the recent analysis can be found in Ref. [450]. For the B-meson decay
constant entering LCSR (222) one usually employs the conventional QCD sum rule for
the two-point correlator of b̄iγ5q currents with O(αs) accuracy (the most complete sum
rule in MS-scheme is presented in [451]). More details on the numerical results, sources
of uncertainties and their estimates can be found in the recent update [448]. Further
improvement of the LCSR calculation of heavy-to-light form factors is possible, if one
gets a better understanding of the quark-hadron duality approximation in B channel,
and a more accurate estimation of nonperturbative parameters of pion DA’s.
Despite their intrinsically approximate nature, LCSRs represent a useful analytic

method providing a unique possibility to calculate both hard and soft contributions to
the transition form factors. Different versions of LCSR employing B-meson distribution
amplitudes [452] as well as the framework of SCET [453,454] have also been introduced.

5.1.2. Measurements of D Branching Fractions and q2 Dependence
In the last few years, a new level of precision has been achieved in measurements of

branching fractions and hadronic form factors for exclusive semileptonic D decays by the
Belle, BaBar, and CLEO collaborations. In this section, we focus on semileptonic decays,
D → Pℓνℓ, where D represents a D0 or D+, P a pseudoscalar meson, charged or neutral,
either π or K, and ℓ a muon or electron. In addition, we also present a BaBar analysis
of D+

s → K+K−ℓ+νℓ, which provided first evidence of an S-wave contribution.
The results from the B-Factories (Babar and Belle) are based on very large samples of

D mesons produced via the process e+e− → cc̄ recorded at about 10.58 GeV c.m. energy.
CLEO-c experiment relies on a sample of ψ(3770) → DD events, which is smaller, but
allows for very clean tags and excellent q2 resolution. Two of the four recent analyses tag
events by reconstructing a hadronic decay of one of the D mesons in the event, in addition
to the semileptonic decay of the other. The total number of tagged events serves as a
measure of the total sample ofD mesons and thus provides the absolute normalization for
the determination of the semileptonic branching fractions. Untagged analyses typically
rely on the relative normalization to a sample ofD decays with a well measured branching
fraction. The analyses use sophisticated techniques for background suppression (Fisher
discriminants) and resolution enhancement (kinematic fits). The neutrino momentum
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and energy is equated with the reconstructed missing momentum and energy relying
on energy-momentum conservation. The detailed implementation and resolution varies
significantly among the measurements and cannot be presented here in detail.
The BaBar Collaboration reports a study of D0 → K−e+νe based on a luminosity of

75 fb−1 [455]. They analyze D∗+ → D0π+ decays, with D0 → K−e+νe. The analysis
exploits the two-jet topology of e+e− → cc̄ events. The events are divided by the plane
perpendicular to the event thrust axis into two halves, each equivalent to a jet produced
by c- or c-quark fragmentation. The energy of each jet is estimated from its measured
mass and the total c.m. energy. To determine the momentum of the D and the energy of
the neutrino a kinematic fit is performed to the total event, constraining the invariant
mass of the K−e+νe candidate to the D0 mass. The D direction is approximated by
the direction opposite the vector sum of the momenta of all other particles in the event,
except the Kaon and lepton associated with the signal candidate. The neutrino energy is
estimated as the difference between the total energy of the jet containing the Kaon and
charged lepton and the sum of the particle energies in that jet. To suppress combinatorial
background eachD0 candidate is combined with a π+ of the same charge as the lepton and
the mass difference is required to be small, δM =M(D0π+)−M(D0) < 0.160 GeV. The
background-subtracted q2 distribution is corrected for efficiency and detector resolution
effects.
For BaBar’s analysis [455], the normalization of the form factor at q2 = 0 is fK+ (0) =

0.727± 0.007± 0.005± 0.007, where the first error is statistical, the second systematic,
and the third due to uncertainties of external input parameters. In addition to the tradi-
tional parametrization of the form factors as a function of q2 using pole approximations,
BaBar also performed a fit in terms of the expansion in the parameter z. The results are
presented in Fig. 28. A fit to a polynomial shows that data are compatible with a linear
dependence, which is fully consistent with the modified pole ansatz for f+(q

2).
BaBar also reports the branching fraction for D0 → K−e+νe. To obtain the nor-

malization for the signal sample, they perform a largely identical analysis to isolate
a sample of D0 → K−π+ decays, and combine it with the world average B(D0 →
K−π+) = (3.80 ± 0.07)%. The result, the ratio of branching fractions, RD = B(D0 →
K−e+νe)/B(D0 → K−π+) = 0.927 ± 0.007 ± 0.012, translates to B(D0 → K−e+νe) =
(3.522 ± 0.027 ± 0.045 ± 0.065)%, where the last error represents the uncertainty of
B(D0 → K−π+).
The Belle Collaboration has analyzed a sample of 282 fb−1, recorded at or just below

the Υ (4S) resonance [456]. They search for the process, e+e− → cc̄ → D
(∗)
tagD

∗+
sigX , with

D∗+
sig → D0π+

soft [456]. Here X represents additional particles from c-quark fragmentation.

The Dtag is reconstructed as a D0 or D+, in decay modes D → K(nπ) with n =

1, 2, 3. In events that contain a D∗+
sig , the recoil of the D

(∗)
tagXπ

+
soft provides an estimate

of the signal D0-meson energy and momentum vector. Figure 29 shows the invariant

mass spectrum as derived from the D
(∗)
tagXπ

+
soft system. This distribution determines the

number of D0’s in the candidate sample and provides an absolute normalization. In this
sample a search for semileptonic decays D0 → π−ℓ+νℓ or D0 → K−ℓ+νℓ is performed;
here the charged lepton is either an electron or muon. Pairs of a hadron and a lepton of
opposite sign are identified and the neutrino four-momentum is obtained from energy-
momentum conservation. Fig. 30 shows the distribution for the missing mass squared,
M2
ν , which for signal events is required to be consistent with zero, < 0.05 GeV2/c4.
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The resulting branching fractions are B(D0 → K−ℓ+νℓ) = (3.45 ± 0.07 ± 0.20)% and
B(D0 → π−ℓ+νℓ) = (0.255± 0.019± 0.016)%. The measured form factors as a function
of q2 are also included in Fig. 33 for both decay modes. The normalization of the form
factors at q2 = 0 are fK+ (0) = 0.695± 0.007± 0.022 and fπ+(0) = 0.624± 0.020± 0.030.
The CLEO Collaboration analyzed data recorded at the mass at the ψ(3770) resonance,

which decays exclusively to DD̄ pairs. They report measurements of semileptonic decays
of both D0 and D+, for both untagged and tagged events. For the untagged analysis [458]
the normalization of DD̄ pairs is based on a separate analysis [254]. Individual hadrons,
π−, π0, K−, or KS, are paired with an electron and the missing momentum and energy
of the entire event are used to estimate the neutrino four-momentum. The missing mass
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Fig. 28. Babar analysis of D0 → K−e+νe [455]: Measured values for P ×Φ× f+ versus −z, normalized
to 1.0 at z = zmax. The straight lines represent the expectation from the fit to the modified pole ansatz,
the result in the center, as well as the statistical and total uncertainties on either side.

Fig. 29. Belle experiment [456]: Invariant mass distribution for D0
sig candidates.
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squared is required to be consistent with zero. Additionally, the four-momentum of the
signal candidates, i.e., the sum of the hadron, lepton and neutrino energies must be
consistent with the known energy and mass of the D meson. The yield of D mesons
is extracted in five q2 bins. The CLEO Collaboration reports the branching fractions,
B(D0 → K− e+ νe) = (3.56±0.03±0.09)%, B(D0 → π− e+ νe) = (0.299±0.011±0.09)%,
B(D+ → K̄0 e+ νe) = (8.53 ± 0.13± 0.23)%, and B(D+ → π0 e+ νe) = (0.373± 0.022±
0.013)%. Figure 33 includes the CLEO-c untagged results for f+(q

2) versus q2.
Recent results of the CLEO-c tagged analysis [255] were reported for the first time at

this workshop. This analysis is based on a luminosity of 281 pb−1. To tag events, all events
are required to have a hadronic D decay, fully reconstructed in one of eight channels for
D0 and one of six channels for D+. Since the DD̄ system is produced nearly at rest, the
D candidate should have an energy consistent with the beam energy. The beam-energy
substituted mass, mES , is required to be consistent with the known D mass. For this
sample of events, an electron is paired with a hadron, π−, π0, K−, or KS. In DD̄ events
with a signal semileptonic decay, the only unidentified particle is the neutrino. Its energy
and momentum are derived from the missing energy and momentum. The measured
difference of these two quantities, U = Eν − Pν , is used to discriminate signal from
background. Fig. 31 shows the U distribution for the four semileptonic decay modes.
The requirement of a hadronic tag results in extremely pure samples. For the decay
D0 → K− e+ νe the signal-to-noise ratio is about 300. Based on these selected samples
CLEO-c reports the branching fractions, B(D0 → K− e+ νe) = (3.61 ± 0.05 ± 0.05)%,
B(D0 → π− e+ νe) = (0.314±0.013±0.004)%,B(D+ → K̄0 e+ νe) = (8.90±0.17±0.21)%,
and B(D+ → π0 e+ νe) = (0.384± 0.027± 0.023)%. Figure 33 shows the CLEO-c results
for f+(q

2) versus q2.
The CLEO Collaboration has computed the average of the untagged and tagged re-

sults, taking into account all correlations. The results for the branching fractions are
shown in Tab. 26. The untagged analysis contains about 2.5 times more events but has
larger backgrounds and different systematic uncertainties. The product of the form fac-
tor f+(0) and the CKM matrix element is extracted from the combined measurements,
fK+ (0)|Vcs| = 0.744± 0.007± 0.005 and fπ+(0)|Vcd| = 0.143± 0.005± 0.002.
Since the time that the above results were reported at CKM2008, CLEO collabora-

tion has completed a new tagged analysis which is based on the entire 818 pb−1 of
data recorded at the ψ(3770) resonance [459]. The results for the most recent branch-
ing fraction measurements are, B(D0 → K− e+ νe) = (3.50 ± 0.03 ± 0.04)%, B(D0 →
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Table 26
CLEO-c: Absolute branching fractions for tagged, untagged and averaged results.

Tagged Untagged Average

π−e+νe 0.308± 0.013± 0.004 0.299 ± 0.011 ± 0.008 0.304± 0.011± 0.005

π0e+νe 0.379± 0.027± 0.002 0.373 ± 0.022 ± 0.013 0.378± 0.020± 0.012

K−e+νe 3.60± 0.05 ± 0.05 3.56± 0.03± 0.09 3.60 ± 0.03± 0.06

K̄0e+νe 8.87± 0.17 ± 0.21 8.53± 0.13± 0.23 8.69 ± 0.12± 0.19

π− e+ νe) = (0.288± 0.008± 0.003)%, B(D+ → K̄0 e+ νe) = (8.83± 0.10± 0.20)%, and
B(D+ → π0 e+ νe) = (0.405± 0.016± 0.009)%. The measured form factors as a function
of q2 for this analysis are shown at the bottom of Fig. 33. The product of the form fac-
tor f+(0) and the CKM matrix element is extracted from an isospin-combined fit which
yields fK+ (0)|Vcs| = 0.719±0.006±0.005 and fπ+(0)|Vcd| = 0.150±0.004±0.001. The new
CLEO-c results are consistent with the previous CLEO-c measurements and supersede
those measurements.
At this conference BaBar reported a measurement of D+

s → K+K−ℓ+νℓ decays [460].
Events with a K+K− mass in the range 1.01−1.03GeV/c2 are selected, corresponding to
φ→ K+K− decays, except for a small S-wave contribution which is observed for the first
time. Since the final state meson is a vector, the decay rate depends on five variables, the
mass squared of the K+K− pair, q2 and three decay angles, and on three form factors,
A1, A2 and V , for which the q2 dependence is assumed to be dominated by a single pole,

V (q2) =
V (0)

1− q2/m2
V

, A1,2(q
2) =

A1,2(0)

1− q2/m2
A

, (223)

with a total of five parameters, the normalizations V (0), A1(0), A2(0) and the pole masses
mV and mA. In a data sample of 214 fb−1, the BaBar Collaboration selects about 25,000
signal decays, about 50 times more than the earlier analysis by FOCUS [461]. The signal
yield and the form factor ratios are extracted from a binned maximum likelihood fit to the

Fig. 31. CLEO-c tagged analysis [255]: Signal distributions (U = Eν − Pν) for the four semileptonic D
decay channels.
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four-dimensional decay distribution, r2 = A2(0)/A1(0) = 0.763± 0.071± 0.065 and rV =
V (0)/A1(0) = 1.849±0.060±0.095, as well as the pole massmA = 2.28+0.23

−0.18±0.18GeV/c2.
The sensitivity to mV is weak and therefore this parameter is fixed to 2.1GeV/c2. The
result of the fit is shown in Fig. 32. The small S-wave contribution, which can be asso-
ciated with f0 → K+K− decays, corresponds to (0.22+0.12

−0.08 ± 0.03)% of the K+K−e+νe
decay rate. The D+

s → K+K−e+νe branching fraction is measured relative to the de-
cay D+

s → K+K−π+, resulting in B(D+
s → K+K−e+νe)/B(D+

s → K+K−π+) =
0.558±0.007±0.016, from which the absolute total branching fraction B(D+

s → φe+νe) =
(2.61± 0.03± 0.08± 0.15)% is obtained. By comparing this quantity with the predicted
decay rate, using the fitted parameters for the form factors, the absolute normalization
A1(0) = 0.607± 0.011± 0.019± 0.018 was determined for the first time. The third error
stated here refers to the combined uncertainties from various external inputs, namely
branching fractions for D+

s , and φ, the D
+
s lifetime and |Vcs|. Lattice QCD calculations

for this decay have been performed only in the quenched approximation. They agree with
the experimental results for A1(0), r2 and mA, but are lower than the measured value
of rV . It would be interesting to see if unquenched calculations are in better agreement
with experimental results.
In summary, BaBar, Belle and CLEO-c have measured D meson semileptonic branch-

ing fractions and hadronic form factors in a variety of decay modes, using complementary
experimental approaches. The results from the experiments are highly consistent. With
lattice QCD prediction for the form factors, these results will allow a precise determina-
tion of Vcs and Vcd. Fig. 33 shows a compilation of all form factor measurements, f+(q

2)
versus q2. All analyses presented here have performed studies of the q2 parameterizations
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Fig. 32. BaBar [460]: Projected distributions of the four kinematic variables. The data (points with
statistical errors) are compared to the sum of four contributions: the fitted signal (hatched histograms)
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uu, dd, and ss events.

120



Table 27
Summary of the form factors parameters obtained by the different experiments for D → K semileptonic

decays. The first column gives the simple pole mass, the second the parameter α used in the modified
pole model, and the third the normalization.

Mpole[ GeV/c2] α f+(0)

Belle [456] 1.82± 0.04 ± 0.03 0.52± 0.08± 0.06 0.695± 0.007± 0.022

BaBar [455] 1.884± 0.012± 0.015 0.38± 0.02± 0.03 0.727± 0.007± 0.005± 0.007

CLEO-c [459] 1.93± 0.02 ± 0.01 0.30± 0.03± 0.01 0.739± 0.007± 0.005

LQCD [463] 0.50± 0.04± 0.07 0.73± 0.03± 0.07

and extractions of the associated parameters. A summary of these measurements is given
in Tabs. 27 and 28, as well as the values obtained by lattice QCD computation [463].
The reader is referred to the references for more details.
Measurements of D → πℓνℓ and D → V ℓνℓ will benefit from the increased data sam-

ples expected in the near future. Of particular interest is the anticipated ψ(3770) running
of BES-III. The BES-III Collaboration began data accumulation in July of 2008. The
experiment is comparable to CLEO-c in detector design but has superior muon identifi-
cation performance, but worse performance for hadron identification, and is expected to
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Table 28
Summary of the form factors parameters obtained by the different experiments for D → π semileptonic

decays. The first column gives the simple pole mass, the second the parameter α used in the modified
pole model, and the third the normalization.

Mpole[ GeV/c2] α f+(0)

Belle [456] 1.97± 0.08 ± 0.04 0.10± 0.21± 0.10 0.624± 0.020± 0.030

CLEO-c [459] 1.91± 0.02 ± 0.01 0.21± 0.07± 0.02 0.666± 0.019± 0.004± 0.003

LQCD [463] 0.44± 0.04± 0.07 0.64± 0.03± 0.06

accumulate at least an order of magnitude more data. The muon identification will allow
access to all the semileptonic modes covered in this section from a single experiment.

5.1.3. Measurements of B branching fractions and q2 dependence
Exclusive semileptonic decays B → Xuℓν, where Xu denotes a charmless hadronic

final state, have been reported by the CLEO, BaBar, and Belle collaborations [464–
473]. The specification of the final state provides good kinematic constraints and an
effective background rejection, but results in lower signal yields compared with inclusive
measurements. Three experimental techniques that differ in the way the second B meson
in the BB event is treated have been employed in these measurements. The second B
meson is either fully reconstructed in a hadronic decay mode (“hadronic tags”), partially
reconstructed in a semileptonic decay mode (“semileptonic tags”) or not reconstructed
at all (“untagged”). The tagged and untagged methods differ greatly in terms of signal
efficiency and purity.
B → πℓν
The B → πℓν decay is the most promising decay mode for a precise determination of

|Vub|, both for experiment and for theory. A number of measurements with different tag-
ging techniques exist, but at present the untagged analyses, which were first performed
by the CLEO collaboration [465], still provide the most precise results. In untagged anal-
yses, the momentum of the neutrino is inferred from the missing energy and momentum
in the whole event. The neutrino is combined with a charged lepton and a pion to form
a B → πℓν candidate. The biggest experimental challenge is the suppression of the
B → Xcℓν background. Additional background sources are e+e− → qq (q = u, d, s, c)
continuum events, which dominate at low q2, and feed-down from other B → Xuℓν
decays, which dominate at high q2.
The BaBar experiment has measured the B → πℓν branching fraction and q2 spec-

trum with a good accuracy [466]. In this analysis, the signal yields are extracted from a
maximum-likelihood fit to the two-dimensional ∆E vs. mES distribution of the signal B
meson in twelve bins of q2 (see Fig. 34). This fit allows for an extraction of the q2 depen-
dence of the form factor f+(q

2). The shape of the measured spectrum is compatible with
the ones predicted from LQCD [427,428] and LCSR [444] calculations, but incompatible
with the ISGW2 quark model [474]. A fit to the q2 spectrum using the Becirevic-Kaidalov
(BK) parametrization yields a shape parameter α = 0.52± 0.05± 0.03 with a goodness-
of-fit of P (χ2) = 0.65. Other parameterizations, e.g. the z-expansion, have been used
in a simultaneous fit of the BaBar data and LQCD calculations [411]. The measured
partial branching fractions are extrapolated to the full decay rate and, in combination
with recent form-factor calculations, used to determine |Vub|
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The leading experimental systematic uncertainties are associated with the reconstruc-
tion of charged and neutral particles, which impact the modeling of the missing momen-
tum reconstruction, and with backgrounds from continuum events at low q2 and from
B → Xuℓν decays at high q2. Due to the feed-down from B → ρℓν decays, the uncer-
tainties on the branching fraction and form factors for this decay mode contribute to the
systematic uncertainty. A simultaneous measurement of B → πℓν and B → ρℓν decays
can reduce this uncertainty.
Recently several tagged measurements have appeared [467, 468, 471, 472]. They have

led to a simpler and more precise reconstruction of the neutrino momentum and have low
backgrounds and a uniform acceptance in q2. This is achieved, however, at the expense of
much smaller signal samples which limit the statistical precision of the form-factor mea-
surement. Semileptonic-tag measurements have a signal-to-background ratio of around
1–2 and yield ∼ 0.5 signal decays per fb−1. The signal is extracted from the distribution
of events in cos2 φB, where φB is the angle between the direction of either B meson and
the plane containing the momentum vectors of the tag-side D∗ℓ system and the signal-
side πℓ system [467]. Hadronic-tag measurements reach signal-to-background ratios of up
to ∼ 10 and yield ∼ 0.1 signal decays per fb−1. Here the signal is extracted from the
missing-mass squared distribution (see Fig. 35).
Tab. 29 summarizes all B → πℓν branching-fraction measurements; shown are the

total branching fraction as well as the partial branching fractions for q2 < 16 GeV2 and
q2 > 16 GeV2 with statistical and systematic uncertainties. The measurements agree well
among each other. A combination of all measurements results in an average branching
fraction of 1.34× 10−4 with a precision of 6% (4% statistical and 4% systematic).
B → η/η′/ρ/ωℓν
In addition to B → πℓν, the experiments have measured other semileptonic final states

with a pseudoscalar meson, η [465, 467, 469, 475] or η′ [464, 467, 475], or a vector meson,
ρ [464,465,470–472] or ω [469,473]. They are important ingredients to the determination
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Fig. 34. Untagged B → πℓν measurement from BaBar [466]. Left: ∆E and mES projections for
q2 < 16 GeV2 and q2 > 16 GeV2. Right: Measured q2 spectrum compared with a fit of the BK
parametrization and with theory predictions from LQCD [427, 428], LCSR [444] and the ISGW2 quark
model [474].
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Table 29
Total and partial branching fractions for B0 → π−ℓ+ν with statistical and systematic uncertainties.

Measurements of B(B+ → π0ℓ+ν) have been multiplied by a factor 2τB0/τB+ .

L( fb−1) B × 104 ∆B(q2 < 16) × 104 ∆B(q2 > 16) × 104

BaBar no tag (π−) [466] 206 1.45± 0.07± 0.11 1.08± 0.06± 0.09 0.38± 0.04± 0.05

CLEO no tag (π−,π0) [464] 16 1.38± 0.15± 0.11 0.97± 0.13± 0.09 0.41± 0.08± 0.04

BaBar sl. tag (π−) [467] 348 1.39± 0.21± 0.08 0.92± 0.16± 0.05 0.46± 0.13± 0.03

Belle sl. tag (π−) [471] 253 1.38± 0.19± 0.15 1.02± 0.16± 0.11 0.36± 0.10± 0.04

BaBar sl. tag (π0) [467] 348 1.80± 0.28± 0.15 1.38± 0.23± 0.11 0.45± 0.17± 0.06

Belle sl. tag (π0) [471] 253 1.43± 0.26± 0.15 1.05± 0.23± 0.12 0.37± 0.15± 0.04

BaBar had. tag (π−) [468] 211 1.07± 0.27± 0.19 0.42± 0.18± 0.06 0.65± 0.20± 0.13

Belle had. tag (π−) [472] 605 1.12± 0.18± 0.05 0.85± 0.16± 0.04 0.26± 0.08± 0.01

BaBar had. tag (π0) [468] 211 1.54± 0.41± 0.30 1.05± 0.36± 0.19 0.49± 0.23± 0.12

Belle had. tag (π0) [472] 605 1.24± 0.23± 0.05 0.85± 0.16± 0.04 0.41± 0.11± 0.02

Average 1.36± 0.05± 0.05 0.94± 0.05± 0.04 0.37± 0.03± 0.02

Table 30
Total branching fractions for exclusive B → Xuℓν decays with Xu = η, η′, ρ, or ω. †The BaBar collabo-
ration reports an upper limit of B(B+ → η′ℓ+ν) < 0.47 at 90% CL [467].

Decay mode B × 104 σstat × 104 σsyst × 104

B+ → ηℓ+ν (BaBar average) [469] 0.37 0.06 0.07

B+ → η′ℓ+ν (CLEO no tag) [464]† 2.66 0.80 0.56

B0 → ρ−ℓ+ν (average) 2.80 0.18 0.16

B+ → ωℓ+ν (BaBar no tag) [469] 1.14 0.16 0.08

of the composition of the inclusive B → Xuℓν rate. They may also help to further
constrain theoretical form-factor calculations and provide valuable cross-checks for the
determination of |Vub| from B → πℓν. The LQCD calculations for these final states are
challenging. For the flavor-neutral final-state mesons, η, η′ and ω, the matrix element
contains contributions from quark-disconnected diagrams. For the ρ final state, the large
width of the ρ resonance complicates the calculations.
The η and η′ modes have been measured by the CLEO and BaBar collaboration.

The limit on B(B → η′ℓν) published by BaBar [467] agrees only marginally with the
CLEO result [464] (at the 2.6σ level). Further measurements are needed to resolve this
discrepancy. In the future, a measurement of the ratio Rη′η = B(B → η′ℓν)/B(B → ηℓν)
would be interesting to constrain the gluonic singlet contribution to the B → η(′) form
factor, as proposed in [447].
The B → ρℓν decay has a larger rate than charmless semileptonic decays into pseu-

doscalar mesons, but one must deal with the non-resonant ππ contribution, which leads
to a sizable systematic uncertainty. The kinematics of decays with vector mesons are
described by three form factors. The statistical precision in current analyses is still too
low to measure these form factors. As an example, Fig. 35 shows the missing-mass and
q2 spectra of B → ρℓν and B → ωℓν decays measured by the Belle collaboration in
a hadronic-tag analysis [472]. Tab. 30 summarizes the most precise branching fraction
results for semileptonic B decays to low-mass charmless hadrons heavier than the pion.
Prospects for exclusive charmless decays
The outlook for further improvements in these measurements for the full B-factory
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datasets and for a Super B factory is good. It can be expected that for B → πℓν
the untagged measurements will remain the most precise up to integrated luminosities
of several ab−1. To reduce the systematic uncertainties of untagged measurements, a
better knowledge of inclusive B → Xuℓν decays is important, since they are the biggest
limitation in the high-q2 region where LQCD calculations exist. In addition, a significant
fraction of the BB background comes from events, where the signal B meson has been
wrongly reconstructed by assigning one or more particles from the decay of the other B
meson to the signal decay. To reduce this uncertainty, much effort is needed to improve
the simulation of generic B-meson decays. With the full B-factory dataset, a precision
of about 4-5% should be achievable for the total B → πℓν branching fraction.
The tagged measurements in particular will improve with larger data samples. The

systematic uncertainties in these measurements have a significant statistical component
and thus the total experimental error is expected to fall as 1/

√
N . For the higher-mass

states, the tagged measurements should soon give the most precise branching-fraction
results. However, the larger data samples from untagged analyses will be needed to
extract information on the three form factors involved in decays with a vector meson.
For an integrated luminosity of 1–2 ab−1, several thousand B → ρℓν and B → ωℓν
decays can be expected. These signal samples will allow us to obtain some information
on the form factors or ratios of form-factors through a simultaneous fit of the q2 spectrum
and decay-angle distributions, similar to the study of B → D∗ℓν decays. A measurement
of all three form factors will most likely not be feasible with the current B-factory data
samples.

5.1.4. Determination of |Vcs|, |Vcd|, |Vub|
Once both the form factor |f+(q2)|2 and the experimental decay width Γ(qmin) are

known, the CKM matrix element |VqQ| can be determined in several ways. We briefly
describe the two most common methods below.
Until recently the standard procedure used to extract CKM matrix elements from
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Fig. 35. Belle hadronic-tag measurements [472]: Missing-mass squared distributions and q2 spectra for
B → ρℓν and B → ωℓν decays.
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exclusive semileptonic decays has been to integrate the theoretically determined form
factor over a region of q2 and then combine it with the experimentally measured decay
rate in this region:

Γ(qmin)

|VqQ|2
=

G2
F

192π3m3
H

∫ q2max

q2
min

dq2
[
(m2

H +m2
P − q2)2 − 4m2

Hm
2
P

]3/2 |f+(q2)|2. (224)

The integration requires a continuous parametrization of the form factor between q2min

and q2max that is typically obtained by fitting the theoretical form factor result to a model
function such as the Bećirević-Kaidalov (BK) [476] or Ball-Zwicky (BZ) parametriza-
tion [444]. The three-parameter BK Ansatz,

f+(q
2) =

f+(0)

(1− q2/m2
B∗) (1− α q2/m2

B∗)
, (225)

f0(q
2) =

f+(0)

(1− q2/βm2
B∗)

, (226)

incorporates many essential features of the form factor shape such as the kinematic
constraint at q2 = 0, heavy-quark scaling, and the location of the B∗ pole. The four-
parameter BZ Ansatz extends the BK expression for f+(q

2) by including an additional
pole to capture the effects of multiparticle states.
In general, the use of a model function to parametrize the form factor introduces

assumptions that make it difficult to quantify the agreement between theory and exper-
iment and gives rise to a systematic uncertainty in the CKM matrix element |VqQ| that
is hard to estimate. It is likely that this error can be safely neglected when interpolating
between data points. Thus the choice of fit function should have only a slight impact on
the exclusive determinations of |Vcs| and |Vcd| because lattice-QCD calculations and ex-
perimental measurements possess a large region of overlap in q2. It is less clear, however,
how well the BK and BZ Ansätze can be trusted to extrapolate the form factor shape
beyond the reach of the numerical lattice-QCD data or the experimental data. Thus one
should be cautious in using them for the exclusive determination of |Vub| via Eq. (224),
since an extrapolation in q2 is necessary both for lattice QCD, which is most accurate
at high q2, and for experimental measurements, which are most precise at low values of
q2. In particular, comparisons of lattice and experimental determinations of BK or BZ
fit parameters are potentially misleading, because apparent inconsistencies could simply
be due to the inadequacy of the parametrization.
Recently, several groups have begun to use model-independent parameterizations for

the exclusive determination of |Vub| [410–415, 477]. This avoids the concerns about the
BK and BZ Ansätze outlined above, and should become the standard method for de-
termining |Vub| and other CKM matrix elements from semileptonic decays in the near
future. For concreteness, here we focus on the z-expansion given in Eq. (207), but the
procedure for determining |Vub| outlined here should apply to other model-independent
parameterizations. Because the z-expansion relies only on analyticity and unitarity, it can
be trusted to extrapolate the form factor shape in q2 beyond the reach of the data. One
can easily check for consistency between theory and experiment using this parametriza-
tion by fitting the data separately and comparing the slope (a1/a0), curvature (a2/a0),
and so forth. Finally, because as many terms can be added to the convergent series as are
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Fig. 36. Model-independent determination of |Vub| from a simultaneous fit of lattice and experimen-
tal B → πℓν semileptonic form factor data to the z-parametrization [411]. Inclusion of terms in the
power-series through z3 yields the maximum uncertainty in |Vub|; the corresponding 4-parameter z-fit
is given by the red curve in both plots. The circles denote the Fermilab-MILC lattice-QCD calcula-
tion [411], while the stars indicate the 12-bin Babar data [466], rescaled by the value of |Vub| determined
in the simultaneous z-fit.

needed to describe the B → πℓν form factor to the desired accuracy, the parametrization
can be systematically improved as theoretical and experimental data get better.
Once the shapes of the theoretical and experimental form factor data are determined

to be consistent, the CKM matrix element |Vub| is given simply by the ratio of the nor-
malizations, |Vub| = aexp.0 /atheo.0 . The total uncertainty in |Vub| can be reduced, however,
by fitting the theoretical and experimental data simultaneously, leaving the relative nor-
malization as a free parameter to be determined [411]. The combined fit incorporates
all of the available data, thereby allowing the numerical lattice QCD data primarily to
dictate the shape at high q2 and the experimental data largely to determine the shape at
low q2. Although the theoretical and experimental data are uncorrelated, it is important
to include the correlations between experiments or between theoretical calculations, de-
spite the fact that they can be difficult to ascertain. Fig. 36 shows an example combined
fit to the model-independent z-parametrization that uses 2+1 flavor lattice QCD results
from Fermilab/MILC [411] and experimental data from BABAR [466].
Combining the most recent experimental measurements of D → Kℓν and D → πℓν

form factors with the 2+1 flavor lattice QCD calculations from the Fermilab/MILC
collaboration [285, 463], CLEO finds [459]

|Vcd|= 0.234± 0.007± 0.025, (227)

|Vcs|= 0.985± 0.012± 0.103, (228)

where the errors are experimental and theoretical, respectively. These determinations
rely upon the BK parametrization, both to parametrize the theoretical D → πℓν and
D → Kℓν form factor shapes for use in Eq. (224) and within the lattice QCD calculation
itself. Although this is unlikely to introduce a significant systematic error, use of one of
the many model-independent functional forms available would be preferable. The largest
uncertainties in both |Vcs| and |Vcd| are from discretization errors in the lattice QCD

127



calculation, and can be reduced by simulating at a finer lattice spacing. Because the
lattice calculations of the D → πℓν and D → Kℓν form factors can improved in a
straightforward manner, without requiring new techniques, we expect the errors in both
|Vcd| and |Vcs| to decrease significantly in the near future.
Most recent exclusive determinations of |Vub| rely upon the 2+1 flavor lattice QCD

calculations of the B → πℓν form factor of the HPQCD and Fermilab/MILC collabora-
tions [285, 427, 428]. Those which use model-independent parameterizations of the form
factor shape often incorporate additional theoretical points from light cone sum rules,
soft collinear effective theory, and chiral perturbation theory [410, 412, 413, 415]. All of
the results for |Vub| are consistent within uncertainties. We show a representative sample
of these results, along with two model-dependent determinations that rely on the BK
and BZ parameterizations for comparison, in Fig. 37. Below we quote the most recent
calculation by Fermilab/MILC because this is the only one to use a model-independent
parametrization along with the full correlation matrices, derived directly from the data,
for both theory and experiment [411]:

|Vub| = (3.38± 36)× 10−3, (229)

where the total uncertainty is the sum of statistical, systematic, and experimental errors
added in quadrature. The dominant theoretical uncertainty in |Vub| comes from statistics
and the extrapolation to the physical up and down quark masses and to the continuum.
The sub-dominant uncertainties, which are of comparable size, are due to the perturbative
renormalization of the heavy-light vector current and heavy-quark discretization errors
in the action and current. All of these errors can be reduced by increasing statistics and
simulating at a finer lattice spacing. We therefore expect the total uncertainty in |Vub|
determined from B → πℓν semileptonic decay to decrease in the next few years.

5.2. B → D(∗)ℓν decays for |Vcb|

5.2.1. Theoretical background: HQS and HQET
The matrix elements of semileptonic decays can be related to a set of form factors. In

the conventions of refs. [478–480], the matrix elements relevant for B → D(∗)ℓν decays
are

〈D|Vµ|B〉√
mBmD

= (vB + vD)
µh+ + (vB − vD)

µh−, (230)

〈D∗
α|Vµ|B〉√
mBmD∗

= εµνρσvνBv
ρ
D∗ǫ

∗σ
α hV , (231)

〈D∗
α|Aµ|B〉√
mBmD∗

= iǫ∗να [hA1(1 + w)gµν − (hA2v
µ
B + hA3v

µ
D∗)v

ν
B ], (232)

where mB and mD(∗) are the masses of the B and D(∗) mesons, respectively, vB,D(∗) =
pB,D(∗)/mB,D(∗) is the 4-velocity of the mesons, εµνρσ is the totally antisymmetric tensor
in 4 dimensions, and ǫµα is the polarization vector of D∗

α, with

3∑

α=1

ǫ∗µα ǫ
ν
α = −gµν + vµD∗v

ν
D∗ . (233)
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Fig. 37. Determinations of |Vub| that rely upon 2+1 flavor lattice QCD calculations. The upper two
results use the BK and BZ parameterizations, respectively, to describe the the B → πℓν form factor,
while the lower three results use different model-independent parameterizations.

The form factors depend on the heavy-light meson masses, and on the velocity transfer
from initial to final state w = vB · vD(∗) . The values of w are constrained by kinematics
to fall in the range

1 ≤ w ≤ m2
B +m2

D(∗)

2mBmD(∗)

, (234)

with the largest value ofw around 1.5. The usual invariant q2 = m2
B+m

2
D(∗)−2wmBmD(∗) .

The differential rate for the decay B → Dℓν is

dΓ(B → Dℓν)

dw
=

G2
F

48π3
m3
D(mB +mD)

2(w2 − 1)3/2|Vcb|2|G(w)|2, (235)

with

G(w) = hB→D
+ (w) − mB −mD

mB +mD
hB→D
− (w). (236)

The differential rate for the semileptonic decay B → D∗ℓνℓ is

dΓ(B → D∗ℓν)

dw
=
G2
F

4π3
m3
D∗(mB −mD∗)2

√
w2 − 1|Vcb|2χ(w)|F(w)|2 , (237)

where χ(w)|FB→D∗ (w)|2 contains a combination of four form factors that must be cal-
culated nonperturbatively. At zero recoil χ(1) = 1, and F(1) reduces to a single form
factor, hA1(1). At non-zero recoil, all four form factors contribute, yielding
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χ(w) =
w + 1

12

(
5w + 1− 8w(w − 1)mBmD∗

(mB −mD∗)2

)
, (238)

F(w) = hA1(w)
1 + w

2

√
H2

0 (w) +H2
+(w) +H2

−(w)

3χ(w)
, (239)

with

H0(w) =
w −mD∗/mB − (w − 1)R2(w)

1−mD∗/mB
, (240)

H±(w) = t(w)

[
1∓

√
w − 1

w + 1
R1(w)

]
, (241)

t2(w) =
m2
B − 2wmBmD∗ +m2

D∗

(mB −mD∗)2
, (242)

R1(w) =
hV (w)

hA1(w)
, (243)

R2(w) =
hA3(w) + (mD∗/mB)hA2(w)

hA1(w)
. (244)

Eqs. (235) and (237) hold for vanishing lepton mass, and there are corrections analo-
gous to those in Eq. (203). For semimuonic decays, these effects are included in recent
experimental analyses.
In the limit of infinite heavy-quark mass, all heavy quarks interact in the same way

in heavy light mesons. This phenomenon is known as heavy quark symmetry (HQS).
For example, given that a heavy quark has spin quantum number 1/2, the quark has
a chromomagnetic moment g/(2mQ), which vanishes as the heavy quark mQ goes to
infinity. Thus, in a meson, the interaction between the spin of the heavy quark and the
light degrees of freedom is suppressed. The heavy-light meson is then symmetric under
a change in the z-component of the heavy-quark spin, and this is known as heavy-quark
spin symmetry.
In the heavy-quark limit we have that the velocity of the heavy quark is conserved

in soft processes. Thus, the mass-dependent piece of the momentum operator can be
removed by a field redefinition,

hQ(v, x) =
1+ 6v
2

eimQv·xQ(x), (245)

where (1+ 6v)/2 is a projection operator, and Q(x) is the conventional quark field in QCD.
If the quark has a total momentum Pα, the new field carries a residual momentum kα =
Pα−mQv

α. In the limit mQ → ∞, the effective Lagrangian for heavy quarks interacting
via QCD becomes

LHQET = hQiv ·DhQ, (246)

where Dα = ∂α − igstaA
α
a is the covariant derivative. For large but finite mQ, this

Lagrangian receives corrections from terms of higher-dimension proportional to inverse
powers of mQ. These corrections break the HQS of the leading order Lagrangian, but
are well-defined at each order of the expansion, and can be included in a systematic way.

130



The resulting Lagrangian is known as the Heavy-Quark Effective Theory (HQET). The
higher-dimension operators in the HQET come with coefficients that are determined by
matching to the underlying, fundamental theory, namely QCD.
In lattice simulations, it is not possible to treat quarks where the mass in lattice units

amQ is large compared to 1 using conventional light-quark methods. All lattice heavy-
quark methods make use of HQET in order to avoid the large discretization effects that
would result from such a naive treatment. For lattices currently in use, amc ∼ 0.5− 1.0
and amb ∼ 2−3, so HQETmethods are essential for precision calculations. For a technical
review of these methods, see Ref. [86].
One approach consists in simulating a discrete version of the HQET action, introduced

in Ref. [481], by treating the sub-leading operators as insertions in correlation functions.
The matching procedure is particularly complicated on the lattice because of the presence
of power divergences that arise as a consequence of the mixing of operators of lower
dimensions with the observable of interest, but it can be carried out with non-perturbative
accuracy [482] by means of a finite volume technique (see also [483] for a review of the
subject).
The Fermilab approach makes use of the fact that the Wilson fermion action reproduces

the static quark action in the infinite mass limit. Higher dimension operators can then
be adjusted in a systematic way. Each higher dimension operator has a counterpart in
HQET, and once the coefficients of the new operators are tuned to the appropriate
values, the lattice action gives the continuum result, to a given order in HQET. To order
ΛQCD/2mQ, the only new operator is a single dimension 5 term, and this is the same
term that is added to the Wilson fermion action to improve it in the light quark sector.
(The power of 2 is a combinatoric factor appropriate to the HQET expansion.) This
improved action is known as the Sheikholeslami- Wohlert action [484], and the tunings of
the parameters in this action appropriate to heavy quarks is the Fermilab method now
in common use [83, 485]. Higher order improvement to the Fermilab method, including
operators of even higher dimension, has been proposed in Ref. [486].
Another approach to handle with heavy quarks on the lattice is the so-called “step-

scaling method” [487]. Within the step-scaling method the dynamics of the heavy quarks
is resolved by making simulations on small volumes (L ≃ 0.5 fm) without recurring to
any approximation but introducing, at intermediate stages, finite volume effects. These
are subsequently accounted for by performing simulations on progressively larger volumes
and by relying on the observation that sub-leading operators enter the HQET expansion
of finite volume effects multiplied by inverse powers of LmQ. The success of this approach
depends on the possibility of computing the finite volume observable, finite volume effects
and their product with smaller errors and systematics with respect to the ones that would
be obtained by a direct calculation. The strength of the method is a great freedom in the
definition of the observable on finite volumes provided that its physical value is recovered
at the end of the procedure.
The Fermilab Lattice Collaboration introduced a double ratio in order to compute h+

at zero-recoil [488]

〈D|cγ4b|B〉〈B|bγ4c|D〉
〈D|cγ4c|D〉〈B|bγ4b|B〉

= |h+(1)|2 . (247)

This double ratio has the advantage that the statistical errors and many of the systematic
errors cancel. The discretization errors are suppressed by inverse powers of heavy-quark

131



mass as αs(ΛQCD/2mQ)
2 and (ΛQCD/2mQ)

3 [83], and much of the current renormaliza-
tion cancels, leaving only a small correction that can be computed perturbatively [85].
The extra suppression of discretization errors by a factor of ΛQCD/2mQ occurs at zero-
recoil for heavy-to-heavy transitions, and is a consequence of Luke’s Theorem [489].
In order to obtain h−, it is necessary to consider non-zero recoil momenta. In this case,

Luke’s theorem does not apply, and the HQET power counting leads to larger heavy-
quark discretization errors. However, this is mitigated by the small contribution of h− to
the branching fraction. The form factor h− can be determined from the double ratio [488]

〈D|cγjb|B〉〈D|cγ4c|D〉
〈D|cγ4b|B〉〈D|cγjb|D〉 =

[
1− h−(w)

h+(w)

] [
1 +

h−(w)

2h+(w)
(w − 1)

]
, (248)

which can be extrapolated to the zero-recoil point w = 1. Using the double ratios of
Eqs. (247) and (248) the latest (preliminary) unquenched determinations of h+(1) and
h−(1) from the Fermilab Lattice and MILC Collaborations combine to give [490]

G(1) = 1.074(18)(16), (249)

where the first error is statistical and the second is the sum of all systematic errors in
quadrature.
The form factor at zero-recoil needed for B → D∗ℓν has been computed by the Fer-

milab Lattice and MILC Collaborations using the double ratio [491]

〈D∗|cγjγ5b|B〉〈B|bγjγ5c|D∗〉
〈D∗|cγ4c|D∗〉〈B|bγ4b|B〉

= |hA1(1)|2 , (250)

where again, the discretization errors are suppressed by inverse powers of heavy-quark
mass as αs(ΛQCD/2mQ)

2 and (ΛQCD/2mQ)
3, and much of the current renormalization

cancels, leaving only a small correction that can be computed perturbatively [85]. They
extrapolate to physical light quark masses using the appropriate rooted staggered chiral
perturbation theory [492]. Including a QED correction of 0.7% [302], they obtain [491]

F(1) = 0.927(13)(20), (251)

where the first error is statistical and the second is the sum of systematic errors in
quadrature.
Because of the kinematic suppression factors (w2 − 1)3/2 and (w2 − 1)1/2 appearing

in Eqs. (235) and (237), respectively, the experimental decay rates at zero recoil must
be obtained by extrapolation. The extrapolation is guided by theory, where Ref. [493]
have used dispersive constraints on the form factor shapes, together with heavy-quark
symmetry to provide simple, few parameter, extrapolation formulas expanded about the
zero-recoil point,

hA1(w) = hA1(1)
[
1− 8ρ2D∗z + (53ρ2D∗ − 15)z2 − (231ρ2D∗ − 91)z3

]
, (252)

R1(w) = R1(1)− 0.12(w − 1) + 0.05(w − 1)2, (253)

R2(w) = R2(1) + 0.11(w − 1)− 0.06(w − 1)2, (254)

G(w) = G(1)
[
1− 8ρ2Dz + (51ρ2D − 10)z2 − (252ρ2D − 84)z3

]
, (255)

with

z =

√
w + 1−

√
2√

w + 1 +
√
2
. (256)
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Table 31
Quenched results for G(w) and ∆(w) at non zero recoil [478, 479]. The notation “(q)” stays for the

unknown systematics coming from the quenching approximation. QED corrections not included.

w G(w) ∆(w)

1.000 1.026(17)(q) 0.466(26)(q)
1.030 1.001(19)(q) 0.465(25)(q)
1.050 0.987(15)(q) 0.464(24)(q)
1.100 0.943(11)(q) 0.463(24)(q)
1.200 0.853(21)(q) 0.463(23)(q)

Table 32
Quenched results for F(w) and F(w)/G(w) at non zero recoil [480]. The notation “(q)” stands for the
unknown systematics coming from the quenching approximation. QED corrections not included.

w F(w) F(w)/G(w)

1.000 0.917(08)(05)(q) 0.878(10)(04)(q)
1.010 0.913(09)(05)(q) 0.883(09)(04)(q)
1.025 0.905(10)(05)(q) 0.891(09)(04)(q)
1.050 0.892(13)(04)(q) 0.905(10)(04)(q)
1.070 0.880(17)(04)(q) 0.914(12)(05)(q)
1.075 0.877(18)(04)(q) 0.916(12)(05)(q)
1.100 0.861(23)(04)(q) 0.923(16)(05)(q)

This approach is employed below to determine G(1)|Vcb| and F(1)|Vcb|.
These extrapolations introduce a systematic error into the extraction of |Vcb| that,

although mild for B → D∗ℓν, can be eliminated by calculating the form factors at
non zero recoil. A first step on this route has been done by applying the step scaling
method to calculate, in the quenched approximation, G(w) and F(w) for values of w
where experimental data are directly available. The form factors have been defined on
the lattice entirely in terms of ratios of three-point correlation functions, analogously to
the double ratios discussed above, obtaining in such a way a remarkable statistical and (a
part from quenching) systematic accuracy. All the details of the calculations, including
chiral and continuum extrapolations and discussions on the sensitiveness of finite volume
effects on the heavy quark masses, can be found in refs. [478–480]. The results are shown in
Tab. 31 and Tab. 32. The quantity ∆(w) appearing in Tab. 31 is required to parametrize
the decay rate B → Dτντ and its knowledge with non perturbative accuracy opens the
possibility to perform lepton-flavor universality checks on the extraction of |Vcb| from
this channel. On the one hand, the phenomenological relevance of the results of Tab. 31
and Tab. 32 is limited by the quenching uncertainty that cannot be reliably quantified.
On the other hand, these results shed light on the systematics on |Vcb| coming from the
extrapolation of the experimental decay rates at zero recoil. The agreement at zero recoil
with the full QCD results, Eqs. (249) and (251), suggests that the unestimated quenching
error may be comparable to the present statistical error.

5.2.2. Measurements and Tests
Measurements of the partial decay widths dΓ/dw for the decays B → D(∗)ℓν have been

performed for more than fifteen years on data recorded at the Υ (4S) resonance (CLEO,
Babar, Belle), and at LEP. Though this review will cover only the most recent measure-
ments, it will offer an almost complete overview of the analysis techniques employed so
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far.
A semileptonic decay is reconstructed by combining a charged lepton, ℓ, either an

electron or a muon, and a charm meson of the appropriate charge and flavor. To reject
non-BB background, only leptons with momentum pℓ < 2.3 GeV/c are accepted. To
suppress fake leptons and leptons from secondary decays, a lower bound pℓ is usually
applied, in the range from 0.6 to 1.2 GeV/c, depending on the analysis.D mesons are fully
reconstructed in several hadronic decay channels. Charged and neutral D∗ are identified
by their decays to Dπ. In Υ (4S) decays, the energy and momentum of the B mesons, EB
and |pB|, are well known 13 . Since the neutrino escapes detection, the B decay usually
is not completely reconstructed. However, kinematic constraints can be applied to reject
background. In particular, if the massless neutrino is the only unobserved particle, the
B-meson direction is constrained to lie on a cone centered along the D(∗)ℓ momentum
vector, pD(∗)ℓ, with an opening angle θBY bounded by the condition | cos θBY | ≤ 1 (see
Eq. 104 for the exact definition). Background events from randomD(∗)ℓ combinations are
spread over a much larger range in cos θBY and decays of the type B → D(∗)ππℓν, where
the additional pions are not reconstructed, accumulate mainly below cos θBY = −1.
The differential decay rate d4Γ/dwd cos θℓd cos θV dχ depends on four variables: w =

vB · vD(∗) , θℓ, the angle between the lepton direction in the virtual W rest frame and the
W direction in the B rest frame, θV , the angle between the D-meson direction in the
D∗ rest frame and the D∗ direction in the B rest frame, and χ, the angle between the
plane determined from the D∗ decay products and the plane defined by the two leptons.
In HQET, the decay rate is parametrized in term of four quantities: the normalization
F(1)|Vcb|, the slope ρ2D∗ , and the form-factor ratiosR1(1) and R2(1). Many measurements
of F(1)|Vcb| and ρ2D∗ rely on the differential decay rates, integrated over the three angles,
dΓ(B → D∗ℓν)/dw and thus require external knowledge of R1(1) and R2(1).
Following the first measurement by CLEO [494], the Babar [251], and Belle [495]

Collaborations have employed much larger samples of reconstructed neutral B mesons
to determine R1(1) and R2(1) from a fit to the four-dimensional differential decay rate.
Figure 38 shows a comparison of the data and the fit results from the recent Belle
analysis, for the projections of the four kinematic variables. Tab. 33 lists the results of
the fully-differential measurements from Babar and Belle.
In a recent Babar analysis [496] a sample of about 23,500 B− → D∗0ℓ−ν̄ decays has

been selected from about 2× 107 Υ (4S) → BB̄ events. The signal yield is determined in
ten bins in w to measure dΓ(B− → D∗0ℓ−ν̄)/dw with minimal model dependence. The
fitted values of F(1)|Vcb| and ρ2D∗ are given in Tab. 33.
The large integrated luminosities and the deeper understanding of B mesons properties

accumulated in recent years have allowed B-factories to perform new measurements of
semileptonic decays based on innovative approaches. Babar has recently published results
on G(w)|Vcb| and F(w)|Vcb| , based on an inclusive selection of B → DℓνX decays, where
only the D meson and the charged lepton are reconstructed [497]. To reduce background
from D∗∗ℓν decays and other background sources, the lepton momentum is restricted

13 In LEP experiments the direction of the B meson is obtained from the vector joining the primary
vertex to the B decay vertex, the neutrino energy is computed from the missing energy in the event.
A missing energy technique is also applied by Υ (4S) experiments to improve background rejection in
B → Dℓν measurements.
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Table 33
Summary of the B-factories results on form factors and |Vcb| from semileptonic B decays.

Mode Ref. F(1)|Vcb| · 103 ρ2D∗ R1 R2

B− → D∗0ℓ−ν̄ [496] 35.9± 0.6± 1.4 1.16± 0.06± 0.08 - -

B̄0 → D∗+ℓ−ν̄ [495] 34.4± 0.2± 1.0 1.29± 0.05± 0.03 1.50 ± 0.05± 0.06 0.84± 0.03± 0.03

B̄0 → D∗+ℓ−ν̄ [251] 34.4± 0.3± 1.1 1.19± 0.05± 0.03 1.43 ± 0.06± 0.04 0.83± 0.04± 0.02

B → D(∗)ℓ−ν̄ [497] 35.9± 0.2± 1.2 1.22± 0.02± 0.07 - -

Mode Ref. G(1)|Vcb| · 103 ρ2D

B → Dℓ−ν̄ [497] 43.1± 0.8± 2.3 1.20± 0.04± 0.07

B → Dℓ−ν̄ [250] 43.0± 1.9± 1.4 1.20± 0.09± 0.04

pℓ > 1.2GeV/c, and the D mesons are reconstructed only in the two simplest and cleanest
decay modes, D0 → K−π+ and D+ → K−π+π+.
Signal decays with D and D∗ mesons in the final states are separated from background

processes (mainly semileptonic decays involving higher mass charm mesons, D∗∗) on a
statistical basis. The V − A structure of the weak decays favors larger values of pℓ for
the vector meson D∗ than for the scalar D. using the three-dimensional distributions of
the lepton momentum pℓ, the D momentum pD, and cos θBY .
The signal and background yields, the values of ρ2D, ρ

2
D∗ , G(1)|Vcb| and F(1)|Vcb|

are obtained from a binned χ2 fit to the three-dimensional distributions of the lepton
momentum pℓ, the D momentum pD, and cos θBY , separately for the D0ℓ and D+ℓ

Fig. 38. Belle [495]: Results of the four-dimensional fit to the B0 → D∗+ℓν decay rate in terms one one-di-
mensional projections: w (top-left), cos θℓ (top-right), cos θV (bottom left) and χ (bottom right). The
data (points) are compared to the sum of the fitted contribution, signal (green) and several background
sources (in different colors).

135



C
an

d
id

at
es

/1
00

M
eV

10000

20000

30000

C
an

d
id

at
es

/1
00

M
eV

10000

20000

30000

(a)

* (GeV/c)
l

p
1.5 20.9

0.95

1

1.05

1.1

C
an

d
id

at
es

/1
00

M
eV

10000

20000

C
an

d
id

at
es

/1
00

M
eV

10000

20000

(b)

* (GeV/c)
D

p
1 1.5 20.9

0.95

1

1.05

1.1

C
an

d
id

at
es

/1
.0

50

100

310×

C
an

d
id

at
es

/1
.0

50

100

310×

(c)

B-DlΘcos
-2 -1 0 10.9

0.95

1

1.05

1.1

Fig. 39. BaBar [497]: Projected distributions for selected B → D0e−ν̄eX events a) pℓ, (b) pD, and (c)
cos θBY . The data (points) are compared to the fit result, showing contributions from Dℓν (red), D∗ℓν
(green), D∗∗ℓν (blue) decays, and residual background (taupe).

samples. The contribution from neutral and chargedB decays in each sample are obtained
from the ratio of measured branching fractions of Υ (4S) → B+B−, Υ (4S) → B0B̄0, the
branching fractions for charged and neutral D∗ mesons to D mesons, and by imposing
equal semileptonic decay rates for charged and neutral B mesons. As an example, Fig. 39
shows the results of the fit in one-dimensional projections for the D0e−ν̄eX sample. An
alternative fit with R1(1) and R2(1) as free parameters gives results consistent with the
fully differential measurements cited above, albeit with larger statistical and systematic
errors.
Since the Dℓν and D∗ℓν decays are measured simultaneously, the comparison of their

form factors to validate the QCD predictions is straightforward. The measured form
factor ratio at zero recoil G(1)/F(1) = 1.23±0.09 confirms the lattice QCD prediction of
1.16± 0.04. The difference of the slope parameters ρ2D − ρ2D∗ = 0.01± 0.04 is consistent
with zero, as predicted [498].
The large luminosity accumulated in the B-factories permits the use of tagged event

samples, for which one of the two B mesons is fully reconstructed in an hadronic final
state (more than 1000 modes are considered) and a semileptonic decay of the other B
is reconstructed from the remaining particles in the event. Since the momentum of the
tagged B is measured, the kinematic properties of the semileptonic B are fully deter-
mined. This technique results in a sizable background reduction and thus a much lower
bound on the lepton momentum (pℓ > 0.6 GeV/c), a much more precise determination
of w, and therefore a remarkable reduction of the systematic error, at the cost of an in-
crease in the statistical error (the tagging efficiency does not exceed 0.5%). While several
measurements of semileptonic branching fractions exist to date, only BaBar has pre-
sented a form factor determination, G(1)|Vcb| and ρ2D, with a tagged sample of B → Dℓν
decays [250].
The yield of signal events in ten equal size w bins is obtained from a fit to the distri-

bution of the missing mass squared, M2
ν = (PB − PD − Pℓ)

2. An example is shown in
Fig. 40. A fit to the background-subtracted and efficiency-corrected signal yield, summed
over charged and neutral B decays, is used to extract the form-factor parameters, the
normalization G|Vcb|, and the slope, ρ2D. The signal yield and the fitted form factor as a
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function of w are shown in Fig. 40. The results of this measurement, and of all the others
discussed so far, are reported in Tab. 33. There is very good consistency among all of the
most recent measurements.
By integrating the differential decays rates the branching fractions for B → Dℓν and

B → D∗ℓν decays can be determined with good precision. However, there has been a long
standing problem with the measured semileptonic branching fractions. The sums of the
branching fractions for B → Dℓ−ν̄, B → D∗ℓ−ν̄ and B → D(∗)πℓ−ν̄ decays [499, 500],
9.5 ± 0.3% for B+ and 8.9 ± 0.2)% for B0, are significantly smaller than the measured
inclusive B → Xcℓν branching fractions of 10.89± 0.16% and 10.15± 0.16% for B+ and
B0, respectively. Branching fractions for B → D∗∗ℓν decay are still not well known, and
furthermore, the assumption that the four D∗∗ mesons decay exclusively to Dπ and D∗π
final states is largely untested experimentally. And even among the measured values for
the single largest B branching fraction, B(B → D∗ℓν), there is a spread that exceeds the
stated errors significantly.

5.2.3. Determination of Form Factors and |Vcb|
Fig. 41 shows the one sigma contour plots for all the measurements of G(w)|Vcb| and

F(w)|Vcb| performed so far. While there is a good agreement among the five measure-
ments of B → Dℓν decays, there is less consistency among the ten D∗ results, specifically
two of the older measurements differ significantly from the recent, more precise measure-
ments. Tab. 34 shows the averages of form factor measurements. Using the values of G(1)
and F(1) reported in Eqs. (249) and (251) we obtain

Fig. 40. BaBar analysis of tagged B → Dℓµ decays [250] Data (points) compared to fit results, left: M2
ν

for w > 1.54, center: signal event yield for the sum of charged and neutral B decays, right: G(w) vs w, as
obtained from efficiency-corrected yields (data points) and the result of the form factor fit (solid line).
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Table 34
Averages for form factors extrapolations and slopes.

Process G(1)|Vcb|, F(1)|Vcb| ρ2
D(∗)

B → Dℓν 42.4 ± 1.6 1.19± 0.05

B → D∗ℓν 35.41 ± 0.52 1.16± 0.05

|Vcb|= (39.4± 1.4± 0.9)× 10−3 from B → Dℓν, (257)

|Vcb|= (38.28± 0.71± 0.99)× 10−3 from B → D∗ℓν, (258)

where the first error is from experiment and the second from unquenched lattice QCD.
The two results agree well. It is not straightforward for combine these two results, because
the correlations between the two sets of measurements and two calculations have not
been analyzed. Assuming a correlation of 50% for both, we obtain the average value
from exclusive decays

|Vcb| = (38.6± 1.1)× 10−3, (259)

where experimental and lattice-QCD errors have been added in quadrature.

5.3. Inclusive CKM-favored B decays

5.3.1. Theoretical Background
The inclusive B̄ → Xcℓν̄ decay rate can be calculated using the operator product

expansion (OPE). Applied to heavy quark decays, the OPE amounts to an expansion in
inverse powers of the heavy quark mass and is often referred to as heavy-quark expansion
(HQE). Using this technique, the non-perturbative input needed to predict the rate is
reduced to a few matrix elements of local operators in HQET. Together with |Vcb|, mb,
and mc, these heavy-quark parameters can be extracted from a moment analysis, i.e. by
fitting the theoretical predictions for the decay rate and moments of decay spectra to the
available experimental results.
The application of the OPE to semileptonic heavy hadron decays was developed quite

some time ago [501–504]. A detailed discussion of the technique can, for example, be
found in the textbook [505]. For a review focusing on the extraction of |Vcb| and the heavy
quark parameters, see [506] and the PDG review [285]. In the following, we briefly recall
some of the basic concepts, review recent progress in evaluating higher-order perturbative
corrections, and briefly discuss possible limitations of the approach. After this, we review
the available experimental data and the results of the moment analysis.
The B̄ → Xcℓν̄ decay is mediated by the effective Hamiltonian

Heff =
GF√
2
Vcb J

µ Jℓµ =
GF√
2
Vcb c̄ γ

µ (1− γ5) b ℓ̄ γµ (1− γ5) ν . (260)

Neglecting electromagnetic corrections, the decay rate factors into a product of a leptonic
tensor Lµν and a hadronic tensor Wµν , which are given by the matrix elements of two
leptonic and two hadronic currents. Using the optical theorem, the hadronic tensor can
be obtained from the imaginary part of the forward matrix element of the product Tµν of
two weak currents, 2MBWµν = −2 Im〈B(pB)|Tµν |B(pB)〉. The OPE expands the time-
ordered product Tµν into a sum of local HQET operators Oi of increasing dimension
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Tµν = −i
∫
d4xe−iqxT

[
J†
µ(x)Jν(0)

]
=
∑

i

Ciµν(v · q, q2,mb,mc)Oi(0) . (261)

In order to perform the expansion, a velocity vector vµ, with v2 = 1, is introduced to
split the b-quark momentum into pµb = mbv

µ+ rµ, where the components of the residual
momentum rµ are independent of the b-quark mass. It is usually chosen to be the meson
velocity, vµ = pµB/MB. Because Eq. (261) is an operator relation, it holds for arbitrary
matrix elements. To determine the Wilson coefficients Ciµν one considers partonic matrix
elements of Eq. (261) in perturbation theory.
The OPE separates the physics associated with large scales such as mb, which enter

the Wilson coefficients Ciµν , from the non-perturbative dynamics entering the matrix
elements of the operators Oi. In this context, it is important that the operators on the
right-hand side of Eq. (261) are defined in HQET so that their matrix elements are inde-
pendent of mb up to power corrections and are governed by non-perturbative dynamics
associated with the scale ΛQCD. Since the Wilson coefficients of higher dimensional op-
erators in Eq. (261) contain inverse powers of mb, their contributions to the rate are
suppressed by powers of ΛQCD/mb. The leading operator in Eq. (261) has dimension
three and is given by a product of two HQET heavy quark fields O3 = h̄v hv. Up to
power corrections, its B-meson matrix element is one. Dimension four operators can be
eliminated using the equation of motion and the leading power corrections arise from
two dimension five operators: the kinetic operator Okin and the chromomagnetic oper-
ator Omag, whose B-meson matrix elements are denoted by λ1 and λ2 [507] or µ2

π and
µ2
G [503]. Different schemes are used to define these parameters, but to leading order and

leading power they are given by

〈Okin〉 ≡
1

2MB
〈B̄(pB)| h̄v(iD)2hv |B̄(pB)〉 = −µ2

π = λ1 , (262)

〈Omag〉 ≡
1

2MB
〈B̄(pB)|

g

2
h̄vσµνG

µνhv |B̄(pB)〉 = µ2
G = 3λ2 .

In order for the OPE to converge, it is necessary that the scales entering the Wilson
coefficients are all larger than ΛQCD. This condition is violated in certain regions of phase-
space. In order to get reliable predictions, one needs to consider sufficiently inclusive
quantities such as the total rate, which takes the form [501–504]

Γ(B̄ → Xcℓν̄) =
G2
F |Vcb|2m5

b

192π3

{
f(ρ) + k(ρ)

µ2
π

2m2
b

+ g(ρ)
µ2
G

2m2
b

}
, (263)

up to corrections suppressed by (ΛQCD/mb)
3, and with ρ = m2

c/m
2
b. The Wilson coeffi-

cients f(ρ), k(ρ) and g(ρ) can be calculated in perturbation theory. They are obtained
by taking the imaginary part of Ciµν , contracting with the lepton tensor Lµν and inte-
grating over the leptonic phase space. We have written the expansion in inverse powers
of mb, but it is the energy release ∆E ∼ mb −mc which dictates the size of higher order
corrections. Other suitable inclusive observables include the spectral moments

〈
Enℓ E

m
X (M2

X)l
〉
=

1

Γ0

∫ Emax

E0

dEℓ

∫
dEX

∫
dM2

X

dΓ

dEX dM2
X dEℓ

Enℓ E
m
X (M2

X)l, (264)

with Γ0 = Γ(Eℓ > E0) for low values of n, m, and l, with a moderate lepton energy cut
E0. The OPE for the moments Eq. (264) depends on the same operator matrix elements
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as the rate Eq. (263), but the calculable Wilson coefficients f(ρ), g(ρ), and k(ρ) will be
different for each moment. Note that the coefficient k(ρ) of the kinetic operator is linked
to the leading power coefficient f(ρ), for example k(ρ) = −f(ρ) for the total rate. The
corresponding relations for the moments are given in [508].
By measuring the rate and several spectral moments Eq. (264), and fitting the theo-

retical expressions to the data, one can simultaneously extract |Vcb|, the quark masses
mb and mc, as well as the heavy quark parameters such as µπ and µG. Two independent
implementations of this moment analysis are currently used [509, 510] and [511] (based
on [506, 512]). Both groups include terms up to third order in ΛQCD/mb [513] and eval-
uate leading order Wilson coefficients to one-loop accuracy [514–520]. In addition, they
also include the part of the two-loop corrections which is proportional β0 [512,521–526].
However, the two fits use different schemes for the masses and heavy quark parameters.
The analysis of [511] is performed in the kinetic scheme [527], while [509,510] adopt the
1S-scheme [528] as their default choice. Both schemes, as well as others, such as the
potential-subtracted [529] and the shape-function scheme [530], are designed to improve
the perturbative behavior by reducing the large infrared sensitivity inherent in the pole
scheme. Two-loop formulae for the conversion among the different schemes can be found
in [531].
It has been noticed that the two-loop terms appearing in the conversion of mb among

schemes were in some cases larger than the uncertainties quoted after fitting in a given
scheme [532]. This indicates that higher-order corrections to the Wilson coefficients can
no longer be neglected. Recently, a number of new perturbative results for the Wilson
coefficients have become available, however, they have not yet been implemented into
the moment analysis. The Wilson coefficient of the leading order operator O3 has been
evaluated to two-loop accuracy [533, 534]. The numerical technique used in [533] allows
for the calculation of arbitrary moments and its results are confirmed by an independent
analytical calculation of the rate and the first few Eℓ and EX moments [534]. An earlier
estimate of the two-loop corrections [535] needed to be revised in view of the new results
[536]. At the same accuracy, one should also include the one-loop corrections to the
coefficients of the kinetic and chromomagnetic operators. So far, only the corrections
for the kinetic operator are available [508]. Furthermore, the tree-level OPE has been
extended to fourth order in ΛQCD/mb [537].
In addition to perturbative and non-perturbative corrections, the hadronic decay rates

will contain terms which are not captured by the OPE. While such terms are expo-
nentially suppressed in completely Euclidean situations, they are not guaranteed to be
negligible for the semileptonic rate and its moments [538]. These violations of quark-
hadron duality are difficult to quantify. Model estimates seem to indicate that the effects
on the rate are safely below the 1% level for the total rate [539, 540], but they could be
larger for the spectral moments. Other issues studied in the recent literature concern the
role of the charm quarks [541, 542] and potential new physics effects [543, 544].

5.3.2. Measurements of Moments
Measurements of the semileptonic B branching fraction and inclusive observables in

B → Xcℓν decays relevant to the determination of the heavy quark parameters in the
OPE have been obtained by the BaBar [545–547], Belle [548,549], CDF [550], CLEO [551]
and DELPHI [552] Collaborations. The photon-energy spectrum in B → Xsγ decays,
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which is particularly sensitive to the b-quark mass, mb, has been studied by BaBar [553,
554], Belle [555, 556] and CLEO [557]. In this section, we briefly review new or updated
measurements of B → Xcℓν decays.
BaBar has updated their previous measurement of the hadronic mass moments 〈M2n

X 〉
[546] and obtained preliminary results based on a dataset of 210 fb−1 taken at the
Υ (4S) resonance [547]. In this analysis, the hadronic decay of one B meson in Υ (4S) →
BB is fully reconstructed (Btag) and the semileptonic decay of the second B is inferred
from the presence of an identified lepton (e or µ) among the remaining particles in the
event (Bsig). This fully reconstructed tag provides a significant reduction in combinatorial
backgrounds and results in a sample of semileptonic decays with a purity of about 80%.
Particles that are not used in the reconstruction of Btag and are not identified as the
charged lepton are assigned to the Xc system, and its mass MX is calculated using some
kinematic constraints for the whole event.
From the MX spectrum, BaBar calculates the hadronic mass moments 〈Mn

X〉, n =
1, . . . , 6 as a function of a lower limit on the lepton momenta in the center-of-mass (c.m.)
frame ranging from 0.8 to 1.9 GeV/c. These moments are distorted by acceptance and
finite resolution effects and an event-by-event correction is derived from Monte Carlo
(MC) simulated events. These corrections are approximated as linear functions of the
observed mass with coefficients that depend on the lepton momentum, the multiplicity
of the Xc system and Emiss − c|pmiss|, where Emiss and pmiss are the missing energy and
3-momentum in the event, respectively. Note that in this analysis mixed mass and c.m.
energy moments 〈N2n

X 〉, n = 1, 2, 3, with NX = M2
Xc

4 − 2Λ̃EX + Λ̃2 and Λ̃ = 0.65 GeV
are measured in addition to ordinary hadronic mass moments. These mixed moments
are expected to better constrain some heavy quark parameters, though they are not yet
used in global fit analyses.
Belle has recently measured the c.m. electron energy [548] and the hadronic mass [549]

spectra in B → Xcℓν decays, based on 140 fb−1 of Υ (4S) data. The experimental pro-
cedure is very similar to the BaBar analysis, i.e., the hadronic decay of one B meson
in the event is fully reconstructed. The main difference to the BaBar analysis is that
detector effects in the spectra are removed by unfolding using the Singular Value De-
composition (SVD) algorithm [558] with a detector response matrix determined by MC
simulation. The moments are calculated from the unfolded spectra. Belle measures the
partial semileptonic branching fraction and the c.m. electron energy moments 〈Ene 〉, n =
1, . . . , 4, for minimum c.m. electron energies ranging from 0.4 to 2.0 GeV. In the hadronic
mass analysis [549] the first and second moments ofM2

X are measured for minimum c.m.
lepton energies between 0.7 and 1.9 GeV.
Another interesting analysis of inclusive B → Xcℓν decays comes from the DELPHI

experiment [552] operating at LEP. In this study, the b-frame lepton energy 〈Enl 〉, n =
1, 2, 3, and the hadronic massM2n

X , n = 1, . . . , 5, moments are measured without applying
any selection on the lepton energy in the b-frame. This is possible because DELPHI
measures decays of b-hadrons in Z0 → bb events. b-hadrons are produced with significant
kinetic energy in the laboratory frame, so that charged leptons produced at rest in the
b-frame can be observed in the detector.
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Table 35
Results of the global fit analyses by BaBar and Belle in terms of |Vcb| and the b-quark massmb, including

the χ2 of the fit over the number of degrees of freedom. Note that the fit results for mb in the kinetic
and 1S schemes can be compared only after scheme translation.

|Vcb| (10−3) mb (GeV) χ2/ndf.

BaBar kinetic [547] 41.88 ± 0.81 4.552 ± 0.055 8/(27 − 7)

Belle kinetic [555] 41.58 ± 0.90 4.543 ± 0.075 4.7/(25 − 7)

Belle 1S [555] 41.56 ± 0.68 4.723 ± 0.055 7.3/(25 − 7)

Table 36
Measurements of the lepton energy 〈Enℓ 〉 and hadronic mass moments 〈M2n

X 〉 in B → Xcℓν and the
photon energy moments 〈Enγ 〉 in B → Xsγ used in the combined HFAG fit.

Experiment 〈Enℓ 〉 〈M2n
X 〉 〈Enγ 〉

BaBar n = 0, 1, 2, 3 [545] n = 1, 2 [547] n = 1, 2 [553, 554]

Belle n = 0, 1, 2, 3 [548] n = 1, 2 [549] n = 1, 2 [556]

CDF n = 1, 2 [550]

CLEO n = 1, 2 [551] n = 1 [557]

DELPHI n = 1, 2, 3 [552] n = 1, 2 [552]

5.3.3. Global Fits for |Vcb| and mb

The OPE calculation of the B → Xcℓν weak decay rate depends on a set of heavy
quark parameters that contain the soft QCD contributions. These parameters can be
determined from other inclusive observables in B decays, namely the lepton energy 〈Enℓ 〉
and hadronic mass moments 〈M2n

X 〉 in B → Xcℓν and the photon energy moments 〈Enγ 〉
in B → Xsγ. Once these parameters are known, |Vcb| can be determined from mea-
surements of the semileptonic B branching fraction. This is the principle of the global fit
analyses for |Vcb|. On the theory side, these analyses require OPE predictions of the afore-
mentioned inclusive observables, in addition to a calculation of the semileptonic width.
At present, two independent sets of theoretical formulae have been derived including
non-perturbative corrections up to O(1/m3

b), referred to as the kinetic [506,512,559] and
the 1S scheme [510], according to the definition of the b-quark mass used.
Tab. 35 summarizes the results of the global fit analyses performed by BaBar [547] and

Belle [555] in terms of |Vcb| and the b-quark mass mb. BaBar uses 27 and Belle 25 mea-
surements of the partial B → Xcℓν branching fraction and the moments in B → Xcℓν
and B → Xsγ decays. Measurements at different thresholds in the lepton or photon
energy are highly correlated. Correlations between measurements and between their the-
oretical predictions must therefore be accounted for in the definition of the χ2 of the fit.
The BaBar analysis performs a fit in the kinetic mass scheme only. In this framework,
the free parameters are: |Vcb|, mb(µ), mc(µ), µ

2
π(µ), µ

2
G(µ), ρ

3
D(µ) and ρ

3
LS(µ), where µ

is the scale taken to be 1 GeV. In addition, Belle fits their data also in the 1S scheme.
Here, the free parameters are: |Vcb|, mb, λ1, ρ1, τ1, τ2 and τ3. The only external input in
these analyses is the average B lifetime τB = (1.585± 0.006) ps [560].
HFAG has combined the available B → Xcℓν and B → Xsγ data from different

experiments to extract |Vcb| and mb. Using 64 measurements in total (Tab. 36), the
analysis is carried out in the kinetic scheme. The procedure is very similar to the analyses
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Table 37
Combined HFAG fit to all experimental data (Tab. 36). In the last column we quote the χ2 of the fit

over the number of degrees of freedom.

Dataset |Vcb| (10−3) mb (GeV) µ2π (GeV2) χ2/ndf.

Xcℓν and Xsγ 41.54± 0.73 4.620± 0.035 0.424 ± 0.042 26.4/(64 − 7)

Xcℓν only 41.31± 0.76 4.678± 0.051 0.410 ± 0.046 20.3/(53 − 7)
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Fig. 42. ∆χ2 = 1 contours for the HFAG fit for |Vcb| and mb in the (mb, |Vcb|) and (mb, µ
2
π) planes, with

and without B → Xsγ data.

of the B-factory datasets described above. The results for |Vcb|, mb and µ2
π are quoted

in Tab. 37 and Fig. 42. Recently, concerns have been raised about the inclusion of B →
Xsγ moments, because their prediction is not based on pure OPE but involves modeling
of non-OPE contributions using a shape function. We therefore also quote the results of
a fit without the B → Xsγ data (53 measurements).
The current result for |Vcb| based on fits to lepton-energy, hadronic-mass, and photon-

energy moments by HFAG is

|Vcb| = (41.54± 0.73)× 10−3, (265)

where theoretical and experimental uncertainties have been combined. This value differs
from the exclusive determination of |Vcb|, Eq. (259), at the 2σ level. Note that the inclusive
fits lead to values χ2 that are substantially smaller than should be expected, which may
point to a problem with the input errors or correlations. The determination of mb and
mc will be further discussed in Sec. 5.4.2.

5.4. Inclusive CKM-suppressed B decays

5.4.1. Theoretical Overview
The inclusive semileptonic B decays into charmless final states are described by the

same local OPE we have considered above for the CKM favored ones. The relevant non-
perturbative matrix elements are those measured in the fit to the moments discussed in
Sec. 5.3. In the total width there is one additional contribution from a four-quark operator
related to the Weak Annihilation (WA) between the b quark and a spectator [561],
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whose analogue in the CKM favored decay is suppressed by the large charm mass. In an
arbitrary, properly defined scheme the total semileptonic width is through O(1/m3

b , α
2
s)

Γ[B̄ → Xueν̄] =
G2
F m

5
b

192π3
|Vub|2

[
1 +

αs
π
p(1)u +

α2
s

π2
p(2)u − µ2

π

2m2
b

− 3µ2
G

2m2
b

+

(
77

6
+ 8 ln

µ2
WA

m2
b

)
ρ3D
m3
b

+
3ρ3LS
2m3

b

+
32π2

m3
b

BWA(µWA)

]
, (266)

where BWA is the B meson matrix element of the WA operator evaluated at the scale
µWA. Since BWA vanishes in the factorization approximation, WA is phenomenologically
important only to the extent factorization is violated at µWA. We therefore expect it
to contribute less than 2-3% to the difference between B0 and B+ widths and, due to
its isosinglet component, to the total width of both neutral and charged B [562, 563].
The latter and the lnµWA in the coefficient of ρ3D originate in the mixing between WA
and Darwin operators [564]. The dominant parametric uncertainty on the total width
currently comes from mb, due to the m5

b dependence. The theoretical uncertainty from
missing higher order corrections has been estimated to be at most 2% in the kinetic
scheme [562]. Assuming 35 MeV precision on mb, |Vub| could presently be extracted from
the total decay rate with a theoretical error smaller than 2.5%.
Unfortunately, most experimental analyses apply severe cuts to avoid the charm back-

ground. The cuts limit the invariant mass of the hadronic final state, X , and destroy the
convergence of the local OPE introducing a sensitivity to the effects of Fermi motion of
the heavy quark inside the B meson. These effects are not suppressed by powers of 1/mb

in the restricted kinematic regions. The Fermi motion is inherently non-perturbative;
within the OPE it can be described by a nonlocal distribution function, called the shape
function (SF) [565, 566], whose lowest integer moments are given by the same expec-
tation values of local operators appearing in Eq.(266). In terms of light-cone momenta
P± = EX ∓ pX , a typical event in the SF region has P+ ≪ P− = O(mb), with P

+ not
far above the QCD scale. The emergence of the SF is also evident in perturbation theory:
soft-gluon resummation gives rise to a b quark SF when supplemented by an internal re-
summation of running coupling corrections, see e.g. [567–570]. This SF has the required
support properties, namely it extends the kinematic ranges by energies of O(ΛQCD), and
it is stable under higher order corrections. The quark SF can therefore be predicted under
a few assumptions, as we will see below. The inclusion of power corrections related to the
difference between b quark and B meson SFs and the proper matching to the OPE are
important issues in this context. An alternative possibility is to give up predicting the
SF. Since the OPE fixes the first few moments of the SF, one can parametrize it in terms
of the known non-perturbative quantities employing an ansatz for its functional form.
The uncertainty due to the functional form can be evaluated by varying it, a process that
has been recently systematized [571]. Finally, one can exploit the universality of the SF,
up to 1/mb corrections, and extract it from the photon spectrum of B → Xsγ, which
is governed by the same dynamics as inclusive semileptonic decays [565, 566, 572, 573].
Notice that rates in restricted phase space regions always show increased sensitivity to
mb, up to twice that in Eq.(266).
Subleading contributions in 1/mb are an important issue, and acquire a different char-

acter depending on the framework in which they are discussed. For instance, if one
expands in powers of the heavy quark mass the non-local OPE that gives rise to the
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SF, the first subleading order sees the emergence of many largely unconstrained sub-
leading SFs [574–576] that break the universality noted above. An alternative procedure
has been developed in [577], where the only expansion in 1/mb is at the level of local
OPE. A single finite mb distribution function has been introduced for each of the three
relevant structure functions at fixed q2. All power-suppressed terms are taken into ac-
count in the OPE relations for the integer moments of the SFs, which are computed, like
Eq.(266) through O(Λ3). Finally, in the context of resummed perturbation theory, power
corrections appear in moment space and can be parametrized.
Perturbative corrections also modify the physical spectra: the complete O(αs) and

O(β0α
2
s) corrections to the triple differential spectrum [578,579] are available, while the

O(α2
s) have been recently computed in the SF region only [580–583]. There is a clear

interplay between perturbative corrections and the proper definition of the SF beyond
lowest order, a problem that has been addressed in different ways, see below.
The experimental cuts can aggravate the uncertainty due to WA. Indeed, WA effects

are expected to manifest themselves only at maximal q2 and lead to an uncertainty that
depends strongly on the cuts employed. In the experimental analyses the high-q2 region
could therefore either be excluded or used to put additional constraints on the WA matrix
element [564, 584, 585]. Moreover, the high-q2 spectrum is not properly described by the
OPE (see [577] and references therein) and should be modeled, while its contribution to
the integrated rate can be parametrized by the WA matrix element BWA. In particular,
at µWA = 1GeV, the positivity of the q2 spectrum implies a positive value of BWA(1GeV),
leading to a decrease in the extracted |Vub| [577].
All the problems outlined above have been extensively discussed in the literature. We

will now consider four practical implementations, briefly discussing their basic features.
DGE The approach of Refs. [567–570] uses resummed perturbation theory in moment–

space to compute the on-shell decay spectrum in the entire phase space; non-perturbative
effects are taken into account as power corrections in moment space. Resummation is ap-
plied to both the ‘jet’ and the ‘soft’ (quark distribution or SF) subprocesses at NNLL 14 ,
dealing directly with the double hierarchy of scales (Λ ≪ √

Λmb ≪ mb) characterizing
the decay process. Consequently, the shape of the spectrum in the kinematic region where
the final state is jet-like is largely determined by a calculation, and less by parametriza-
tion. The resummation method employed, Dressed Gluon Exponentiation (DGE), is a
general resummation formalism for inclusive distributions near a threshold [587]. It goes
beyond the standard Sudakov resummation by incorporating an internal resummation
of running–coupling corrections (renormalons) in the exponent and has proved effective
in a range of applications [587]. DGE adopts the Principal Value procedure to regularize
the Sudakov exponent and thus define the non-perturbative parameters. In particular,
this definition applies to the would-be 1/mb ambiguity of the ‘soft’ Sudakov factor, which
cancels exactly [588] against the pole–mass renormalon when considering the spectrum
in physical hadronic variables. The same regularization used in the Sudakov exponent

must be applied in the computation of the regularized b pole mass from the input mMS
b .

This makes DGE calculation consistent with the local OPE up to O(Λ2/m2
b).

ADFR In this model based on perturbative resummation [589] the integral in the
Sudakov exponent is regulated by the use of the analytic coupling [590], which is finite in

14The ‘jet’ logarithms are similar to those resummed in the approach of Ref. [586]; there however ‘soft’
logarithms are not resummed.
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the infrared and is meant to account for all non-perturbative effects. The resummation is
performed at NNLL, while the non-logarithmic part of the spectra is computed at O(αs)
in the on-shell scheme, setting the pole b mass numerically equal to MB. In contrast
with DGE, this procedure does not enforce the cancellation of the renormalon ambiguity
associated with mb, and thus it violates the local OPE at O(Λ/mb), resulting in an
uncontrolled O(Λ) shift of the P+ spectrum. The model reproduces b fragmentation
data and the photon spectrum in B → Xsγ, but does not account for O(Λ/mb) power
corrections relating different processes. The normalization (total rate) is fixed by the
total width of B → Xcℓν, avoiding the m5

b dependence, but introducing a dependence
on mc.
BLNP The SF approach of Ref. [586] employs a modified expansion in inverse powers

of mb, where at each order the dynamical effects associated with soft gluons, k+ ∼ P+ ∼
Λ are summed into non-perturbative shape functions. As mentioned above, at leading
power there is one such function; beyond this order there are several different functions.
To extend the calculation beyond this particular region, the expansion is designed to
match the local OPE when integrated over a significant part of the phase space. In this
way two systematic expansions in inverse powers of the mass are used together. In this
multiscale OPE, developed following SCET methodology (cf. Sec. 2.2), the differential
width is given by

dΓ

dP+ dP− dEl
= HJ ⊗ S +

1

mb
H ′
iJi ⊗ S′

i + . . . (267)

where soft (S), jet (J), and hard (H) functions depend on momenta ∼ Λ,
√
Λmb,mb,

respectively. The jet and hard functions are computed perturbatively at O(αs) in the
shape function scheme, resumming Sudakov logs at NNLL, while the soft functions are
parametrized at an intermediate scale, µ ∼ 1.5GeV, using the local OPE constraints on
their first moments computed at O(1/m2

b) and a set of functional forms. Although the
subleading SFs are largely unconstrained, BLNP find that the experimentally-relevant
partial branching fractions remain under good control: the largest uncertainty in the
determination of |Vub| is due to mb.
GGOU The kinetic scheme used in Sec. 5.3 to define the OPE parameters, is employed

in [577] to introduce the distribution functions through a factorization formula for the
structure functions Wi,

Wi(q0, q
2) ∝

∫
dk+ Fi(k+, q

2, µ)W pert
i

[
q0 −

k+
2

(
1− q2

mbMB

)
, q2, µ

]
, (268)

where the distribution functions Fi(k+, q
2, µ) depend on the light-cone momentum k+,

on q2 (through subleading effects) and on the infrared cutoff µ [577]. As the latter inhibits
soft gluon emission, the spectrum has only collinear singularities whose resummation is
numerically irrelevant. The perturbative corrections in W pert

i include O(α2
sβ0) contribu-

tions, which alone decrease the value of |Vub| by about 5%. The functions Fi(k+, q
2, µ)

are constrained by the local OPE expressions for their first moments at fixed q2 and
µ = 1GeV, computed including all 1/m3

b corrections. A vast range of functional forms is
explored, leading to a 1-2% uncertainty on |Vub| [577].
Although conceptually quite different, the above approaches generally lead to roughly

consistent results when the same inputs are used and the theoretical errors are taken into
account. In Fig. 43(a) we show the normalized electron energy spectrum computed in the
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Fig. 43. Comparison of different theoretical treatments of inclusive b → u transitions: (a) El spectrum;
(b)MX spectrum. Red, magenta, brown and blue lines refer, respectively, to DGE, ADFR, BLNP, GGOU
with a sample of three different functional forms. The actual experimental cuts at El = 1.9, 2.0GeV and
MX = 1.55, 1.7GeV are also indicated.

latest implementations of the four approaches. Except in ADFR, the spectrum depends
sensitively on mb. An accurate measurement of the electron spectrum can discriminate
between at least some of the methods. The same applies to the MX spectrum, which is
shown in Fig. 43(b) for El > 1GeV.

5.4.2. Review of mb determinations
As we have just seen, theoretical predictions of inclusive B decays can depend strongly

on mb. Thus, uncertainties in the knowledge of mb can affect the determination of other
parameters. To achieve the high precision in the theoretical predictions required by ex-
perimental data it is important to avoid the O(ΛQCD) renormalon ambiguities related
to the pole mass parameter and to consider the quark masses as renormalization scheme
dependent couplings of the Standard Model Lagrangian that have to be determined from
processes that depend on them. Thus having precise control over the scheme-dependence
of the bottom quark mass parameters is as important as reducing their numerical uncer-
tainty.
Predictions for B meson decays also suffer from renormalon ambiguities of order

Λ2
QCD/mb or smaller. These ambiguities cannot in general be removed solely by a partic-

ular choice of a bottom mass scheme. Additional subtractions in connection with fixing
specific schemes for higher order non-perturbative matrix element in the framework of
the OPE are required to remove these ambiguities. Some short-distance bottom mass
schemes have been proposed together with additional subtractions concerning the ki-
netic operator λ1 or µ2

π. In the following we briefly review the prevalent perturbative
bottom mass definitions which were employed in recent analyses of inclusive B decays.
A more detailed review on quark mass definitions including analytic formulae has been
given in the CKM 2003 Report [591].
MS mass: The most common short-distance mass parameter it the MS mass mb(µ),

which is defined by regularizing QCD with dimensional regularization and subtracting
the UV divergences in the MS scheme. As a consequence the MS mass depends on the
renormalization scale µ. Since the UV subtractions do not contain any infrared sensitive
terms, the MS mass is only sensitive to scales of order or larger than mb. The MS mass
is therefore disfavored for direct use in the theoretical description of inclusive B decays.
However, it is still useful as a reference mass. The relation between the pole mass and the
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MS mass is known to O(α3
s) [592–594], see Sec. 2.1 of the 2003 report [591] for analytic

formulae.
Threshold masses The shortcomings of the MS masses in describing inclusive B

decays can be resolved by so-called threshold masses [595]. The prevalent threshold mass
definitions are the kinetic, the shape function and the 1S mass schemes. They are free of
an ambiguity of order ΛQCD through in general scale-dependent subtractions.
The kinetic mass is defined as [596, 597]

mb,kin(µkin) =mb,pole −
[
Λ̄(µkin)

]
pert

−
[
µ2
π(µkin)

2mb,pole

]

pert

, (269)

where
[
Λ̄(µkin)

]
pert

and
[
µ2
π(µkin)

]
pert

are perturbative evaluations of HQET matrix

elements that describe the difference between the pole and the B meson mass. The
term µkin is the subtraction scale. To avoid the appearance of large logarithmic terms
it should be chosen somewhat close to the typical momentum fluctuations within the B
meson. The relation between the kinetic mass and the pole mass is known to O(α2

s) and
O(α3

sβ
2
0) [598, 599], see the 2002 report [591] for analytic formulae.

The shape function mass [530,531] is defined from the condition that the OPE for the
first moment of the leading order shape function for the B → Xuℓν and B → Xsγ decays
in the endpoint regions vanishes identically. The relation between the shape function mass
and the pole mass is known at O(α2

s) and reads

mSF
b (µSF, µ) =mb,pole − µSF

CFαs(µ)

π

[
1− 2 ln

µSF

µ
+
αs(µ)

π
k1(µSF, µ)

]

− µ2
π(µSF, µ)

3µSF

CFαs(µ)

π

[
2 ln

µSF

µ
+
αs(µ)

π
k2(µSF, µ)

]
, (270)

where

k1(µSF, µ) =
47

36
β0 +
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− 9

4
ζ3 +

κ

8

)
CA +
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−8 +

π2

3
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+
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3
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3
+
π2

6
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CF
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µSF
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1

2
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ln2

µSF

µ
, (271)

k2(µSF, µ) =−k1(µSF, µ) +
7

6
β0 +

(
1

3
− π2

12

)
CA +

(
−5 +

π2

3

)
CF

+

(
−1

2
β0 − CF

)
ln
µSF

µ
. (272)

The relation depends on the momentum cutoff µSF which enters the definition of the
first moment and on the (non-perturbative and infrared subtracted) kinetic energy matrix
element µ2

π defined from the ratio of the second and zeroth moment of the shape function.
Since the shape function is renormalization scale dependent, the shape function mass
depends on also on the renormalization scale µ. In practical applications the SF mass
has been considered for µ = µSF, m

SF
b (µSF) ≡ mSF

b (µSF, µSF).
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The 1S mass [528,600,601] is defined as one half of the perturbative series for the mass
of the n = 1, 3S1 bottomonium bound state in the limit mb ≫ mbv ≫ mbv

2 ≫ ΛQCD.
In contrast to the kinetic and shape-function masses, the subtraction scale involved in
the 1S mass is tied dynamically to the inverse Bohr radius ∼ mbαs of the bottomonium
ground state and therefore does not appear as an explicit parameter. The 1S mass scheme
is known completely to O(α3

s), see the 2003 report [591] for analytic formulae.
In Tab. 38 the numerical values of the bottom quark kinetic, shape function and 1S

masses are provided for different values for the strong coupling taking the MS mass
mb(mb) as a the reference input. Each entry corresponds to the mass using the respec-
tive 1-loop/2-loop/3-loop relations as far as they are available and employing a common
renormalization scale for the strong coupling when the pole mass is eliminated. As the
renormalization scale we employed µ = mb(mb) to minimize the impact of logarithmic
terms involving the cutoff scales µkin,SF and the scale mb(mb) [602]. Numerical approxi-
mations for the conversion formulae at the respective highest available order accounting

in particular for the dependence on α
(nf=5)
s (MZ) and the renormalization scale µ read:

m1S
b = 1.032mkin

b (1 GeV) + 1.9∆αs − 0.003∆µ , (273)

mSF
b (1.5 GeV) = 1.005mkin

b (1 GeV) + 0.9∆αs − 0.006∆µ − 0.003∆µ2
π , (274)

mSF
b (1.5 GeV) = 0.976m1S

b − 0.9∆αs + 0.001∆µ − 0.003∆µ2
π , (275)

mb(mb) = 0.917mkin
b (1 GeV) − 8.2∆αs + 0.005∆µ , (276)

mb(mb) = 0.888m1S
b − 9.9∆αs + 0.006∆µ , (277)

mb(mb) = 0.916mSF
b (1.5 GeV) − 8.0∆αs + 0.017∆µ + 0.003∆µ2

π , (278)

where ∆αs = [α
(5)
s (MZ) − 0.118] GeV, ∆µ = (µ − 4.2 GeV), ∆µ2

π = [µ2
π(1.5 GeV) −

0.15 GeV2] GeV−1. The formulae agree with the respective exact relations to better
than 10 MeV (for 3.7 GeV < µ < 4.7 GeV). The theoretical uncertainties from missing
higher order terms are reflected in the renormalization scale dependence of the conversion
formulae.
Bottom quark mass determinations
There are two major methods to determine the bottom mass with high precision:

spectral sum rules using data for the bottom production rate in e+e− collisions, and
fits to moments obtained from distributions of semileptonic B → Xcℓν and radiative
B → Xsγ decays. Both rely on the validity of the operator product expansion and the
input of higher order perturbative corrections. The results obtained from both methods
are compatible. Lattice determinations still have larger uncertainties and suffer from
systematic effects, which need to be better understood to be competitive to the previous
two methods. A summary of recent bottom mass determinations is given in Tab. 39.
Spectral e+e− sum rules
The spectral sum rules start from the correlator Π(q2) of two electromagnetic bottom

quark currents and are based on the fact that derivatives of Π at q2 = 0 are related to
moments of the total cross section σ(e+e− → bb̄),
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Table 38
Numerical values of the bottom quark kinetic, 1S and shape function masses in units of GeV for a given

MS value mb(mb) using µ = mb(mb), nl = 4 and three values of α
(5)
s (mZ ). Flavor matching was carried

out at µ = mb(mb). For the shape function mass µ2π(1.5 GeV) = 0.15 GeV2 was adopted. Numbers with
an asterisk are given in the large-β0 approximation.

mb(mb) mb,kin(1GeV) mb,1S mb,SF(1.5GeV)

α
(5)
s (mZ ) = 0.116

4.10 4.36/4.42/4.45∗ 4.44/4.56/4.60 4.34/4.44/-

4.15 4.41/4.48/4.50∗ 4.49/4.61/4.65 4.39/4.50/-

4.20 4.46/4.53/4.56∗ 4.54/4.66/4.71 4.45/4.55/-

4.25 4.52/4.59/4.61∗ 4.60/4.72/4.76 4.50/4.61/-

4.30 4.57/4.64/4.67∗ 4.65/4.77/4.81 4.56/4.66/-

α
(5)
s (mZ ) = 0.118

4.10 4.37/4.44/4.46∗ 4.45/4.57/4.62 4.35/4.46/-

4.15 4.42/4.49/4.52∗ 4.50/4.63/4.67 4.40/4.51/-

4.20 4.47/4.55/4.57∗ 4.55/4.68/4.73 4.46/4.57/-

4.25 4.52/4.60/4.63∗ 4.61/4.73/4.78 4.51/4.62/-

4.30 4.58/4.66/4.69∗ 4.66/4.79/4.84 4.56/4.68/-

α
(5)
s (mZ ) = 0.120

4.10 4.37/4.45/4.48∗ 4.46/4.59/4.64 4.36/4.48/-

4.15 4.43/4.51/4.54∗ 4.51/4.64/4.70 4.41/4.53/-

4.20 4.48/4.56/4.59∗ 4.56/4.70/4.75 4.47/4.59/-

4.25 4.54/4.62/4.65∗ 4.62/4.75/4.80 4.52/4.64/-

4.30 4.59/4.67/4.71∗ 4.67/4.81/4.86 4.57/4.70/-

Mn =
12 π2Q2

b

n!

(
d

dq2

)n
Π(q2)

∣∣∣∣
q2=0

=

∫
ds

sn+1
R(s) , (279)

where R = σ(e+e− → bb̄)/σ(e+e− → µ+µ−). From Eq. (279) it is possible to determine
the bottom quark mass using an operator product expansion [603,604]. One has to restrict
the moments to n . 10 such that the momentum range contributing to the moment is
sufficient larger than ΛQCD and the perturbative contributions dominate. Here the most
important non-perturbative matrix element is the gluon condensate, but its contribution
is very small.
Nonrelativistic e+e− sum rules: For the large n, 4 . n . 10, the moments are domi-

nated by the bottomonium bound states region and the experimentally unknown parts
of the bb̄ continuum cross section are suppressed. Depending on the moment the overall
experimental uncertainties in the b quark mass are between 15 and 20 MeV. Sum rule
analyses using threshold masses and based on NNLO fixed order computations in the
framework of NRQCD [599, 605–607] yield consistent results but suffer from relatively
large NNLO corrections to the normalization of the moments Mn. Uncertainties in the
bottom mass at the level of below 50 to 100 MeV were achieved by making assumptions
on the behavior of higher order corrections. The use of renormalization group improved
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Table 39
Collection in historical order in units of GeV of recent bottom quark mass determinations from spectral

sum rules and the Υ (1S) mass. Only results where αs was taken as an input are shown. The uncertainties
quoted in the respective references have been added quadratically. All numbers have been taken from
the respective publications.

author mb(mb) other mass comments, Ref.

nonrelativistic spectral sum rules

Melnikov 98 4.20± 0.10M1GeV
kin

= 4.56± 0.06 NNLO, mc = 0 [599]

Hoang 99 4.20± 0.06 M1S = 4.71± 0.03 NNLO, mc = 0 [605]

Beneke 99 4.26± 0.09M2GeV
PS = 4.60± 0.11 NNLO, mc = 0 [606]

Hoang 00 4.17± 0.05 M1S = 4.69± 0.03 NNLO, mc 6= 0 [607]

Eidemüller 02 4.24± 0.10M2GeV
PS = 4.56± 0.11 NNLO + O(α2

s), mc = 0 [608]

Pineda 06 4.19± 0.06M2GeV
PS = 4.52± 0.06 NNLL partial, mc = 0 [609]

relativistic spectral sum rules

Kühn 01 4.19± 0.05 O(α2
s) [610]

Bordes 02 4.19± 0.05 O(α2
s), finite energ. s.r. [611]

Corcella 02 4.20± 0.09 O(α2
s), continuum err.incl. [612]

Hoang 04 4.22± 0.11 O(α2
s), contour improved [613]

Boughezal 06 4.21± 0.06 O(α3
s) [614]

Kühn 07 4.16± 0.03 O(α3
s) [615]

moments from B → Xcℓν and B → Xsγ distributions

HFAG (ICHEP 08) 08 4.28± 0.07M1GeV
kin = 4.66± 0.05 B → Xcℓν, O(α2

sβ0) [560]

4.23± 0.05M1GeV
kin

= 4.60± 0.03 B → Xcℓν, B → Xsγ, O(α2
sβ0) [560]

4.17± 0.04 M1S = 4.70± 0.03 B → Xcℓν & B → Xsγ, O(α2
sβ0) [560]

4.22± 0.07 M1S = 4.75± 0.06 B → Xcℓν, O(α2
sβ0) [560]

NRQCD computations in Ref. [609] yields an uncertainty of 60 MeV without making
such assumptions. However, the analysis of Ref. [609] neglects known large NNLL order
contributions to the anomalous dimension of the quark pair production currents [616].
Relativistic sum rules: For small n, 1 ≤ n . 4, the experimentally unmeasured parts

of the bb̄ continuum cross section above the Υ resonance region constitute a substantial
contribution to the spectral moments and uncertainties below the 100 MeV level are only
possible using theory to predict the continuum contributions [612]. For the theoretical
determination of the moments usual fixed order perturbation theory can be employed.
The most recent bottom quark mass determinations [614, 615] use perturbation theory
at O(α3

s) and obtain mb(mb) with an uncertainty between 25 and 58 MeV.
Inclusive B decay moments
As already discussed in Sec. 5.3 the analysis of moments of lepton energy and hadron

invariant mass moments obtained from spectra in the semileptonic decay B → Xcℓν and
of radiative photon energy moments from B → Xsγ allows to determine the bottom
quark threshold masses. Currently the theoretical input for the moment computations
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includes O(αs) and O(α2
sβ0) corrections for the partonic contribution and tree-level Wil-

son coefficients for the power corrections [510, 512, 526]; it would be desirable to include
the known full O(α2

s) corrections into the analysis. For what concerns the determination
of mb, the results based on combined B → Xcℓν and B → Xsγ data are in agreement
with the e+e− sum rule determinations, while using only B → Xcℓν data leads to slightly
larger mb with larger error, which are, however, still compatible with the other deter-
minations. In fact, the semileptonic moments are mostly sensitive to a combination of
mb and mc, as apparent from Fig.44, where various determinations of mc and mb are
compared.
Lattice QCD
In principle, lattice QCD should provide sound ways of determining the quark masses:

each bare mass is adjusted until one particular hadron mass agrees with experiment.
In practice, there are several approaches. One is to convert the bare mass of the lat-
tice action to a more familiar renormalization scheme. Another is to define the mass via
ratios of matrix elements derived from the CVC or PCAC relations. Finally, one can
compute short-distance objects that are sensitive to the (heavy) quark masses, for which
continuum perturbation theory can be used [618]. For the first two methods, a matching
procedure is needed to relate the bare lattice mass, or currents, to a continuum scheme,
such as MS. The matching can be done in perturbation theory—the state of the art
for light quarks is two-loop [619]—or via nonperturbative matching [483]. When con-

Fig. 44. Comparison of different determinations of mc and mb in the kinetic scheme. The red ellipse
refers to the semileptonic fit discussed in Sec. 5.3, the large green ellipse to the 2007 PDG values, and
the others to various e+e− sum rule determinations listed in Table 39, taking into account the sizable
theoretical error in the change of scheme. Figure updated from [617].
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sidering nonperturbatively matched results from lattice QCD, one should bear in mind
that the match is to an RI-MOM scheme or to the renormalization-group independent
(RGI) mass. Final conversion to the MS scheme always entails perturbation theory, be-
cause dimensional regulators, and hence their minimal subtractions, are defined only in
perturbation theory.
For bottom quarks, light-quark methods do not carry over straightforwardly [86]. Con-

sequently, unquenched determinations ofmb have been limited to one-loop accuracy [620]
while nonperturbatively matched determinations remain quenched [621]. They are, thus,
not competitive with the other determinations of mb discussed here. For charm the sit-
uation is almost the same, except on the finest lattices with the most-improved actions.
Then, as discussed below, it is possible to use moments of the charmonium correlator
and continuum O(α3

s) perturbation theory [622], or to employ two-loop matching, which
is still in progress [623].
Charm mass determinations
Due to the increased precision in the data and in the theoretical description the charm

quark mass is also an important input parameter in the analysis of inclusive B decays.
Due to its low mass the use of threshold masses is not imperative for the charm quark,
and the most common scheme is the MS mass. The most precise measurements are
obtained from e+e− sum rules. More recently, charm mass measurements with small
uncertainties are also obtained from inclusive B decays. In the e+e− sum rule anal-
yses of Refs. [614, 615] based on fixed order perturbation theory at O(α3

s) the results
mc(mc) = 1.295 ± 0.015 GeV and 1.286 ± 0.013 GeV, respectively, were obtained. In
was, however, pointed out in Ref. [613] based on an O(α2

s) analysis that carrying out
the analysis in fixed-order perturbation theory might underestimate the theory error
due to a discrepancy of the predictions in fixed-order and in contour-improved pertur-
bation theory. In the analysis of Ref. [622] lattice calculations of moments of different
current-current correlators, defined in analogy to Eq. (279), and O(α3

s) fixed-order com-
putations of these moments were combined and the result mc(mc) = 1.268± 0.009 GeV
was obtained. This analysis avoids the usually large conversion uncertainties when lattice
masses are converted to the MS continuum mass, however, it might also suffer from the
theory issue pointed out in Ref. [613]. Thus this issue certainly deserves further inves-
tigation. More recently, measurement of the charm mass with small uncertainties were
also obtained from fits to inclusive B decay spectra. In Refs. [624] and [511] the results
mc(mc) = 1.22 ± 0.06 GeV and 1.24 ± 0.09 GeV, respectively, were obtained. These
results are compatible with the e+e− sum rule analyses.

5.4.3. Measurements and tests
The experimental measurements of inclusive charmless semileptonic B decays are dom-

inated by measurements at the Υ (4S) resonance. They fall into two broad categories: so-
called “tagged” measurements, in which the companion B meson is fully reconstructed
in a hadronic decay mode (see Sec. 3.2.6), which allows an unambiguous association
of particles with the semileptonic B decay and the determination of the B decay rest
frame; and untagged measurements, in which only a charged lepton and, in some cases,
the missing momentum vector for the event are measured.
The untagged measurements tend to have high efficiency but poor signal to noise, and

are sensitive to e+e− → qq continuum background. The main source of background is
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from b→ cℓν decays. Existing measurements all require the lepton momentum to exceed
1.9 GeV in the Υ (4S) rest frame. Those analyses that utilize the missing momentum vec-
tor generally have improved background rejection, but also have additional uncertainties
due to the modeling of sources of missing momentum, such as imperfect track and cluster
reconstruction, the response to neutral hadrons and the presence of additional neutri-
nos. The partial branching fraction in a specified kinematic region is determined in some
analyses by a cut-and-count method, and in others by a fit of the measured spectrum
to the predicted shapes of the signal and background components. In all cases the fits
use coarse binning in regions where the differential distributions are highly sensitive to
details of the shape function.
The tagged measurements require the presence of an electron or muon with Eℓ >

1.0 GeV amongst the particles not used in the reconstruction of the hadronic B de-
cay. These analyses provide measurements of the kinematic variables of the hadronic
system associated with the semileptonic decay, such as mX and P+, as well as of q2.
They also provide additional handles for suppressing background, which comes predom-
inantly from the Cabibbo-favored decays b → cℓν; these include charge correlations
between the fully-reconstructed B meson and the lepton, the veto of Kaons from the
semileptonically-decaying B, and constraints on the charge sum of reconstructed tracks
and on the reconstructed missing mass-squared in the event. This power has a cost; the
net selection efficiency is < 1% relative to an untagged analysis, and is not well under-
stood in absolute terms due to incomplete knowledge of the decay modes that contribute
to the fully-reconstructed B meson sample. As a result, these analyses measure ratios
of branching fractions, usually relative to the inclusive semileptonic partial branching
fraction for Ee > 1.0 GeV. Examples of measurements from these two categories are
shown in Figs. 45 and 46.
The large b → cℓν background is reduced in most analyses by making restrictive

kinematic cuts. The measured quantity is then a (sometimes small) fraction of the full b→
uℓν rate. As discussed in section 5.4.1, these restrictions introduce sensitivity to the non-
perturbative shape function, and significantly increase the sensitivity to mb. The choice
of kinematic cuts is a balance between statistical and systematic uncertainties, which
increase as kinematic cuts are relaxed, and theoretical and parametric uncertainties,
which decrease under these conditions.
The best determinations to date of various b→ uℓν partial rates are given in Tab. 40.

The experimental systematic uncertainties affecting all analyses are due to track recon-
struction and electron identification. Untagged analyses are relatively more sensitive to
bremsstrahlung and radiative corrections. The tagged analyses have additional uncer-
tainties due to the determination of event yields via fits to the invariant mass spectra of
fully-reconstructed B candidates. Uncertainties due to the modeling of b → cℓν decays
are correlated between measurements, but their magnitude varies depending on the cuts
applied and the analysis strategy; most analyses include some data-based evaluation of
the level of this background. The leading sources of uncertainty arise from uncertainties
in the form factors for B → D∗ℓν decays and limited knowledge of semileptonic decays to
higher mass charm states. The modeling of b→ uℓν decays is relevant to all analyses to
the extent that the precise mix of exclusive states, which is not well measured, affects the
acceptance and reconstruction efficiency. In some analyses an additional sensitivity arises
due to the use of a b → uℓν component in a fit to the measured kinematic observable;
the shape of this component then affects the result. The sensitivity of each analysis to

154



10 5 (a)

10

10 4
10 5

(b)

0

5000

1.1 1.5 1.9 2.3 2.7 3.1 3.5

(c)

Electron Momentum (GeV/c)

   
   

   
   

   
   

   
   

   
   

   
   

   
  N

um
be

r 
of

 E
le

ct
ro

ns
 / 

(5
0 

M
eV

/c
)

Fig. 45. The inclusive electron energy spectrum [625] from BaBar is shown for (a) on-peak data and
q2 continuum (histogram); (b) data subtracted for non-BB contributions (points) and the simulated
contribution fromB decays other than b → uℓν (histogram); and (c) background-subtracted data (points)
with a model of the b → uℓν spectrum (histogram).
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Fig. 46. The hadronic invariant mass spectrum [626] in Belle data (points) is shown in (a) with histograms
corresponding to the fitted contributions from b → cℓν and b → uℓν. After subtracting the expected
contribution from b → cℓν, the data (points) are compared to a model b → uℓν spectrum (histogram)
in (b).

weak annihilation varies as a function of the acceptance cuts used.
The larger data sets now available allow less restrictive kinematic cuts that encompass

up to 90% or more of the total b → uℓν rate, which significantly reduces the impact
of theoretical uncertainties. A preliminary result from Belle [627] uses a multivariate
analysis on a tagged sample to measure the full b → uℓν rate for Eℓ > 1.0 GeV, and
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quotes an experimental uncertainty of 6% on |Vub| and smaller theoretical uncertainties
than measurements made in more restrictive kinematic regions. Given the challenging
nature of the measurements that include large regions dominated by b → cℓν decays, it
is valuable to have results based on complementary techniques. Untagged measurements
of the fully inclusive electron spectrum can also be pushed further into the region domi-
nated by b → cℓν decays; there are prospects for pushing down to Ee > 1.6 GeV while
maintaining experimental errors at the < 5% level on |Vub|.
The availability of measured partial rates in different kinematic regions allows a test of

the theoretical predictions, as ratios of partial rates are independent of |Vub|. One gauge of
the consistency of the measured and predicted partial rates is the χ2 of the |Vub| average
within each theoretical framework. These are given in Tab. 40 In each case a reasonable
χ2 probability is obtained. One can also probe directly the ratios of particular partial
rates.

5.4.4. Determination of |Vub|
As described in the previous section, the large background from the b → cℓν decays

is the chief experimental limitation in the determination of the total branching fraction
for b → uℓν decays.The different analyses are characterized by kinematic cuts applied
on: the lepton energy (Eℓ), the invariant mass of the hadron final state (MX), the light-
cone component of the hadronic final state momentum along the jet direction (P+), the
two dimensional distributions MX -q2 and Eℓ-s

max, where q2 is the squared transferred
momentum to the lepton pair and smax is the maximal MX

2 at fixed q2 and Eℓ. Given
the large variety of analyses performed, and the differences in background rejection cuts
used in the different experimental techniques, each analysis measures a partial rate in a
different phase-space region. The differential rates needed from the theory to extract |Vub|
from the experimental results have been calculated using each theoretical approach. The
challenge of averaging the |Vub|measurements from the different analyses is due mainly to
the complexity of combining measurements performed with different systematic assump-
tions and with potentially-correlated systematic uncertainties. Different analyses often
use a different decomposition of their systematic uncertainties, so achieving consistent
definitions for any potentially correlated contributions requires close coordination with
the experiments. Also, some tagged analyses produce partial rates in several kinematic
variables, like MX , MX-q

2 and P+, based on the same data sample, so the statistical
correlation among the analyses needs to be accounted for. As a result, only those analyses
for which the statistical correlation is provided are included in the average. Systematic
uncertainties that are uncorrelated with any other sources of uncertainty appearing in
an average are lumped with the statistical error. Those systematic errors correlated with
at least one other measurement are treated explicitly. Examples of correlated system-
atic errors include uncertainties in the branching fractions for exclusive b → cℓν and
b → uℓν decay modes, the tracking, particle identification and luminosity uncertainties
for analyses performed in the same experiment, etc.
The theoretical errors for a given calculation are considered completely correlated

among all the analyses. No uncertainty is assigned for possible duality violations.
For BLNP, we have considered theoretical errors due to the HQE parameters mb and

µ2
π, the functional form of the shape function, the subleading shape functions, the vari-

ation of the matching scales, and weak annihilation.
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Table 40
Partial branching fraction and |Vub| from inclusive b → uℓν measurements. The values determined

using different theoretical calculations are given along with the corresponding theory uncertainty; the
experimental error on |Vub| is quoted separately. The fu values are from BLNP. The ADFR values for
the endpoint analyses refer to Ee > 2.3GeV.

Method ∆BF×105 fBLNPu (|Vub| × 105)

(GeV) BLNP GGOU DGE ADFR

Ee > 2.1 [628] 33± 2± 7 0.20 383± 45+32
−33 368 ± 43+24

−38 358 ± 42+28
−25 349± 20+24

−24

Ee-q2 [629] 44± 4± 4 0.20 428± 29+36
−37 not avail. 404 ± 27+28

−30 390± 26+23
−24

mX -q2 [630] 74± 9± 13 0.35 423± 45+29
−30 414 ± 44+33

−34 420 ± 44+23
−18 397± 42+23

−23

Ee > 1.9 [631] 85± 4± 15 0.36 464± 43+29
−31 453 ± 42+22

−30 456 ± 42+28
−24 326± 17+22

−22

Ee > 2.0 [625] 57± 4± 5 0.28 418± 24+29
−31 405 ± 23+22

−32 406 ± 27+27
−26 346± 14+24

−23

mX < 1.7 [626] 123± 11± 12 0.69 390± 26+24
−26 386 ± 26+18

−21 403 ± 27+26
−20 393± 26+24

−24

mX < 1.55 [632] 117± 9± 7 0.61 402± 19+27
−29 398 ± 19+26

−28 423 ± 20+21
−16 404± 19+25

−26

mX -q2 [632] 77± 8± 7 0.35 432± 28+29
−31 422 ± 28+33

−35 426 ± 28+23
−19 415± 27+24

−24

P+ < 0.66 [632] 94± 9± 8 0.60 365± 24+25
−27 343 ± 22+28

−27 370 ± 24+31
−24 356± 23+23

−23

Average 406± 15+25
−27 403 ± 15+20

−25 425 ± 15+21
−17 384± 13+23

−20

χ2/d.f. 13.9/8 9.4/7 7.1/8 16.1/8

For DGE, the theoretical errors are due to the effect of the αs and mb uncertainties on
the prediction of the event fraction and the total rate, weak annihilation and the change
and variation of the scale of the matching scheme.
The theoretical errors for GGOU are from the value of αs, mb and non-perturbative

parameters, higher order perturbative and non-perturbative corrections, the modeling
of the q2 tail, the weak annihilation matrix element and the functional form of the
distribution functions at fixed q2 and µ = 1GeV.
Finally, the theoretical errors considered for ADFR are related to the uncertainties on

αs, |Vcb|, mc, and the semileptonic branching fraction. In addition, a different method to
extract |Vub| from the semileptonic rate is used, which does not depend on the inclusive
semileptonic charm rate, and pole quark masses are employed instead of the MS ones.
The theoretical errors are all characterized by uncertainties whose size and derivative

as a function of the rate are different, affecting in different ways the |Vub| averages.
The methodology and the results provided by the Heavy Flavor Averaging Group

(HFAG) are presented in this section. To meaningfully combine the different analyses, the
central values and errors are rescaled to a common set of input parameters. Specifically
for the b → uℓν analyses, the average B lifetime used for the measurements is (1.573±
0.009) ps. Moreover, a rescaling factor to account for final state radiation is applied to
the partial branching fractions used for the CLEO and Belle endpoint measurements.
The fit performed to obtain the value of the b quark mass is described in Sec. 5.3. The

value of mb from the global fit in the kinetic scheme is used for all the four frameworks
for consistency, translated to the different mass schemes as needed. Note that the models
depend strongly on the b quark mass, except for ADFR, so it is very important to use a
precise determination of the b quark mass. The results obtained by these methods and
the corresponding averages are shown in Tab. 40.
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All the methods are consistent with the current data. Fig. 47 compares |Vub| extracted
in each experimental analysis using different frameworks. The results of DGE, BLNP,
GGOU agree in all cases within theoretical non-parametric errors. We take as our eval-
uation of |Vub| from inclusive semileptonic decays the arithmetic average of the values
and errors of these three determinations to find

|Vub| = (411+27
−28)× 10−5. (280)

Although in these three cases the χ2/d.f. reported in Tab. 40 is good, a small WA
contribution can marginally improve it. Differences among these theory approaches can be
uncovered by additional experimental information on the physical spectra. For instance,
the endpoint analyses of BABAR and Belle already allow us to extract |Vub| at values of
Ecut ranging from 1.9 to 2.3 GeV. The two plots in Fig 48 compare |Vub| extracted in
the four theory frameworks at various Ecut. BABAR’s more precise results lead to stable
values of |Vub| for Ecut ≤ 2.2GeV in BLNP and GGOU, but it must be stressed that
the shape of the spectrum strongly depends on mb and no conclusion can presently be
drawn.
As mentioned above, the leading shape function can also be measured in b → sγ de-

Fig. 47. Comparison of |Vub| extracted from experiment as in Tab. 40 (with the exception of the second
line) using the color code introduced in Fig. 43 for the four frameworks. The bands correspond to theory
errors depurated of common parametric errors.

Fig. 48. |Vub| extracted from the lepton endpoint by BABAR and Belle as a function of the cut on the
lepton energy. The bands correspond to GGOU theory errors depurated of the parametric and WA error
and to the latter combined with the experimental one.
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cays, and there are prescriptions that relate directly the partial rates for b → sγ and
b → uℓν decays [572, 573, 633, 634], thus avoiding any parametrization of the shape
function. However, uncertainties due to the sub-leading shape function remain. The
BABAR measurement in Ref. [625] has been analyzed by in Ref. [635] to obtain |Vub|
= (4.28± 0.29± 0.29± 0.26± 0.28)× 10−3 and |Vub| = (4.40± 0.30± 0.41± 0.23)× 10−3

using calculations from Refs. [634] and [572,573], respectively. These results are consistent
with the inclusive |Vub| average.
Another approach is to measure b→ uℓν transitions over the full phase space, thereby

reducing theoretical uncertainties. In the first measurement of this type, BABAR [636]
found |Vub| = (4.43± 0.45± 0.29)× 10−3. A preliminary BELLE measurement of 90% of
the full b→ uℓν rate quotes |Vub|×105 as follows: [627] 437±26+23

−21 (BLNP), 446±26+15
−16

(DGE), 441 ± 26+12
−22 (GGOU). The last error in each case combines uncertainties from

theory and mb, and is smaller than in less-inclusive measurements.
The inclusive determinations of |Vub| are about ∼ 2σ larger than those obtained from

exclusive B → πℓν. The estimated uncertainty on |Vub| from inclusive decays is presently
smaller than from exclusive decays. The value of |Vub| predicted from the measured sin 2β
value is closer to the exclusive result [637].
The experimental results and theoretical computations presented in this chapter rep-

resent an enormous effort, and their distillation into determinations of |Vub| and |Vcb|
have required close communication among the participants.

6. Rare decays and measurements of |Vtd/Vts|

6.1. Introduction

In this chapter we will discuss a particular subclass of B, K, and D meson decays,
so-called rare decays. These transitions have been the subject of a considerable number
of experimental and theoretical investigations. Being rare processes mediated by loop
diagrams in the SM, they all test the flavor structure of the underlying theory at the
level of quantum corrections and provide information on the couplings and masses of
heavy virtual particles appearing as intermediate states. The resulting sensitivity to
non-standard contributions, such as charged Higgs bosons, SUSY particles, Kaluza-Klein
(KK) excitations or other exotics arising in extensions of the SM, allows for an indirect
observation of NP, a strategy complementary to the direct production of new particles.
Whereas the latter option is reserved to the Tevatron and the LHC, the indirect searches
performed by CLEO, BABAR, Belle, and other low-energy experiments already impose
severe restrictions on the parameter space of a plethora of NP scenarios, while they do
not exclude the possibility that CDF, D0, or LHCb may find significant deviations from
the SM expectations in certain rare processes, and thus evidence for NP, prior to a direct
discovery of the associated new states by the high-pT experiments ATLAS and CMS.
Among the rare decays, the radiative b → (s, d)γ transitions play a special role. Pro-

ceeding at rates of order G2
Fα, they are parametrically enhanced over all other loop-

induced, non-radiative rare decays that are proportional to G2
Fα

2. The helicity violat-
ing b → (s, d)γ amplitudes are dominated by perturbative QCD effects which replace
the quadratic GIM suppression present in the electroweak vertex by a logarithmic one.
This mild suppression of the QCD corrected amplitudes reduces the sensitivity of these
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processes to high-scale physics, but makes them wonderful laboratories to study both
perturbative and non-perturbative strong-interaction phenomena. Since the b → (s, d)γ
transitions receive sizable contributions from top-quark loops involving the couplings |Vts|
or |Vtd|, radiative B-meson decays may be in addition used to test the unitarity of the
CKM matrix and to over-constrain the Wolfenstein parameters ρ̄ and η̄. The theoretical
and experimental status of both the inclusive B → Xs,dγ and exclusive B → (K∗, ρ, ω)γ
modes is reviewed in Sec.s 6.2 and 6.3.
Useful complementary information on the chiral nature of the flavor structure of pos-

sible non-standard interactions can be obtained from the studies of purely leptonic and
semileptonic rare decays. Tree-level processes like B → τν or B → Dτν provide a
unique window on scalar interactions induced by charged Higgs bosons exchange, while
loop-induced decays such as Bs,d → µ+µ− and B → (Xs,K,K

∗)ℓ+ℓ− also probe the
magnitude and phase of SU(2) breaking effects arising from Z-penguin and electroweak
box amplitudes. The latter contributions lead to a quadratic GIM mechanism in the
corresponding decay amplitudes and therefore to an enhanced sensitivity to the scale of
possible non-standard interactions. In contrast to the two-body decay modes B → τν
and Bs,d → µ+µ−, the three-body decays B → Dτν and B → (Xs,K,K

∗)ℓ+ℓ− allow
one to study non-trivial observables beyond the branching fraction by kinematic mea-
surements of the decay products. In the presence of large statistics, expected from the
LHC and a future super flavor factor, angular analyses of the b → cτν and b → sℓ+ℓ−

channels will admit model-independent extractions of the coupling constants multiply-
ing the effective interaction vertices. The recent progress achieved in the field of purely
leptonic and semileptonic rare decays is summarized in Sec.s 6.4 to 6.6.
Our survey is rounded off in Sec.s 6.7 and 6.8 with concise discussions of various

rare K and D meson decays. In the former case, the special role of the K → πνν̄ and
KL → π0ℓ+ℓ− modes is emphasized, which due to their theoretical cleanness and their
enhanced sensitivity to both non-standard flavor and CP violation, are unique tools to
discover or, if no deviation is found, to set severe constraints on non-MFV physics where
the hard GIM cancellation present in the SM and MFV is not active.

6.2. Inclusive B → Xs,dγ

6.2.1. Theory of inclusive B → Xs,dγ
The inclusive decay B → Xsγ is mediated by a FCNC and is loop suppressed within

the SM. Comparing the experimentally measured branching fraction with that obtained
in the SM puts constraints on all NP models which alter the strength of FCNCs. These
constraints are quite stringent, because theory and experiment show good agreement
within errors that amount to roughly 10% on each side. To reach this accuracy on the
theory prediction requires to include QCD corrections to NNLO in perturbation theory.
In this section we describe the SM calculation of the branching fraction to this order,
elaborate on some theoretical subtleties related to experimental cuts on the photon en-
ergy, and give examples of the implications for NP models. We also summarize the status
of B → Xdγ decays, for which experimental results have recently become available.
The calculation of QCD corrections to the B → Xsγ branching fraction is compli-

cated by the presence of widely separated mass scales, ranging from the mass of the top
quark and the electroweak gauge bosons to those of the bottom and charm quarks. A
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straightforward expansion in powers of αs leads to terms of the form αs ln(MW /mb) ∼ 1
at each order in perturbation theory, so fixed-order perturbation theory is inappropriate.
One uses instead the EFT techniques discussed in Sec. 2.1, to set up an expansion in RG
improved perturbation theory. After integrating out the top quark and the electroweak
gauge bosons, the leading-power effective Lagrangian reads

Leff = LQCD×QED +
GF√
2

∑

q=u,c

V ∗
qsVqb

[
C1(µ)Q

q
1 + C2(µ)Q

q
2 +

8∑

i=3

Ci(µ)Qi

]
. (281)

The Wilson coefficients Ci are obtained at a high scale µ0 ∼ MW as a series in αs by
matching Green’s functions in the SM with those in the EFT. They are then evolved
down to a low scale µ ∼ mb by means of the RG. Solving the RG equations requires
the knowledge of the anomalous dimensions of the operators, and the counting in RG-
improved perturbation theory is such that the anomalous dimensions must be known
to one order higher in αs than the matching coefficients themselves. The Wilson coeffi-
cients and anomalous dimensions to the accuracy needed for the NNLO calculation were
obtained in [27, 28] and [24, 29, 30], respectively.
The final step in the calculation consists in the evaluation of the decay rate Γ(B →

Xsγ)Eγ>E0 using the effective Lagrangian (281). The cut on the photon energy is required
to suppress background in the experimental measurements. The rate is calculated in the
heavy-quark expansion, which uses that ΛQCD ≪ mb,mc. The leading-order result can
be written as

Γ(B → Xsγ)Eγ>E0 =
G2
Fαm

5
b

32π4
|V ∗
tsVtb|2

8∑

i,j=1

Ci(µ)Cj(µ)Gij(E0) , (282)

where we have neglected contributions from Qu1,2, which are CKM suppressed. The func-
tions Gij can be calculated in fixed-order perturbation theory as long as ΛQCD ≪
mb − 2E0 = ∆. In that case, they are obtained from the partonic matrix elements of
the b→ Xsγ decay. Results at NLO in αs are known completely [638]. At NNLO, exact
results are available only for G77 [639–641]. Concerning the NNLO corrections to the
other elements Gij , it is reasonable to focus on terms where i, j ∈ {1, 2, 7, 8}, since the
Wilson coefficients C3−6 are small. For those terms, the set of NNLO diagrams generated
by inserting a bottom, charm, or light-quark loop into the gluon lines of the NLO dia-
grams are also known [642–645], with the exception of G18 and G28. An estimate of the
remaining NNLO corrections was performed in [646], by calculating the full corrections
to the elements Gij in the asymptotic limit mc ≫ mb/2, and then interpolating them
to three different boundary conditions at mc = 0 to find results at the physical value
mc ≈ mb/4.
The results of the various NNLO corrections discussed above lead to the numerical

analysis of [647], which found

B(B → Xsγ)Eγ>1.6GeV = (3.15± 0.23)× 10−4 . (283)

The total error was obtained by adding in quadrature the uncertainties from hadronic
power corrections (5%), parametric dependences (3%), and the interpolation in the charm
quark mass (3%). The most significant unknown stems from hadronic power corrections
scaling as αsΛQCD/mb [648]. For the (Q7, Q8) interference, this involve hadronic ma-
trix elements of four-quark operators with trilocal light-cone structure, which were esti-
mated in the vacuum insertion approximation to change the branching fraction by about

161



−[0.3, 3.0]%. Corrections of similar or larger size may arise from non-local αsΛQCD/mb

corrections due to the (Q1,2, Q7) interference, but these have not yet been estimated.
The fixed-order calculation relies on the parametric counting ∆ ∼ mb. However, mea-

surements of the branching fractions are limited to values above a photon energy cut
E0 = 1.6GeV, corresponding to ∆ ∼ 1.4GeV, so it can be argued the counting ΛQCD ≪
∆ ≪ mb is more appropriate. In that case, to properly account for the photon energy cut
requires to separate contributions from a hard scale µh ∼ mb, the soft scale µs ∼ ∆, and
an intermediate scale µi ∼

√
mb∆. An EFT approach able to separate these scales and

to resum large logarithms of their ratios was developed in [649], and extended to NNLO
in RG-improved perturbation theory in [650–652]. An approach which used the same
factorization of scales, but a different approach to resummation, called dressed gluon
exponentiation (DGE), was pursued in [567,569]. Compared to [652], the DGE approach
includes additional effects arising from the resummation of running-coupling corrections
in the power-suppressed ∆/mb contributions.
The consistency between the SM prediction (283) and the experimental world average

as given in Tab. 41, provides strong constraints on many extensions of the SM. The prime
example is the bound on the mass of the charged Higgs boson in the 2HDM of type II
(2HDM-II) [653–655] that amounts to MH+ > 295GeV at 95% CL [647], essentially
independent of tanβ. This is much stronger than other available direct and indirect
constraints on MH+ .
The inclusive b→ sγ transition has also received a lot of attention in SUSY extensions

of the SM [147,148,655–657]. In the limit ofMSUSY ≫MW , SUSY effects can be absorbed
into the coupling constants of local operators in an EFT [135]. The Higgs sector of the
MSSM is modified by these non-decoupling corrections and can differ notably from the
native 2HDM-II model. Some of the corrections to B → Xsγ in the EFT are enhanced
by tanβ, as αs tanβ ∼ 1 for tanβ ≫ 1, and need to be resummed if applicable. In the
large tanβ regime the relative sign of the chargino contribution is given by −sgn(Atµ).
For sgn(Atµ) > 0, the chargino and charged Higgs boson contributions interfere con-
structively with the SM amplitude and this tends to rule out large positive values of the
product of the trilinear soft SUSY breaking coupling At and the Higgsino parameter µ.
In the MSSM with generic sources of flavor violation, B → Xsγ implies stringent bounds
on the flavor-violating entries in the down-squark mass matrix. In particular, for small
and moderate values of tanβ all four mass insertions (δd23)AB with A,B = L,R except for
(δd23)RR are determined entirely by B → Xsγ 2.5.2.3. The bounds on |(δd23)AB | amount
to 4× 10−1, 6× 10−2, and 2× 10−2 for the LL, LR, and RL insertion.
In the portion of the SUSY parameter space with inverted scalar mass hierarchy, real-

ized in the class of SUSY GUT scenarios, chargino contributions to b→ sγ are strongly
enhanced. As a result, SUSY GUT models with third generation Yukawa unification and
universal squark and gaugino masses at the GUT scale are unable to accommodate the
value of the bottom-quark mass without violating either the constraint from B → Xsγ or
Bs → µ+µ−, unless the scalar masses are pushed into the few TeV range [658]. A poten-
tial remedy consists in relaxing Yukawa to b–τ unification, but even then the predictions
for B(B → Xsγ) tend to be at the lower end of the range favored by experiment [659].
In non-SUSY extensions of the SM, contributions due to Kaluza-Klein (KK) excitations

in models with universal extra dimensions (UEDs) interfere destructively with the SM
amplitude, B → Xsγ leads to powerful bounds on the inverse compactification radius
1/R [660,661]. Exclusion limits have been obtained in the five- and six-dimensional case
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and amount to 1/R > 600GeV [662] and 1/R > 650GeV [663] at 95% CL. These bounds
exceed the limits that can be derived from any other direct measurement.
The discussion so far dealt with B → Xsγ. Recently, a first measurement of the B →

Xdγ branching fraction has been presented [664]. Compared to B → Xsγ, the nominal
theoretical difference is to replace s→ d in the effective Lagrangian (281), in which case
the terms proportional to Qu1,2 are no longer CKM suppressed. The implications of this
have been studied in [665], where it was pointed out that the ratio B(B → Xsγ)/B(B →
Xdγ) can be calculated with reduced theoretical uncertainty. This was used along with
the experimental results to determine |Vtd/Vts| in [664]. A possible subtlety is that in [665]
the total branching fraction has been calculated, whereas the experimental measurements
are limited to the region MXs

< 1.8GeV of hadronic invariant masses, where “shape-
function” effects are expected to be important.

6.2.2. Experimental methods and status of B → Xs,dγ
The analysis of the inclusive B → Xsγ decay at the B factories is rather complicated.

The quantities to be measured are the differential decay rate, i.e., the photon energy
spectrum as well as the total branching fraction. There are three methods for the inclusive
analyses: fully inclusive, semi-inclusive, and B recoil.
The idea of the fully inclusive method is to subtract the photon energy spectrum of

the on-resonant e+e− → Υ (4S) → BB events by that of the continuum e+e− → qq
events. This method is free from the uncertainty of the final state, and can exploit the
whole available statistics. However, the signal purity is very low, and the background
suppression is a key issue. The photon energy is obtained in the Υ (4S) rest frame and
not in the B rest frame, since the momentum of the B is unknown.
Panel (a) of Fig. 49 shows the photon energy spectrum after suppressing the contin-

uum background, using event topology, and vetoing high energy photons from π0 or η
using the invariant mass of the candidate high energy photon, and of any other photons
in the event. The largest background is from the continuum events, and is subtracted us-
ing the continuum data. This subtraction requires correction due to small center-of-mass
energy difference for the event selection efficiency, photon energy, and photon multiplic-
ity between the on-resonant and continuum sample. As shown in panel (b) of Fig. 49,
the subtracted spectrum still suffers from huge backgrounds from B decays, which are
subtracted using the MC sample. Here, the MC sample needs to be calibrated with data
using control samples to reproduce the yields of π0, η, etc. The final photon spectrum, ob-
tained with the prescribed procedure, for b→ sγ events, is shown in panel (c) of Fig. 49.
It can be seen that the errors increase rapidly for photon energies below 2GeV due to
the very large continuum background in that region. For this reason all measurements of
the branching ratio introduce a cutoff Emin

γ and then extrapolate to get B(Eγ > 1.6GeV)
which is compared to the theory prediction. Measurements by CLEO, BABAR, and Belle
using the fully inclusive method are listed in Tab. 41. The results are consistent with the
SM expectation (283).
In the semi-inclusive method, also called “sum-of-exclusive” method, the reconstruc-

tion of the B → Xsγ signal is performed by the sum of certain hadronic final states Xs

that are exclusively reconstructed. Typically, Xs is reconstructed from one Kaon plus
up to four pions including up to one or two neutral pions, but also modes with three
Kaons or an η are used. The advantage of this method is a better signal purity compared
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Fig. 49. (a) On-resonant data (open circle), scaled continuum data (open square) and continuum back-
ground subtracted (filled circle) photon energy spectrum. (b) The spectra of photons from B decays
(MC). (c) The extracted photon spectrum for B → Xsγ. The plots are taken from [666].
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to the fully inclusive method. The background suppression is still important, but the
detailed correction of the MC samples and the precise determination of the luminosity of
the off-resonance sample, used in the fully inclusive method, are not necessary. Another
advantage is that the photon energy in the B rest frame can be measured from the mass
of the Xs system. However, this method can reconstruct only a part of the Xs system,
and suffers from the large uncertainty in the fraction of the total width present in the
exclusive modes that are reconstructed. The measurements from BABAR and Belle are
listed in Tab. 41.
It is also possible to measure the CP asymmetry, ACP, of B → Xsγ with the semi-

inclusive method, since most of the final states provide flavor information. In the SM, ACP

is predicted to be less than 1% [667,668], but some models beyond the SM predict much
larger values of ACP [667–670]. The measurement of BABAR leads to ACP = −0.010 ±
0.030stat± 0.014syst for MXs

< 2.8GeV [671] while Belle finds ACP = 0.002± 0.050stat±
0.030syst for MXs

< 2.1GeV [672].
BABAR recently reported a first measurement of B → Xdγ using the semi-inclusive

approach [664]. In this analysis, seven exclusive final states in the range 0.6GeV <
MXd

< 1.8GeV are reconstructed. Although the analysis suffers from a large background
from continuum events, mis-reconstructed B → Xsγ events, and an large uncertainty in
missing modes, BABAR obtained the branching fraction in this mass range to be (7.2 ±
2.7stat ± 2.3syst)× 10−6.
In the B recoil method, one of the two produced B mesons is fully reconstructed in a

hadronic mode, and an isolated photon is identified in the rest of the event. This method
provides a very clean signal, and one obtains simultaneously the flavor, charge, and
momentum of the B meson. The drawback is a very low efficiency. In the analysis with
210 fb−1 by BABAR [673], 6.8× 105 B mesons are tagged and 119± 27 signal events are
found. The result is limited by statistics and is not competitive with the other methods
listed in Tab. 41. However, this method is promising for a future super flavor factory.
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Table 41
Inclusive branching fractions of radiative B decays. Emin

γ and B(Eγ > Emin
γ ) are the minimum energy

and branching fraction reported in the paper, while B(Eγ > 1.6GeV) is the rescaled branching fraction.
The size of the data sets is given in units of fb−1 and the branching fractions are in units of 10−6.

Method Data set Emin
γ B(Eγ > Emin

γ ) B(Eγ > 1.6GeV) Ref.

CLEO fully inclusive 9 2.0 305 ± 41± 26 329± 53 [557]

BABAR fully inclusive 82 1.9 367 ± 29± 34± 29 392± 56 [553]

BABAR semi-inclusive 82 1.9 327 ± 18+55
−40

+4
−9 349± 57 [554]

BABAR B-recoil 210 1.9 366 ± 85± 60 391± 111 [673]

Belle semi-inclusive 6 2.24 — 369± 94 [674]

Belle fully inclusive 605 1.7 332± 16± 37± 1 337± 43 [666]

Average – – – 352± 23± 9

Theory prediction – – – 315± 23 [647]

6.2.3. Theory of photon energy spectrum and moments
The basic motivation to study the photon energy spectrum in B → Xsγ is the fact that

backgrounds prohibit a measurement of the branching fraction for non-hard photons.
Despite significant progress, the current measurements still have sizable errors below
Eγ ∼ 2GeV. Raising the photon energy cut Eγ > E0 significantly increases the accuracy
of the measurements, but requires an larger extrapolation to the “total” width, thereby
introducing some model dependence.
In contrast to the branching ratio, the photon energy spectrum is largely insensitive to

NP [675]. It can thus be used for precision studies of perturbative and non-perturbative
strong-interaction effects. In particular, the measured spectrum allows to extract the
value of the mass of the bottom quark from its first moment 〈Eγ〉 ∼ mb/2, its average
kinetic energy µ2

π from its second moment, and gives direct information on the importance
of the B meson “shape function” for different values of E0. The measurements of mb and
µ2
π using B → Xsγ are complementary to the determinations using the inclusive moments

of B → Xcℓν̄. Fits to the measured moments [511, 555] based on the 1S [510] and the
kinetic scheme [512,566] have been very useful, and constitute today an important input
to the determination of |Vub| [560].
The calculation of the B → Xsγ photon spectrum is a complex theoretical problem.

First of all, there is no unique way to define the total B → Xsγ width owing to both
the soft divergence of the (Q7, Q8) interference term and the possibility of secondary
photon emission in non-radiative b→ s decays. Furthermore, the local OPE in B → Xsγ
does not apply to contributions from operators other than Q7, in which the photon
couples to light quarks [676, 677]. In the case of the (Q7, Q8) interference, the resulting
O(αsΛQCD/mb) corrections to the total rate have been estimated in [648]. A detailed
study of the impact of these and similar enhanced non-local power-corrections on the
photon energy spectrum is in progress [].
Even in the case of the Q7 self-interference, where an local OPE for the total width

exists, the calculation of the spectrum is highly non-trivial. The main difficulty arises
due to the jet-like structure of the decay process, where an energetic hadronic system,
EXs

∼ Eγ ∼ O(mb/2), with a relatively small mass, O(
√
mbΛQCD), recoils against the

photon.
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In the endpoint region, the B → Xsγ spectrum can be computed as a convolution be-
tween a perturbatively calculable coefficient function and the quark distribution function
S(l+). While the non-perturbative content of S(l+) is in principle clear, a calculation by
existing non-perturbative methods is not possible, so that in practice one must model
the function S(l+) using a suitable parametrization. Information on the corresponding
model parameters can be obtained from the experimental measurements of the first few
moments of inclusive decay spectra, which in turn determine the moments of the “shape
function”.
Significant progress has been made since the first dedicated calculation of the spectrum

[675]. The state-of-the-art calculations are based on the factorization picture of inclusive
decays near the endpoint [678]. Consider for example the measurement of the partial
B → Xsγ width with Eγ > E0. The key observation is that near the endpoint, i.e., for
∆ ≪ mb, and to leading order in ΛQCD/mb there are three separate dynamical processes
which are quantum mechanically incoherent. A soft subprocess, S, which is characterized
by soft gluons with momenta of order ∆ = mb − 2Eγ , a jet subprocess, J , summing up
collinear hard radiation with virtualities of order of

√
mb∆, and a hard function, H ,

associated with virtual gluons with momenta of order mb. The factorized decay width
takes the form

Γ(∆) = H(mb)J(
√
mb∆)⊗ S(∆) + O(ΛQCD/mb) . (284)

This factorization formula, originally proposed in [678], was rederived in the framework
of SCET [41, 530]. It serves as a basis for a range of approaches, facilitating the re-
summation of large Sudakov logarithms associated with the double hierarchy of scales
mb ≫ √

mb∆ ≫ ∆. This includes DGE [567–569, 588, 679] and a multi-scale OPE
(MSOPE) [650–652,680].
Using SCET, it is possible to systematically define additional non-local operators that

contribute to the decay spectra at subleading powers of ΛQCD/mb [681–683]. Unfortu-
nately, the corresponding subleading “shape functions” are not well constrained since
starting at O(ΛQCD/mb) the number of functions exceeds the number of observables.
Thus, estimating non-perturbative corrections to (284) remains a notoriously difficult
task.
While (284) only holds for ∆ ≪ mb, its use may vary depending on the extent at

which effects on the lowest scale are described by perturbation theory. If ∆ ≫ ΛQCD it
is useful to compute the quark distribution function perturbatively [588,650] rather than
to parametrize it. In contrast, when ∆ ∼ ΛQCD this function becomes non-perturbative.
Two different approaches based on SCET have been developed to deal with these two
regimes, MSOPE for the former and a formalism based on parametrization of the shape
functions for the latter [530]. In contrast, DGE, which is at the outset derived in the
regime ∆ ≫ ΛQCD, has been extended to the regime ∆ ∼ ΛQCD by constraining the
Borel transform of S(l+) and then parametrizing non-perturbative corrections depending
on the soft scale in moment space.
Beyond the conceptual issues discussed so far, much progress has been made on the

calculation side. In particular, the Q7 self-interference part of the spectrum has been
computed to NNLO accuracy [639, 684]. In addition, all the necessary ingredients for
Sudakov resummation at NNLO of both the soft and the jet function are in place [588,650,
651,685,686]. Some additional higher-order corrections are known, in particular, running-
coupling corrections [569,642,679], but unfortunately complete NNLO calculations of the
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(Q7, Q1,2) and (Q1,2, Q1,2) interference terms are not available at present.
Systematic NNLO analysis of the B → Xsγ branching fraction and spectrum have

been performed by three groups [569, 647, 652]. While the first analysis works at fixed-
order in perturbation theory, the latter two articles are based on Sudakov resummation
utilizing (284). The MSOPE result has been combined with the fixed-order predictions
by computing the fraction of events 1− T that lies in the range E0 = [1.0, 1.6]GeV. The
analysis [652] finds 1−T = 0.07+0.03

−0.05pert
±0.02hard±0.02pars, where the individual errors

are perturbative, hadronic, and parametric. The quoted value is almost twice as large as
the estimate 1−T = 0.04± 0.01pert obtained in fixed-order perturbation theory [647]. In
contrast, in the DGE approach [569] one finds a much thinner tail of the photon energy
spectrum at NNLO, 1−T = 0.016±0.003pert, which is consistent with the result obtained
in fixed order perturbation theory.
Given the common theoretical basis for the resummation, the opposite conclusions

drawn in [652] and [569] may look surprising. The main qualitative differences between the
two calculations are as follows. First, the result [652] is plagued by a significant additional
theoretical error related to low-scale, µ ∼ ∆, perturbative corrections, indicating the
presence of large subleading logarithmic corrections to the soft function. In contrast, the
DGE approach [569] supplements Sudakov resummation with internal resummation of
running-coupling corrections, which is necessary to cure the endpoint divergence of the
fixed-logarithmic-accuracy expansion. Second, the MSOPE approach [652] identified a
high sensitivity to the matching procedure, dealing with terms that are suppressed by
powers of ∆/mb for Eγ ∼ mb/2, but are not small away from the endpoint [569, 687].
The analysis [569], on the other hand, has used additional information on the small Eγ
behavior of the different interference terms, which is known to all orders in perturbation
theory, to extend the range of applicability of resummation to the tail region.
In conclusion, progress on the theory front, in particular in factorization and resum-

mation of perturbation theory, and in explicit higher order calculations, significantly
improved our knowledge of the photon energy spectrum in B → Xsγ. Nevertheless,
uncertainties of both perturbative and non-perturbative origin remain, which deserve
further theoretical investigations.

6.2.4. Experimental results of photon energy spectrum and moments
In the case of the semi-inclusive and B recoil methods, the photon energy spectrum

can be measured directly in the B meson rest frame. The semi-inclusive method suffers
from large uncertainty from the hadronic system, while the B recoil method requires
much more statistics. Presently, precise measurements of the photon energy spectrum
are therefore provided only with the fully inclusive method.
In the fully inclusive method, it is not possible to know the momentum of the B meson

for each photon, so only the photon energy distribution in the Υ (4S) rest frame is directly
measurable. As a result the raw photon energy spectrum has to be corrected not only for
the photon detection efficiency of the calorimeter and other selection efficiency, but also
for the smearing effect between the B meson and the Υ (4S) frame. The energy spectrum is
also smeared by the response of the calorimeter. The correction due to smearing, which
is also referred to as “unfolding”, depends on the signal models and its parameters.
CLEO [557] uses a signal model by Ali and Greub [688], while a model by Kagan and
Neubert [675] is used by both BABAR [553] and Belle [666]. The latter collaboration also
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considers other models [559, 569, 572, 586].
The photon energy spectrum is often represented in terms of the first two moments,

i.e., mean and variance, above a certain energy threshold. For example, BABAR [553] ob-
tains 〈Eγ〉 = (2.346±0.032stat±0.011syst)GeV and 〈E2

γ〉−〈Eγ〉2 = (0.0226±0.0066stat±
0.0020syst)GeV2 for Eγ > 2.0GeV, while Belle [666] 〈Eγ〉 = (2.281±0.032stat±0.053syst±
0.002boos)GeV and 〈E2

γ〉 − 〈Eγ〉2 = (0.0396± 0.0156stat ± 0.0214syst ± 0.0012boos)GeV2

for Eγ > 1.7GeV, where the last errors in the Belle measurements are from the boost cor-
rection. In these measurements, branching fractions and moments with different photon
energy thresholds are also obtained. Parameters useful for the |Vcb| and |Vub| determi-
nations such as the bottom-quark mass mb or its mean momentum squared µ2

π can be
obtained by fitting the theoretical predictions to the measured moments. This is discussed
in detail in Sec. 5.3.
One of the challenges in the measurement is to lower the energy threshold of the photon.

The contamination of the background from B decays becomes more severe rapidly, as
the threshold is lowered, especially in the region below 2GeV. So far, with growing data
sets, measurements with lower photon energy threshold have been performed. However,
the results with lower cut on the photon energy tend to give larger systematic, and model
errors. This raises the question which threshold value is optimal to determine |Vcb| and
|Vub|. Another issue is that the uncertainty of mb is included in the signal model error for
the measurements of the moments, but the measured moments themselves are used to
determined mb. The latter issue could probably be avoided by performing a simultaneous
determination of the parameters in question from the raw photon energy spectrum.

6.3. Exclusive B → V γ decays

6.3.1. Theory of exclusive B → V γ decays
The exclusive decays B(s) → V γ, with V ∈ {K∗, ρ, ω, φ}, are mediated by FCNCs

and thus test the flavor sector in and beyond the SM. After matching onto the effec-
tive Lagrangian (281), the main theoretical challenge is to evaluate the hadronic matrix
elements of the operators Q1−8. QCDF is a model-independent approach based on the
heavy-quark expansion [689–691], and the bulk of this section is devoted to describing
this formalism. At the end of the section we briefly mention the “perturbative QCD”
(pQCD) approach [692–694]. Although the hadronic uncertainties inherent to the exclu-
sive decay modes are a barrier to precise predictions, we shall see that the exclusive decays
nonetheless provide valuable information on the CKM elements |Vtd/Vts| and allow to
put constraints on the chiral structure of possible non-standard interactions.
QCDF is the statement that in the heavy-quark limit the hadronic matrix element of

each operator in the effective Lagrangian can be written in the form

〈
V γ |Qi| B̄

〉
= T I

i F
B→V⊥ +

∫ ∞

0

dω

ω
φB+(ω)

∫ 1

0

du φV⊥(u)T
II
i (ω, u) +O

(
ΛQCD

mb

)
. (285)

The form factor FB→V⊥ and the light-cone distribution amplitudes (LCDAs) φB+ , φ
V
⊥ are

non-perturbative, universal objects. The hard-scattering kernels T I,II
i can be calculated as

a perturbative series in αs. The elements T I
i (T II

i ) are referred to as “vertex corrections”
(“spectator corrections”). The hard-scattering kernels have been known completely at
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order αs (NLO) for some time [689–691], and recently some of the α2
s (NNLO) corrections

have also been calculated [695].
An all orders proof of the QCDF formula (285) was performed in [696], using the

technology of SCET. The EFT approach also allows to separate physics from the two
perturbative scales mb and

√
mbΛQCD, and to resum perturbative logarithms of their

ratio using the RG. The numerical impact of this resummation has been investigated
in [695, 696].
The predictive power of QCDF is limited by hadronic uncertainties related to the

LCDAs and QCD form factors, as well as by power corrections in ΛQCD/mb. For in-
stance, the form factors FB→V⊥ can be calculated with QCD sum rules to an accuracy
of about 15%, which implies an uncertainty of roughly 30% on the B → V γ branching
fractions. More troublesome is the issue of power corrections. A naive dimensional esti-
mate indicates that these should be on the order of 10%, but this statement is hard to
quantify. Since SCET is an effective theory which sets up a systematic expansion in αs
and ΛQCD/mb, it has the potential to extend the QCDF formalism to subleading order
in ΛQCD/mb. However, in cases where power corrections have been calculated, the convo-
lution integrals over momentum fractions do not always converge [697]. These “endpoint
divergences” are at present a principle limitation on the entire formalism.
Although a comprehensive theory of power corrections is lacking, it is nonetheless

possible to estimate some of the corrections which are believed to be large, or which
play an important role in phenomenological applications. One such correction stems
from the annihilation topology, which has been shown to factorize at leading order in
αs [690]. Annihilation gives the leading contribution to isospin asymmetries, and is also
important for B± → ρ±γ branching fractions, where it is enhanced by a factor of C1,2/C7.
The ΛQCD/mb corrections from annihilation have been included in all recent numerical
studies [446, 698–700], and part of the Λ2

QCD/m
2
b correction, so-called “long-distance

photon emission”, has been calculated in [446]. Some additional αsΛQCD/mb corrections
from annihilation and spectator scattering needed to calculate isospin asymmetries were
dealt with in [697]. Corrections from three-particle Fock states in the B and V mesons,
most significant for indirect CP asymmetries, were estimated in [446].
We now give numerical results for some key observables in B → V γ decays, and

compare them with experiment. The ratio of B → K∗γ and B → ργ branching fractions
is useful for the determination of |Vtd/Vts|. To understand why this is the case, consider
the expression

B(B0 → ρ0γ)

B(B0 → K∗0γ)
=

1

2ξ2

∣∣∣∣
Vtd
Vts

∣∣∣∣
2 [

1− 2Rutǫ0 cosα cos θ0 +R2
utǫ

2
0

]
. (286)

Analogous expressions hold for charged decays and B → ωγ. The quantities ǫ0 and cos θ0
can be calculated in QCDF, and vanish at leading order in ΛQCD/mb and αs. Beyond
leading order they are approximately 10%, but the factor inside the brackets remains
close to unity, due to a additional suppression from the CKM factors cosα ∼ 0.1 and
Rut = |(VudVub)/(VtdVtb)| ∼ 0.5. Therefore, by far, the dominant theoretical uncertainty
is related to the form factor ratio ξ = FB→K∗

/FB→ρ. The ratio of form factors can be
calculated with better accuracy than the form factors themselves and has been estimated
using light-cone sum rules to be 1.17 ± 0.09 [446]. Extracting |Vtd/Vts| from (286) and
averaging with determinations from the charged mode and the B → ωγ decay yields the
results given in Sec. 6.3.3.

169



Direct and isospin CP asymmetries, ACP and AI, provide useful tests of the SM and
the QCDF approach. In QCDF, direct CP asymmetries in B → V γ decays are suppressed
by at least one power of αs and isospin asymmetries by at least one power of ΛQCD/mb,
so both of these are predicted to be small. We first consider B → ργ decays. In that
case the QCDF prediction for the direct CP asymmetry is about −10% [699, 700] and
agrees well with the recent experimental results quoted in Sec. 6.3.2. The QCDF result
for AI depends strongly on cosα, but in the preferred range of α near 90◦ is roughly
between zero and −10% [699,700]. Values closer to the central experimental value can be
generated if one assumes a large contribution from non-perturbative charming penguins
[701], which would be in contradiction with the power counting of QCDF. Given the large
experimental errors it is not yet possible to draw a definite conclusion. For B → K∗γ
decays, the direct CP asymmetries are strongly suppressed due to the CKM structure of
the decay amplitude. The isospin asymmetry comes out to be (3 ± 4)% [560], which is
compatible with predictions from QCDF [446,697–699]. This isospin asymmetry is very
sensitive to the magnitude and sign of the ratio C6/C7.
Finally, we consider indirect CP asymmetries. In the SM, these are suppressed by

powers ofms,d/mb or arise from the presence of three-particle Fock states in the B and V
mesons, which are ΛQCD/mb corrections to the leading order factorization formula [702].
A calculation performed in [446] indicates that the corrections from three-particle Fock
states are much smaller than the generic size of a ΛQCD/mb power correction, so that the
indirect CP asymmetries are estimated to be below the 3% level for all decay modes. The
asymmetries could be much larger in extensions of the SM with altered chiral structure
such as left-right symmetric models [446]. The current experimental results are within
their large errors consistent with zero [703, 704].
A modified implementation of the heavy-quark expansion is provided by the pQCD

approach [692–694]. The main difference compared to QCDF is that pQCD attempts
to calculate the QCD form factors perturbatively. The assumptions required for such a
treatment have been questioned in [705]. However, numerical results for most observ-
ables are in rough agreement with those from QCDF. A recent comparison between the
branching fractions, isospin and CP asymmetries obtained within the two theoretical
setups can be found in [446].

6.3.2. Experimental results for exclusive B → V γ decays
The exclusive reconstruction of radiative B → V γ decays or other multi-body decays

such as B → Kπγ is usually straightforward. The dominant background originates from
the continuum process e+e− → qq, which is experimentally suppressed by means of event
shape variables.
Vetoing high energetic photons from π0 or η is also useful. The background from B

decays is small in the low hadronic mass region, but becomes larger for higher hadronic
mass, i.e., lower photon energy. Therefore, in the analysis of the exclusive final states
with more than two particles, it is necessary to apply a cut on the hadronic mass, which
is typically around 2 to 2.5GeV. The contribution of the cross-feed from radiative B
decays to other final states also becomes a significant background in some modes.
The first observation of radiative B decays has been established in 1993 by CLEO [706]

by a measurement of the B → K∗γ mode. They found 13 events in the signal region
in a data sample of 1.4 fb−1, and measured the branching fraction B(B → K∗γ) =
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Table 42
Measured branching fractions of radiative B decays. Only modes with evidence are listed. The size of

the data sets is given in the units of fb−1.

Belle BABAR

Mode B (10−6) Data set Ref. B (10−6) Data set Ref.

B0 → K∗0γ 40.1± 2.1± 1.7 78 [707] 45.8± 1.0± 1.6 347 [708]

B0 → K∗+γ 42.5± 3.1± 2.4 78 [707] 47.3± 1.5± 1.7 347 [708]

B+ → K1(1270)+γ 43 ± 9± 9 140 [709] – – –

B0 → K∗
2 (1430)

0γ 13 ± 5± 1 29 [710] 12.2± 2.5± 1.0 81 [711]

B+ → K∗
2 (1430)

+γ – – – 14.5± 4.0± 1.5 81 [711]

B+ → K+ηγ 8.4± 1.5+1.2
−0.9 253 [712] 7.7± 1.0± 0.4 423 [713]

B0 → K0ηγ 8.7+3.1
−2.7

+1.9
−1.6 253 [712] 7.1+2.1

−2.0 ± 0.4 423 [713]

B+ → K+η′γ 3.2+1.2
−1.1 ± 0.3 605 [714] – – –

B+ → K+φγ 3.4± 0.9± 0.4 90 [715] 3.5± 0.6± 0.4 211 [716]

B+ → pΛγ 2.45+0.44
−0.38 ± 0.22 414 [717] – – –

B+ → K+π−π+γ 25.0± 1.8± 2.2 140 [709] 29.5± 1.3± 2.0 211 [718]

B+ → K0π+π0γ – – – 45.6± 4.2± 3.1 211 [718]

B0 → K0π+π−γ 24.0± 4.0± 3.0 140 [709] 18.5± 2.1± 1.2 211 [718]

B0 → K+π−π0γ – – – 40.7± 2.2± 3.1 211 [718]

B0
s → φγ 57+18

−15
+12
−11 24 [719] – – –

B+ → ρ+γ 0.87+0.29
−0.27

+0.09
−0.11 605 [720] 1.20+0.42

−0.37 ± 0.20 423 [721]

B0 → ρ0γ 0.78+0.17
−0.16

+0.09
−0.10 605 [720] 0.97+0.24

−0.22 ± 0.06 423 [721]

B0 → ωγ 0.40+0.19
−0.17 ± 0.13 605 [720] 0.50+0.27

−0.23 ± 0.09 423 [721]

(45 ± 15stat ± 3syst) × 10−6. Now, the measurements by BABAR and Belle are based on
data set that are more than 100 times larger and start to be dominated by systematics, as
can be seen from Tab. 42. Unfortunately, it is not easy to predict the branching fractions
of exclusive modes precisely, and hence it is difficult to compare the results with theory.
What can be predicted more precisely are the direct CP or charge asymmetry ACP

and the isospin asymmetry AI. They are defined as

ACP =
Γ(B → K∗γ)− Γ(B → K∗γ)

Γ(B → K∗γ) + Γ(B → K∗γ)
,

AI =
Γ(B0 → K∗0γ)− Γ(B+ → K∗+γ)

Γ(B0 → K∗0γ) + Γ(B+ → K∗+γ)
,

(287)

and similarly for the other decay modes. In the case of B → K∗γ, BABAR obtained ACP =
−0.009±0.017stat±0.011syst and AI = 0.029±0.019stat±0.016syst±0.018prod [708] while
the results of Belle read ACP = −0.015±0.044stat±0.012syst and AI = 0.034±0.044stat±
0.026syst ± 0.025prod [707]. The last errors in AI arise from the production ratio of B0

and B+ for which BABAR and Belle assume the values 1.044± 0.050 and 1.020± 0.034,
respectively. The direct CP asymmetry has also been measured in the B → ργ system by
Belle which finds ACP = −0.11±0.32stat±0.09syst [720]. The corresponding experimental
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Table 43
Measurements of tCPV of radiative B decays. Only the S terms are shown. The size of the data sets is

given in units of fb−1.

Belle BABAR

Mode S Data set Ref. S Data set Ref.

B0 → K∗0γ −0.32+0.36
−0.33 ± 0.05 492 [703] −0.03± 0.29± 0.03 423 [704]

B0 → K0
Sπ

0γ† −0.10± 0.31± 0.07 492 [703] – – –

B0 → K0
Sπ

0γ‡ – – – −0.78± 0.59± 0.09 423 [704]

B0 → K0
Sηγ – – – −0.18+0.49

−0.46 ± 0.12 423 [713]

B0 → K0
Sρ

0γ 0.11± 0.33+0.05
−0.09 605 [723] – – –

† MKπ < 1.8GeV ‡ 1.1GeV < MKπ < 1.8GeV

results for the isospin asymmetry read AI = −0.43+0.25
−0.22stat

± 0.10syst from BABAR [721]

and AI = −0.48+0.21
−0.19stat

+0.08
−0.09syst

from Belle [720]. Within errors, the measured values of

ACP and AI are consistent with the SM predictions discussed in Sec. 6.3.1.
Another important variable is the time-dependent CP asymmetry. In the SM, the

photon from the b→ sγ process is almost polarized. Photons from B0 are right-handed,
while photons from B0 are left-handed. So if the photon is completely polarized, B0 and
B0 cannot decay into a common final state, and mixing-induced CP violation does not
happen. Indeed, the time-dependent CP violation (tCPV) in radiative B decays B →
fCPγ, where fCP denotes a CP eigenstate, is expected to be within a few percent even
when we consider the possible enhancement due to the strong interaction. Therefore, the
measurement of tCPV for b→ sγ is a probe of the photon polarization, and large values
of tCPV would be a signal of the presence of non-standard right-handed interactions.
The final state in K∗0 → K0

S
π0 is a CP eigenstate, but it is not essential whether

the decay goes through K∗0 or not. Actually, final states can be any of the type P1P2γ,
where P1 and P2 are pseudoscalar mesons [722]. In consequence, the measurements have
been performed not only for B → K∗0γ → K0

S
π0γ but also for the non-resonant mode

B → K0
S
π0γ. In Tab. 43 we list the measured S terms of the various tCPV. Since the

final state K0
S
π0γ does not include charged tracks that come from the B vertex, the B

decay vertex has to be calculated using the K0
S
trajectory, which causes lower efficiency.

Although the error is still large, the result is consistent with vanishing CP asymmetry.
Many other exclusive final states have also been found by BABAR and Belle. Tab. 42

shows the decays with experimental evidence and their branching fractions. Radiative
decays through kaonic resonances are observed for B → K∗

2 (1430)γ and B → K1(1270)γ,
in addition to B → K∗γ. The other listed modes are three- or four-body decays. Mea-
surements of these branching ratios provide a better understanding of the composition
of b→ sγ final states, and potentially reduce the systematic errors due to hadronization
in the inclusive analysis with the sum of exclusive method. Some exclusive modes can
also be used to study the tCPV. As shown in Tab. 43, BABAR has performed the first
measurement of tCPV for B0 → K0

S
ηγ, while Belle has reported the first evidence of

B+ → K+η′γ, whose neutral mode is also usable for an tCPV analysis.
Belle has recently reported the measurement of tCPV in B0 → K0

S
ρ0γ → K0

S
π+π−γ [723].

The advantage of this mode is that the B decay vertex can be determined from two
charged pions. On the other hand, there exists a contamination from other decays with
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the same final state such as B0 → K∗+π−γ. Since K1(1270) and K
∗(1680) have signifi-

cant branching fractions to Kρ, it is necessary to estimate the fraction of B → K1(1270)γ
and B → K∗(1680)γ in the entire B → Kππγ decay. Belle uses the charged mode B+ →
K+π+π−γ in order to disentangle the composition, and, assuming the isospin relation,
estimates the dilution factor to the effective S in the ρ0 mass window. The result listed
in Tab. 43 shows that the size of the error is competitive to those for B0 → K∗0γ.
Radiative decays of the Bs meson have been studied by Belle using the data taken at

the Υ (5S) center-of-mass energy, and the decay Bs → φγ has been observed as shown
in Tab. 42. LHCb is expected to perform the study of the time-dependent asymmetry of
this mode [724]. With respect to the Bd system, there is an additional observable A∆ in
the formula of the asymmetry:

ACP(t) =
S sin(∆mst)− C cos(∆mst)

cosh(∆Γst/2)−A∆ sinh(∆Γs/2)
. (288)

The extra contribution A∆ parametrizes the fraction of wrongly polarized photons, and is
sensitive to NP as well as the S term. According to the MC simulation, LHCb is expected
to reach sensitivities of σ(A∆) ∼ 0.22 and σ(S) ∼ 0.11 for 2 fb−1, which demonstrates
that the prospects for a measurement of the photon polarization at LHCb are promising.

6.3.3. Determinations of |Vtd/Vts| from b→ (s, d)γ
Since the b → dγ process is suppressed by a factor of |Vtd/Vts| compared to b → sγ,

its branching fraction is useful to extract the ratio |Vtd/Vts| by means of (286). The
exclusive modes to be studied in the case of b→ dγ are B → (ρ, ω)γ. Due to their small
branching fractions, the continuum background suppression is a key issue in the analysis.
In addition, the good particle identification of the BABAR and Belle detectors is essential
to separate B → ργ from B → K∗γ. Both BABAR and Belle have observed clear signals
of these modes. The current values of the branching fractions are given in Tab. 42.
The input value for the extraction of |Vtd/Vts| is the branching ratio of B → (ρ, ω)γ

and B → K∗γ. One can perform a simultaneous fit to B → (ρ, ω)γ and B → K∗γ
or calculate the ratio from the individual fits to B → (ρ, ω)γ and B → K∗γ, so as to
cancel common systematic errors. In order to obtain the combined branching fraction
of B → (ρ, ω)γ, one assumes the isospin relation B(B → (ρ, ω)γ) = B(B+ → ρ+γ) =
2 (τB+/τB0)B(B0 → ρ0γ) = 2 (τB+/τB0)B(B0 → ωγ). From the combined branching
fraction of B → ρ+γ, B → ρ0γ, and B → ωγ, BABAR and Belle have extracted the
values 0.039± 0.008 and 0.0284± 0.0050stat

+0.0027
−0.0029syst

for B(B → (ρ, ω)γ)/B(B → K∗γ),

respectively. These measurements translate into |Vtd/Vts| = 0.233+0.025
−0.024expr

± 0.021theo

for BABAR [721] and 0.195+0.020
−0.019expr

± 0.015theo for Belle [720], where the first (second)

error in |Vtd/Vts| is of experimental (theoretical) nature. The values extracted from the
individual decay modes can also be found in the latter references.
Future precise measurements of B → Xdγ also provide a promising way to deter-

mine the ratio |Vtd/Vts|. Using the value of B(B → Xdγ) as given in Sec. 6.2.2 leads to
|Vtd/Vts| = 0.177± 0.043expr ± 0.001theo [664]. Although the given theory error is likely
to be underestimated, as it does not take into account an uncertainty due to the exper-
imental cut on MXd

, the quoted numbers make clear that determinations of |Vtd/Vts|
from B → Xdγ are at the moment essentially only limited by experiment.
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So far, the central values of |Vtd/Vts| extracted from b → (s, d)γ are compatible with
the ones following from Bd,s mixing [220], although both the experimental and theo-
retical uncertainties are significantly larger in the former case. While thus not suitable
for a precise determination of |Vtd/Vts|, the b → (s, d)γ results are complementary to
those from neutral meson mixing, since they could be affected differently by NP. It is
therefore worthwhile to try to improve the measurements of b → (s, d)γ with one order
of magnitude larger luminosities.

6.4. Purely leptonic rare decays

6.4.1. Theory of purely leptonic rare decays
The charged-current processes P → ℓν are the simplest flavor-violating helicity sup-

pressed observables. Both in the SM and models of NP with a extended Higgs sector these
modes appear already at the tree level. The charged Higgs contribution is proportional
to the Yukawa couplings of quarks and leptons, but it can compete with the contribution
arising form W±-boson exchange due to the helicity suppression of P → ℓν [145]. Taking
into account the resummation of the leading tanβ = vu/vd corrections to all orders, the
H± contributions to the P → ℓν amplitude within a MFV supersymmetric framework
leads to the following ratio [146, 399]

RPℓν =
BSM(P → ℓν)

BSUSY(P → ℓν)
=

[
1−

(
m2
P

m2
H±

)
tan2 β

1 + ǫ0 tanβ

]2
, (289)

where ǫ0 denotes the effective coupling which parametrizes the non-holomorphic correc-
tions to the down-type Yukawa interaction. One typically has ǫ0 ∼ 10−2. For a natural
choice of the MSSM parameters, the relation (289) implies a suppression with respect to
the SM in the B → τν decay of O(10%), but an enhancement is also possible for very
light MH± .
Performing a global t of the unitarity triangle, one obtains the following SM prediction

B(B → τν)SM = (0.87± 0.19)× 104]. The major part of the total error stems from the
uncertainty due to the B-meson decay constant fB. The latter prediction is 1.7σ below
the current world average B(B → τν)exp = (1.51 ± 0.33) × 104. However, systematic
errors in the lattice determinations of fB in conjunction with the limited experimental
statistics do not allow to draw a clear-cut conclusion about the presence of beyond the
SM physics in B → τν at the moment.
The expression for RKµν is obtained from (289) by replacing m2

B with m2
K . Although

the charged Higgs contributions are now suppressed by a factor m2
K/m

2
B ∼ 1/100, K →

ℓν is competitive with B → τν due to the excellent experimental resolution [346] and
the good theoretical control of the former. The best strategy to fully exploit the NP
sensitivity of the Kl2 system is to consider the observable RKµν/Rπµν [146, 346] that
is proportional to (fK/fπ)

2. Once a well established unquenched lattice calculations of
fK/fπ will be available, RKµν/Rπµν will play a relevant role in both constraining and
probing scenarios with a extended Higgs sector.
The SM prediction for the Bs → µ+µ− branching fraction is B(Bs → µ+µ−)SM =

(3.37 ± 0.31) × 10−9 [725] while the current 95% CL upper bound from CDF reads
B(Bs → µ+µ−)exp < 5.8 × 10−8 [726], which still leaves room for enhancements of
the branching fraction relative to the SM of more than factor of 10. In particular, the
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MSSM with large tanβ provides a natural framework where large departures from the
SM expectations of B(Bs → µ+µ−) are allowed [153].
The important role of B(Bs,d → ℓ+ℓ−) in the large tanβ regime of the MSSM has

been widely discussed in the literature. The leading non-SM contribution to B → ℓ+ℓ−

decays is generated by a single tree-level amplitude, i.e., the neutral Higgs exchange
B → A0, H0 → ℓ+ℓ−. Since the effective FCNC coupling of the neutral Higgs bosons
appears only at the quantum level, in this case the amplitude has a strong dependence
on other MSSM parameters of the soft sector in addition to MA0 ∼ MH0 and tanβ. In
particular, a key role is played by the µ term and the up-type trilinear soft-breaking term,
AU , which control the strength of the non-holomorphic terms. The leading parametric
dependence of the scalar FCNC amplitude from these parameters is given by

A(Bs → µ+µ−) ∝ mbmµ

M2
A0

µAU
M2
q̃

tan3 β mb(b̄RsL)(µ̄LµR) . (290)

More quantitatively, the pure SUSY contributions can be summarized by the approx-
imate formula

B(Bs → µ+µ−) ≃ 5× 10−8

(
1 + 0.5

tanβ

50

)4

(
tanβ

50

)6 (
500GeV

MA0

)4(
ǫY

3× 10−3

)2

, (291)

where ǫY ∼ 3 × 10−3 holds in the limit of all the SUSY masses and AU equal. The
approximation (291) shows that B(Bs → µ+µ−) already poses interesting constraints on
the MSSM parameter space, especially for light MA0 and large values of tanβ. However,
given the specific dependence on µ and AU , the present B(Bs → µ+µ−) bound does not
exclude the large tanβ effects in P → ℓν already discussed.

6.4.2. Experimental results on purely leptonic rare decays
To measure the branching fraction for B → τν is a big challenge as there are at

least three neutrinos in the final state. To get a sufficiently pure signal sample the recoil
technique discussed in Sec. 3.2.6 is used. On the tagging side a semi-leptonic or a fully
reconstructed hadronic state is required, and on the signal side the visible particles from
the τ decay. On top of this the most powerful discriminating variable is excess energy in
the calorimeter.
The first Belle analysis used fully hadronic tag decays and had a 3.5 σ signal with

449 × 106 BB pairs [727]. BABAR used both hadronic and semileptonic tag decays and
had a 2.6 σ signal with 383 × 106 BB pairs [728, 729]. The latest Belle analysis uses
semileptonic tag decays with one prong τ decays and 657× 106 BB pairs. In this sample
they find 154 signal events with a significance of 3.8 σ. This results in a branching fraction
of (1.65+0.38

−0.37stat
+0.35
−0.37syst

)×10−4. All the results are summarized in Tab. 44. Searches have

also been made for the decay B+ → µ+νµ where BABAR has set a 90% CL upper limit
of 1.3× 10−6 [730] and Belle at 1.7× 10−6 [731].
Searches for Bs → µ+µ− are only carried out at hadron machines, whereasBd → µ+µ−

is being searched for at the B-factories as well, even if the measurements are no longer
competitive with the Tevatron results. CDF and D0 build multivariate discriminants that
combine muon identification with kinematics and lifetime information. This keeps signal
efficiency high while rejecting O(106) larger backgrounds including Drell-Yan continuum,
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Table 44
Summary of the B → τντ measurements.

Experiment Tagging method Data set Significance B(10−4) Ref.

Belle Hadronic 449M 3.5σ 1.79+0.56
−0.49

+0.46
−0.51 [727]

BABAR Semileptonic 383M - 0.9± 0.6± 0.1 [728]

BABAR Hadronic 383M 2.2σ 1.8+0.9
−0.8 ± 0.4 [729]

Belle Semileptonic 657M 3.8σ 1.65+0.38
−0.37

+0.35
−0.37 [732]

Average 1.51± 0.33

Table 45
An overview of the limits set on the decays of the type B → ℓ+ℓ−.

Experiment Decay Data set 90% CL Limit (×108) Ref.

D0 Bs → µ+µ− 1.3 fb−1 9.4 [735]

CDF Bs → µ+µ− 2.0 fb−1 4.7 [726]

CDF Bs → e±µ∓ 2.0 fb−1 20 [736]

CDF Bs → e+e− 2.0 fb−1 28 [736]

CDF Bd → µ+µ− 2.0 fb−1 1.5 [726]

CDF Bd → e±µ∓ 2.0 fb−1 6.4 [736]

CDF Bd → e+e− 2.0 fb−1 8.3 [736]

BABAR Bd → µ+µ− 384M 11.3 [737]

BABAR Bd → e+e− 384M 5.2 [737]

BABAR Bd → e±µ∓ 384M 9.2 [737]

Belle Bd → µ+µ− 85M 16 [738]

Belle Bd → e+e− 85M 19 [738]

Belle Bd → e±µ∓ 85M 17 [738]

sequential b → c → s decays, bb̄ → µ+µ− + X decays, and hadrons faking muons.
Background estimates are checked in multiple control regions, and then the signal-like
region of the discriminant output is inspected for excess of events clustering at the B
mass. The overlap between Bs and Bd search regions, due to limited mass resolution, is
smaller at CDF allowing independent results on each mode. There is no evidence of a
signal and the best limit at 90% CL is B(Bs → µ+µ−) < 4.7× 10−8 [726].
In the near future it is expected that both CDF and D0 will reach a limit of B(Bs →

µ+µ−) at 2×10−8 with 8 fb−1 of data. This is just a factor six above the SM expectation
and will set serious constraints on NP as outlined in the previous section. Assuming no
signal, LHCb will be able to exclude B(Bs → µ+µ−) to be above the SM level with just
2 fb−1 of data corresponding to one nominal year of data taking. A 5 σ discovery at the
SM level will require several years of data taking and all three LHC experiments are
competitive for this [733, 734].
Other rare leptonic decay modes have been searched for including rare D0 decays and

the LFV decay B → eµ. All of these results are summarized in Tab. 45.
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6.5. Semileptonic modes

6.5.1. B → Dτν modes
In the framework of the 2HDM-II, charged Higgs boson exchange contributes sig-

nificantly not only to B → τν but also to B → Dτν decays already at tree level, if
tanβ = O(50). Due to the recent data accumulated at the B factories, these channels
become a standard tool to constrain the effective coupling gS of a charged Higgs boson
to right-handed down-type fermions [739–741].
While B(B → τν) is more sensitive to charged-Higgs effects than B(B → Dτν), the

latter branching fraction has a much smaller theoretical uncertainty. The prediction for
B(B → τν) involves the B-meson decay constant fB, which is obtained from lattice
calculations, and the CKM element |Vub|, both suffering from large errors, δ(|Vub|fB) ∼
20%. In contrast, the vector and scalar form factors FV and FS in B → Dτν are well
under control, δ(|Vcb|FV ) < 4% and δ(|Vcb|FS) < 7%. First, |Vcb|FV (q2) is extracted from
the measured q2 spectrum in B → Dℓν [560]. Second, FS(q

2) is constrained by FV at
q2 = (pB−pD)2 = 0 and by heavy-quark symmetry at maximal q2. Since two parameters
are sufficient to describe the B → D form factors, FS(q

2) is thus fixed [739,742]. Thanks
to this good precision, present data on B(B → Dτν) can almost completely exclude the
window around gS = 2 left by B(B → τν) at 95% CL [742].
Since charged-Higgs effects exhibit a q2 dependence distinct from longitudinal W±-

boson exchange, the differential distribution dΓ(B → Dτν)/dq2 is more sensitive than the
branching ratio B(B → Dτν) [743]. Notice that in the differential distribution charged-
Higgs effects can be detected not only from the normalization of the decay mode, but
also from the shape of the spectrum.
To further increase the sensitivity to charged Higgs boson exchange, one can include

information on the polarization of the τ lepton. Though the latter is not directly accessible
at the B factories, in the decay chain B → Dν[τ → πν] the τ spin is directly correlated
with the direction of the pion in the final state. To combine this correlation with the
sensitivity from the q2 distribution, an unbinned fit to the triple-differential distribution
dΓ(B → Dν̄[τ− → π−ν̄])/(dED dEπ d cos θDπ) should be performed [739]. Here ED, Eπ,
denote the energies of the mesons and θDπ is the angle between D and π− in the B rest
frame. The exploration of both differential distributions in a comprehensive experimental
analysis makes the B → Dτν mode particularly well-suited to detect charged-Higgs
effects and to distinguish them from other possible NP contributions.

6.6. Semileptonic neutral currents decays

6.6.1. Theory of inclusive B → Xsℓ
+ℓ−

The study of b→ sℓ+ℓ− transitions can yield useful complementary information, when
confronted with the less rare b→ sγ decays, in testing the flavor sector of the SM. In par-
ticular, a precise measurement of the inclusive B → Xsℓ

+ℓ− decay distributions would be
welcome in view of NP searches, because they are amenable to clean theoretical descrip-
tions for dilepton invariant masses in the ranges q2 ∈ [1, 6]GeV2 and q2 > 14.4GeV2.
The inclusive B → Xsℓ

+ℓ− rate can be written as follows
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d2Γ

dq2 d cos θl
=

3

8

[
(1 + cos2 θl)HT (q

2) + 2 cos θlHA(q
2) + 2 (1− cos2 θl)HL(q

2)
]
,

(292)
where q2 = (p+ℓ + p−ℓ )

2 and θl is the angle between the negatively charged lepton and
the B meson in the center-of-mass frame of the lepton pair. At leading order and up to
an overall (m2

b − q2)2 factor one has

HT (q
2) ∝ 2q2

[(
C9 + 2C7

m2
b

q2

)2

+ C2
10

]
,

HA(q
2) ∝ −4q2C10

(
C9 + 2C7

m2
b

q2

)
,

HL(q
2) ∝

[
(C9 + 2C7)

2 + C2
10

]
.

The coefficients Hi(q
2) are three independent functions of the Wilson coefficients of

the effective Hamiltonian (281). Hence separate measurements of these three quantities
lead to better constraints on the coefficients C7, C9, and C10. In terms of the functions
Hi(q

2) the total rate and the forward-backward asymmetry (FBA) are given by dΓ/dq2 =
HT (q

2)+HL(q
2) and dAFB/dq

2 = 3/4HA(q
2). The double differential rate (292) is known

at NNLO in QCD [24,27, 744–751] and at NLO in QED [750,752, 753]. In addition non-
perturbative corrections scaling as Λ2

QCD/m
2
b, Λ

3
QCD/m

3
b , or Λ

2
QCD/m

2
c [754–760] have

been calculated.
A comment on QED corrections is necessary. After inclusion of the NLO QED ma-

trix elements, the electron and muon channels receive contributions proportional to
ln(m2

b/m
2
ℓ). These results correspond to the process B → Xsℓ

+ℓ− in which QED ra-
diation is included in the Xs system and the dilepton invariant mass does not contain
any photon. In the BABAR and Belle experiments the inclusive decay is measured as a
sum over exclusive states. As a consequence the log-enhanced QED corrections are not
directly applicable to the present experimental results and have to be modified [761]. We
also add that potentially large corrections to RK = Γ(B → Xsµ

+µ−)q2∈[q20 ,q
2
1 ]
/Γ(B →

Xse
+e−)q2∈[q20,q

2
1 ]
, which in the SM is to an excellent approximation equal to 1, can arise

from collinear photon emission. Since the actual net effect of these corrections depends
on the experimental cuts, an good understanding of this issue is crucial to put reliable
bounds on possible NP effects from a measurement of RK .
Cuts on the dilepton and hadronic invariant masses are necessary to reject backgrounds

from resonant charmonium production, B → Xsψ(cc̄) → Xsℓ
+ℓ−, and double semilep-

tonic decays, B → Xcℓ
−ν̄ → Xsℓ

+ℓ−νν̄, respectively. The first cut, in particular, forces
us to consider separately the low- and high-q2 regions corresponding to dilepton invari-
ant masses of q2 ∈ [1, 6] GeV2 and q2 > 14.4 GeV2, respectively. In the low-q2 region
the OPE is well behaved and power corrections are small, but the effect of the MXs

cut
is quite important. The present experimental analyses correct for this effect utilizing a
Fermi motion model [762]. In the high-q2 region MXs

cuts are irrelevant but the OPE
itself breaks down, resulting in large ΛQCD/mb power corrections. Both these problems
can be addressed as discussed at the very end of this subsection.
The most up-to-date SM predictions in the case of muons in the final state read
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Bq2∈[1,6]GeV2 = (1.59± 0.11)× 10−6 ,

Bq2>14 GeV2 = (2.42± 0.66)× 10−7 ,

q20 = (3.50± 0.12)GeV2 ,

Āq2∈[1,3.5]GeV2 = (−9.09± 0.91)% ,

Āq2∈[3.5,6]GeV2 = (7.80± 0.76)% ,

(293)

where q20 denotes the location of the zero in the FBA spectrum and Ābin are the integrated
FBA in the q2 ∈ [1, 3.5]GeV2 and q2 ∈ [3.5, 6]GeV2 bins. We emphasize that the quoted
errors do not take into account uncertainties related to the presence of enhanced local
power corrections scaling as αsΛQCD/mb. Based on simple dimensional reasons these
unknown corrections can be estimated to induce errors at the order of 5%.
Finally, let us mention three possible improvements in the experimental analyses. First,

a measurement of the low-q2 rate normalized to the semileptonic B → Xuℓν rate with
the same MXs

cut would have a much reduced sensitivity to the actual MXs
cut em-

ployed [763]. Second, the convergence of the OPE is greatly enhanced for the high-q2 rate
normalized to the semileptonic B → Xuℓν rate with the same q2 cut [760], as can be seen
by comparing the relative error in (293) with the SM prediction for this new ratio which
reads Rq2>14 GeV2 = (2.29± 0.30)× 10−3 [753]. Third, the angular decomposition of the
rate and the separate extraction of HT (q

2) and HA(q
2) would result in much stronger

constraints on the Wilson coefficients [764].

6.6.2. Experimental results on inclusive B → Xsℓ
+ℓ−

In a fully inclusive analysis of the rare electroweak penguin decay B → Xsℓ
+ℓ−, where

ℓ+ℓ− is either e+e− or µ+µ−, some difficulties arise, since an abundant source of leptons
is produced in semileptonic B and D decays. For example, the branching fraction for
two semileptonic B decays, B(B → Xcℓν) = (10.64± 0.11)% [560], is about four orders
of magnitude larger than that of the signal. Since standard kinematic constraints like
the the beam-energy-substituted mass, mES, or the difference between the reconstructed
B meson energy in the center-of-mass frame and its known value, ∆E, cannot be used
here, one needs to develop other analysis strategies. So far two alternative methods were
developed that allows one to reduce these backgrounds. The first so-called recoil method
is based on kinematic constraints of the Υ (4S) → BB̄ decays. By performing a complete
reconstruction of the other B meson in a hadronic final state plus requiring a lepton pair
the residual background consists of two consecutive semileptonic decays of the signal B
candidate. This is reduced by requirements on missing energy in the whole events, event
shapes, and vertex information. Since the B reconstruction efficiency is of the order of
0.1%, the present BB̄ sample are not sufficiently large to use this method. The second
so-called semi-inclusive method consists of summing up exclusive final states.
Both BABAR and Belle focused on the second method. Using 89 (152) million BB̄

events BABAR (Belle) reconstructed final states from a K+ or a K0
S and up to two (four)

pions recoiling against the lepton pair, where at most one π0 was accepted [765, 766].
In both analyses, event shape variables, kinematic variables, and vertex information
are combined into likelihood functions for signal, BB̄ backgrounds, and e+e− → qq̄
continuum backgrounds. The likelihood ratios are optimized to enhance signal-like events.
The signal is extracted from an extended maximum likelihood fit to the mES distribution
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Table 46
BABAR and Belle measurements of the partial branching fractions for the B → Xsℓ+ℓ− decay in different

bins of q2. The J/ψ and ψ(2S) veto regions differ for the e+e− and µ+µ− modes. The latter are shown
in parentheses.

Experiment q2 [GeV2] B [10−7]

BaBar [765] 0.04–1.0 0.8± 3.6+0.7
−0.4

1.0–4.0 16± 6± 5

4.0–7.29 (7.84) 18± 8± 4

10.56 (10.24)–11.90 (12.60) 10± 8± 2

14.44–25.0 6.4± 3.2+1.2
−0.9

Belle [766] 0.04–1.0 11.34± 4.83+4.60
−2.71

1.0–6.0 14.93± 5.04+4.11
−3.21

6.0–7.27 (7.55) & 10.54 (10.22)– 11.81 (12.50) & 14.33 (14.33)–14.4 7.32± 6.14+1.84
−1.91

14.4–25.0 4.18± 1.17+0.61
−0.68

after selecting a signal-like region in ∆E. Both analyses found significant event yields,
measuring branching fractions of

B(B → Xsℓ
+ℓ−) = (5.6± 1.5stat ± 0.6syst ± 1.1mode)× 10−6 ,

B(B → Xsℓ
+ℓ−) =

(
4.11± 0.83stat

+0.85
−0.81syst

)
× 10−6 ,

(294)

where the J/ψ and ψ(2S) veto regions have been excluded and the third error of the
BABAR number corresponds to the uncertainty induced by the Fermi motion model [762].
The partial branching fractions in bins of q2 as measured by BABAR and Belle are summa-
rized in Tab. 46. BABAR also measured the direct CP asymmetry (NB̄−NB)/(NB̄+NB) =
−0.22± 0.26± 0.02, where NB(B̄) are the signal yields for B(B̄) → Xsℓ

+ℓ−. All results
are consistent with the SM predictions discussed in Sec. 6.6.1.

6.6.3. Theory of exclusive b→ sℓ+ℓ− modes
The theoretical calculation of exclusive b → sℓ+ℓ− amplitudes is complicated by the

fact that one encounters non-factorizable QCD dynamics. Some of these effects can be
estimated using perturbative methods based on the heavy-quark expansion. To be con-
crete, we focus on the decays B → K∗ℓ+ℓ− and comment on other decay modes at the
end of this section.
Assuming the K∗ to be on the mass shell, the decay B̄0 → K̄∗0(→ K−π+)ℓ+ℓ− is

completely described by four independent kinematic variables; namely, the lepton-pair
invariant mass, q2, and the three angles θl, θK∗ , φ. The sign of the angles for the B decay
show great variation in the literature. Therefore we present here an explicit definition.
p denote three momentum vectors in the B rest frame, q the same in the di-muon rest
frame, and r in the K∗0 rest frame, the z-axis is defined as as the direction of the K∗0

in the B rest frame. Three unit vectors are given in the following way: the first one is
in the direction of the z-axis where the θ angles are measured with respect to, and the
other two are perpendicular to the di-muon and K∗0 decay planes.

ez =
pK− + pπ+

|pK− + pπ+ | , el =
pµ− × pµ+

|pµ− × pµ+ | , eK =
pK− × pπ+

|pK− × pπ+ | . (295)
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It follows for the B

cos θl =
qµ+ · ez
|qµ+ | , cos θK =

rK− · ez
|rK− | (296)

and
sinφ = (el × eK) · ez , cosφ = eK · el . (297)

The angles are defined in the intervals

−1 6 cos θl 6 1 , −1 6 cos θK 6 1 , −π 6 φ < π , (298)

where in particular it should be noted that the φ angle is signed.
In words, for the B the angle θl is measured as the angle between the ℓ+ and the z-axis

in the dimuon rest frame. As the B flies in the direction of the z-axis in the dimuon rest
frame this is equivalent to measuring θl as the angle between the ℓ+ and the B in the
di-lepton rest frame. The angle θK is measured as the angle between the Kaon and the
z-axis measured in the K∗0 rest frame. Finally φ is the angle between the normals to
the planes defined by the Kπ system and the µ+µ− system in the rest frame of the B
meson.
For the B the definition is such that the angular distributions will stay the same as

for the B in the absence of CP violation. This means that for all the definitions above,
ℓ− is interchanged with ℓ+, K+ with K− and and π+ with π−.
Following [764], the doubly differential decay rate for B → K̄∗ℓ+ℓ− can be decom-

posed as in the inclusive case (292). Here the helicity amplitude HT (q
2) determines the

rate for transversely polarized K∗ mesons, HL(q
2) the longitudinal rate, and HA(q

2) is
responsible for the lepton FBA. In terms of transversity amplitudes, which are relevant
for the angular analysis of B → K∗(Kπ)ℓ+ℓ−, these functions read [767]

HT (q
2) = |A⊥L|2 + |A⊥R|2 + |A‖L|2 + |A‖R|2 ,

HL(q
2) = |A0L|2 + |A0R|2 ,

HA(q
2) = 2Re

[
A‖RA

∗
⊥R −A‖LA

∗
⊥L

]
.

(299)

The transversity amplitudes themselves can be written as [689, 699, 767]

A⊥L,R ∝
[
(C9 ∓ C10)

V (q2)

mB +mK∗

+
2mb

q2
T1(q2)

]
,

A‖L,R ∝
[
(C9 ∓ C10)

A1(q
2)

mB −mK∗

+
2mb

q2
T2(q2)

]
,

A0L,R ∝
[
(C9 ∓ C10)

{
A1(q

2)

mB −mK∗

− m2
B − q2

m2
B

A2(q
2)

mB +mK∗

}

+
2mb

m2
B

{
T2(q2)−

m2
B − q2

m2
B

T3(q2)
}]

.

(300)

Here we neglected some terms of order m2
K∗/m2

B, and did not show the kinematic nor-
malization factors which can be found in [767]. The ingredients in (300) are: first, the
SM short-distance Wilson coefficients C9,10 of the b → sℓ+ℓ− operators in the weak ef-
fective Lagrangian (281), which are to be tested against NP. 15 Second, the vector- and

15NP contributions to the operators Q′
7−10, that are obtained from Q7−10 by exchanging left- by right-

handed fields everywhere, can easily be included [767].
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axial-vector B → K∗ transition form factors V,A1,2 which have to be estimated by non-
perturbative methods. Third, the q2-dependent functions Ti(q2) that contain factorizable
and non-factorizable effects from virtual photons via the operators Q1−8 in (281). In the
“naive factorization approximation”, the functions Ti(q2) are again expressed in terms of
short-distance Wilson coefficients, B → K∗ transition form factors, and quark-loop func-
tions, which are perturbative if q2 lies outside the vector-resonance region. Corrections to
“naive factorization” can and should be systematically computed in the mb → ∞ limit,
if we restrict ourselves 16 to the window q2 ∈ [1, 6]GeV2. The QCDF theorem [689,699]
which can be further justified in SCET, takes the schematic form

T1(q2) ≃
m2
B

m2
B − q2

T2(q2)

T3(q2)−
m2
B

m2
B − q2

T2(q2)
≃





ξ⊥(q
2)C⊥(q

2) + φ±B(ω)⊗ φ⊥K∗(u)⊗ T⊥(ω, u) ,

ξ‖(q
2)C‖(q

2) + φ±B(ω)⊗ φ
‖
K∗(u)⊗ T‖(ω, u) ,

(301)

where ξ⊥,‖ are universal form factors arising in the combined heavy-quark-mass and
large-recoil-energy limit [769, 770], C⊥,‖ and T⊥,‖ are perturbative coefficient functions
including vertex corrections and spectator effects, respectively, and φB and φK∗ denote
hadronic LCDAs which again have to be estimated from non-perturbative methods. On
the one hand, the reduction of form factors in the symmetry limit is a crucial ingredient
to obtain a precise estimate of the FBA [770–772]. On the other hand, observables like
the isospin asymmetry between charged and neutral decays are sensitive to ΛQCD/mb

corrections to (301), which generally are small but difficult to estimate very precisely
[699, 773, 774].
To be concrete, let us quote some theoretical predictions for individual SM rates and

asymmetries in the low-q2 region, following the numerical analysis in [699] but using
updated values for the B lifetimes. We first note that the hadronic uncertainties for the
partial rates in that region are dominated by the form factor uncertainties, and therefore
should be considered as less useful for precision tests of the SM. These uncertainties drop
out to a large extent in the prediction for the FBA in particular in the vicinity of the
zero of the FBA 17 . This is illustrated in panel (a) of Fig. 50. For the zero of the FBA
one obtains

q20(B
0 → K∗0ℓ+ℓ−) =

(
4.36+0.33

−0.31

)
GeV2 ,

q20(B
± → K∗±ℓ+ℓ−) =

(
4.15+0.27

−0.27

)
GeV2 .

(302)

Considering the FBA for the partially integrated rates

AFB =

∫ 1

0
dΓ

d cos θl
dθl −

∫ 0

−1
dΓ

d cos θl
dθl

∫ 1

0
dΓ

d cos θl
dθl +

∫ 0

−1
dΓ

d cos θl
dθl

(303)

one obtains

Alow-q2

FB =





−0.033+0.014
−0.016 , for B0 → K∗0ℓ+ℓ− ,

−0.062+0.018
−0.023 , for B± → K∗±ℓ+ℓ− .

(304)

16 In principle, the region 4m2
c ≪ q2 ≤ m2

b can be treated in heavy hadron chiral perturbation theory
[768].
17The form factor dependence could be further reduced by normalizing the FBA to the transverse rate,
instead of the full rate.
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Fig. 50. (a) Theoretical estimate for differential FBA in B0 → K∗0ℓ+ℓ−. (b) Estimate for differential
isospin asymmetry. The dashed line denotes the LO result. The solid line with the error band the NLO
prediction with parametric uncertainties.

The corresponding predictions for the isospin asymmetry are shown in panel (a) of
Fig. 50, and the partially integrated isospin asymmetry is estimated as

Alow-q2

I =

∫
dΓ0 −

∫
dΓ±

∫
dΓ0 +

∫
dΓ± = 0.007+0.003

−0.003 . (305)

Notice that the perturbative errors can be reduced by resummation of large logarithms
in SCET [775] or the computation of higher-order corrections, but irreducible systematic
uncertainties from both higher-order ΛQCD/mb corrections, and the restricted precision
of the form factor estimates from LCSR or LQCD remain.
Let us finally consider further exclusive decay modes that can be used to test the

b → sℓ+ℓ− transition. The decay into a pseudoscalar Kaon, B → Kℓ+ℓ−, is similar
to the decay into a longitudinal vector meson [689, 776]. An interesting observable for
the identification of NP is the ratio RK already mentioned in Sec. 6.6.1. One should also
mention the decay Bs → φℓ+ℓ−, where a recent model-independent analysis of NP effects
based on “naive” factorization has been given [777]. A SM analysis including NLO effects
is straightforward and will be discussed elsewhere [778].
A related process is B → ρℓ+ℓ− which probes the b→ dℓ+ℓ− transition in and beyond

the SM. Due to the different CKM hierarchy it may show potentially larger isospin and
CP -violating effects than its counterparts in b → sℓ+ℓ− [689]. It is also useful as a
cross-check for the factorization approach.

6.6.4. Angular observables in B → K∗ℓ+ℓ−

Besides the branching fractions, the FBA and CP-violating observables, the exclusive
decay B0 → K∗0ℓ+ℓ− with an angular analysis of the subsequent K∗0 → K−π+ decay
offers the possibility to further constrain NP [767,774, 779–782]. The decay is described
by 4 independent kinematic variables: the lepton-pair invariant mass squared, q2, and the
three angles θl, θK , φ. Summing over final-state spins, the differential decay distribution
can be expressed in terms of 9 independent functions [783–787], which are related to the
transversity amplitudes 18 discussed around (299) and (300), and which are invariant
under the following symmetry transformations [782]

18Another transversity amplitude At does not contribute for massless leptons.
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Ai L → cos θ e+iφL Ai L − sin θ e−iφR A∗
i R ,

Ai R → sin θ e−iφL A∗
i L + cos θ e+iφR Ai R ,

A⊥L → +cos θ e+iφL A⊥L + sin θ e−iφR A∗
⊥R ,

A⊥R → − sin θ e−iφL A∗
⊥L + cos θ e+iφR A⊥R .

(306)

Here i = ‖, 0. Any experimental observable constructed from the transversity amplitudes
thus has to be invariant under these symmetries or would require to measure the helicity
of the decay products which is not possible at LHCb or a super flavor factory. For

instance, this excludes the asymmetry A
(1)
T defined in [784], despite its very attractive

NP sensitivity [767, 780].
As it has been emphasized in [782], one can construct angular observables which simul-

taneously fulfill a number of requirements, namely: i) small theoretical uncertainties due
to cancellations of form-factor dependencies, ii) good experimental resolution at LHCb
and/or super flavor factory, iii) high sensitivity to NP effects, including contributions
from new operators in the weak effective Hamiltonian. Focusing on the sensitivity to
right-handed operator Q′

7, where one would encounter the combination of Wilson coeffi-
cients (C7+C

′
7) in A⊥L,R and (C7−C′

7) in A‖L,R and A0L,R, the authors of [782] identify
the following three observables to satisfy the above criteria

A
(2)
T =

|A⊥|2 − |A‖|2
|A⊥|2 + |A‖|2

, A
(3)
T =

|A0A
∗
‖|

|A0| |A⊥|
, A

(4)
T =

|A0LA
∗
⊥L −A∗

0RA⊥R|
|A0A∗

‖|
, (307)

where AiA
∗
j = AiLA

∗
jL+AiRA

∗
jR. In particular, the dependence on the form factors ξ⊥,‖

drops out to first approximation if one neglects αs and ΛQCD/mb corrections.

In Fig. 51, the theoretical estimates and experimental sensitivity for A
(2)
T , A

(3)
T , and

A
(4)
T are plotted as a function of q2. In each theoretical plot on the left-hand side the

thin dark line is the central NLO result for the SM and the narrow inner dark (orange)
band corresponds to the related uncertainties due to both input parameters and per-
turbative scale dependence. Light gray (green) bands refer to ΛQCD/mb = ±5% correc-
tions considered for each spin amplitude, while for the darker gray (green) one considers
ΛQCD/mb = ±10% corrections. The curves labeled (a) to (d) correspond to four different
benchmark points in the MSSM. For more details we refer to [782]. The experimental
sensitivity for a data set corresponding to 10 fb−1 of integrated luminosity at LHCb is
given in each figure on the right, assuming SM rates. Here the solid (red) line shows the
median extracted from the fit to the ensemble of data, and the dashed (black) line shows
the theoretical input distribution. The inner and outer bands correspond to 1σ and 2σ
experimental errors.

The observablesA
(3)
T and A

(4)
T offer sensitivity to the longitudinal spin amplitude A0L,R

in a controlled way, i.e., the theoretical uncertainties from NLO corrections turn out to
be very small. Concerning the sensitivity to right-handed currents, one observes sizable

deviations from the SM for A
(2)
T , A

(3)
T , and A

(4)
T in the 4 SUSY benchmark scenarios

studied in [782]. For a recent discussion of other NP scenarios we refer to [774]. Comparing

the theoretical and experimental figures, it can be seen that in particular A
(3)
T offers great

promise to distinguish between such NP models.

184



1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

q2
 IGeV2 M

A
T
H2
L

1 2 3 4 5 6
0.0

0.5

1.0

1.5

2.0

2.5

q2
 IGeV2 M

A
T
H3
L

1 2 3 4 5 6
0

1

2

3

4

5

6

7

q2
 IGeV2 M

A
T
H4
L

Fig. 51. The asymmetries A
(2)
T

, A
(3)
T

, and A
(4)
T

as a function of q2, with theoretical errors (left panels),
and experimental errors (right panels). See text for details. Fig.s taken from [782].

6.6.5. Experimental results on exclusive b→ (s, d)ℓ+ℓ−

The exclusive electroweak decay B → Kℓ+ℓ− is a b → s transition that was first
observed by Belle [788] in a sample of 31 million BB̄ events. Using 123 million BB̄
events BABAR confirmed the observation and reported first evidence for B → K∗ℓ+ℓ−

[789] which was confirmed later by Belle [790]. In the most recent studies BABAR and
Belle have reconstructed ten final states consisting of K∓, K0

S(→ π+π−), K∓π±, K∓π0

or K0
S(→ π+π−)π∓ besides the lepton pair using 384 million and 657 million BB̄ events,

respectively [791–793]. The signal yields in individual final states are extracted from
the mES and ∆E distributions. The main background arises from random combinations
of leptons from B and D decays. As in the semi-inclusive analysis this combinatorial
background is suppressed by using event shape variables, kinematic variables, and vertex
information that are combined into a neural network (BABAR) or a likelihood ratio (Belle).
The multivariate observables are optimized separately for each mode, for each type of
background, BB̄ or e+e− → qq̄, and each q2 region.
Total branching fractions measured by BABAR, Belle, and CDF are in agreement with

each other and the SM predictions [772,794]. The interest, however, has shifted towards
rate asymmetries, since many uncertainties in both predictions and measurements cancel
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as explained in Sec. 6.6.3. BABAR and Belle so far studied isospin asymmetries, AK
(∗)

I ,

direct CP asymmetries,AK
(∗)

CP , and lepton forward-backward asymmetries,AFB, as well as
theK∗ longitudinal polarization, FL, and the ratio of rates to µ+µ− and e+e− final states,
RK(∗) . With increased statistics both experiments started to explore the q2 dependence
of these observables.
The CP-averaged isospin asymmetry and direct CP asymmetry are defined by

AK
(∗)

I =
B(B0 → K(∗)0ℓ+ℓ−)− (τ0/τ+)B(B± → K(∗)±ℓ+ℓ−)

B(B0 → K(∗)0ℓ+ℓ−) + (τ0/τ+)B(B± → K(∗)±ℓ+ℓ−)
,

AK
(∗)

CP =
B(B → K

(∗)
ℓ+ℓ−)− B(B → K(∗)ℓ+ℓ−)

B(B → K
(∗)
ℓ+ℓ−) + B(B → K(∗)ℓ+ℓ−)

,

(308)

where τ0 and τ+ are the B0 and B+ lifetimes, respectively. ACP is predicted to be
O(10−3) in the SM. NP at the electroweak scale, however, could produce a significant
enhancement [781]. The ratiosRK(∗) are sensitive to the presence of a neutral SUSY Higgs
boson [795]. In the SM, RK is expected to be unity modulo a small correction accounting
for differences in phase space [796] and possibly QED radiation. For mℓ+ℓ− ≥ 2mµ,
RK∗ should be also close to unity. Due to the 1/q2 dependence of the photon penguin
contribution, however, there is a significant rate enhancement in the B → K∗e+e−

mode for me+e− < 2mµ decreasing the SM expectation of RK∗ to 0.75. New scalar and
pseudoscalar contributions may modify this prediction. The possible size of these effects
is however already bounded severely by the Tevatron limits on Bs → µ+µ−.
Present results of branching fractions, rate-based asymmetries, and lepton-flavor ratios

are summarized in Tab.s 47 and 48. At the present level of precision branching fractions,
RK(∗) , and ACP are in good agreement with the SM. While AI agrees with the SM for
large values of q2, the BABAR measurement of AI in the low-q2 region deviates from the
SM expectation [773] by almost 4 σ for the combination of the B → Kℓ+ℓ− and B →
K∗ℓ+ℓ− modes. Though consistent with the SM expectation the Belle results support
the BABAR observations at low q2.
The angular distribution of B → K∗ℓ+ℓ− depends on the three angles defined in

eqs. 296 and 297. The one-dimensional angular distributions in cos θK and cos θℓ simply
are

W (θK) =
3

2
FL cos2 θK +

3

4
(1− FL)(1 − cos2 θK) ,

W (θℓ) =
3

4
FL(1− cos2 θℓ) +

3

8
(1− FL)(1 + cos2 θℓ) +AFB cos θℓ .

(309)

While W (θK) depends only on FL, W (θℓ) depends both on FL and AFB. The FBA
is proportional to the difference of two interference terms that include products of the
Wilson coefficients C9C10 and C7C10. In the first term the main q2 dependence originates
from the q2 dependence of C9 while in the second term it results from the 1/q2 dependence
of the photon penguin contribution.
BABAR and Belle measured FL and AFB in different bins of q2. After extracting the

event yield from the mES distribution, FL is determined first from a fit to W (θK). Then
AFB is determined from a fit toW (θℓ) for fixed signal yields and fixed FL. The results are
summarized in Tab. 49. The BABAR and Belle results for FL and AFB in comparison to
their SM predictions and three scenarios, that result from changing the sign of the Wilson
coefficients C7, or C9C10, or both combinations with respect to the SM values are shown
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Table 47
Measurements of the partial branching fractions and isospin asymmetries for the B → Kℓ+ℓ− and

B → K∗ℓ+ℓ− decays in different bins of q2.

Experiment Mode q2 [GeV2] B [10−7] AI

BABAR [792] B → Kℓ+ℓ− 0.1–7.02 0.181+0.39
−0.36 ± 0.008 −1.43+0.56

−0.85 ± 0.05

10.24–12.96 or >14.06 0.135+0.040
−0.037 ± 0.007 0.28+0.24

−0.30 ± 0.03

B → K∗ℓ+ℓ− 0.1–7.02 0.43+0.11
−0.10 ± 0.03 −0.56+0.17

−0.15 ± 0.03

10.24–12.96 or >14.06 0.42+0.10
−0.10 ± 0.03 0.18+0.36

−0.28 ± 0.04

Belle [793] B → Kℓ+ℓ− 0.0–2.0 0.81+0.18
−0.16 ± 0.05 −0.33+0.33

−0.25 ± 0.05

2.0–5.0 0.58+0.16
−0.14 ± 0.04 −0.49+0.45

−0.34 ± 0.04

5.0–8.86 0.86+0.18
−0.16 ± 0.05 −0.19+0.26

−0.22 ± 0.05

10.09–12.86 0.55+0.16
−0.14 ± 0.03 −0.29+0.37

−0.29 ± 0.05

14.18–16.0 0.38+0.19
−0.12 ± 0.02 −0.40+0.61

−0.69 ± 0.04

> 16.0 0.98+0.20
−0.18 ± 0.06 0.11+0.24

−0.21 ± 0.05

1.0–6.0 1.36+0.23
−0.21 ± 0.08 −0.41+0.25

−0.20 ± 0.04

B → K∗ℓ+ℓ− 0.0–2.0 1.46+0.40
−0.35 ± 0.12 −0.67+0.18

−0.16 ± 0.03

2.0–5.0 1.29+0.38
−0.34 ± 0.10 1.17+0.72

−0.82 ± 0.02

5.0–8.86 0.99+0.41
−0.36 ± 0.08 −0.47+0.31

−0.29 ± 0.04

10.09–12.86 2.24+0.44
−0.40 ± 0.18 0.00+0.20

−0.21 ± 0.05

14.18–16.0 1.05+0.29
−0.26 ± 0.08 0.16+0.30

−0.35 ± 0.05

> 16.0 2.04+0.27
−0.24 ± 0.16 −0.02+0.20

−0.21 ± 0.05

1.0–6.0 1.49+0.45
−0.40 ± 0.12

CDF [797] B+ → K+ℓ+ℓ− <8.4 or 10.2–13.0 or >14.1 5.9± 1.5± 0.4 −0.33+0.33
−0.25 ± 0.05

CDF [797] B0 → K∗+ℓ+ℓ− <8.4 or 10.2–13.0 or >14.1 8.1± 3.0± 1.0

Table 48
BABAR and Belle measurements of total branching fractions, CP asymmetries, and lepton flavor ratios
for the B → Kℓ+ℓ− and B → K∗ℓ+ℓ− decays. For B → K∗ℓ+ℓ− the pole region, q2 < m2

µ, is included
in RK∗ . The CP asymmetries are given for B → K+ℓ+ℓ− and the combined B → K∗ℓ+ℓ− modes.

Experiment Mode B [10−7] ACP RK(∗)

BABAR [792] B → Kℓ+ℓ− 3.9+0.7
−0.7 ± 0.2 −0.18+0.18

−0.18 ± 0.01 0.96+0.44
−0.34 ± 0.05

B → K∗ℓ+ℓ− 11.1+1.9
−1.8 ± 0.7 0.01+0.16

−0.15 ± 0.01 1.1+0.42
−0.32 ± 0.07

Belle [793] B → Kℓ+ℓ− 4.8+0.5
−0.4 ± 0.3 −0.04+0.1

−0.1 ± 0.02 1.03+0.19
−0.19 ± 0.06

B → K∗ℓ+ℓ− 10.8+1.1
−1.0 ± 0.9 −0.10+0.10

−0.10 ± 0.01 0.83+0.17
−0.17 ± 0.08

in Fig. 52. At the present level of precision both FL and AFB are consistent with the
SM expectations. For B → Kℓ+ℓ−, the measurement of AFB is consistent with zero as
expected in the SM. It is important to emphasize, that models in which the sign of C7 is
reversed while C9,10 receive only small non-standard corrections are disfavored at the 3σ
level by the combination of the B(B → Xsγ) and B(B → Xsℓ

+ℓ−) measurements [798].
The hypothetical NP scenario corresponding to the green dashed curves in Fig. 52 is
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Table 49
BABAR and Belle measurements of the K∗ longitudinal polarizations and the lepton FBAs for the B →
K∗ℓ+ℓ− decays in different bins of q2.

Experiment q2 [GeV2] FL AFB

BABAR [791] 0.1–6.25 0.35+0.16
−0.16 ± 0.04 0.24+0.18

−0.23 ± 0.05

10.24–12.96 or >14.06 0.71+0.20
−0.22 ± 0.04 0.76+0.52

−0.32 ± 0.07

Belle [793] 0.0–2.0 0.29+0.21
−0.18 ± 0.02 0.47+0.26

−0.32 ± 0.03

2.0–5.0 0.75+0.21
−0.22 ± 0.05 0.14+0.20

−0.26 ± 0.07

5.0–8.86 0.65+0.26
−0.27 ± 0.06 0.47+0.16

−0.25 ± 0.14

10.09–12.86 0.17+0.17
−0.15 ± 0.03 0.43+0.18

−0.20 ± 0.03

14.18–16.0 −0.15+0.27
−0.23 ± 0.07 0.70+0.16

−0.22 ± 0.10

> 16.0 0.12+0.15
−0.13 ± 0.02 0.66+0.11

−0.16 ± 0.04

1.0–6.0 0.67+0.23
−0.23 ± 0.05 0.26+0.27

−0.30 ± 0.07
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Fig. 52. Measurements of FL (left) and of AFB (right) as a function of q2 for B → K∗ℓ+ℓ− from BABAR

(black points) and Belle (cyan points). The curves show predictions for four cases, the SM (blue solid
curve), the flipped-sign C7 case (green dashed curve), the case of flipped-sign C9C10 (magenta dotted
curve), and the case with both flipped-sign C7 and C9C10 (red dash-dotted curve).

thus in variance with the available data on the inclusive b → sγ, ℓ+ℓ− transitions. This
observation makes clear that to bound the values of the various Wilson coefficients one
should exploit all the experimental information in the b → sγ and b → sℓ+ℓ− sector
combining both inclusive and exclusive channels.
The exclusive decays B → π(ρ)ℓ+ℓ− are the corresponding b → d transitions that are

suppressed with respect to the b → s transitions by |Vtd/Vts|2. BABAR [799] searched
for B → πℓ+ℓ− events using 230 million BB̄ events while Belle [800] searched for B →
(π, ρ, ω)ℓ+ℓ− modes using 657 million BB̄ events. The lowest branching fraction upper
limit is set for the B → πℓ+ℓ− mode by Belle yielding B(B → πℓ+ℓ−) < 4.9 × 10−8 at
90% CL which just lies a factor of around 1.5 above the central value of the SM prediction
which reads B(B → πℓ+ℓ−) = (3.3± 1.0)× 10−8 [801].
The LHCb experiment will collect ∼ 7 × 103 fully reconstructed B0 → K∗0µ+µ−

events per 2 fb−1 integrated luminosity [802]. At the LHC design luminosity, such an
data-set will be acquired in a single year of data-taking. Before such conditions are
achieved, with even the data from the LHC pilot run, a 0.1 fb−1 integrated luminosity
would therefore give a comparable number of events to the final dataset expected from
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the B-factory experiments [791, 793] and CDF [797]. The branching ratio for this decay
is already measured with a precision comparable to the level of theoretical uncertainties.
LHCb’s experimental exploration will therefore focus on angular observables such as the
forward-backward asymmetry AFB.
Given the background expected from simulation studies [802], LHCb will be able to

determine the zero-crossing point of this asymmetry by counting forward- and backward-
events with a statistical precision of 0.5GeV2 with 2 fb−1 integrated luminosity [803].
Additional systematic contributions to this precision from e.g. the determination of ac-
ceptance and trigger efficiencies are under study. A measurement with a statistical un-
certainty at the level of present theoretical uncertainties on the zero-crossing point (see
Sec. 6.6.3) will therefore require a 10 fb−1 integrated luminosity. However, using infor-
mation from the θK angular distribution, in particular, by making a simultaneous fit for
both the AFB and FL observables, a factor ∼ 2 increase in the statistical precision can
be obtained [804]. Adding the information from the angle φ, a full angular fit will give
a further ∼ 30% increase in the precision [805]. More significantly, such a full angular
fit will give access to the underlying amplitudes, from which any observable can then be
formed. As detailed in Sec. 6.6.4, LHCb will be able to measure, with good precision,

other theoretically well controlled observables such as A
(2,3,4)
T (see Eq 307), which will

give very different new physics sensitivity to AFB. Studies indicate that full angular fits
can be made to converge with data-sets in excess of the expectation from 2 fb−1 inte-
grated luminosity. In practise, performing such a fit will require excellent understanding
of the trigger and detector efficiencies and will be a later LHCb measurement.

6.6.6. Rare K → πνν̄, ℓ+ℓ− decays in and beyond the SM
The rare decays KL → π0νν̄, K+ → π+νν̄, and KL → π0ℓ+ℓ− proceed dominantly

through heavy-quark induced FCNC. Since their rates in the SM are predicted with high
precision, they offer the cleanest and clearest window into the sector of s→ d transitions.
Their study is thus complementary to B physics in searching for NP, and constraining
the possible models.

6.6.6.1. Prediction within the SM. The electroweak processes inducing the rare K de-
cays are of three types: Z penguin and W± boxes, single- and double-photon penguin.
The former as well as the CP-violating single-photon penguin, are always dominated by
short-distance physics, i.e., the top- and charm-quark contribution. On the other hand,
the CP-conserving photon penguins are fully dominated by the long-distance up-quark
contribution, in which case they get further enhanced by the ∆I = 1/2 rule. These
contributions are to be evaluated in χPT, by relating them to other, well-measured ob-
servables.
For KL → π0νν̄ and K+ → π+νν̄, short-distance physics dominates because of the

absence of photon penguins and the quadratic GIM breaking exhibited in the Z pen-
guin. The calculation of the branching ratios can be split into several pieces. First, the
top quark contribution Xt is known including NLO QCD effects [806, 807]. While NLO
electroweak effects have been estimated in the large top-quark mass limit [808]. In the
charm-quark sector, the NNLO QCD [809, 810] and electroweak [811] corrections have
been computed, significantly reducing the scheme and scale ambiguities in the corre-
sponding quantity Pc. For both these contributions, the matrix elements of the resulting
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dimension-six operator, encoded in κL and κ+, are obtained from the full set of Kℓ3 data,
including isospin-breaking and long-distance QED corrections [812]. Higher-dimensional
contributions for the charm quark, which are negligible in the case of the top quark
since they are suppressed by m2

K/m
2
t , as well as the residual up-quark contributions are

parametrized by δPu,c, which has been estimated using χPT [813]. The error on δPu,c
may be reduced through LQCD studies [814]. Finally, the rate forK1 ≈ KS andK2 ≈ KL

are similar, and thus indirect CP-violation, KL → εK2 → π0νν̄, is below the percent
level since the smallness of εK ∼ 10−3 cannot be compensated [815]. Putting all these
pieces together, the K → πνν̄ rates are predicted with a high level of accuracy in the
SM

B
(
KL → π0νν̄

)
= (2.54± 0.35)× 10−11 ,

B
(
K+ → π+νν̄

)
= (8.51± 0.73)× 10−11 .

(310)

The composition of the quoted errors is as follows 69%CKM, 12%para, 15%Xt
, 4%κL

and 52%CKM, 17%para, 12%Xt
, 12%δPu,c

, 5%Pc
, 2%κ+ , where the parametric uncertainty

combines the errors on mt, mc, and αs.
For the K → πℓ+ℓ− modes, besides the short-distance top- and charm-quark contri-

butions, some long-distance effects arise due to the photon penguins. For the CP-odd
K2, the single-photon penguin is CP-violating, hence still short-distance dominated, and
is known precisely [816]. On the other hand, the double-photon penguin is a purely
long-distance CP-conserving contribution. It has been evaluated from KL → π0γγ data,
and turns out to be competitive in the muon case [817, 818]. For the K+ and the CP-
even K1, the CP-conserving single-photon penguin completely dominates, hence these
modes do not give us access to the short-distance physics. Further, this photon penguin
is large enough to compensate for εK ∼ 10−3 in the indirect CP-violating KL → εK1 →
π0γ∗ → π0ℓ+ℓ− contribution [819]. This piece can be brought under control thanks to
the B(KS → π0ℓ+ℓ−) measurements, up to its interference sign [817,820–822]. Neverthe-
less, the current experimental accuracy for B(KS → π0ℓ+ℓ−) still represents the largest
source of uncertainty in the B(KL → π0ℓ+ℓ−) predictions, which are

B(KL → π0e+e−) = 3.54+0.98
−0.85

(
1.56+0.62

−0.49

)
× 10−11 ,

B(KL → π0µ+µ−) = 1.41+0.28
−0.26

(
0.95+0.22

−0.21

)
× 10−11 ,

(311)

for constructive (destructive) interference.
For the KL → ℓ+ℓ− modes, though the short-distance top- and charm-quark contri-

butions are predicted with excellent accuracy [823], it is the long-distance two-photon
penguin which dominates. Its theoretical estimation is problematic because, contrary to
KL → π0γγ → π0ℓ+ℓ−, it i) diverges in χPT [824] and ii) produces the final lepton
pair in the same state as the short-distance processes, and hence interferes with them
with an unknown sign. Better measurements of KS → π0γγ and K+ → π+γγ could
settle this issue [825]. These two problems have, up to now, upset attempts to extract
the subleading short-distance top- and charm-quark components from the well-measured
B(KL → µ+µ−).

6.6.6.2. Sensitivity to NP effects. Rare K decays are ideally suited to search for NP
effects. Indeed, besides the loop suppression of the underlying FCNC processes, they are
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significantly CKM suppressed. Compared to A(b → s, d), the amplitudes in the s → d
sector scale as

A(s → d) ∼ |V ∗
tdVts| ∼ λ5 ,

A(b→ d) ∼ |V ∗
tdVtb| ∼ λ3 ,

A(b→ s) ∼ |V ∗
tsVtb| ∼ λ2 ,

(312)

with λ ∼ 0.22. If NP is generic, i.e., it does not follow the CKM scaling (312), it is
clear that the constraints from rare K decays are typically the most stringent. Stated
differently, a measurement of KL → π0νν̄ close to its SM prediction is the most difficult
to reconcile with the existence of generic NP at a reasonably low scale around a TeV.
NP models in which the CKM scalings (312) are preserved are referred to as of MFV

type [135]. When this is the case, NP can show up at a low scale without violating
experimental bounds, including those from rare K decays. In addition, when MFV is
enforced within a particular model like the MSSM, the effects are expected to be rather
small, often beyond the experimental sensitivity. This has been analyzed at moderate
[826] or large tanβ [144, 827, 828], without R-parity [829], or with MFV imposed at
the GUT scale [157, 158]. Turning this around, the rare K decays emerge as one of the
best places to look for deviations of the MFV hypothesis [137, 830, 831]. If the flavor-
breaking transitions induced by the NP particles are not precisely aligned with those of
the SM, large effects can show up. This is true even given the current measurement of
the K+ → π+νν̄ mode. The model-independent bound it implies on the KL → π0νν̄
mode is still about 30 times higher that the SM prediction [832].
Each NP model affects the basic electroweak FCNC differently. If it enters into the Z

penguin, the two K → πνν̄ modes exhibit the best sensitivity. This happens for example
in the MSSM from chargino-squark loops at moderate tanβ [833–837] or charged-Higgs-
quark loops at large tanβ [828], with R-parity violation [838–840], in little Higgs models
without [170] and with [171–173, 841] T-parity, and in the presence of extra-dimensions
[181, 663, 842]. In most of these models, correlated changes to the short-distance photon
penguin are induced [843,844], and these could then be probed and disentangled using the
KL → π0ℓ+ℓ− modes. Combined measurements of all the rareK decay modes can serve as
a powerful discriminator among models [818,822]. Further, purely electromagnetic effects
could also be present, as in the electromagnetic operators, for which the KL → π0ℓ+ℓ−

modes are clean probes while ε′ is problematic [845].
In addition, NP could occur with helicity-suppressed couplings proportional to the

fermion mass. Typical examples are the neutral Higgs-induced FCNC, as generated in
the MSSM at large tanβ [142, 144, 153, 827]. Obviously, the KL → π0µ+µ− and KL →
µ+µ− modes are the only available windows for such helicity-suppressed effects in the
s→ d sector. Therefore, these effects can in principle be disentangled from NP in the Z
or photon penguins by a combined analysis of all the rare K decay modes [822].
In conclusion, the K → πνν̄ modes offer one of the best opportunities to find a ir-

refutable signal of NP in the field of flavor physics. Furthermore, combining information
on the different K → πνν̄ and KL → π0ℓ+ℓ− channels allows one to probe and disen-
tangle NP effects in most of the different types of FCNC interactions. Being either free
of hadronic uncertainties, or these being under sufficiently good theoretical control, the
stage is set for a complete and detailed study of s→ d transitions.
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6.6.7. Experimental status of K → πνν̄ and KL → πℓ+ℓ−

The E787 and E949 experiments have established the feasibility of observing theK+ →
π+νν̄ decay using a stopped Kaon beam [197]. Observation of seven candidate events by
E787 and E949 yields B(K+ → π+νν̄) =

(
1.73+1.15

−1.05

)
×10−10 when the relative acceptance

and measured background are taken into account with a likelihood method [846]. It
has been estimated that, assuming the SM decay rate, a stopped K+ experiment could
accumulate hundreds of K+ → π+νν̄ events, using a copious proton source such as
Project-X at FNAL [847]. The NA62 experiment at CERN seeks to observe on the order
of a hundred K+ → π+νν̄ decays using a decay-in-flight technique in an unseparated 75
GeV beam.
The experiment E391a has set a limit of B(KL → π0νν̄) < 670× 10−10 at 90% CL in

a sample of 5.1 × 109 KL decays [848]. The experimental result is still larger than the
model-independent limit [832] of B(KL → π0νν̄) < 14.6 × 10−10 at 90% CL implied by
the K+ → π+νν̄ results. E391a is currently analyzing an additional 3.6× 109 KL decays
and plans to implement an upgraded detector in the experiment E14 at JPARC that
would have a sensitivity comparable to the expected SM KL → π0νν̄ decay rate.
The experimental limits on KL → π0e+e− and KL → π0µ+µ− are 2.8 × 10−10 and

3.8× 10−10 at 90% CL by the KTeV collaboration [4]. The KL → π0e+e− mode suffers
from an irreducible background from KL → γγe+e− decays, B(KL → γγe+e−) = (5.95±
0.33) × 10−7, that can be suppressed by a precise diphoton mass resolution. There are
currently no experiments planned to continue the search for these decays.

6.7. Rare D meson decays

6.7.1. Rare leptonic decays
In the Standard Model (SM) flavor-changing neutral current (FCNC) decays of charm

hadrons are highly suppressed by the GIMmechanism [849]. In the processD0 → Xuℓ
+ℓ−

this leads to branching fractions of O(10−8) [850]. However, this process can be enhanced
by the presence of long-distance contributions, increasing the branching fractions by
several orders of magnitude [850]. The effect of these long distance contributions from
intermediate resonances can be separated by examining the invariant mass of the lep-
ton pair (e.g. φ → ℓ+ℓ−). In radiative charm decays (e.g. c → uγ), the long distance
contributions are not so easily determined, making it increasingly difficult to study the
short-distance effects. The branching fractions of the D0 → ℓ+ℓ− final state are predicted
to be O(10−13) [850], including contributions from long distance processes.
Lepton family-number violating (LFV), and lepton-number violating (LV) decays are

strictly forbidden in the SM. The processes are allowed in extensions to the SM with
non-zero neutrino mass but at a very low level [850]. A large impact is expected to come
from R-parity violating super-symmetry. Depending on the size of the R-parity violating
couplings, branching fractions for these processes can be enhanced up to the O(10−6)
level for differing c→ uℓ+ℓ− processes.
The search for FCNC processes in charm decays has not received the attention that

the K and B meson sectors have attracted. The current measurements of these decays
(Tab. 50-52) agree with SM predictions, and there are ongoing efforts to improve both
theoretical predictions and experimental limits. There is also ongoing effort to measure
new effects such as CP violation in these processes.
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Table 50
90% confidence limits on Flavor-changing neutral current, (FCNC), lepton family-number (LFV) violat-

ing, or lepton-number (LV) violating decay modes of the D+ (left) and the D+
s (right) [285].

Process Decay type Upper limit Reference

π+ e+e− FCNC < 7.4 ×10−6 [851]

π+ µ+µ− FCNC < 3.9 ×10−6 [852]

ρ+µ+µ− FCNC < 5.6 ×10−4 [853]

K+ e+e− N/A a < 6.2 ×10−6 [851]

K+ µ+µ− N/Aa < 9.2 ×10−6 [854]

π+ e± µ∓ LFV < 3.4 ×10−5 [855]

K+ e± µ∓ LFV < 6.8 ×10−5 [855]

π− e+ e+ LV < 3.6 ×10−6 [851]

π− µ+ µ+ LV < 4.8 ×10−6 [854]

π− e+ µ+ LV < 5.0 ×10−5 [855]

ρ−µ+ µ+ LV < 5.6 ×10−4 [853]

K− e+ e+ LV < 4.5 ×10−6 [851]

K− µ+ µ+ LV < 1.3 ×10−5 [854]

K− e+ µ+ LV < 1.3 ×10−4 [856]

K∗− µ+ µ+ LV < 8.5 ×10−4 [853]

a These modes are not a useful test for FCNC,
because both quarks must change flavor.

Process Decay type Upper limit Reference

π+ e+e− N/Aa < 2.7 ×10−4 [855]

π+ µ+µ− N/Aa < 2.6 ×10−5 [854]

K+ e+e− FCNC < 1.6 ×10−3 [855]

K+ µ+µ− FCNC < 3.6 ×10−5 [854]

K∗− µ+µ− FCNC < 1.4 ×10−3 [853]

π+ e± µ∓ LFV < 6.1 ×10−4 [855]

K+ e± µ∓ LFV < 6.3 ×10−4 [855]

π− e+ e+ LV < 6.9 ×10−4 [855]

π− µ+ µ+ LV < 2.9 ×10−5 [854]

π− e+ µ+ LV < 7.3 ×10−4 [855]

K− e+ e+ LV < 6.3 ×10−4 [855]

K− µ+ µ+ LV < 1.3 ×10−5 [854]

K− e+ µ+ LV < 6.8 ×10−4 [855]

K∗− µ+ µ+ LV < 1.4 ×10−3 [853]

Table 51
90% confidence limits on flavor-changing neutral current (FCNC), or lepton-number (LV) violating decay
modes of the Λc [285].

Process Decay type Upper limit Reference

pµ+µ− FCNC < 3.4 ×10−4 [853]

Σ−µ+ µ+ LV < 7.0 ×10−4 [853]

Therefore, searching for FCNC, LFV, or LV modes in the charm sector is a relatively
inviting place to investigate new physics in the SM. Similar arguments hold for rare
decays in the K and B sector. However, the charm system is unique in that it couples
an up-type quark to new physics.
It is clear that due to the relatively little experimental progress in this area within the

last decade and the large data sets from the flavor factories, that there is a several orders
of magnitude in precision to be gained from re-reanalyzing these measurements with
meaningful limits to be derived which may have the potential to constrain parameter
space for many new physics models. At present the upper limits for branching fractions
for those modes more recently measured [851,852,858] are starting to confine the allowed
parameter space of R-parity violating super-symmetric models.
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Table 52
90% confidence limits on flavor-changing neutral current (FCNC), lepton family-number (LFV) violating,

or lepton-number (LV) violating decay modes of the D0 [285].

Process Decay type Upper limit Reference

γγ FCNC < 2.7 ×10−5 [857]

e+e− FCNC < 1.2 ×10−6 [858]

µ+µ− FCNC < 1.3 ×10−6 [858]

π0 e+e− FCNC < 4.5 ×10−5 [859]

π0 µ+µ− FCNC < 1.8 ×10−4 [853]

ηe+e− FCNC < 1.1 ×10−4 [859]

ηµ+µ− FCNC < 5.3 ×10−4 [859]

π+π− e+e− FCNC < 3.73 ×10−4 [860]

ρ0e+e− FCNC < 1.0 ×10−4 [859]

π+π− µ+µ− FCNC < 3.0 ×10−5 [860]

ρ0µ+µ− FCNC < 2.2 ×10−5 [860]

ωe+e− FCNC < 1.8 ×10−4 [859]

ωµ+µ− FCNC < 8.3 ×10−4 [859]

K+K− e+e− FCNC < 3.15 ×10−4 [860]

φe+e− FCNC < 5.2 ×10−5 [859]

K+K− µ+µ− FCNC < 3.3 ×10−5 [860]

φµ+µ− FCNC < 3.1 ×10−5 [860]

K0 e+e− N/A a < 1.1 ×10−4 [859]

K0 µ+µ− N/Aa < 2.6 ×10−4 [853]

K− π+ e+e− FCNC < 3.85 ×10−4 [860]

K∗0 e+e− N/Aa < 4.7 ×10−5 [860]

K+ π+ µ+µ− FCNC < 3.59 ×10−4 [860]

a These modes are not a useful test for FCNC,
because both quarks must change flavor.

Process Decay type Upper limit Reference

K∗0 µ+µ− N/Aa < 2.4 ×10−5 [860]

π+π− π0 µ+µ− FCNC < 8.1 ×10−4 [853]

e± µ∓ LFV < 8.1 ×10−7 [858]

π0 e± µ∓ LFV < 8.6 ×10−5 [859]

ηe± µ∓ LFV < 1.0 ×10−4 [859]

π+π− e± µ∓ LFV < 1.5 ×10−5 [860]

ρ0e± µ∓ LFV < 4.9 ×10−5 [859]

ωe± µ∓ LFV < 1.2 ×10−4 [859]

K−K+ e± µ∓ LFV < 1.8 ×10−4 [860]

φe± µ∓ LFV < 3.4 ×10−5 [859]

K0 e± µ∓ LFV < 1.0 ×10−4 [859]

K− π+ e± µ∓ LFV < 5.53 ×10−4 [859]

K∗0 e± µ∓ LFV < 8.3 ×10−5 [860]

π− π− e+ e+ + c.c LV < 1.12 ×10−4 [860]

π− π− µ+ µ+ + c.c LV < 2.9 ×10−5 [860]

K− π− e+ e+ + c.c LV < 2.06 ×10−4 [860]

K− π− µ+ µ+ + c.c LV < 3.9 ×10−4 [860]

K− K− e+ e+ + c.c LV < 1.52 ×10−4 [860]

K− K− µ+ µ+ + c.c LV < 9.4 ×10−5 [860]

π− π− e+ µ+ + c.c LV < 7.9 ×10−5 [860]

K− π− e+ µ+ + c.c LV < 2.18 ×10−4 [860]

K− K− e+ µ+ + c.c LV < 5.7 ×10−5 [860]

6.7.2. D and Ds decay constants from lattice QCD
Quark confinement inside hadrons makes the direct experimental determination of how

quarks change from one flavor to another via the weak interactions impossible. Instead we
must study experimentally the decay of a hadron, calculate the effect of the strong force
on the quarks in the hadron and then correct for this to expose the quark interaction with
the W boson. The simplest such hadron decay is annihilation of a charged pseudoscalar
into a W and thence into a lepton and an antineutrino. The leptonic width of such a
pseudoscalar meson, P , of quark content ab (or ab) is given by:

Γ(P → lνl(γ)) =
G2
F |Vab|2
8π

f2
Pm

2
lmP

(
1− m2

l

m2
P

)2

. (313)
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Vab is from the Cabibbo-Kobayashi-Maskawa (CKM) matrix element which encapsulates
the Standard Model description of quark coupling to the W . fP , the decay constant,
parametrizes the amplitude for the meson annihilation to a W and is basically the prob-
ability for the quark and antiquark to be in the same place. It is defined by:

fPmP =< 0|ψ(x)γ0γ5ψ(x)|P (p = 0) > (314)

Note that fP is a property of the meson in pure QCD. In the real world there is also elec-
tromagnetism and so the experimental rate must be corrected for this. It is a small (1-2%)
effect, except for very heavy mesons (Bs) decaying to very light leptons (electrons) [261].
If Vab is known from elsewhere an experimental value for Γ gives fP , to be compared to
theory. If not, an accurate theoretical value for fP , combined with experiment, can yield
a value of Vab.
Accuracy in both experiment and theory is important for useful tests of the Standard

Model. Here the numerical techniques of lattice QCD come to the fore for the theoretical
calculation because it is now possible to do such calculations accurately [91] and the
pseudoscalar decay constant is one of the simplest quantities to calculate in lattice QCD.
A lattice QCD calculation proceeds by splitting space-time up into a lattice of points

(with spacing a) and generating sets of gluon fields on the lattice that are ‘typical snap-
shots of the vacuum’. For accurate calculations these snapshots need to include the effect
of quark-antiquark pairs, known as ‘sea’ quarks, generated by energy fluctuations in the
vacuum. The important sea quarks are those which cost little energy to make i.e. the
light u, d and s. Unfortunately in lattice QCD it is numerically expensive to work with
sea u and d masses that are close to their physical values and we have to extrapolate to
the physical point from heavier values using chiral perturbation theory. Valence quarks
that make up a hadron are propagated through these gluon fields, allowing any number
of interactions. We tie together appropriate valence quark and antiquark propagators to
make, for example, a meson correlator which is then printed out as a function of lattice
time, t (we sum on spatial lattice sites to project on to zero spatial momentum). We fit
as a function of t to a multi-exponential form:

< 0|H†(0)H(t)|0 >=
∑

i

Ai(e
−Eit + e−Ei(T−t)) (315)

where T is the time extent of the lattice. The smallest value of Ei (corresponding to
the state that survives to large t) is the ground state mass in that channel, and Ai is
the square of the matrix element between the vacuum and P of the operator H used to
create and destroy the hadron. If H is the local temporal axial current of equation 314
(and this is the operator used if the valence quark and antiquark are simply tied together
at the same start and end points matching colors and spins) then A0 will be directly
related to the decay constant of the ground state pseudoscalar.
For K and π mesons several very accurate decay constant determinations have been

done now in lattice QCD including the full effect of u, d and s quarks in the sea, and at
several values of the lattice spacing. Extrapolations to the physical point in the u/d mass
and a = 0 have been done with a full error budget. The lattice value of fK/fπ can be
used to determine Vus to 1% accuracy. (* This is presumably described in the subsection
on strange physics, so you only need a reference to that here *).
For the charged charmed mesons Dd and Ds the lattice determination of the decay

constant can be compared to an experimental one derived from the leptonic decay rate if
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Fig. 53. A comparison of lattice results for the D and Ds decay constant [340,429,861] and experimental
results obtained from the leptonic decay rate using CKM elements Vcs and Vcd from elsewhere [457,862–
865]. There is agreement between lattice and experiment for fD , but not for fDs .

values of Vcd and Vcs are assumed (usually Vus = Vcd and Vud = Vcs). This is an important
test of modern lattice techniques, that can be used to calibrate lattice errors. The errors
expected in the D/Ds case are similar to those for K/π. The statistical errors on the raw
lattice numbers are similar, and the extrapolations that must be done in the u/d mass
are less of an issue than for π. Indeed for the Ds, which has no valence u/d quark, there
is very little dependence on the (sea) u/d mass and so very little extrapolation.
The extrapolations to a = 0 are worse for D/Ds than for K/π and the reason is that

the charm quark mass in lattice units, mca, is relatively large. Typically a lattice result at
non-zero lattice spacing will have a power series dependence on the lattice spacing with
the scale of the a-dependent terms set by a typical momentum inside the bound state.
Extrapolations to a = 0 can then be done using this functional form, and the resulting
error will depend on the size of the extrapolation. For charm physics the scale of the
a-dependent terms is set by mc and we expect

m = ma=0(1 +A(mca)
2 +B(mca)

4 + . . .). (316)

The extrapolation can then be quite severe, and will determine the final error, if we do
not take steps to control or eliminate terms in this series by improving the action.
The Highly Improved Staggered Quark (HISQ) action for charm quarks [866] elimi-

nates the (mca)
2 term and results at three values of the lattice spacing then give an

accurate extrapolation to a = 0 with a 2% final error [340]. Alternatives to this are the
‘Fermilab interpretation’ of improved Wilson quarks [861] and the twisted mass formal-
ism [429]. Both have larger errors than for HISQ at present. Improved Wilson quarks
have discretization errors at αs(mca) in principle but the Fermilab interpretation re-
moves the leading errors that come from the kinetic energy, and experience has shown
that a-dependence is small in this formalism. However, relativity is given up and this
means, for example, that the masses of mesons cannot be as accurately tuned and a
renormalisation factor is needed to relate the decay constant on the lattice to a result
appropriate to the real world (at a = 0). The twisted mass formalism uses a relativistic
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framework with errors appearing first at mca)
2. It has so far been applied at two values

of the lattice spacing for gluon field configurations that do not include s sea quarks, so
are not completely realistic.
Fig. 53 shows a comparison of these lattice calculations to new experimental results

from CLEO-c for both fD and fDs
(which appeared after [340,861]) and older results for

fDs
from BaBar [865]. The good agreement between lattice and experiment for fD (and

fK and fπ) contrasts with the 3σ disagreement for fDs
and it has been suggested that

this is a harbinger of new physics [867]. Improved experimental errors for fDs
will shed

light on this. Meanwhile, lattice calculations and their systematic errors are also being
tested against other quantities in charm physics [868].

6.7.3. Experimental results on fD
Fully leptonic decays of D+

(s) mesons depend upon both the weak and strong inter-

actions. The weak part is straightforward to describe in terms of the annihilation of
the quark antiquark pair to a W+ boson. The strong interaction is required to describe
the gluon exchange between the quark and antiquark. The strong interaction effects are
parametrized by the decay constant, fD+

(s)
, such that the total decay rate is given by

Γ(D+
(s) → l+ν) =

G2
F

8π
f2
D+

(s)

m2
lMD+

(s)
[1− m2

l

M2
D+

(s)

]2|Vcd(s)|2 ,

where GF is the Fermi coupling constant, MD+
(s)

and ml are the D+
(s) meson and final

state lepton masses, respectively, and Vcd(s) is a Cabibbo-Kobayashi-Maskawa (CKM)
matrix element. The values of Vcd and Vcs can be equated Vus and Vud, which are well
known. Therefore, within the standard model, measurements of the fully leptonic decay
rates allow a determination of fD+

(s)
.

Measurements of fD+
(s)

can be compared to calculations from theories of QCD, the most

precise of which use unquenched lattice techniques (see for example Ref. [340].) Similar
calculations of strong parameters in B meson decay are relied upon to extract CKM
matrix elements, such as |Vtd|/|Vts| from the rates of B mixing. Therefore, comparing
predictions for fD+

(s)
to measurements is important for validating the QCD calculation

techniques. Deviations of experimental measurements from theoretical predictions may
be a consequence of non-SM physics (see for example Ref. [867]).
CLEO-c provides the most precise experimental determinations of fD+ [863] and fD+

s

[258,869] to date. All measurements at CLEO-c exploit the recoil technique described in
Sec. 3.2.6.
The determination of fD+ uses six hadronic decays of the D− as tags: K+π−π−,

K+π−π−π0, K0
Sπ

−, K0
Sπ

−π−π+, K0
Sπ

−π0 and K+K−π−. The analysis is performed on
818 pb−1 of e+e− → ψ(3770) → DD̄ data. 460,000 tagged events are reconstructed. The
fully leptonic decay reconstructed is D+ → µ+νµ, Events are considered as signal if they
contain a single additional charged track of opposite charge to the fully reconstructed
tag decay. Events with additional neutral energy deposits in the calorimeter are vetoed.
The beam-energy constrained missing-mass squared, MM2 is computed:

MM2 = (Ebeam − Eµ+)2 − (−pD− − pµ+)2 ,
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where Ebeam is the beam energy, pD− is the three-momentum of the fully reconstructed
D− decay and Eµ+ (pµ+) is the energy (three-momentum) of the µ+ candidate. For
signal events the measured MM2 will be close to zero (the ν mass).
The sample of events is then divided depending upon whether the energy the µ+

candidate deposits in the electromagnetic calorimeter is more or less than 300MeV;
98.8% of µ+ deposit less than 300 MeV. The yield of D+ → µ+ν events is extracted by
a fit to the MM2 distribution of µ candidates depositing less than 300MeV.
The fit to data produces the following results:

B(D+ → µ+ν) = (3.82± 0.32± 0.09)× 10−4 ,

and
fD+ = (205.8± 8.5± 2.5)MeV ,

where first uncertainty is statistical and the second uncertainty is systematic. Further-
more, the ratio between µν and the smallD+ → τ+(π+ν)ν contribution has been fixed to
the SM expectation. The systematic uncertainty contains significant contributions from
radiative corrections, particle identification efficiency and background assumptions. The
measurement is in good agreement with the theoretical prediction of Follana et al. [340]
of fD+ = (207± 4) MeV.
The CLEO-c measurements of fD+

s
are made with a data set corresponding to 600 pb−1

of integrated luminosity collected at a center-of-mass energy of 4.170GeV, which is close
to the maximum of the D+

s D
∗−
s production cross-section. One analysis reconstructs

D+
s → µ+ν and D+

s → τ+(π+ν̄)ν events [258] and the other reconstructs D+
s →

τ+(e+νν̄)ν events [869]. These are briefly reviewed in turn.
The analysis of D+

s → µ+ν and D+
s → τ+(π+ν̄)ν reconstructs D−∗

s → D−
s γ tags

in nine hadronic D+
s decay modes. The number of tags reconstructed is approximately

44,000. Signal candidates are reconstructed in an almost identical fashion to the mea-
surements of fD+ and the resulting MM2 distribution and fit are shown in Fig. 54 (a).
The principal results from this analysis are:

B(D+
s → µ+ν) = (0.591± 0.037± 0.018)% ,

B(D+
s → τ+ν) = (6.42± 0.81± 0.18)% ,

and
fD+

s
= (263.3± 8.2± 3.9) MeV.

The main systematic uncertainty is from the D∗+
s tag yields.

The selection of D+
s → τ+(e+νν̄)ν only uses three of the purest D−

s tags: φπ−, K∗0K−

and K−K0
S . There are 26,300 tagged events reconstructed. Events with a single charged

track of opposite sign, which is compatible with being an electron, are selected as signal
candidates. The distribution of extra energy, Eextra, in these events, with the background
evaluated in the tag D−

s mass sidebands subtracted, is shown in Fig. 54 (a). The signal
peaks close to 150MeV, which is the energy of the photon in D∗+

s → D+
s γ decays. A

binned fit to this distribution gives the following results:

B(D+
s → τ+ν) = (0.530± 0.47± 0.22)%

and
fD+

s
= (252.5± 11.1± 5.2) MeV.

198



(a) (b)

Fig. 54. Fits to the (a)MM2 and (b) Eextra distributions used to extract the D+
s → lν yields at CLEO-c.

In (a) the solid line is the total fit result, the dashed line is the µν component, the dot-dashed line is
the τν component and the dotted line is background.

The main systematic uncertainty is from the estimation of the D+
s → K0

Le
+ν peaking

backgrounds.
The two results for fD+

s
give an average value of

fD+
s
= (259.5± 6.6± 3.1) MeV ,

which is 2.3σ larger than the recent lattice calculation fD+
s
= (241± 3) MeV [340].

BABAR [865] and Belle [456] have also measured fD+
s
, but the results are much less

precise than those from CLEO-c. However, these results were made with a fraction of
their data sets and will be updated. be

7. Measurements of Γ, ∆Γ, ∆m and mixing-phases in K, B, and D meson
decays

The phenomenon of meson-antimeson oscillation, being a flavor changing neutral cur-
rent (FCNC) process, is very sensitive to heavy degrees of freedom propagating in the
mixing amplitude and, therefore, it represents one of the most powerful probes of New
Physics (NP). In K and Bd,s systems the comparison of observed meson mixing with the
Standard Model (SM) prediction has achieved a good accuracy and plays a fundamental
role in constraining not only the Unitarity Triangle (UT) but also possible extensions of
the SM. Very recently the evidence for flavor oscillation in the D system has been also
revealed, providing complementary information with respect to the K and Bd,s systems,
since it involves mesons with up-type quarks.
We recall here the basic formalism of meson-antimeson mixing, starting from the K

system. In principle, one could describe neutral meson mixing with a unique formalism.
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Fig. 55. Box diagrams contributing to K0 − K̄0 mixing in the SM.

However, we present different formalisms for K, B, and D mixing to make contact with
previous literature, considering also that different approximations are used.
The neutral Kaons K0 = (s̄d) and K̄0 = (sd̄) are flavor eigenstates which in the SM

can mix via weak interactions through the box diagrams shown in Fig. 55. In the presence
of flavor mixing the time evolution of the K0-K̄0 system is described by

i
d

dt


K0(t)

K̄0(t)


 = Ĥ


K0(t)

K̄0(t)


 , (317)

where the the Hamiltonian Ĥ is a 2× 2 non-hermitian matrix which can be decomposed
as Ĥ = M̂ − iΓ̂/2. The matrices M̂ and Γ̂ are hermitian and their elements respectively
describe the dispersive and absorptive part of the time evolution of the Kaon states.
We note that, in terms of K0 and K̄0, the CP eigenstates are given by 19

K± =
1√
2
(K0 ± K̄0) , CP |K±〉 = ±|K±〉 . (318)

The Hamiltonian eigenstates, called short and long due to the significant difference
between their decay time, can be written as

KS =
K+ + ǭ K−√
(1 + |ǭ|2)

, KL =
K− + ǭ K+√
(1 + |ǭ|2)

. (319)

They coincide with CP eigenstates but for a small admixture governed by a small complex
parameter ǭ, defined as

1− ǭ

1 + ǭ
= −

√
M∗

12 − iΓ∗
12/2

M12 − iΓ12/2
. (320)

In theK system, the smallness of ǭ ≃ O(10−3) implies ImM12 ≪ReM12 and ImΓ12 ≪ ReΓ12.
Consequently, the mass difference between the mass eigenstates KL and KS can be well
approximated by the simple expression:

∆MK ≡MKL
−MKS

= −2ReM12 , (321)

where the off-diagonal element M12 is given by

M12 = 〈K0|H∆S=2
eff |K̄0〉 , (322)

19The phase convention is chosen so that CP |K0〉 = |K̄0〉 and CP |K̄0〉 = |K0〉.
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with H∆S=2
eff being the effective Hamiltonian that describes ∆S = 2 transitions, defined in

Sec. 2.1. Notice that Eq. (321) only gives the short-distance part of ∆MK . Long-distance
contributions, however, are present due to the exchange of light meson states and are
difficult to estimate. On the other hand, the imaginary part of the amplitudes discussed
below are not affected by these contributions, which have Cabibbo-suppressed imaginary
part.
We now discuss the parameters εK and ε′K/εK . which are used to measure indirect

and direct CP violatons in the K system. Since a two pion final state is CP even while a
three pion final state is CP odd, KS and KL preferably decay to 2π and 3π respectively,
via the following CP conserving decay modes: KL → 3π (via K2), KS → 2π (via K1).
Given how KL and KS are not CP eigenstates, they can also decay, with small branching
fractions, as follows: KL → 2π (via K1), KS → 3π (via K2). This CP violation is called
indirect as it does not proceed via explicit breaking of the CP symmetry in the decay
itself, but via the mixing of the CP state with opposite CP parity to the dominant one.
We note that ǭ depends on the phase convention of the K meson states and hence it is
not measurable by itself. A phase-independent parameter which provides a measure of
the indirect CP violation is

εK =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
, (323)

which, using the already-mentioned approximations as well as ∆M ≃ −∆Γ and Γ12 ≃
(A∗

0)
2, is related to ǭ by

εK = ǭ+ iξ =

(
ImM12

2ReM12
+ ξ

)
exp(iφǫ) sinφǫ , with ξ =

ImA0

ReA0
, (324)

where the phase φǫ is measured to be (43.51± 0.05)◦ [4]. The amplitude A0 appearing
in Eq. (324) is defined through

A(K0 → π+π−) =

√
2

3
A0e

iδ0 +

√
1

3
A2e

iδ2 ,

A(K0 → π0π0) =

√
2

3
A0e

iδ0 − 2

√
1

3
A2e

iδ2 , (325)

where the subscript I = 0, 2 denotes states with isospin 0, 2. Hence, δ0,2 are the corre-
sponding strong phases, and the weak CKM phases are contained in A0 and A2. Indirect
CP violation reflects the fact that the mass eigenstates are not CP eigenstates. Direct CP
violation, on the other hand, is realized via a direct transition of a CP odd to a CP even
state or vice-versa. A measure of the direct CP violation in KL → ππ is characterized
by a complex parameter ε′K defined as 20

ε′K =
1√
2
Im

(
A2

A0

)
eiΦ, Φ = π/2 + δ2 − δ0, (326)

with amplitudes A0,2 defined in Eq. (325). Extracting the strong phases δ0,2 from ππ scat-
tering yields Φ ≈ π/4. Experimentally, the ratio ε′K/εK can be determined by measuring
the ratios

η00 =
A(KL → π0π0)

A(KS → π0π0)
, η+− =

A(KL → π+π−)

A(KS → π+π−)
. (327)

20Actually direct CP violation is accounted for by Re(ε′K).
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In fact, from Eqs. (327) and (325), one finds

η00 ≃ εK − 2ε′K , η+− ≃ εK + ε′K , (328)

by exploiting the smallness of εK and ε′K , using ImAi ≪ReAi and ω = ReA2/ReA0 =
0.045 ≪ 1, which corresponds to the ∆I = 1/2 rule. The ratio ε′K/εK can then be
measured from ∣∣∣∣

η00
η+−

∣∣∣∣
2

≃ 1− 6 Re

(
ε′K
εK

)
. (329)

The formalism recalled in the case of the K system is basically the same for the Bd
and Bs systems. There is however a notation difference for the neutral mass eigenstates,
which are denoted heavy and light and are expressed in terms of the flavor eigenstates as

BL,Hq =
1√

(1 + |(q/p)q|2)
(Bq ± (q/p)qB̄q) , (q = d, s) (330)

with (q/p)q parameterizing indirect CP violation. This parameter is similar to ǭ for
Kaons. Comparing Eqs. (319) and (330), one finds q/p = (1− ǭ)/(1 + ǭ).
Similar to the Kaon case, the phase of (q/p)q depends on the phase convention of the

B meson states, but the absolute value |(q/p)q| can be measured. Further interesting
experimental observables in the Bd and Bs systems are the mass and width differences:
∆MBq

≡ MBH
−MBL

and ∆ΓBq
≡ ΓBL

− ΓBH
. They can be written in terms of the

dispersive, M q
12, and absorptive, Γq12, matrix elements as

(∆MBq
)2 − 1

4
(∆ΓBq

)2 = 4|M q
12|2 − |Γq12|2 ,

∆MBq
∆ΓBq

= −4Re(M q
12Γ

q∗
12) , |(q/p)q| =

∣∣∣∣∣

√
2M q∗

12 − iΓq∗12
2M q

12 − iΓq12

∣∣∣∣∣ . (331)

The dispersive element M q
12 is related to the matrix element of the effective ∆B = 2

Hamiltonian, defined in Sec. 2.1, as it can be straightforwardly derived from Eq. (322).
The absorptive matrix element Γq12 can be written as

Γq12 =
1

2MBq

Disc〈Bq|i
∫
d4xT (H∆B=1

eff (x)H∆B=1
eff (0))|B̄q〉 , (332)

where “Disc” picks up the discontinuities across the physical cut in the time-ordered
product of the ∆B = 1 Hamiltonians, defined in Sec. 2.1. The relations in Eq. (331)
can be simplified by exploiting the smallness of the ratio Γq12/M

q
12 ∼ O(m2

b/m
2
t ) ∼ 10−3,

which allows neglecting O(m4
b/m

4
t ) terms, so that one can write

∆MBq
= 2|M q

12| , ∆ΓBq
= −∆MBq

Re

(
Γq12
M q

12

)
, |(q/p)q| = 1− 1

2
Im

(
Γq12
M q

12

)
.

(333)
Other important CP-violating observables, associated in the CKM phase convention

to the phases of the Bq mixing amplitudes, are the CKM angles

β = arg

(
−V

∗
cbVcd
V ∗
tbVtd

)
, βs = arg

(
− V ∗

tbVts
V ∗
cbVcs

)
. (334)

Note that V ∗
cbVcd and V ∗

cbVcs are approximately real in the CKM phase convention so
that Md

12 ≃ |Md
12|e2iβ and M s

12 ≃ |M s
12|e−2iβs . Moreover, the two angles have different

size: β ∼ 1 and βs ∼ λ2 ∼ O(10−2).
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The angle β can be measured, for instance, in the time-dependent CP asymmetry of
b → cc̄s transitions. In particular, for the golden channel Bd → J/ψKS and neglecting
doubly Cabibbo-suppressed contributions to the decay amplitudes, one obtains

a
B→J/ψKS

CP (t) = sin(2β) sin(∆MBd
t) . (335)

We refer the reader to Sec. 7.2.3 for more details. The extraction of the angle βs is more
problematic. In analogy to the previous case, the decay Bs → J/ψ φ is sensitive to the
phase of the Bs mixing amplitude. In this case, a time-dependent angular analysis is
required to separate CP-odd and CP-even contributions. This analysis provides a joint
measurement of Γs, ∆Γs and φs, where φs = arg(λJ/ψ φ) with λJ/ψ φ = (q/p)sA(B̄s →
(J/ψ φ)f )/A(Bs → (J/ψ φ)f ) with f = {0, ‖,⊥} (details on the experimental measure-
ments can be found in Sec. 7.2.4). Discarding doubly Cabibbo-suppressed terms, the
ratios Ā/A are real, so that φs could give access to the mixing phase. In the same ap-
proximation, the SM mixing phase βs vanishes. Therefore, a measurement of the Bs
mixing phase as small as the SM one requires controlling the Cabibbo-suppressed terms
in the decay amplitudes. For an attempt see Ref. [870]. On the other hand, an unsup-
pressed Bs mixing phase generated by NP can be measured using Bs → J/ψ φ with good
accuracy. Another angle related to the Bs mixing phase is φ′s = arg(−M s

12/Γ
s
12), from

which one can write

∆ΓBs
= 2|Γs12| cosφ′s, asfs =

|Γs12|
|M s

12|
sinφ′s . (336)

Similar to φs, φ
′
s coincides with the phase of the Bs mixing amplitude up to doubly

Cabibbo-suppressed terms. Therefore, φ′s ≃ φs is a sensitive probe of large NP contribu-
tions to the Bs mixing phase, but cannot be used to determine βs. Indeed, φ

′
s turns out

to be very small in the SM, as the leading term in Γs12 has the same phase of M s
12 while

the corrections are both Cabibbo and GIM suppressed.
Finally, the study of mixing and CP violation in the D system is based on the same

formalism as for B mesons. A peculiarity of D mesons is that CP violation in mixing is
strongly suppressed within the SM by the CKM combination VcbV

∗
ub, so that the matrix

elements MD
12 and ΓD12 of the ∆C = 2 effective Hamiltonian (see Sec. 2.1) are real to a

good approximation. Long-distance contributions which cannot be accounted for by the
effective Hamiltonian plague computations of D-D̄ mixing observables, even more than
in the case of ∆MK . The short-distance (SD) part of the mass and width differences can
be computed. They are given by:

∆MSD
D =MDH

−MDL
= 2Re

√
(MD

12 −
i

2
ΓD12)(M

D∗
12 − i

2
ΓD∗
12 ) ,

∆ΓSD
D =ΓDH

− ΓDL
= −4Im

√
(MD

12 −
i

2
ΓD12)(M

D∗
12 − i

2
ΓD∗
12 ) . (337)

For the D system, the experimental information on the mass and width differences is
provided by the time-integrated observables

xD =
∆MD

ΓD
, yD =

∆ΓD
2ΓD

. (338)
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7.1. The K-meson system

7.1.1. Theoretical prediction for ∆MK , εK , and ε′K/εK
The expression for the mass difference ∆mK has been given in Eq. (321). The short-

distance contributions, which are represented by the real parts of the box diagrams (see
Fig. 55) with charm quark and top quark exchanges, are known at NLO in QCD [34].
The dominant contribution is represented by charm exchanges, due to the smallness of
the real parts of the CKM top quark couplings, which is not compensated by the effect
of having heavier quarks running in the loop. Non-negligible contribution comes from
the box diagrams with simultaneous charm and top exchanges. In spite of the accuracy
achieved in the short-distance part, a reliable theoretical prediction of ∆mK is prevented
by relevant long-distance contributions which are difficult to estimate. The calculated
short-distance part leads in fact to a value of ∼ 80% [871] of the experimentally observed
mass difference between the neutral Kaon states of ∆mK = (3.483±0.006)·10−12MeV [4].
Theoretical predictions for the parameter of indirect CP violation εK have been sofar

obtained from the expression (324) by neglecting the term ξ, which constitutes a small
contribution, and approximating the phase φǫ to π/4, so that |εK | can be written as:

|εK | = CεB̂KA
2λ6η{−η1S0(xc)(1−

λ2

2
) + η3S0(xc, xt) + η2S0(xt)A

2λ4(1 − ρ)} , (339)

where Cε =
G2

F f
2
KMKM

2
W

6
√
2π2∆mK

. However, it has been recently pointed out [872] that the

adopted approximations might no longer be justified, due to the improved theoretical ac-
curacy in both perturbative and non-perturbative contributions. In Eq. (339) the Inami-
Lim functions S0(xc,t) and S0(xc, xt) [873] contain the box-contributions from the charm
and top-quark exchange with xi = m2

i /M
2
W , while ηi (i = 1, 2, 3) describe (perturbative)

short-distance QCD-corrections [33–35]. The Kaon bag parameter B̂K measures the de-
viation of the ∆S = 2 hadronic matrix element from its value in the vacuum saturation
approach:

B̂K =
〈K0|Q̂∆S=2|K0〉

8
3f

2
Km

2
K

. (340)

Therefore, B̂K contains all the non-perturbative QCD contributions for εK . Currently the
best determination of this parameter is available from lattice simulations of QCD with
either 2+1 or 2 dynamical quark flavors, which avoid the systematic uncertainty due to
“quenching” in earlier lattice studies done without dynamical quarks (cf. Sec. 2.3). At
this time, the most accurate results (obtained independently with 2+1 dynamical quark
flavors) by RBC/UKQCD [874] and Aubin et al. [875] quote a combined statistical and
systematic uncertainty of 5.4 and 4.0 per cent for B̂K , respectively. That means that the
contribution from B̂K to the total uncertainty in εK is now comparable to the second
biggest contribution, which originates from |Vcb|. This CKM-matrix element is nowadays
known with 2.3 per cent accuracy [4] but enters εK in the fourth power.
In most current lattice calculations, due to algorithmic and computational limitations,

the simulated up- and down-quark masses are heavier than their physical values, thus
requiring an extrapolation for B̂K to those light quark masses guided by chiral pertur-
bation theory (ChPT, see Sec. 2.4). Fig. 56 summarizes the currently available lattice
results with either Nf = 2+ 1 or 2 dynamical quarks. The RBC/UKQCD [110,874] and
the HPQCD [876] results both were obtained with Nf = 2 + 1, where the former used
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the domain-wall and the latter the staggered fermion formulation. The work by Aubin et
al. [875] used a mixed action approach, where domain-wall valence fermions have been
calculated on a 2+1 flavor background of dynamical staggered quarks. In case of the
RBC/UKQCD result, crucial ingredients for obtaining a small uncertainty in the final
number were the use of Kaon SU(2)-ChPT to extrapolate to light physical quark masses
and the use of a non-perturbative renormalization technique. The HPQCD result was
obtained using degenerate Kaons (made of two quarks of mass ms/2) and used a pertur-
bative renormalization technique. Results with Nf = 2 are available from JLQCD [877]
using dynamical overlap fermions and from ETMC [878] using twisted mass fermions 21 ,
both with non-perturbative renormalization. While ETMC also used Kaon SU(2)-ChPT,
the JLQCD result was extrapolated using NLO SU(3)-ChPT with analytic NNLO-terms
added. All these dynamical results except the one from Aubin et al. were obtained at a
single value for the finite lattice spacing a (values indicated in Fig. 56), meaning that a
continuum extrapolation is still missing. But the RBC/UKQCD and the HPQCD results
account for this fact in the systematic error estimate. For the near future, one should
expect updates to these results, containing, e.g. simulations at finer lattice spacings and
lighter dynamical quark masses and therefore further increasing the accuracy of the value
B̂K obtained from lattice calculations.
Estimates of the Kaon bag parameter in the chiral limit (mu,md,ms → 0) are available

from lattice simulations [110], large NC approximation [879–881] or the QCD-hadronic
duality [882].
As far as indirect CP violation is concerned, the parameter ε′K/εK can be written

by using the operator-product expansion (OPE) as an expression involving the hadronic
K → (ππ) operatorsQ6 and Q8 given in Eq. (44) of Sec. 2.1, see e.g. [889]. Here ε′K can be
expressed in terms of isospin amplitudes and is an experimentally measurable (complex)
parameter. The hadronic matrix elements Q6, Q8 contribute most to the uncertainties in
the theoretical prediction for ε′K/εK . On the lattice, usually an indirect approach [890]
is pursued, which measures K → π and K → vacuum operators instead and relates
those via chiral perturbation to the wanted K → (ππ) operators. For quenched studies
see [891,892], for recent work using dynamical domain-wall fermions see [893]. The latter
work raises some doubts about the applicability of this approach, which is based on
SU(3)-ChPT to be valid around the strange quark mass. A different technique, based on
the calculation of finite volume correlation functions, is described in [77], which might
turn out to be more successful in the future. See also [894] for an alternative approach,
i.e. to study ε′K/εK in the small box approach (ǫ-regime).

7.1.2. Experimental methods and results
The Kaon system was the first playground for the understanding of the violation of the

CP symmetry. In the years before the B system was investigated, all forms of CP violation
had been observed in the Kaon system. These are CP violation in the Kaon mixing, with
the measurement of Re(εK), in the direct decay, providing a non-null result onRe(ε′K/εK)
and in the interference between mixing and decay, through the determination of the η+−
phase, φ+−. CP violation has been observed in the KL decay to the CP-even eigenstate of
two pions, in the time-integrated charge asymmetry of the KL semileptonic decay rates,

21The ETMC result is still preliminary. No systematic errors are included yet.
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0.786±0.031stat±0.054syst
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Fig. 56. Summary of lattice results for B̂K : included are recent results from dynamical Nf = 2 + 1
[110, 874–876] and Nf = 2 [877, 878] simulations. Also shown are quenched (Nf = 0) results from
JLQCD [883], RBC [884], and CP-PACS [885]. For comparison, the figure includes the old lattice average
from the Lattice 2005 conference [886] and two recently published averages [887,888], too. Solid errorbars
do not include the error due to quenching, which is added in the dashed errorbars.
† A (conservative) quenching error of 5% or 10% has been assigned to Nf = 2 or quenched results,
respectively, where no estimate for this systematic error has been provided (see Sec. 2.3).

in the KL → π+π−γ channel, and in the angular asymmetry of the KL → e+e−π+π−

decays.
Direct CP violation through ∆S= 1 processes has been measured as a tiny difference

in the ratios of the branching ratios of the KL to the CP-even eigenstates, KL → π+π−

and KL → π0π0, normalized to the KS branching ratio for the same final state (Eq. 329).
Precise measurements in the Kaon sector have been obtained with different techniques
by the present generation of experiments (KTeV, NA48 and KLOE). Results on all of
the major branching ratios, lifetimes and the KL mass are summarized in Sec. 4.4.5,
where analyses of interest for the |Vus| determination are discussed. Several of these new
measurements are not in good agreement with the average of older data. This is the
case of the CP-violating decays, KL → π+π−, KL → π0π0, whose branching ratios as
measured by KTeV [347] in year 2004 are 5% and 8% lower, respectively, than previous
world averages. KLOE and NA48 recently confirmed [351, 352] the KTeV result on the
BR(KL → π+π−).
KTeV has measured the BR(KL → π+π−) and the BR(KL → π0π0) [347] from the

analysis of all of the mainKL decay channels, as described in Sec. 4.4.5. The CP-violating
charged channel was selected among events not satisfying the criteria for semileptonic
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and π+π−π0 decays, by imposing cuts on the mππ invariant mass and on the two-track
transverse momentum-squared. The KL → π0π0 events are identified by the reconstruc-
tion of exactly four clusters in the calorimeter. The photons are paired to have two pions
pointing to a single decay vertex and the pion invariant mass is required to be consis-
tent with the Kaon mass. Major systematic uncertainties come from the precision on the
knowledge of the efficiency reconstruction and to a less extent from radiative corrections
to charged modes, Monte Carlo statistics and background subtraction.
The KLOE measurement [351] has been obtained from the relative ratio of KL →

π+π− and KL → πµν decays, the absolute semileptonic branching ratio BR(KL → πµν)
being previously determined [349] from the measurement of all the major decay modes,
using the tagging technique to obtain the absolute branching fractions and imposing the
constraint on the sum of the branching fractions to solve the dependence on the KL

lifetime. The KL sample at KLOE, operating at the Frascati φ factory, is tagged by
the reconstruction of the KS → π+π− decays, giving a precise determination of the KL

momentum. In order to minimize the difference on trigger efficiency between the two
selected channels, the pions from KS decay are requested to release in the calorimeter
energy enough to trigger the data acquisition system.
The CP-violating channel was selected by a fit with a linear combination of Monte

Carlo shapes for signal and background to the
√
E2
miss + |p2miss| distribution, where

Emiss is the missing energy in the hypothesis of the two charged pion decay. The preci-
sion is dominated by the accuracy on tagging and tracking efficiency, which depend on
corrections applied to the Monte Carlo sample, necessary to resolve small discrepancies
between the Monte Carlo-predicted distributions and those obtained from data control
samples.
NA48 measured the relative decay widths Γ(KL → π+π−)/Γ(KL → πeν) [352] from

a sample of two-track events selected for the analysis, which results in the semileptonic
Ke3 branching ratio normalized to all of the two-track modes [348]. The CP-violating
channel was selected by analysis requirements on the mππ invariant mass, the Kaon
transverse momentum-squared, the ratio of the reconstructed energy and the particle
momentum, E/P ( which is very effective in separating electrons from µ and π ), and
finally using the muon veto system for Kµ3 rejection. Systematic uncertainties are due
to the knowledge of Kaon spectrum, background contamination from Kµ3 decays, and
to a less extent radiative corrections, trigger efficiencies and Monte Carlo statistics. The
obtained branching fractions are summarized in Tab. 53, together with the CP-violation
parameter |η+−|, defined in Eq. 327, and Re(εK).

Table 53
KL → π+π− branching ratios as measured by KTeV [347], KLOE [351] and NA48 [352]. compared with
previous world average [895]. For Re(εK), the average value of φ+− = (43.4 ± 0.7)◦ and Re(ε′K/εK) =
(16.5±2.6)×10−4 have been used.

Source BR(KL → π+π−) |η+−| Re(εK)

PDG 04 (20.90 ± 0.25)10−4 [895] (22.88± 0.14)10−4 (16.6± 0.2)10−4

KTeV 04 (19.75 ± 0.12)10−4 [347] (22.28± 0.10)10−4 (16.1± 0.2)10−4

KLOE 06 (19.63 ± 0.21)10−4 [351] (22.19± 0.13)10−4 (16.1± 0.2)10−4

NA48 07 (19.69 ± 0.19)10−4 [352] (22.23± 0.12)10−4 (16.1± 0.2)10−4
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Direct CP violation has been established by precision measurements from NA48 [896]
and KTeV [187], giving Re(ε′K/εK) = (14.7±2.2)×10−4 and Re(ε′K/εK) = (20.7±2.8)×
10−4, respectively. The measurements hitherto summarized are used in the fit procedure
described in the “CP violation in Klong decays” Review [285], which obtains the value
of

|ǫK | = (2·|η+−|+ |η00|)/3 = (2.229± 0.012)× 10−3 (341)

The KTeV collaboration recently announced the final result on Re(ε′K/εK), obtained
with an improved analysis of the entire data set [897, 898]. The systematic error was
reduced from 2.4 ×10−4 to 1.8 ×10−4 and the statistical uncertainty from 1.5 ×10−4 to
1.1 ×10−4, giving Re(ε′K/εK) = (19.2±1.1stat±1.8syst)× 10−4. The results from the two
experiments are consistent within 1.7 σ. The new average, after scaling uncertainties to
take into account the consistency level of the measurements, and including contributions
from ∆I=3/2 amplitudes [899], not present in Eq.323, is Re(ε′K/εK) = (16.4±1.9)×10−4.
The KTeV experiment also measured the phase of the CP-violating decays. They used

simultaneous measurements of events from two nearly parallel Kaon beams, with one of
the beams passing through a thick regenerator, for precise determination of acceptances
and contamination for both the charged (π+π−) and neutral (π0π0) modes. To reduce sys-
tematic uncertainties, the regenerator positions were alternated between the two beams
once per minute. Re(ε′K/εK) has been obtained by a fit to the vacuum-to-regenerator
ratio for charged and neutral modes, taking into account the KL-KS interference pat-
tern in the regenerator sample [187]. Together with Re(ε′K/εK), the fit provides the best
results on φ00 − φ+− = (0.29± 0.31)◦, ∆MK =MKL

−MKS
= 3.465(7)10−12 MeV and

the KS lifetime, τS = 89.62(5)10−12 s.
The unitarity relation applied to time evolution of the neutral Kaon state leads to the

Bell-Steinberger relation expressing CP and CPT violation parameters in terms of Kaon
decay widths.

[
ΓS + ΓL
ΓS − ΓL

+ i tanφSW

]
×
[

Re(ǫ)

1 + |ǫ|2 − iIm(δ)

]

=
1

ΓS − ΓL

∑

f

AL(f)A∗
S(f), (342)

where

φSW = arctan

(
2∆MK

ΓS − ΓL

)
. (343)

Besides testing CPT symmetry, the unitarity constraint for the neutral Kaon system,
which receives relevant contributions only from few final states, really improves the pre-
cision on the Re(εK) parameter. The measurements of the KL , KS branching fractions
and lifetimes, together with the KLOE upper limits on the KS → π0π0π0 mode [900], on
the time-integrated charge asymmetry of the KS semileptonic decay [353], and the new
result on φ+− announced by KTeV [897,898], have improved the accuracy on both CP-
and CPT-violation parameters, Re(εK) and Im(δ). The results published in Ref. [901]
were mostly based on the KLOE measurements. These have been revised for the “CPT
invariance tests in neutral Kaon decay” Review [285] using the entire set of published
data from KTeV and NA48, and then updated by the FlaviaNet Kaon Working Group to
include the preliminary results on the ηππ phases from the KTeV experiment [897, 898].
The results are summarized in Tab. 54.
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Table 54
CP and CPT violation parameters from the unitarity constraint (Bell-Steinberger relation).

Source Re(εK) Im(δ) Ref.

KLOE 06 (15.96 ± 0.13)10−4 (0.04± 0.21)10−4 [901]

PDG 08 (16.12 ± 0.06)10−4 (−0.06 ± 0.19)10−4 [285]

FlaviaNet 08 (16.12 ± 0.06)10−4 (−0.01 ± 0.14)10−4

Overall, the measurements in the Kaon sector to date constitute a precise data set con-
sistent with CPT symmetry and unitarity. The comparison with CP-violation parameters
in the B sector confirms that the CKM mechanism is the major source of CP-violation in
meson decays. Still, Kaon physics has to meet the challenging experimental program on
CP violation in very rare, and especially KL → πνν, decays which is extremely promising
for constraining the CKM parameters and the physics beyond the SM as discussed in
Sec. 6.6.6.

7.2. The B-meson system

7.2.1. Lifetimes, ∆ΓBq
, AqSL and ∆MBq

Heavy meson mixing plays a particularly important role in placing constraints on NP,
since this loop process can be computed quite reliably using the heavy-quark expansion
(HQE). Similarly, the hierarchy of lifetimes of heavy hadrons can be understood in the
HQE, which makes use of the disparity of scales present in the decays of hadrons con-
taining b-quarks. HQE predicts the ratios of lifetimes of beauty mesons [902–905], which
now agree with the experimental observations within experimental and theoretical uncer-
tainties. The most recent theoretical predictions show evidence of excellent agreement of
theoretical and experimental results [906–911]. This agreement also provides us with some
confidence that quark-hadron duality, which states that smeared partonic amplitudes can
be replaced by the hadronic ones, is expected to hold in inclusive decays of heavy flavors.
It should be pointed out that the low experimental value of the ratio τ(Λb)/τ(Bd) has
long been a puzzle for the theory. Only recent next-to-leading order (NLO) calculations
of perturbative QCD [906–908] and 1/mb corrections [909–911] to spectator effects as
well as recent Tevatron measurements practically eliminated this discrepancy.
The inclusive decay rate of a heavy hadron Hb and B-meson mixing parameters can

be most conveniently computed by employing the optical theorem to relate the decay
width to the imaginary part of the forward matrix element of the transition operator:

Γ(Hb) =
1

2MHb

Disc〈Hb|i
∫
d4xT (H∆B=1

eff (x)H∆B=1
eff (0))|Hb〉 , (344)

where H∆B=1
eff represents the effective ∆B = 1 Hamiltonian, given in Sec. 2.1.

In the heavy-quark limit, the energy release is large, so that the correlator in Eq. (344)
is dominated by short-distance physics. The OPE can be applied as explained in Sec. 2.1,
leading to a prediction for the decay widths of Eq. (344) as a series of local operators of
increasing dimension suppressed by powers of 1/mb:

Γ(Hb) =
1

2MHb

∑

k

〈Hb|Tk|Hb〉 =
∑

k

Ck(µ)

mk
b

〈Hb|O∆B=0
k (µ)|Hb〉, (345)
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with the scale dependence of the Wilson coefficients compensated by the scale dependence
of the matrix elements.
It is customary to make predictions for the ratios of lifetimes (widths), as many theo-

retical uncertainties cancel out in the ratio. Since the differences of lifetimes should come
from the differences in the light sectors of heavy hadrons, at the leading order in HQE all
beauty hadrons with light spectators have the same lifetime. The difference between me-
son and baryon lifetimes first occurs at order 1/m2

b and is essentially due to the different
structure of mesons and baryons, amounting to at most 1− 2% [904].
The main effect appears at the 1/m3

b level and comes from dimension-six four-quark
operators, whose contribution is enhanced due to the phase-space factor 16π2. They are
thus capable of inducing corrections of order 16π2(ΛQCD/mb)

3 = O(5 − 10%). These
operators introduce through the so-called Weak Annihilation (WA) and Pauli Interfer-
ence (PI) diagrams, a difference in lifetimes for both heavy mesons and baryons. Their
effects have been computed [502, 904, 912–916] including NLO perturbative QCD cor-
rections [906–908] and 1/mb corrections [909–911]. The non-perturbative contribution is
enclosed in the matrix elements of the mentioned operators, which are the following four

Oq1 = b̄iγ
µ(1 − γ5)biq̄jγµ(1− γ5)qj , O

q
2 = b̄iγ

µγ5biq̄jγµ(1− γ5)qj ,

Õq1 = b̄iγ
µ(1 − γ5)bj q̄iγµ(1− γ5)qj , Õ

q
2 = b̄iγ

µγ5bj q̄iγµ(1− γ5)qj . (346)

The matrix elements of these operators are parameterized in a different way depending on
whether or not the light quark q of the operator enters as a valence quark in the external
hadronic state [906]. In this way one can distinguish the contribution of the contraction of
the light quark in the operator with the light quark in the hadron, which is the only one
calculated in lattice QCD [917–920]. Computing the contribution of the contraction of
two light quarks in the operator, which vanishes in the vacuum saturation approximation,
has been so far prevented by the difficult problem of subtracting power divergences. By
combining the results for the perturbative and non-perturbative contributions discussed
above, the theoretical predictions for the lifetime ratios read

τ(B+)/τ(B0) = 1.06± 0.02 , τ(Bs)/τ(B
0) = 1.00± 0.01 , τ(Λb)/τ(B

0) = 0.91± 0.04 .

(347)

Similar calculations yield B-mixing parameters presented in the form of expansion in
1/mn

b . The width difference is related the matrix elements M q
12 and Γq12 as in Eq. (333)

and by using the HQE it can be written as

∆ΓBq
=

G2
Fm

2
b

6π(2MBq
)
(V ∗
cbVcq)

2 · (348)

{
[F (z) + P (z)] 〈Q〉+ [FS(z) + PS(z)] 〈QS〉+ δ1/m + δ1/m2

}
,

where z = m2
c/m

2
b and the two ∆B = 2 operators are defined as

Q = (b̄iqi)V−A(b̄jqj)V−A, QS = (b̄iqi)S−P (b̄jqj)S−P . (349)

The matrix elements for Q and QS are known to be
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〈Q〉 ≡ 〈Bq|Q|Bq〉 = f2
Bq
M2
Bq

2

(
1 +

1

Nc

)
BBq

,

〈QS〉 ≡ 〈Bq|QS |Bq〉 = −f2
Bq
M2
Bq

M2
Bq

(mb +ms)2

(
2− 1

Nc

)
BSBq

,

A theoretical prediction for the Bd,s width differences then requires to calculate non-
perturbatively the decay constants fBd,s

and the bag parametersBBd,s
and BSBd,s

. Several
unquenched lattice calculations of the decay constants have been performed with Nf = 2
or Nf = 2+ 1 dynamical fermions [921–928]. They have been obtained by treating the b
quark on the lattice with two different approaches, either FNAL [485] or non-relativistic
QCD. A collection of these results is provided in Ref. [887], where the following averages
are estimated

fBd
= (200± 20)MeV , fBs

= (245± 25)MeV . (350)

The average for fBs
takes into account all the existing Nf = 2 and Nf = 2 + 1 results.

For fBd
the lattice determination is more delicate, because its value is enhanced by chiral

logs effects relevant at low quark masses. In order to properly account for these effects,
simulations at light values of the quark mass (typically mud < ms/2) are required. For
this reason, the fBd

average provided in Ref. [887] and given in Eq. (350) is derived by
taking into account only the results obtained by the HPQCD [926] and FNAL/MILC [928]
collaborations, by using the MILC gauge field configurations generated at light quark
masses as low as ms/8. A more recent HPQCD calculation [927] of fBd

and fBs
, as well

as of the bag parameters BBd
and BBs

, came out after the averages in Ref. [887] were
performed. Since the new results are consistent with the old ones, the averages [887] can
be considered up to date.
Also for the bag parameters, a collection of quenched [929–931] and unquenched (Nf =

2 and Nf = 2+1) [924,927,932,933] results can be found in Ref. [887]. A first observation
is that the dependence on the light quark mass, that should allow to distinguish between
Bd and Bs mesons, is practically invisible. For the BBd,s

bag parameters, the unquenched
results tend to be slightly lower than the quenched determinations, though still well
compatible within the errors, and lead to the averages [887]

BMS
Bd

(mb) = BMS
Bs

(mb) = 0.80± 0.08 , (351)

in the MS scheme at the renormalization scale µ = mb, which correspond to the renor-
malization group invariant parameters

B̂Bd
= B̂Bs

= 1.22± 0.12 . (352)

The bag parameters BSBd,s
have been recently calculated without the unquenched approx-

imation only by one lattice collaboration [932], finding no evidence of quenching effects.
The averages given in Ref. [887], include also previous quenched lattice results, and in
the MS scheme at the renormalization scale µ = mb they read

BSBd
= BSBs

= 0.85± 0.10 . (353)

The Wilson coefficients of these operators have been computed at NLO in QCD [934–
936] and, together with 1/mb-suppressed effects [937], lead to the theoretical predic-
tions [938]

∆ΓBd

ΓBd

= (4.1± 0.9± 1.2) · 10−3 ,
∆ΓBs

ΓBs

= (13± 2± 4) · 10−2 . (354)

211



We observe that the theoretical predictions above are obtained by expressing the ratio
∆Γ/Γ as (∆Γ/∆M)th./(∆M/Γ)exp., i.e. by using the available accurate experimental
measurements for the lifetimes and the mass differences. Moreover, they are obtained
in a different operator basis {Q, Q̃s}, with Q̃S = (b̄iqj)S−P (b̄jqi)S−P , where there do
not appear strong cancelations due to NLO and 1/mb-suppressed contributions [938].
The differences between the central values of ∆ΓBq

/ΓBq
computed in the “old” and

“new” bases, which come from uncalculated αs/mb and α2
s corrections, turn out to be

quite large. A conservative 30% uncertainty is taken into account by the second errors
in Eq. (354).
The experimental observable |(q/p)q|, whose deviation from unity describes CP vi-

olation due to mixing, is related to M q
12 and Γq12, through Eq. (333). The theoretical

prediction of |(q/p)q| is therefore based on the same perturbative and non-perturbative
calculation discussed for the width differences, while the CKM contribution to |(q/p)q|
is different from that in ∆ΓBq

/ΓBq
. The updated theoretical predictions are [934–936]

|(q/p)d| − 1 = (2.96± 0.67) · 10−4 , |(q/p)s| − 1 = (1.28± 0.28) · 10−5 . (355)

Experimentally, information on the CP violation parameter |(q/p)q| is provided by the
measurement of the semileptonic CP asymmetry, defined as

AqSL =
Γ(B0(t) → l−ν̄X)− Γ(B̄0(t) → l+νX)

Γ(B0(t) → l−ν̄X)− Γ(B̄0(t) → l+νX)
(356)

which is related to |(q/p)q| through
AqSL = 2(1− |(q/p)q|) . (357)

We conclude this section on B mesons by discussing the mass difference. In contrast
to ∆MK , in this case the long-distance contributions are estimated to be very small and
∆MBd,s

is very well approximated by the relevant box diagrams, which are analogous to
those shown in Fig. 55 for Kaons. Moreover, due to mu,c ≪ mt, only the top sector can
contribute significantly, whereas the charm sector and the mixed top-charm contribu-
tions are entirely negligible. Thus, the theoretical expression for M q

12, to which the mass
difference is related through Eq. (333), can be written as

M q
12 =

G2
FMBq

M2
W

12π2

(
VtbV

∗
tq

)2
ηBS0(xt)f

2
Bq
B̂Bq

, (q = d, s) , (358)

where S0(xt) is the Inami-Lim function and η̂B ≈ 0.551 represents the NLO QCD cor-
rection [33].
The mass differences in the Bd and Bs systems are proportional to |Vtd|2 and |Vts|2,

respectively, thus representing important constraints on the UT, provided that the mul-
tiplied hadronic matrix elements are calculated. In order to involve reduced hadronic
uncertainties, it is convenient to use as experimental constraints the ratio ∆MBs

/∆MBd

and ∆MBs
, since the strange-bottom sector is not affected by the uncertainty due to

the chiral extrapolation. On the other hand the UT analysis, being overconstrained, can
be performed without using some inputs. In this way, the mass difference ∆MBs

can be
predicted with an accuracy of approximately 10%, as shown in Sec. 10 where the whole
UT analysis is discussed.
Experiments have published measurements of all flavors of B hadrons. The B factories

have produced precision measurements of the B+ and B0 lifetimes. In addition to the light
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mesons, the Tevatron experiments have also measured B0
s , Λb and Bc lifetimes. Selected

measurements and the agreement of the world average fit with theoretical prediction are
listed in Table 55.
A typical lifetime measurement consists of two steps: signal isolation and lifetime

fitting. In the signal isolation step one tries to obtain the cleanest signal without cutting
on lifetime-related variables (impact parameter, vertex displacement etc). Fitting the
lifetime distribution is usually done with a log likelihood fit (binned or unbinned) in
which the signal lifetime distribution is a convolution of an exponential and the detector
lifetime resolution function, while the background lifetime distribution is typically an
ad-hoc parametrization based on a sample in which the signal was anti-selected (e.g.
mass sidebands).
The B factory experiments have measured B+ and B0 lifetimes in fully reconstructed

hadronic decays as well as semileptonic B0 → lD∗ν and partially reconstructed hadronic
B0 → D∗−π+ and B0 → D∗−ρ+ decays. The common element of all B factory mea-
surements is the reconstruction of the lifetime exploiting the boost in the z direction
from asymmetric colliding beams. As discussed in Section 3.2.3, the time measurement
comes from correcting the displacement, L by the boost factor: ∆t = L/cβγ. The decay
time ∆t is the decay time between two vertices in the z direction. The B mesons are
always pair produced in the B factory environment, and the decays of each of the B
mesons is a completely independent event from the other. Therefore, one can measure
the lifetime of a B meson by starting the time interval ∆t with the decay time of one
of the B mesons and ending it with the decay of the other B meson. For measurements
utilizing partially reconstructed (e.g. D∗+) decays, many handles specific to the B fac-
tory environment are used. In the particular example of semileptonic decays involving
the, D∗+, the D∗+ → π+D0 the D0 decay is not explicitely reconstructed. Instead, the
small phase space for the D∗ decay is exploited to infer the direction and energy of the
D∗ from that of the soft pion. The momenta of the D+, the lepton, and the center of
mass energy are used to infer the momentum of the neutrino. The invariant mass of the
neutrino computed from the same variables provides a powerful variable which eliminates
a large fraction of the BB combinatorial background.
Tevatron experiments have access to B0, B+ as well as B0

s , Λb and Bc decays and
have reported lifetime measurements for all of them. The B0 and B+ lifetimes are mea-
sured both in semileptonic and fully reconstructed hadronic decays. The corrections for
semileptonic decays are different than in B factory experiments. Samples are gathered
by triggering on a lepton; CDF also requires a displaced track to further increase the B
fraction of the sample. Lacking the initial energy of the B meson, inclusive reconstruc-
tion is not possible. The D/D∗ meson has to be reconstructed explicitely, incurring a
large branching ratio penalty. As discussed in more detail in Section 3.2.3, the energy
of the neutrino is also unknown, so the computation of the decay proper time incurres
a K-factor correction which has to be derived from Monte Carlo simulation of B meson
decays. The D0 experiment directly measures the ratio of B+ and B0 lifetimes by fitting
the ratio of observed B+ and B0 decay times (no K factor correction is applied) to a
predicted distribution which depends on the lifetime ratio. B0, B+, B0

s , and Λb lifetimes
are also measured with fully reconstructed hadronic final states. For the B0, B+ and B0

s

mesons the most common final state is B → Dπ. Data samples for these analyses are
gathered by triggering on displaced vertices, as described in Section 3.2.3. This trigger
sculpts the lifetime distribution. This effect and the correction techniques used in the
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analyses are discussed in detail in Section 3.2.3. The lifetime ratio of τ(Λb)/τ(B
0) has

been of considerable interest. There has been a long standing disagreement between the-
oretical predictions and experimental results. The Λb lifetime has been measured both
in the Λb → J/ψΛ and Λb → Λcπ decays. Data for the first decay channel is gathered
with dimuon triggers which are not lifetime biased. Data for the second channel is gath-
ered through the displaced track trigger and requires similar corrections to those applied
to fully hadronic B meson decays. The Bc meson occupies a special place amongst the
B-hadrons as it can decay weakly via the b or c quark, making its lifetime considerably
shorter than those of light B mesons. Due to its relatively large branching fraction, Teva-
tron experiments measure the Bc lifetime in semileptonic decays (Bc → J/Ψlν). The Bc
mass is measured in hadronic decays, where lifetime cuts are used to reject background.
Similar to semileptonic light B decays, the Bc momentum cannot be fully reconstructed;
K-factor corrections based on Monte Carlo simulation are necessary.
Table 55 lists representative measurements from the different experiments and cur-

rent world average results. Most of the B hadron lifetimes are now in good agreement
with theoretical predictions [939] [940], except for the B0

s lifetime which is currently
significantly lower than the predicted value.
As discussed in Section 7.2.1, additional information can be extracted from the mea-

surement of lifetime differences between the heavy and light eigenstates. At the Tevatron
the lifetime difference in the Bs system is accessible in the decay Bs → J/ψφ which
gives rise to both CP-even and CP-odd final states. It is possible to separate the two CP
components of the decay and measure the lifetime difference through a simultaneous fit
to the time evolution and angular distributions of the decay products of the J/ψ and
φ mesons. Fig. 57 shows the lifetime projections for the ∆Γ measurements at CDF and
D0 with the CP even and CP odd components fitted separatly. Both experiments have
so far analysed 2.8 fb−1 of data. The results [232, 941] are still compatible with a ∆Γ of
zero. It should be noted that if ∆Γ is not zero, the flavor specific (equal mix of BHs and
BLs at t=0) and CP specific Bs lifetimes will be distinct.
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Fig. 57. Lifetime projection for B0
s → J/ψφ decay candiates in the signal region. In the left panel, the

projection of the D0 fit. In the right panel, the corresponding projection by the CDF collaboration.

7.2.2. B meson mixing
Mixing measurements utilize lifetime and flavor tagging information, as described in

Section 3.2.2. As discussed in Section 3.2.1, the time evolution of the probability density
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Table 55
Representative measurements from different experiments and world average lifetimes. The ratios of world

average hadron lifetimes to the B0 lifetime are compared to theoretical predictions.

Hadron Source Result [ps] Ratio τ(Bx)/τ(B0) Theory Pred. Ratio

B0

BABAR 1.504 ± 0.013+0.018
−0.013

Belle 1.534 ± 0.008± 0.010

CDF 1.524 ± 0.030± 0.016

D0 1.414 ± 0.018± 0.034

PDG 1.525± 0.009

B+ 1.04− 1.08

Belle 1.635 ± 0.011± 0.011

BABAR 1.673 ± 0.032± 0.023

CDF 1.630 ± 0.016± 0.011

D0 −−− 1.080 +−0.016 +−0.014

PDG 1.638± 0.011 1.07± 0.01

B0
s 0.99− 1.01

CDF 1.36± 0.09+0.06
−0.05

D0 1.3980.044+0.028
−0.025

PDG 1.425± 0.041 0.934± 0.027

Λb 0.87− 0.95

D0 1.218+0.130
−0.115 ± 0.0427

CDF 1.593+0.083
−0.078 ± 0.0337

PDG 1.383+0.049
−0.048 0.91± 0.03

B+
c 0.31− 0.36

CDF 0.475+0.053
−0.049 ± 0.018

D0 0.448+0.038
−0.036 ± 0.032

PDG 0.453± 0.041 0.29± 0.03

function for a B meson tagged with flavor η to decay with flavor f is given by Equation
98. The relevant experimental parameters that come into play are the effective tagging
power (ǫD2), proper time resolution and signal. These differ significantly between the B
factory experiments and hadron colliders. Opposite side flavor tagger properties for the
different experiments are compared in Table 7. The main difficulty with flavor tagging
in hadron colliders is that the opposite side B meson is not in the detector acceptance
most of the time. This is not the case with B factories due to the coherent production
and controlled boost of the BB meson pair.
Mixing in the Bd meson sector was established 25 years ago by the Argus Collab-

oration [942] and precision measurements where available since the beginning of the
asymmetric B-Factory program, since they can exploit both the large luminosity and the
boost of the center-of-mass frame. A compilation of measurements from all contributing
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experiments is shown in Figure Fig. 58. The most accurate measurements come from
Belle and BABAR, where one of the two B mesons is fully via in their semileptonic decay
and the other B tagged as B0 or B̄0.
The most significant contribution of the Tevatron experiments to B mixing is the obser-

vation of B0
s oscillations. The analysis layout is very similar to that for B0 mixing. Clean

signal reconstruction, proper time resolution and flavor tagger dilution are essential. The
probability density function for tagged decays also follows the formalism of Equation
98. The significant difference with respect to B0 mixing is the high expected oscillation
frequency (∼ 18 ps−1). The high frequency makes excellent proper time reconstruction
essential; in order to resolve the oscillation frequency, the detector resolution has to be
better than one oscillation period. The now-standard way of interpreting and combining
results was first proposed by Moser and Roussarie [943] and is called an amplitude scan.
Mathematically very similar to a Fourier transformation of the tagged lifetime distri-
bution, this method involves re-fitting the data with different probe frequencies, while
floating the oscillation amplitude. The amplitudes are then reported as a function of
probe frequency. An amplitude significantly different from zero indicates the presence of
an oscillation signal. Figure 59 shows the most recent results from CDF and D0. The
CDF result [220] is consistent with oscillations at ∆MBs

= 17.77 ± 0.10 (stat) ± 0.07
(syst) ps−1. The signal significance is found to be 5.4σ. The D0 result [944] shows con-
sistency with an oscillation signal at ∆MBs

= 18.53 ± 0.93 (stat) ± 0.30 (sys) ps−1.
The significance of the signal corresponds to 2.9σ and supersedes the original two-sided
bound 17 < ∆MBs

< 21ps−1 at 90% CL [945].

7.2.3. Measurements of the angle β in tree dominated processes
The Standard Model (SM) of electroweak interactions describes charge conjugation-

parity (CP ) violation as a consequence of an irreducible complex phase in the three-
generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1,2]. In this frame-
work, neutral B decays to CP eigenstates containing a charmonium and K0 meson pro-
vide a direct measurement of sin2β [946, 947]. The unitarity triangle angle β (or Φ1) is
arg [−VcdV ∗

cb/VtdV
∗
tb ] where the Vij are CKM matrix elements.

B0 → J/ψπ0 proceeds instead via a Cabibbo-suppressed b → cc̄d transition: the tree
amplitude has the same weak phase as the b → ccs transition, therefore we expect
the corresponding values of S and C to be − sin2β and 0 respectively, unless penguin
amplitudes or other contributions are significant.
The current status of measurements of sin2β from charmonium decays are presented in

what follows and cover b→ ccs and b→ cc̄d transitions. Additional results on determining
the sign of β are also mentioned using the measurement of cos2β in b→ ccsdecays.
Most of the measurements presented here are based on data collected by the BABAR

and the Belle experiments. The difference between the proper decay times of the signal
B meson (Brec) and of the other B meson (Btag) is used to measure the time-dependent
CP -asymmmetries, ACP . The initial flavor of Brec is identified by using information from
Btag. ACP is defined as

ACP (t) ≡
N(B0(t) → f)−N(B0(t) → f)

N(B0(t) → f) +N(B0(t) → f)
= S sin(∆mdt)− C cos(∆mdt), (359)

where N(B0(t) → f) is the number of B0 that decay into the CP-eigenstate f after a
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0.35 0.4 0.45 0.5 0.55 0.6 0.65

∆md (ps-1)

World average
for PDG 2009

0.507 ±0.005 ps-1

CLEO+ARGUS
(χd measurements)

0.496 ±0.032 ps-1

Average of 28 above 0.508 ±0.005 ps-1

BABAR D*lν/l,K,NN
(23M BB

−
)

0.492 ±0.018 ±0.013 ps-1

BABAR D*lν(part)/l
(88M BB

−
)

0.511 ±0.007 ±0.007 ps-1

BELLE B0
d(full)+D*lν/comb

(152M BB
−

)
0.511 ±0.005 ±0.006 ps-1

BELLE l/l
(32M BB

−
)

0.503 ±0.008 ±0.010 ps-1

BELLE D*π(part)/l
(31M BB

−
)

0.509 ±0.017 ±0.020 ps-1

BABAR l/l
(23M BB

−
)

0.493 ±0.012 ±0.009 ps-1

BABAR B0
d(full)/l,K,NN

(32M BB
−

)
0.516 ±0.016 ±0.010 ps-1

D0 D(*)µ/OST
(02-05)

0.506 ±0.020 ±0.016 ps-1

CDF1 D*l/l
(92-95)

0.516 ±0.099 +0.029 ps-10.516 ±0.099  -0.035

CDF1 l/l,Qjet
(94-95)

0.500 ±0.052 ±0.043 ps-1

CDF1 µ/µ
(92-95)

0.503 ±0.064 ±0.071 ps-1

CDF1 Dl/SST
(92-95)

0.471 +0.078  ±0.034 ps-10.471  -0.068

OPAL π*l/Qjet
(91-00)

0.497 ±0.024 ±0.025 ps-1

OPAL D*/l
(90-94)

0.567 ±0.089 +0.029 ps-10.567 ±0.089  -0.023

OPAL D*l/Qjet
(90-94)

0.539 ±0.060 ±0.024 ps-1

OPAL l/Qjet
(91-94)

0.444 ±0.029 +0.020 ps-10.444 ±0.029  -0.017

OPAL l/l
(91-94)

0.430 ±0.043 +0.028 ps-10.430 ±0.043  -0.030

L3 l/l(IP)
(94-95)

0.472 ±0.049 ±0.053 ps-1

L3 l/Qjet
(94-95)

0.437 ±0.043 ±0.044 ps-1

L3 l/l
(94-95)

0.458 ±0.046 ±0.032 ps-1

DELPHI vtx
(94-00)

0.531 ±0.025 ±0.007 ps-1

DELPHI D*/Qjet
(91-94)

0.523 ±0.072 ±0.043 ps-1

DELPHI l/l
(91-94)

0.480 ±0.040 ±0.051 ps-1

DELPHI π*l/Qjet
(91-94)

0.499 ±0.053 ±0.015 ps-1

DELPHI l/Qjet
(91-94)

0.493 ±0.042 ±0.027 ps-1

ALEPH l/l
(91-94)

0.452 ±0.039 ±0.044 ps-1

ALEPH l/Qjet
(91-94)

0.404 ±0.045 ±0.027 ps-1

ALEPH D*/l,Qjet
(91-94)

0.482 ±0.044 ±0.024 ps-1

Heavy Flavour
Averaging Group

Fig. 58. Summary and average of ∆MBd
measurements. See [560] for the full list of references.

time t and ∆md is the difference between the B mass eigenstates. Belle reports results
using the variable A ≡ −C.
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Fig. 59. Amplitude scans for the Bs oscillation fits. CDF and D0 results are shown in the left and right
panel, respectively.

In the SM, direct CP violation in b→ ccs decays is negligible. Under this assumption,
the CP violation parameters S and C are given by Sb→ccs = −ηf sin2β and Cb→ccs = 0,
where ηf is −1 for (cc)K0

S
decays (e.g. J/ψK0

S
, ψ(2S)K0

S
, χc1K

0
S
, ηcK

0
S

22 ) and ηf is +1
for the (cc)K0

L
(e.g. J/ψK0

L
) state. The J/ψK∗0(K∗0 → K0

S
π0) final state is an admixture

of CP even and CP odd amplitudes for which we use ηf = 0.504±0.033. To be consistent
with other time-dependent CP measurements, we show the results in terms of Cf = ηfC
and Sf = ηfS. Using 425.7fb−1 of integrated luminosity, the BABAR experiment measured
the time-dependent CP asymmetry parameters for the J/ψK0

S
, ψ(2S)K0

S
, χc1K

0
S
, ηcK

0
S

and J/ψK0
L
modes combined [948] 23 :

Cf = 0.026± 0.020(stat)± 0.016(syst), Sf = 0.691± 0.029(stat)± 0.014(syst).

Cf and Sf for each of the decay modes within the CP sample and of the J/ψK0(K0
S
+K0

L
)

sample were also measured [948]. These results are preliminary. The Belle experiment
measured these parameters from J/ψK0

S
and J/ψK0

L
decays using a data sample of

492fb−1 and found [949]:

Cf = −0.018± 0.021(stat)± 0.014(syst), Sf = 0.642± 0.031(stat)± 0.017(syst).

Belle also reported results from the ψ(2S)K0
S
decay using 605fb−1 [950]:

Cf = −0.039± 0.069(stat)± 0.049(syst), Sf = 0.718± 0.090(stat)± 0.033(syst).

The analysis of b → ccs decay modes imposes a constraint on sin2β only, but a four-
fold ambiguity in the determination of the angle β remains. It is possible to reduce
this ambiguity by measuring cos2β using the angular and time-dependent asymmetry in
B0 → J/ψK∗0(K∗0 → K0

S
π0) decays. The results of the fit treating sin2β and cos2β as

independent variables give cos2β = +3.32+0.76
−0.96±0.27 [951] for BABAR. Using the outcome

of fits to simulated samples, the sign of cos 2β is determined to be positive at the 86%
confidence level. Belle reported cos2β = +0.56 ± 0.11 ± 0.27 [952]. These results are

22Charge-conjugate reactions are included implicitly unless otherwise specified.
23Unless otherwise stated, all results are quoted with the first error being statistical and the second
systematic.
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compatible with the Standard Model expectations. Other measurements also contribute
to reduce the ambiguity.
The time-dependent CP asymmetry parameters were measured in the B0 → J/ψπ0

decay and are also consistent with the SM. Using a dataset of 425fb−1, the BABAR ex-
periment measured [953]:

Cf = −0.20± 0.19(stat)± 0.03(syst), Sf = −1.23± 0.21(stat)± 0.04(syst).

This is evidence for CP violation as S and C are measured to have non-zero values at a
4σ confidence level. The results reported by the Belle experiment using 492fb−1 are [954]:

Cf = −0.08± 0.16(stat)± 0.05(syst), Sf = −0.65± 0.21(stat)± 0.05(syst).

The measurements of sin2β in charmonium decays are in excellent agreement with the
SM expectations [955]. The results presented above are summarized in Fig. 60. High
precision measurements using larger datasets are anticipated in the next few years.

sin(2β) ≡ sin(2φ1)
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Fig. 60. HFAG averages. In the left panel, the average of sin2β from all experiments. In the right panel,
the summary plot of S versus C for B0 → J/ψπ0.

7.2.4. Measurement of the Bs meson mixing phase
The Bs mixing phase is accessible through the time-evolution of Bs → J/ψφ decays,

which is sensitive to the relative phase between the mixing and the b̄ → c̄cs̄ quark-

level transition, β
J/ψφ
s = βSM

s + βNP
s . This phase is responsible for CP -violation. In the

Standard Model it equals to βSM
s = arg(−VtsV ∗

tb/VcsV
∗
cb) ≈ 0.02 [637, 956]. Any sizeable

deviation from this value would be unambiguous evidence of new physics [957]. If new

physics contributes a phase (βNP
s ), this would also enter φ

J/ψφ
s = φSMs −2βNP

s , which is the
phase difference between mixing and decay into final states common to Bs and Bs, and is

tiny in the SM: φSMs = arg(−M12/Γ12) ≈ 0.004 [938]. The phase φ
J/ψφ
s enters the decay-

width difference between light and heavy states, ∆Γ = ΓL − ΓH = 2|Γ12| cos(φJ/ψφs )
and equals ∆ΓSM ≈ 2|Γ12| = 0.096 ± 0.036 ps−1 in the Standard Model [938], thus

playing a rôle in Bs → J/ψφ decays. Since the SM values for β
J/ψφ
s and φ

J/ψφ
s cannot be
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resolved with the resolution of current experiments, the following approximation is used:

φ
J/ψφ
s ≈ −2βNP

s ≈ −2β
J/ψφ
s , which holds in case of sizable NP contributions.

The measurement of β
J/ψφ
s is analogous to the determination of the phase β =

arg(−VcdV ∗
cb/VtdV

∗
tb) in B

0 → J/ψK0
S
decays, except for a few additional complications.

The oscillation frequency in the Bs system is about 35 times higher than in B0 mesons,
requiring excellent decay-time resolution. The decay of a pseudoscalar meson (Bs) into
two vector mesons (J/ψ and φ) produces two CP -even states (orbital angular momen-
tum L = 0, 2), and one CP -odd state (L = 1), which need to be separated for maximum

sensitivity. Finally, the value of the SM expectation for β
J/ψφ
s is approximately 30 times

smaller [946] than β.
Both Tevatron experiments have performed measurements of the time-evolution of

flavor-tagged Bs → J/ψ (→ µ+µ−)φ(→ K+K−) decays [958]. The CDF analysis is
described in the following, a similar analysis is performed by D0. Events enriched in
J/ψ decays are selected by a trigger that requires the spatial matching between a pair
of two-dimensional, oppositely-curved, tracks in the multi-wire drift chamber (coverage
|η| < 1) and their extrapolation outward to track-segments reconstructed in the muon
detectors (drift chambers and scintillating fibers). In the offline analysis, a kinematic
fit to a common space-point is applied between the candidate J/ψ and another pair of
tracks consistent with being Kaons originated from a φ meson decay. An artificial neu-
ral network trained on simulated events (to identify signal, S) and Bs mass sidebands
(for background, B) is used for an unbiased optimization of the selection. The quantity
S/

√
S +B is maximized using kinematic and particle identification (PID) information.

Discriminating observables include Kaon-likelihood from the combination of dE/dx and
TOF information, transverse momenta of the Bs and φ mesons, the K+K− mass, and
the quality of the vertex fit.
The sensitivity to the mixing phase is enhanced if the evolution of CP -even eigenstates,

CP -odd eigenstates, and their interference is separated. This is done by using the angular
distributions of final state particles to statistically determine the CP -composition of the
signal. The angular distributions are studied in the transversity basis, which allows a
convenient separation between CP -odd and CP -even terms in the equations of the time-
evolution.Sensitivity to the phase increases if the evolution of bottom-strange mesons
produced as Bs or Bs are studied independently. The time development of flavor-tagged

decays contains terms proportional to sin(2β
J/ψφ
s ), reducing the ambiguity with respect

to the untagged case (∝ | sin(2βJ/ψφs )|). Building on techniques used in the Bs mix-
ing frequency measurement [220], the production flavor is inferred using flavor tagging
techniques discussed in Sec. 3.2.2
The tagging power, ǫD2 ≈ 4.5%, is the product of an efficiency ǫ, the fraction of

candidates with a flavor tag, and the square of the dilution D = 1 − 2w, where w is
the mistag probability. The proper time of the decay and its resolution are known on a
per-candidate basis from the position of the decay vertex, which is determined with an
average resolution of approximately 27 µm (90 fs−1) in Bs → J/ψφ decays. Information
on Bs candidate mass and its uncertainty, angles between final state particles’ trajectories
(to extract the CP -composition), production flavor, and decay length and its resolution
are used as observables in a multivariate unbinned maximum likelihood fit of the time
evolution. The fit accounts for direct decay amplitude, mixing followed by the decay,
and their interference. Direct CP -violation is expected to be small and is not considered.
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The outputs of the fit are the phase β
J/ψφ
s , the decay-width difference ∆Γ, and 25 other

“nuisance” parameters (ν). These include the mean Bs decay-width (Γ = (ΓL +ΓH)/2),
the squared magnitudes of linear polarization amplitudes (|A0|2, |A‖|2, |A2

⊥|), the CP -
conserving (“strong”) phases (δ‖ = arg(A‖A

∗
0), δ⊥ = arg(A⊥A∗

0)), and others.
The acceptance of the detector is calculated from a Monte Carlo simulation and found

to be consistent with observed angular distributions of random combinations of four
tracks in data. CDF also validated the angular-mass-lifetime model by measuring life-
time and polarization amplitudes in 7800 B0 → J/ψ K∗ decays, which show angu-
lar features similar to the Bs sample: cτ(B0) = 456 ± 6(stat) ± 6(syst)µm, |A0|2 =
0.569±0.009(stat)±0.009(syst), |A‖|2 = 0.211±0.012(stat)±0.006(syst), δ‖ = −2.96±
0.08(stat)± 0.03(syst), and δ⊥ = 2.97± 0.06(stat)± 0.01(syst). The results, consistent
and competitive with most recent B–factories’ results [959], support the reliability of
the model. Additional confidence is provided by the precise measurement of lifetime and
width-difference in untagged Bs → J/ψφ decays [960].
Tests of the fit on simulated samples show biased, non-Gaussian distributions of esti-

mates and multiple maxima, because the likelihood is invariant under the transformation

T = (2β
J/ψφ
s → π − 2β

J/ψφ
s ,∆Γ → −∆Γ, δ‖ → 2π − δ‖, δ⊥ → π − δ⊥), and the resolu-

tion on β
J/ψφ
s was found to depend crucially on the true values of β

J/ψφ
s and ∆Γ. CDF

quotes therefore a frequentist confidence region in the (β
J/ψφ
s ,∆Γ) plane rather than

point-estimates for these parameters. Obtaining a correct and meaningful region requires

projecting the full 27-dimensional region into the (β
J/ψφ
s ,∆Γ) plane. A common approxi-

mate method is the profile likelihood approach. For every point in the (β
J/ψφ
s ,∆Γ) plane,

ν̂ are the values of nuisance parameters that maximize the likelihood. Then −2∆ ln(Lp)
is typically used as a χ2 variable to derive confidence regions in the two-dimensional

space (β
J/ψφ
s ,∆Γ). Simulations show that in the present case the approximation fails.

The resulting regions contain the true values with lower probability than the nominal
confidence level (C.L.) because the −2∆ ln(Lp) distribution has longer tails than a χ2. A
full confidence region construction is therefore needed, using simulation of a large number
of pseudo-experiments to derive the actual distribution of −2∆ ln(Lp), with a potential
for an excessive weakening of the results from systematic uncertainties. However, in a
full confidence limit construction, the use of −2∆ ln(Lp) as ordering function is close to
optimal for limiting the impact of systematic uncertainties [961,962]. With this method,
it is possible to account for the effect of systematic uncertainties just by randomly sam-
pling a limited number of points in the space of all nuisance parameters: a specific value

(β
J/ψφ
s ,∆Γ) is excluded only if it can be excluded for any assumed value of the nuisance

parameters within 5σ of their estimate on data. Fig. 61 shows the confidence regions
obtained by the two experiments with 2.8 fb−1 of Tevatron data.
A separate handle on CP violation is available through semileptonic Bs decays and has

been performed by the D0 collaboration on 2.8 fb−1 of Tevatron data. The flavor of the Bs
meson in the final state is determined by the muon charge in the decay Bs → D−

s µ
+νX

with D−
s → φπ− and φ→ K+K−. A combined tagging method is then used to determine

the initial state flavor. A time-dependent fit to Bs candidate distributions yields the CP
violation parameter

Assl = −0.0024± 0.0117 (stat)+0.0015
−0.0024 (syst). (360)

This is the first direct measurement [953] of the time integrated flavor untagged charge
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and assuming 2|Γ12| = 0.096 ± 0.036 ps−1 [938].

asymmetry in semileptonic B0
s decays. As,unt.SL has also been obtained from a data sam-

ple corresponding to an integrated luminosity of 1.3 fb−1 in comparing the decay rate
Bs → µ+D−

s νX , D−
s → φπ−, φ → K+K− with its charge conjugated decay rate. The

asymmetry amounts to

As,unt.SL = [1.23± 0.97 (stat)± 0.17 (syst)]× 10−2, (361)

assuming that ∆ms/Γs ≫ 1. The result can be further related to the CP-violating phase
in B0

s mixing via

∆Γs
∆ms

tanφs = [2.45± 1.93 (stat)± 0.35 (syst)]× 10−2. (362)
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Fig. 62. Contour plots of D0and CDF combined results in the (∆Γs, φs) plane for different confidence
levels. In the left panel, the combination of two results without constraints. In the right panel, constraints
of the measured charge asymmetry AsSL and B0

s lifetime are taken into account.
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The world best knowledge on the Bs mixing phase at this time comes from combining
the two Tevatron results and applying all available constraints to the calculation. Fig.
62 shows the combination of the results from the two Tevatron experiments. The current
combined result is based on the 1.35 fb−1 dataset from CDF and the 2.8 fb−1 dataset from
D0. The unconstrained result is consistent with the Standard Model prediction within
2.2σ. Adding constraints from AsSL and the Bs flavor specific lifetime measurements, the
discrepancy betwen the Standard Model prediction and the combined result increases to
2.3σ.

7.3. The D-meson system

7.3.1. Theoretical prediction for ∆MD and CP violation within the SM and beyond
The SM calculation of ∆MD is plagued by long-distance contributions, responsible for

very large theoretical uncertainties. The short-distance contribution in ∆MD [963, 964],
indeed, is highly suppressed both by a factor (m2

s − m2
d)/M

2
W generated by the GIM

mechanism and by a further factor (m2
s − m2

d)/m
2
c due to the fact that the external

momentum, of the order of mc, is communicated to the internal light quarks in box-
diagrams. These factors explain why the box-diagrams are so small for D mesons relative
to K and Bd,s mesons where the GIM mechanism enters as m2

c/M
2
W and m2

t /M
2
W and

external momenta can be neglected.
Theoretical estimates of charm mixing in the SM have been performed using either

quarks or hadrons as basic degrees of freedom. The former method, like that used in
Bd,s mixing, consists in analyzing the mixing by using a sum of local operators ordered
by dimension according to OPE [965]. Roughly speaking, the result at the leading or-
der in the OPE (where operators of dimension D = 6 contribute) and in QCD from
the ss intermediate state yields the result [966] yD ∼ F (z)(|Vus|/|Vcs|)2 ∼ 0.01 where
F (z) = 1/2 + O(z) with z ≡ (ms/mc)

2 ≃ 0.006. This seems to reproduce the correct
magnitude. Such is, however, not the case, as severe flavor cancellations with the dd̄,
sd̄, ds̄ intermediate states occur (the leading terms in the z-expansion for xD and yD
respectively become z2 and z3 at order α0

s and just z2 at order α1
s). The result through

O(αs) is tiny, xD ≃ yD ∼ 10−6 [966]. Evidently the OPE for charm is slowly convergent,
although higher orders of the OPE do contain terms in which the z-suppression is less se-
vere [967,968]. The problem is that the number of local operators increases sharply with
the operator dimension D (e.g. D = 6 has two operators, D = 9 has fifteen, and so on).
To make matters worse, the matrix elements of the various local operators are unknown
and can be only roughly approximated in model calculations. QCD lattice determinations
would be of great use, but are currently unavailable.
The other method, which considers hadronic degrees of freedom, is based on the fol-

lowing relation between the width difference and the absorptive matrix element given in
Eq. (337), with

ΓD12 =
1

2MD
Disc〈D0|i

∫
d4xT (H∆C=1

eff (x)H∆C=1
eff (0))|D̄0〉 , (363)

To get yD, defined in Eq. (338), one inserts intermediate states between the ∆C = 1
effective Hamiltonians (see Sec. 2.1). This method yielded an early estimate for yBs

(where the dominant contributions are few in number [969]), but for charm mixing many
matrix elements contribute. The result of using a theoretical model [970] gives yD ∼ 10−3,
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which is too small. This shows how delicate the sum over many contributions seems to
be.
Another approach is to rely more on charm decay data and less on the underlying

theory [971,972]. Given that SU(3) breaking occurs at second order in charmmixing [973],
perhaps all two-particle and three-particle sectors contribute very little. However, this
cannot happen for the four-particle intermediate states because the decay of D0 into four-
Kaon states is kinematically forbidden. In fact, Ref. [974] claims that these multiparticle
sectors can generate yD ∼ 10−2. The complicate picture is worsened by the fact that a
dispersion relation calculation [974] using charm decay widths as input predicts a negative
value for xD, i.e. of opposite sign with respect to the experimental measurement. The
determination of xD in the SM is certainly subtle enough to deserve further study and,
at the same time, to strengthen the motivation for studying NP models of D0 mixing.
NP contributions to charm mixing can affect yD as well as xD. We do not consider the

former here, instead refering the reader to refs. [975, 976]. The study of xD in Ref. [977]
considers 21 New Physics models, arranged in terms of extra gauge bosons (LR models,
etc), extra scalars (multi-Higgs models, etc), extra fermions (little Higgs models, etc),
extra dimensions (split fermion models, etc), and extra global symmetries (SUSY, etc).
The strategy for calculating the effect of NP on D0 mixing is, for the most part, straight-
forward. One considers a particular NP model and calculates the mixing amplitude as a
function of the model parameters. If the mixing signal is sufficiently large, constraints on
the parameters are obtained. Of these 21 NP models, only four (split SUSY, universal
extra dimensions, left-right symmetric and flavor-changing two-higgs doublet) are inef-
fective in producing charm mixing at the observed level. This has several causes, e.g.
the NP mass scale is too large, severe cancellations occur in the mixing signal, etc. This
means that 17 of the NP models can produce charm mixing. We refer to Ref. [977] for
details.
Finally, we observe that for a deeper understanding of D0 − D̄0 mixing, there remain

additional avenues to explore, among them correlating NP contributions between charm
mixing and rare charm decays and providing a comprehensive account of CP violations
(both SM and NP) in D0 − D̄0 mixing.

7.3.2. Experimental results
Recent studies have shown evidence for mixing in theD0-D0 system at the 1% level [978–

981]. The measured values can be accommodated by the Standard Model (SM) [968,971–
974] where the largest predictions for xD and yD are of O(10−2). These measurements
provide strong constraints on new physics models [977, 982, 983]. An observation of CP
violation in D0-D0 mixing with the present experimental sensitivity would provide evi-
dence for physics beyond the SM [984], and a search for this effect in the charm system is
considered elsewhere [985]. Presented here is an overview of recent mixing measurements.
The first evidence analysis studies right-sign (RS), Cabibbo-favored (CF) decay D0 →

K−π+ and the wrong-sign (WS) decay D0 → K+π−. The latter can be produced via
the doubly Cabibbo-suppressed (DCS) decay D0 → K+π− or via mixing followed by a
CF decay D0 → K+π−. The DCS decay has a small rate RD of order tan4 θC ≈ 0.3%
relative to CF decay. D0 and D0 are distinguished by their production in the decay
D∗+ → π+

s D
0 where the π+

s is referred to as the “slow pion”. In RS decays the π+
s and

Kaon have opposite charges, while in WS decays the charges are the same.
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The time dependence of the WS decay rate is used to separate the contributions of
DCS decays from D0-D0 mixing. For the WS decay of a meson produced as a D0 at
time t = 0 in the limit of small mixing (|xD|, |yD| ≪ 1) and CP conservation this is
approximated as

TWS(t)

e−Γt
∝ RD +

√
RDy

′
f Γt+

x′2f + y′2f
4

(Γt)2 , (364)

where x′f = xD cos δf + yD sin δf , y
′
f = −xD sin δf + yD cos δf , where f is the final state

accessible to both D0 and D0 decays, and δf is the relative strong phase between the
DCS and CF amplitudes. This makes it possible to measure the quantities xD and yD, if
the strong phase difference δf is known. To search for CP violation, Eq. (364) is applied
to D0 and D0 samples separately.
Evidence forD0-D0 mixing inD0 → K+π− decays has been reported by the BABAR col-

laboration [978]. The mixing parameters were found to be x′2Kπ = [−0.22±0.30 (stat.)±
0.21 (syst.)]× 10−3 and y′Kπ = [9.7 ± 4.4 (stat.) ± 3.1 (syst.)]× 10−3, and a correlation
between them of −0.94. This result is inconsistent with the no-mixing hypothesis with a
significance of 3.9 σ, with no evidence for CP violation.
The quantum coherence between pair-produced D0 and D0 in ψ(3770) decays can be

used to study charm mixing and to make a determination of the relative strong phase
δKπ [988]. Using data collected with the CLEO-c detector at Ecm = 3.77 GeV, as well
as branching fraction input from other experiments a value of cos δKπ = 1.03+0.31

−0.17± 0.06
was found, where the uncertainties are statistical and systematic, respectively. In addi-
tion, by further including external measurements of charm mixing parameters, another
measurement of cos δKπ = 1.10±0.35±0.07, as well as xD sin δKπ = (4.4+2.7

−1.8±2.9)×10−3

and (δKπ = 22+11 +9
−12 −11)

◦, was made.
The initial evidence by the BABAR experiment was first confirmed by the CDF col-

laboration [986, 987]. The CDF analysis was performed on a signal sample of 12.7× 103

D0 → K+π− decays gathered with the displaced track trigger. This corresponds to an
integrated luminosity of 1.5 fb−1,. The analysis considers D0 decays with proper decay
times between 0.75 and 10 mean D0 lifetimes. The mixing parameters are measured to
be RD = 3.04± 0.55(×10−3), y′ = 8.54± 7.55(×10−3), x′2 = −0.12± 0.35(×10−3). The

data are inconsistent with the no mixing hypothesis (y′ = x′2 = 0) with a probability
equivalent to 3.8 Gaussian standard deviations.
Further evidence for mixing was reported by the BABAR collaboration using a time-

dependent Dalitz plot analysis of the WS D0 → K+π−π0 decays [981]. The advantage
of an amplitude analysis across the Dalitz plot is that the interference term in Eq. 364,
produces a variation in average decay time as a function of position in the Dalitz plot
that is sensitive to the complex amplitudes of the resonant isobars as well as the mixing
parameters. In this study, the change in the average decay time and the interference
between the D0 → K∗+π− and D0 → ρ−K+ amplitudes are the origin of the sensitivity
to mixing. Assuming CP conservation, the mixing parameters x′Kππ0 = [2.61 +0.57

−0.68 (stat.)

± 0.39 (syst.)]%, and y′Kππ0 = [-0.06 +0.55
−0.64 (stat.) ± 0.34 (syst.)]% were extracted. This

result is inconsistent with the no-mixing hypothesis with a significance of 3.2 σ. No
evidence of CP violation in mixing was observed.
The CLEO collaboration pioneered an analysis of D0 → K0

S
π+π− decays using a

time-dependent Dalitz plot analysis [989], allowing for a direct determination of xD and
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yD. Due to the presence of CP -eigenstates in the final state, the amplitudes of D0 and
D0 are entangled, so that the analysis is free of unknown phases. The Belle collabora-
tion has repeated this analysis [990], first assuming CP conservation and subsequently
allowing for CP violation. Assuming negligible CP violation, the mixing parameters
xD = (0.80± 0.29+0.09+0.10

−0.07−0.14)% and yD = (0.33± 0.24+0.08+0.06
−0.12−0.08)% were measured, where

the errors are statistical, experimental systematic, and systematic due to the amplitude
model uncertainties, respectively. This corresponds to a deviation of 2.4 σ significance
from the no-mixing hypothesis. Allowing for CP violation, the CPV parameters |q/p| =
0.86+0.30+0.06

−0.29−0.03 ± 0.08 and arg(q/p) = (−14+16+5+2
−18−3−4)

◦ have been obtained.

One consequence of D0-D0 mixing is that the D0 decay time distribution can be
different for decays to different CP eigenstates [991]. Using the ratios of lifetimes extracted
from a sample of D0 mesons produced through the process D∗+ → D0π+, that decay
to K−π+, K−K+, or π+π−, the lifetimes of the CP-even, Cabibbo-suppressed modes
K−K+ and π+π− are compared to that of the CP-mixed, Cabibbo-favored mode K−π+

to obtain a measurement of yCP , which in the limit of CP conservation corresponds to the
mixing parameter yD. Both Belle [979] and BABAR [980] have produced measurements of
D0-D0 mixing parameters, at 3.2 and 3.0 σ from the no mixing expectation, respectively.
All current results are shown in Fig. 63. No evidence for a CP asymmetry between D0

and D0 decays has been found.

-4 -3 -2 -1 0 1 2 3 4 5

yCP (%)

World average  1.072 ± 0.257 %

Belle 2008  0.210 ± 0.630 ± 0.780 %

BaBar 2007  1.030 ± 0.330 ± 0.190 %

Belle 2007  1.310 ± 0.320 ± 0.250 %

Belle 2002 -0.500 ± 1.000 ± 0.800 %

CLEO 2002 -1.200 ± 2.500 ± 1.400 %

FOCUS 2000  3.420 ± 1.390 ± 0.740 %

E791 1999  0.732 ± 2.890 ± 1.030 %

 HFAG-charm 

      ICHEP 2008  

Fig. 63. Current measurements of yCP . The mean yCP ≈ 1 % differs significantly from zero [560].
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The mixing parameter yCP has also been measured by the Belle Collaboration, using a
flavor-untagged sample of D0 → K0

SK
+K− decays [992]. By measuring the difference in

lifetimes between D0 mesons decaying to K0
S
K+K− in two different m(K+K−) regions

with different contributions of CP even and odd eigenstates they determine yCP = (0.21±
0.63± 0.78± 0.01(model))%. This result, is also included in Fig. 63.
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Fig. 64. World averages from the Heavy Flavor Averaging Group (HFAG): χ2 contours for xD vs. yD,
and |q/p| vs. Arg(q/p).

A global average has been constructed from 28 mixing variables (including those men-
tioned above), by the Heavy Flavor Averaging Group (HFAG) [560], as shown in Fig. 64.
The no-mixing point xD = y = 0 is excluded at 9.8 σ, and the values xD ≈ y ≈ 1 % are
favored, but to date no single measurement exceeds 5 σ.

7.4. Future Outlook

With planned data taking coming to an end for some of the main experiments con-
tributing to lifetime and mixing results, attention is now turning to the flavor program of
the Large Hadron Collider. With a dedicated heavy flavor experiment (LHCb), two pow-
erful multi-purpose detectors (ATLAS and CMS), and plans for tremendous integrated
luminosity samples, expectations of precision results are very high. In this chapter we
review expected performance for some of the most interesting results that are expected
to come from the LHC.

7.4.1. B meson mixing and lifetimes
The first B meson lifetime measurements at LHC experiments will be used as calibra-

tion measurements to understand detector effects on time-dependant analyses. Very large
samples of fully reconstructed B+ and B0 candidates will be available very early after
the LHC starts, and will allow comparison with existing precise lifetime measurements.
For example, at ATLAS, 1024 reconstructed B0 → J/ψK∗0 are expected after 10 pb−1 of
data, which will allow a lifetime measurement with 10% precision after approximatively
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one month of data taking. Similarly, the LHCb experiment will reconstruct 1.735 million
B+ → J/ψK+ candidates for 2 fb−1 of data, with a small background over signal ratio,
allowing not to use any lifetime selection criteria and thus to determine lifetime resolu-
tion functions. Hadronic decay modes will also be reconstructed with large samples. The
LHCb experiment will reconstruct 1.34 million B0 → D−(K−π+π−)π+ decays in 2 fb−1

of data. The expected proper time resolution of 33.9 fs will allow LHCb to reach the
current B0 lifetime precision (0.009 ps) with 60000 events, considering only statistical
errors.
Measurements of Λb lifetimes are expected to improve significantly with LHC results.

LHCb expects to reconstruct 2.3 × 104 events for 2 fb−1 of data in the decay mode
Λb → Jψ(µ+µ−)Λ(pπ). The anticipated proper time resolution for these decays is 41.5
fs, yielding to a lifetime measurement with a statistical precision of 0.027 ps. The ATLAS
experiment will reconstruct 4500 events in the same decay mode with 10 fb−1 of data.
LHC experiments plan on precisely measuring the B+

c lifetime. The B+
c production

cross-section is roughly 20 times larger at the LHC than at the Tevatron. About 109

B±
c will be produced per year in LHCb. Measurement of the B+

c lifetime will be an
interesting window on the proportions of its three decay mechanisms: b decay, c decay
and anihilation. The most promising decay chanel that will be used for the analysis
is B+

c → J/ψπ+. Assuming a B+
c production cross-section of 0.4 µb and a branching

fraction for B+
c → J/ψπ+ equal to 1.3 × 10−3, 700 events are expected for 2 fb−1 of

data at LHCb, and 80 events for 10 fb−1 at CMS, leading to a statistical precision on
the lifetime measurement of 0.026 ps at LHCb and 0.055 ps at CMS.
The reconstruction of the flavor specific decay modeB0

s → D+
s π

− withD+
s → K+K−π+

will allow the measurement of the B0
s mixing frequency ∆ms together with the B0

s width
difference, ∆Γs. 155000 reconstructed candidates are expected at LHCb in 2 fb−1 of data,
with a small background over signal ratio B

S ∈ [0.06; 0.4] at 90% confidence level. The
mass resolution is expected to be 17 MeV/c2 and a proper time resolution of 33 fs is
anticipated. This implies measurements of the B0

s lifetime to a precision of 0.013 ps. The
expected uncertainty on ∆ms is 0.008 ps−1. ∆Γs will be measured to 0.03 ps−1 precision,
assuming a central value of ∆Γs equal to 0.068 ps−1. A more precise ∆Γs determination
is expected to be obtained from the time-dependant angular analysis of the decay mode
B0
s → J/ψφ. Preliminary studies show that a precision of 0.021 ps−1 can be reached at

ATLAS with 10 fb−1 of data, 0.010 ps−1 at CMS with 10 fb−1 of data assuming perfect
tagging, and 0.008 ps−1 at LHCb with 2 ps−1 of data.
In summary, very precise lifetime measurements of the B0 and B+ mesons will be

available very soon after LHC starts and will be used to calibrate LHC detectors for
further lifetime measurements. Parameters of the B0

s hadron (τs, ∆ms) will reach similar
precisions to those currently available for B0 and B+. These measurements are expected
to rapidly become limited by systematics uncertainties. Precision studies of other B
hadrons, such as the lifetime of the B+

c and Λb, will be conducted at the CMS, ATLAS,
and LHCb experiments.

7.4.2. Measurements of the Bs meson mixing phase
As discussed in Sec. 7.2.4 and [993], the most precise measurement of βs can be ob-

tained via a tagged time-dependent angular analysis of the Bs → J/ψφ decay mode.
In order to disentangle the two CP eigenstates, the three amplitudes are statistically
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Fig. 65. LHCb toy Monte Carlo simulation of the proper time distribution of right-sign tagged
B0
s → D+

s π
− decays. The toy simulation is based on resolutions, efficiencies, and tagging power es-

timated from full detector simulation.

separated through an angular analysis. The oscillation amplitude of the time-dependent
angular distributions is proportional to the CP-violation phase βs. In the following text
we compare the key performance parameters for this measurement between the three
experiments.
Offline selections for the three experiments are based on basic quantities like particle

identification, pT of the decay products, vertex quality and, only for ATLAS and CMS,
b-vertex displacement. The MuonID capability is similar for the three experiments (muon
efficiency of ∼ 90 % for a misidentification rate of ∼ 1%, but dependent with pT , η for
central detectors). Hadron identification capability is higher for LHCb due to the powerful
RICH system [994] which allows to Kaon identification with an efficiency of ∼ 88%. The
pion misidentification rate of ∼ 3%.
The expected momentum resolution is σp/p = (0.3 − 0.5)% for LHCb and σpT /pT =

1− 2% for ATLAS/CMS. This provides a Bs mass resolution of ∼ 17 MeV/c2 for LHCb
without use of a J/Ψ mass constraint in the fit. CMS and ATLAS predict Bs mass
resolutions of ∼ 14− 16 MeV /c2, using a J/Ψ mass constraint in the fit. LHCb does not
make use of the J/Ψ mass constraint because this requirement modifies the proper time
acceptance of the decaying Bs.
ATLAS/CMS use an offline selection with Bs lifetime selection cuts. This selection

gets rid of most of the prompt combinatorial background but also modifies heavily the
proper time acceptance that must be corrected afterwards. LHCb will optimize the Bs
signal selection by minimizing the bias on the proper time and angular acceptances.
For the time being, LHCb and ATLAS are developing tagged analyses, while CMS

is currently reporting an untagged one. ATLAS will use several taggers mainly based
on leptons and vertex charge. The combined tag gives an effective tagging power of
ǫeff = ǫtag(1− 2ω)2 = 4.6%. LHCb expects excellent hadron identification and therefore
can profit also from both same side and opposite side Kaon taggers. The combined tag is
expected to have an effective tagging power of ǫeff = 6.2%. Tagging calibration will be
performed at LHCb using flavor specific decays, namely B0 → J/ψ K∗ and B+ to J/ψ
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K+ for calibration of OS taggers, and Bs → Dsπ for calibration of the same side tagger.
The last key ingredient is the proper time resolution, στ . Expected average proper time
resolutions are 83 fs, 77 fs and 40 fs, for ATLAS, CMS and LHCb, respectively. At the
time of this report, Monte Carlo samples with full simulation which were available for
studies have limited statistics: ∼ 7 pb−1 of inclusive J/Ψ → µ+ mu− were available for
the LHCb studies, and 20 - 50 pb−1 of b → J/Ψ(µµ)X for ATLAS/CMS. The Monte
Carlo with full detector simulation cannot be used to perform a full analysis evaluation.
However, these samples can be used to estimate yield, background fractions, mass, proper
time and angle distributions, resolutions, and acceptances. The extracted quantities are
then used in toy Monte Carlo ensembles in order to estimate the sensitivity to 2βs (and
other parameters) via results of unbinned maximum likelihood fits.
Tab. 56 summarizes the expected precision for 2βs and ∆Γs after 1/4 of a nominal

year of running. The estimated event yield, background contamination, effective tagging
efficiency ǫD2 and proper time resolutions σ(τ) are also listed per experiment. These
studies assumed values of 2βs ∼ 0.04 for βs and ∆Γs and ∆Γs/Γs ∼ 0.1. ATLAS, CMS
and LHCb have a strong potential to increase the precision of the measurements of the
Bs CP violating phase well beyond the present CDF and D0 results. These precision
measurements will open opportunities to probe for effects beyond the Standard Model.

Table 56
Summary table for ATLAS, CMS and LHCb. We show the untagged signal yield for a luminosity corre-
sponding to a 1/4 year of running at nominal luminosity, the B/S ratio, the effective tagging efficienc y,
the proper time resolution and the sensitivity on 2βs and ∆Γs/Γs.

ATLAS CMS LHCb

L[fb−1] 2.5 2.5 0.5

signal yield [untagged] 22.5 k 27 k 28.5 k

B/S 0.18 0.25 2

dominant background long-lived long-lived prompt

ǫD2 4.6 % N/A 6.2 %

σ(τ) 83 fs 77 fs 40 fs

σ(2βs) 0.16 N/A 0.06

σ(∆Γs/Γs)/(∆Γs/Γs) 0.45 0.28 0.17

7.4.3. D0 mixing and CP violation
As the dedicated flavor experiment at CERN’s Large Hadron Collider (LHC), LHCb is

the only LHC experiment currently planning measurements of D0-D0 mixing and charm
CP violation. The following studies document the expected performance of the LHCb
experiment.
Many of the features that make LHCb an excellent B physics laboratory also make

LHCb well-suited for many charm physics studies at unprecedented levels of preci-
sion [995]. The silicon Vertex Locator (VELO) will provide the excellent vertex resolutions
necessary for time dependent measurements: an estimated 45 fs proper time resolution is
expected for D0 → K−π+ decays where the D0 mesons are produced in b-hadron decays.
The LHCb tracking system will supply precise momentum measurements The projected
mass resolution for two body decays of D0 mesons is estimated to be 6MeV/c2 The
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LHCb Ring Imaging Cherenkov (RICH) detectors will provide excellent K–π discrimina-
tion over a wide momentum range from 2GeV/c to 100GeV/c. Finally, the LHCb trigger
system will have a high statistics charm stream, so that the large charm production in
LHC collisions can be exploited for precision measurements.
LHCb will perform both time-dependent and time-integrated CP violation searches.

Each time-dependent D0-D0 mixing measurement will be analyzed in charge conjugate
subsets to measure possible CP violating effects. Measurements with promptly produced
charm mesons and with charm mesons produced in b-hadron decays will be pursued.
Analysis methods for both sources are under development. Preliminary studies for mea-
surements with secondary charm are currently more complete. Initial studies have focused
on D∗+–tagged two-body D0 → h−h′+ decays. Multi-body decays to charged products
and up to one K0

S are suitable for precision measurements at LHCb and will be inves-
tigated. In four body hadronic decays, plans for CP violation searches include complete
amplitude analyses and analyses of quantities that are odd under time reversal.
Simulated events from a full interaction and LHCb detector simulation have been used

to estimate LHCb’s potential performance in charm mixing analyses. Preliminary event
selection studies on these simulated events indicate a yield of approximately 8 million
D∗+–tagged D0 → K−K+ decays in 10fb−1 of collisions. The D∗+ was produced in a
b-hadron decay in these studies. [996]. This yield estimate includes the expected effects
of both the L0 and the HLT triggers. This corresponds to a statistical precision of ap-
proximately 4× 10−4 for the CP asymmetry search. The selection used in the study was
optimized for the wrong sign (WS) D0 → Kπ decays. Reoptimizing for D0 → KK is
expected to result in even higher yields. Similar studies predict approximately 1.2 billion
D∗+–tagged D0 → KK decays in 10 fb−1 after the L0 trigger, before the HLT trigger.
Efficient strategies to select these events in the HLT are under investigation.
LHCb will measure D0-D0 mixing in as many channels as it can efficiently reconstruct.

Initial studies have focused on the two main mixing measurements possible with D∗+–
tagged two-body D0 → h−h′+ decays—mixing from analysis of WS Kπ decays, and the
ratio of lifetimes of singly Cabibbo suppressed (SCS) and right sign (RS) decays.
Time-dependent analyses require precise measurements of the creation and decay ver-

tices of the D0 mesons. The scale of the required precision is set by the approximately
4 mm mean laboratory flight distance for a 60GeV/c D0 (the mean momentum of sec-
ondary D∗+–tagged D0 decays). The decay vertex of a two-body D0 decay can be de-
termined precisely from its products with a resolution of ∼ 260 µm along the beam axis.
For promptly produced D0 decays, the precisely measured primary interaction vertex
(resolution ∼ 60 µm along the beam axis [995]) is the creation vertex.
For secondary charm decays, the additional charged tracks must come from the b-

hadron decay that produced the D∗+. LHCb has been developing techniques to partially
reconstruct the parent b-hadron that produced the D∗+ [996]. Initial results from these
developments are promising. As shown in the Bpart column of Tab. 57, using a partial
reconstruction dramatically improves the precision of the estimated D0 creation vertex
and, consequently, the measured D0 proper time. Fig. 66 shows that this process pro-
duces precisely measured proper times that closely reproduce the generated proper time
distribution. The b-hadron partial reconstruction is approximately 60% efficient with
respect to all selected secondary D∗+–tagged D0 → h−h′+ decays.
Toy Monte Carlo studies have been used to estimate LHCb’s statistical sensitivities

to the mixing parameters x′2 and y′ in a two-body WS mixing study and to the mixing

231



Table 57
Estimated resolutions of D0, D∗+, and Bpart vertices, and of D0 proper time in simulated LHCb data.

The D0 proper time, τD0 , is estimated both using the D∗+ vertex as the creation vertex in the first
column, and using the Bpart vertex as the creation vertex in the last column.

D0 D∗+ Bpart

x 22 µm 190 µm 18 µm

y 17 µm 140 µm 18 µm

z 260 µm 4200 µm 240 µm

τD0 0.47 ps 0.045 ps
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Fig. 66. In the left panel, the distribution of the proper times for simulated D0 mesons from B → D∗+X
decays. The solid lines are the generated proper times and the points are the estimated D0 proper
times using the estimated parent B decay vertex as the D0 production vertex. In the right panel, the
sensitivities in 10 fb−1 from the WS study and the yCP study. Contours correspond to 1σ, 2σ, and 3σ
confidence levels from the WS study. Horizontal bands correspond to 1σ, 2σ, and 3σ confidence levels
from the yCP study.

parameter yCP in a two-body lifetime ratio study.
Selection studies in fully simulated LHCb events predict a yield of roughly 230, 000

D∗+–tagged WS decays 10 fb−1 of LHCb data. Again, the D∗+ mesons originate in the
decays of b-hadrons in this study. The 10 fb−1 signal and background yields, proper time
resolution, and proper time acceptance of this selection were used in a toy Monte Carlo
study to estimate the LHCb statistical sensitivity to x′2 and y′:

σstat(x
′2) = ±0.064× 10−3; σstat(y

′) = ±0.87× 10−3 [996].

The same selection studies referred to in Sec. 7.4.3 estimate that a lifetime ratio anal-
ysis on 10 fb−1 of LHCb data would incorporate approximately 8 million D∗+–tagged
D0 → K−K+ decays from b-hadron decays. The 10 fb−1 signal and background yields,
the proper time resolution, and the proper time acceptance of this selection were used in
a toy Monte Carlo study to estimate the LHCb statistical sensitivity to yCP:

σstat(yCP) = ±0.5× 10−3 [996].

Strategies to reduce the systematic uncertainties to commensurate precision are in de-
velopment. While systematic uncertainties are still under study, but LHCb will certainly

232



D0�u
s K��u

B� b W� B� b u
�

K�
�D0

�u s�u W�
Fig. 67. Leading Feynman diagrams contributing to the B+ → DK+ decay. From [260].

have the statistical power to make precision measurements in charm CP violation and
D0-D0 mixing.

8. Measurement of the angle γ in tree dominated processes

8.1. Overview of Theoretically Pristine Approaches to Measure γ

Among the fundamental parameters of the Standard Model of particle physics, the
angle γ = arg (−VudV ∗

ub/VcdV
∗
cb) of the Unitarity Triangle formed from elements of the

Cabibbo-Kobayashi-Maskawa quark mixing matrix [1, 2] has a particular importance. It
is the only CP violating parameter that can be measured using only tree-level decays, and
thus it provides an essential benchmark in any effort to understand the baryon asymmetry
of the Universe. Strategies to measure fundamental parameters of the Standard Model
and to search for New Physics by overconstraining the Unitarity Triangle inevitably
require a precise measurement of γ.
Fortunately, there is a theoretically pristine approach to measure γ using tree-dominated

B → DK decays [997–999]. The approach exploits the interference between D0 and D̄0

amplitudes that occurs when the neutral D meson is reconstructed in decay that is ac-
cessible to both flavor states. Feynman diagrams for the relevant B decays are shown
in Fig. 67. The original approach uses D decays to CP eigenstates [998, 999], but vari-
ants using doubly-Cabibbo-suppressed decays [1000,1001], singly-Cabibbo-suppressed de-
cays [1002] and multibody final states such asK0

S
π+π− [257,1003,1004], and many others

besides, have been proposed.
Considering D decays to CP eigenstates (CP even and odd denoted by D1 and D2

respectively), and defining

rBe
iδB =

A
(
B+ → D0K+

)

A
(
B+ → D

0
K+

) , (365)

the dependence on γ of the decay rates is found to be as follows (as illustrated in Fig. 68).
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Fig. 68. Illustration of the sensitivity to γ that arises from the interference of B+ → D0K+ and
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K+ decay amplitudes.

A
(
B− → D1K

−) ∝ 1

2

(
1 + rBe

i(δB−γ)
)
−→ (366)

Γ
(
B− → D1K

−) ∝ 1 + r2B + 2rB cos (δB − γ)

A
(
B− → D2K

−) ∝ 1

2

(
1− rBe

i(δB−γ)
)
−→ (367)

Γ
(
B− → D2K

−) ∝ 1 + r2B − 2rB cos (δB − γ)

A
(
B+ → D1K

+
)
∝ 1

2

(
1 + rBe

i(δB+γ)
)
−→ (368)

Γ
(
B+ → D1K

+
)
∝ 1 + r2B + 2rB cos (δB + γ)

A
(
B+ → D2K

+
)
∝ 1

2

(
1− rBe

i(δB+γ)
)
−→ (369)

Γ
(
B+ → D2K

+
)
∝ 1 + r2B − 2rB cos (δB + γ)

From the above expressions it is clear that CP violation effects will be enhanced for
values of rB close to unity. It can also be seen that measurements of rates (and rate
asymmetries) alone yield information on x± = rB cos(δB ± γ). This leads to ambiguities
in the extraction of γ. These can be resolved, and the overall precision improved, when
information on y± = rB sin(δB ± γ) is obtained, as can be achieved from Dalitz plot
analyses, for example.
To avoid relying on theoretical estimates of the hadronic parameters rB and δB, these

parameters must also be determined from the data. Once that is done, the underlying
method has essentially zero theoretical uncertainty. The largest effects are due to charm
mixing and possible CP violation effects in the D decays [1005]. However, once measured
it is possible to take these effects into account in the analysis. Similarly, when decays of

neutral B mesons are used, there is a potential systematic effect if the possible B0
(s)–B

0

(s)

width difference is neglected [1006,1007].
As already mentioned above, many different decays in the “B → DK” family can

be used to gain sensitivity to γ. Not only charged but also neutral B decays can be

used. Any decay of the neutral D meson that is accessible to both D0 and D
0
can be

used. Furthermore decays with excited D and/or K states not only provide additional
statistics. In the former case there is an effective strong phase difference of π between the
cases that the D∗ is reconstructed as Dπ0 and Dγ that is particularly beneficial when D
decays to doubly-Cabibbo-suppressed final states are analyzed [1008]. When K∗ mesons
are used, their natural width can be handled by the introduction of effective hadronic
parameters [1009]; alternatively a Dalitz plot analysis of the B → DKπ decay removes
this problem and maximizes the sensitivity to γ [1010]. Ultimately it is clear that the
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best sensitivity to γ will be obtained by combining as many statistically independent
measurements as possible.

8.2. Experimental results on γ from B → DK decays

8.2.1. GLW analyses
The technique of measuring γ proposed by Gronau, London and Wyler (and called

GLW) [998,999] makes use of D0 decays to CP eigenstates, such as K+K−, π+π− (CP -
even) or K0

Sπ
0, K0

Sφ (CP -odd). Since both D0 and D̄0 can decay into the same CP
eigenstate (DCP , or D1 for a CP-even state and D2 for a CP-odd state), the b → c
and b → u processes shown in Fig. 67 interfere in the B± → DCPK

± decay channel.
This interference may lead to direct CP violation. To measure D meson decays to CP
eigenstates a large number of B meson decays is required since the branching fractions
to these modes are of order 1%. To extract γ using the GLW method, the following
observables sensitive to CP violation are used: the asymmetries

A1,2 ≡ B(B− → D1,2K
−)− B(B+ → D1,2K

+)

B(B− → D1,2K−) + B(B+ → D1,2K+)

=
2rB sin δ′ sin γ

1 + r2B + 2rB cos δ′ cos γ

(370)

and the double ratios

R1,2 ≡ B(B− → D1,2K
−) + B(B+ → D1,2K

+)

B(B− → D0K−) + B(B+ → D0K+)

= 1 + r2B + 2rB cos δ′ cos γ,

(371)

where

δ′ =




δB for D1

δB + π for D2

, (372)

and rB and δB were defined in the previous section. The value of rB is given by the ratio
of the CKM matrix elements |V ∗

ubVcs|/|V ∗
cbVus| ∼ 0.38 times a color suppression factor.

Here we assume that mixing and CP violation in the neutral D meson system can be
neglected.
Instead of four observables R1,2 and A1,2, only three of which are independent (since

A1R1 = −A2R2), an alternative set of three parameters can be used:

x± = rB cos(δB ± γ) =
R1(1∓A1)−R2(1∓A2)

4
, (373)

and

r2B =
R1 +R2 − 2

2
. (374)

The use of these observables allows for a direct comparison with the methods involving
analyses of the Dalitz plot distributions of multibody D0 decays (see Sec. 8.2.3), where
the same parameters x± are obtained.
Measurements of B → DCPK decays have been performed by both the BaBar [1011]

and Belle [1012] collaborations, while CDF has recently made measurements using CP-
even decays only [1013]. The most recent update is BaBar’s analysis using a data sample
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Table 58
Results of the GLW analysis by BaBar [1011].

R1 1.06± 0.10 ± 0.05

R2 1.03± 0.10 ± 0.05

A1 +0.27± 0.09 ± 0.04

A2 −0.09± 0.09 ± 0.02

x+ −0.09± 0.05 ± 0.02

x− +0.10± 0.05 ± 0.03

r2B 0.05± 0.07± 0.03

of 382M BB pairs [1011]. The analysis uses D0 decays to K+K− and π+π− as CP-even
modes, K0

Sπ
0 and K0

Sω as CP-odd modes.
The results of the analysis (both in terms of asymmetries and double ratios, and the

alternative x±, r2B set of parameters) are shown in Tab. 58. As follows from (370) and
(372), the signs of the A1 and A2 asymmetries should be opposite, which is confirmed by
the experiment. The x± values are in good agreement with those obtained by the Dalitz
plot analysis technique (see 8.2.3). Note that the measurement of A1 deviates from zero
by 2.8 standard deviations.
A summary of measurements of observables with the GLW method is given in Fig. 69.

As well as the results using B → DCPK decays, this compilation also includes measure-
ments from the decay channels B → D∗

CPK and B → DCPK
∗.

8.2.2. ADS analyses
The difficulties in the application of the GLW methods are primarily due to the small

magnitude of the CP asymmetry of the B± → DCPK
± decay probabilities, which

may lead to significant systematic uncertainties in the measurement of CP violation.
An alternative approach was proposed by Atwood, Dunietz and Soni [1000, 1001]. In-
stead of using D0 decays to CP eigenstates, the ADS method uses Cabibbo-favored

and doubly Cabibbo-suppressed decays: D
0 → K−π+ and D0 → K−π+. In the decays

B+ → [K−π+]DK
+ and B− → [K+π−]DK−, the suppressed B decay corresponds to

the Cabibbo-allowed D0 decay, and vice versa. Therefore, the interfering amplitudes are
of similar magnitudes, and one can expect significant CP asymmetry.
The observable that is measured in the ADS method is the fraction of the suppressed

and allowed branching ratios:

RADS =
B(B± → [K∓π±]DK±)

B(B± → [K±π∓]DK±)

= r2B + r2D + 2rBrD cos γ cos δ,

(375)

where rD is the ratio of the doubly Cabibbo-suppressed and Cabibbo-allowed D0 decay
amplitudes [560]:

rD =

∣∣∣∣
A(D0 → K+π−)

A(D0 → K−π+)

∣∣∣∣ = 0.058± 0.001, (376)

and δ is the sum of strong phase differences in B and D decays: δ = δB + δD. Once a
significant signal is seen, the direct CP asymmetry must be measured,
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Fig. 69. Compilations and world averages of measurements of observables using the GLW method. Top
left: R1; top right: R2; bottom left: A1; bottom right: A2.

AADS =
B(B− → [K+π−]DK−)− B(B+ → [K−π+]DK

+)

B(B− → [K+π−]DK−) + B(B+ → [K−π+]DK+)

=
2rBrD sin γ sin δ

r2B + r2D + 2rBrD cos γ cos δ
.

(377)

Studies of ADS channels have been performed by both BaBar [1014] and Belle [1015].
Unfortunately, the product branching ratios into the final states of interest are so small
that they cannot be observed using the current experimental statistics. The most recent
update of the ADS analysis is that from Belle using 657M BB pairs [1015]. The analysis
uses B± → DK± decays with D0 decaying to K+π− and K−π+ modes (and their
charge-conjugated partners). The ratio of suppressed and allowed modes is found to be

RADS = (8.0+6.3
−5.7

+2.0
−2.8)× 10−3. (378)

Since the signal in the suppressed modes is not significant, the CP asymmetry is in-
evitably consistent with zero:

AADS = −0.13+0.98
−0.88 ± 0.26. (379)
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Fig. 70. Compilations and world averages of measurements of observables using the ADS method.

A summary of measurements of observables with the ADS method is given in Fig. 70.
As well as the results using the decays B → DK with D → Kπ, this compilation also
includes measurements from the decay channels B → D∗K with D → Kπ and the
decays D∗ → Dπ0 and D∗ → Dγ treated distinctly [1008], B → DK∗ with D → Kπ
and B → DK with D → Kππ0.
The ADS analysis currently does not give a significant constraint on γ, but it pro-

vides important information on the value of rB. Using the conservative assumption
cos γ cos δ = −1 one obtains the upper limit rB < 0.19 at 90% CL. A somewhat tighter
constraint can be obtained by using the γ and δB measurements from the Dalitz plot
analyses (see Sec. 8.2.3), and the recent CLEO-c measurement of the strong phase δD =
(22+11

−12
+9
−11)

◦ [988, 1016].

8.2.3. Dalitz plot analyses
A Dalitz plot analysis of a three-body final state of the D meson allows one to obtain

all the information required for determination of γ in a single decay mode. The use of
a Dalitz plot analysis for the extraction of γ was first discussed in the context of the
ADS method [1000,1001]. This technique uses the interference of Cabibbo-favored D0 →
K−π+π0 and doubly Cabibbo-suppressed D0 → K−π+π0 decays. However, the small
rate for the doubly Cabibbo-suppressed decay limits the sensitivity of this technique.
Three body final states such as K0

Sπ
+π− [257,1003] have been suggested as promising

modes for the extraction of γ. Like in the GLW or ADS method, the two amplitudes
interfere as the D0 and D0 mesons decay into the same final state K0

Sπ
+π−; we denote

the admixed state as D̃+. Assuming no CP asymmetry in neutralD decays, the amplitude
of the D̃+ decay as a function of Dalitz plot variables m2

+ = m2
K0

S
π+ and m2

− = m2
K0

S
π−

is

fB+ = fD(m
2
+,m

2
−) + rBe

i(δB+γ)fD(m
2
−,m

2
+) , (380)

where fD(m
2
+,m

2
−) is the amplitude of the D0 → K0

Sπ
+π− decay.

Similarly, the amplitude of the D̃− decay from B− → DK− process is
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fB− = fD(m
2
−,m

2
+) + rBe

i(δB−γ)fD(m
2
+,m

2
−) . (381)

The D0 → K0
Sπ

+π− decay amplitude can be determined at the B factories from the
large samples of flavor-tagged D0 → K0

Sπ
+π− decays produced in continuum e+e−

annihilation. [In fact, only |fD|2 can be determined from flavor tagged data, but a model
assumption can be made to describe the variation of the strong phase across the Dalitz
plot. Approaches to avoid such model-dependence are discussed in more detail below.]
Once fD is known, a simultaneous fit of B+ and B− data allows the contributions of rB ,
γ and δB to be separated. The method has only a two-fold ambiguity: the solutions at
(γ, δB) and (γ + 180◦, δB + 180◦) cannot be distinguished. References [257] and [1017]
give more detailed descriptions of the technique.
Both Belle and BaBar collaborations recently reported updates of their γ measure-

ments using Dalitz plot analysis. The preliminary result from Belle [1018] uses a data
sample of 657M BB pairs and two modes, B± → DK± and B± → D∗K± with D∗ →
Dπ0. The neutral D meson is reconstructed in the K0

Sπ
+π− final state in both cases.

To determine the decay amplitude, D∗± mesons produced via the e+e− → cc̄ con-
tinuum process are used, which then decay to a neutral D meson and a charged pion.
The flavor of the neutral D meson is tagged by the charge of the pion in the decay
D∗− → D0π−. B factories offer large sets of such charm data: 290.9 × 103 events are
used in the Belle analysis with only 1.0% background.
The description of the D0 → K0

Sπ
+π− decay amplitude is based on the isobar model.

The amplitude fD is represented by a coherent sum of two-body decay amplitudes and one
nonresonant decay amplitude. The model includes a set of 18 two-body amplitudes: five
Cabibbo-allowed amplitudes: K∗(892)+π−, K∗(1410)+π−, K∗

0 (1430)
+π−, K∗

2 (1430)
+π−

and K∗(1680)+π−; their doubly Cabibbo-suppressed partners; eight amplitudes with K0
S

and a ππ resonance:K0
Sρ, K

0
Sω, K

0
Sf0(980), K

0
Sf2(1270),K

0
Sf0(1370), K

0
Sρ(1450), K

0
Sσ1

and K0
Sσ2; and a flat nonresonant term.

The selection of B± → D(∗)K± decays is based on the CM energy difference ∆E =∑
Ei−Ebeam and the beam-constrainedB meson massMbc =

√
E2

beam − (
∑

pi)2, where
Ebeam is the CM beam energy, and Ei and pi are the CM energies and momenta of the
B candidate decay products. To suppress background from e+e− → qq̄ (q = u, d, s, c)
continuum events, variables that characterize the event shape are used. At the first stage
of the analysis, when the (Mbc,∆E) distribution is fitted in order to obtain the fractions
of the background components, a requirement on the event shape is imposed to suppress
the continuum events. The number of such “clean” events is 756 for B± → DK± mode
with 29% background, and 149 events for B± → D∗K± mode with 20% background. In
the Dalitz plot fit, events are not rejected based on event shape variables, these are used
in the likelihood function to better separate signal and background events.
The Dalitz distributions of the B+ and B− samples are fitted separately, using Carte-

sian parameters x± = r± cos(δB ± γ) and y± = r± sin(δB ± γ), where the indices “+”
and “−” correspond to B+ and B− decays, respectively. In this approach the amplitude
ratios (r+ and r−) are not constrained to be equal for the B+ and B− samples. Confi-
dence intervals in rB , γ and δB are then obtained from the (x±, y±) using a frequentist
technique.
The values of the parameters rB, γ and δB obtained from the combination of B± →

DK± and B± → D∗K± modes are presented in Tab. 59. Note that in addition to the
detector-related systematic error which is caused by the uncertainties of the background
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Table 59
Results of the combination of B+ → DK+ and B+ → D∗K+ modes by Belle [1018].

Parameter 1σ interval 2σ interval Systematic error Model uncertainty

φ3 76◦ +12◦

−13◦
49◦ < φ3 < 99◦ 4◦ 9◦

rDK 0.16 ± 0.04 0.08 < rDK < 0.24 0.01 0.05

rD∗K 0.21 ± 0.08 0.05 < rD∗K < 0.39 0.02 0.05

δDK 136◦ +14◦

−16◦
100◦ < δDK < 163◦ 4◦ 23◦

δD∗K 343◦ +20◦

−22◦
293◦ < δDK < 389◦ 4◦ 23◦

Table 60
Signal yields of different modes used for Dalitz analysis by BaBar collaboration [260].

B decay D decay Yield

B± → DK± D0 → K0
Sπ

+π− 600 ± 31

D0 → K0
SK

+K− 112 ± 13

B± → [Dπ0]D∗K± D0 → K0
Sπ

+π− 133 ± 15

D0 → K0
SK

+K− 32 ± 7

B± → [Dγ]D∗K± D0 → K0
Sπ

+π− 129 ± 16

D0 → K0
SK

+K− 21 ± 7

B± → DK∗± D0 → K0
Sπ

+π− 118 ± 18

description, imperfect simulation, etc., the result suffers from the uncertainty of the
D decay amplitude description. The statistical confidence level of CP violation for the
combined result is (1− 5.5× 10−4), corresponding to 3.5 standard deviations.
In contrast to the Belle analysis, the BaBar analysis based on a data sample of 383M

BB pairs [260] includes seven different decay modes: B± → DK±, B± → D∗K± with
D0 → Dπ0 and Dγ, and B± → DK∗±, where the neutral D meson is reconstructed in
K0
Sπ

+π− and K0
SK

+K− (except for B± → DK∗± mode) final states. The signal yields
for these modes are shown in Tab. 60.
The differences from the Belle model of D0 → K0

Sπ
+π− decay are as follows: the K-

matrix formalism [268,269,1019] is used to describe the ππ S-wave, while the Kπ S-wave
is parametrized usingK∗

0 (1430) resonances and an effective range nonresonant component
with a phase shift [1020]. The description of D0 → K0

SK
+K− decay amplitude uses an

isobar model that includes eight two-body decays: K0
Sa0(980)

0, K0
Sφ(1020), K

0
Sf0(1370),

K0
Sf2(1270)

0, K0
Sa0(1450)

0, K−a0(980)+, K+a0(980)
−, and K−a0(1450)+.

The fit to signal samples is performed in a similar way to the Belle analysis, using
an unbinned likelihood function that includes Dalitz plot variables and in addition B
meson invariant mass and event-shape variables to better separate signal and background
events. From the combination of all modes, BaBar obtains γ = (76+23

−24 ± 5 ± 5)◦ (mod
180◦), where the first error is statistical, the second is experimental systematic, and
the third is the D0 model uncertainty. The values of the amplitude ratios are rB =
0.086 ± 0.035 ± 0.010 ± 0.011 for B± → DK±, r∗B = 0.135 ± 0.051 ± 0.011 ± 0.005 for
B± → D∗K±, and κrs = 0.163+0.088

−0.105 ± 0.037± 0.021 for B± → DK∗± (here κ accounts
for possible nonresonant B± → DK0

Sπ
± contribution). The combined significance of

direct CP violation is 99.7%, or 3.0 standard deviations.
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Fig. 71. World averages of measurements of observables in the Cartesian parametrization of the Dalitz
method. Left: (x±, y±) for B → DK; (middle): (x±, y±) for B → D∗K (D∗ → Dπ0 and D∗ → Dγ
combined); (right): (x±, y±) for B → DK∗. The Belle results use only D → K0

Sπ
+π−, while the BaBar

results include also D → K0
SK

+K−. The averages do not include model uncertainities.

Summaries of measurements of observables with the Dalitz plot method are given in
Figs. 71 and 72.

8.2.4. Other techniques
In decays of neutral B mesons to final states such as DK both amplitudes involvingD0

and D0 are color-suppressed. Consequently, the value of rB is larger, with näıve estimates
giving rB ∼ 0.4. In the decay B0 → DK∗(892)0 the flavor of the B meson is tagged by
the charge of the Kaon produced in the K∗(892)0 decay (K+π− or K−π+) [1021], so
that a time-dependent analysis is not necessary.
Searches for doubly Cabibbo-suppressed decays have not yet yielded a significant sig-

nal, but allow limits to be put on rB . The most recent results are from BaBar using a
data sample of 465M BB pairs [1022]. BaBar has studied D → Kπ, D → Kππ0 and
D → Kπππ, and has found RADS(Kπ) < 0.244 at the 95% confidence level. The results
can be combined using external information from CLEO-c [988, 1016, 1023] to obtain
rS ∈ [0.07, 0.41] at the 95% confidence level, where rS is the equivalent of the parameter
rB modified due to the finite width of the K∗0 resonance [1009].
BaBar have also performed a Dalitz plot analysis of the three-body decay D0 →

K0
Sπ

+π− decay in B0 → DK∗(892)0 [1024]. The technique, and the decay model are
similar to that used for B± → DK∗± decays (see Sec. 8.2.3). The analysis is based on
371M BB pairs, and yields the following constraints: γ = (162 ± 56)◦, rB < 0.55 with
90% CL.
It is also possible to measure γ by exploiting the interference between b→ c and b→ u

decays that occurs due to B0–B0 mixing using a time-dependent analysis. Since the in-
terference occurs via oscillations, the mixing phase is also involved and the analysis is
sensitive to the combination of angles sin(2β+γ). In this approach, the abundant decays
such as B → Dπ and B → D∗π can be used; however the size of the CP violation effect
depends on the magnitude of the ratio of the b → u over b → c amplitudes, usually de-
noted R, which is näıvely expected to take values R ∼ 0.02 for these decays. Consequently
these measurements are still statistics limited, as well as being potentially sensitive to
systematics caused by any mismodelling of the large CP-conserving component. The sta-
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Fig. 72. World averages of measurements of observables in the Cartesian parametrization of the Dalitz
method from HFAG [560]. Top left: x+; top right: x−; bottom left: y+; bottom right: y−. The data is
described in the caption to Fig. 71.

tistical precision can be improved by using partial reconstruction for B → D∗π decays
as well as the more conventional “full” reconstruction. A summary of measurements of
these modes from BaBar [1025,1026] and Belle [1027,1028] is given in Fig. 73.
Another similar neutral B decay mode is B0 → D∓K0π±, where time-dependent

Dalitz plot analysis is sensitive to 2β + γ [1029, 1030]. One advantage of this technique
compared to the methods based on B0 → D(∗)π decays is that, since both b → c and
b → u diagrams involved in this decay are color-suppressed, the expected value of the
ratio of their magnitudes R is larger. Secondly, 2β + γ is measured with only a two-
fold ambiguity (compared to four-fold in B0 → D(∗)π decays). In addition, all strong
amplitudes and phases can be, in principle, measured in the same data sample.
The BaBar collaboration has performed the analysis based on 347M BB pairs data

sample [1031]. The B0 → D∓K0π± Dalitz plot is found to be dominated by B0 →
D∗∗0K0

S (both b → u and b → c transitions) and B0 → D−K∗+ (b → c only) states.
From an unbinned maximum likelihood fit to the time-dependent Dalitz distribution, the
value of 2β+γ as a function of R is obtained. The value of R cannot be determined with
the current data sample, therefore, the value R = 0.3 is used, and its uncertainty is taken
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Fig. 73. Measurements of observables in B → Dπ and similar final states. The parameters used in these
compilations are a = (−1)L+12R sin(2β + γ) cos(δ) and c = (−1)L+12R cos(2β + γ) sin(δ), where L is
the angular momentum in the decay (+1 for Dπ and −1 for D∗π and Dρ), R is the magnitude of the
ratio of the b→ u and b → c amplitudes and δ is their relative phase.

into account in the systematic error. This results in the value 2β + γ = (83 ± 53 ± 20)◦

or (263± 53± 20)◦.

8.3. Outlook on the γ measurement

The world average values that include the latest measurements presented in 2008 are
reported in Sec. 10.
For an evaluation of the prospect of γ measurement, it is essential to note the fact

that for the first time the value of rB is shown to be significantly non-zero. In previous
measurements, poor constraints on rB caused significantly non-gaussian errors for γ,
and made it difficult to predict the future sensitivity of this parameter. Now that rB is
constrained to be of the order 0.1, one can confidently extrapolate the current precision
to future measurements at LHCb and Super-B facilities.
The γ precision is mainly dominated by Dalitz analyses. These analyses currently

suffer from a hard-to-control uncertainty due to the D0 decay amplitude description,
which is estimated to be 5–10◦. At the current level of statistical precision this error
starts to influence the total γ uncertainty. A solution to this problem can be the use
of quantum-correlated DD decays at ψ(3770) resonance available currently at CLEO-c
experiment, where the missing information about the strong phase in D0 decay can be
obtained experimentally.

8.3.1. Model-independent Method
Giri et al. proposed [257] a model-independent procedure for obtaining γ, as follows.

The Dalitz plot is divided into 2N bins, symmetrically about the line m2
+ = m2

−. The
bins are indexed from −i to i, excluding zero. The coordinate transformation m2

+ ↔ m2
−

thus corresponds to the exchange of bins i ↔ −i. The number of events in the i-th bin
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of a flavor-tagged D0 decay K0
Sπ

+π− Dalitz plot is then expressed as:

Ki = AD

∫

i

|fD(m2
+,m

2
−)|2dm2

+dm
2
− = ADFi, (382)

where AD is a normalization factor. The coefficients Ki can be obtained precisely from
a very large sample of D0 decays reconstructed in flavor eigenstate, which is accessi-
ble at B-factories, for example. The interference between the D0 and D̄0 amplitudes is
parametrized by the quantities ci and si:

ci ≡
1√
FiF−i

∫

i

|fD(m2
+,m

2
−)||fD(m2

−,m
2
+)| cos[∆δD(m2

+,m
2
−)]dm

2
+dm

2
−, (383)

si ≡
1√
FiF−i

∫

i

|fD(m2
+,m

2
−)||fD(m2

+,m
2
−)| sin[∆δD(m2

+,m
2
−)]dm

2
+dm

2
−, (384)

where the integral is performed over a single bin. The quantities ci and si are the
amplitude-weighted averages of cos∆δD and sin∆δD over each Dalitz-plot bin. The ex-
pected number of events in the bins of the Dalitz plot of the D decay from B± → DK±

is

〈Ni〉 = AB[Ki + r2BK−i + 2
√
KiK−i(x±ci + y ± si)], (385)

where AB is the normalization constant. As soon as the ci and si coefficients are known,
one can obtain x± and y± values (and hence γ and other related quantities) by a max-
imum likelihood fit using equation (385). In principle, ci and si can be left as free pa-
rameters in a D̃0 → K0

Sπ
+π− Dalitz-plot analysis from B± decays. However, it has been

shown [1032] that almost infinite statistics of B decays is necessary in that case.
It is important to note that ci and si depend only on the D0 decay, not the B decay,

and therefore these quantities can be measured using the quantum-correlatedDD decays
of the ψ(3770) resonance. For example, the expected number of events in a bin of the
Dalitz plot of DCP tagged decays equals

〈Mi〉± = A±
CP [Ki +K−i ± 2

√
KiK−ici], (386)

where the ± indicates whether the CP tag is CP-even or CP-odd. This relation can be
used to obtain the ci coefficients, but obtaining si remains a problem. If the binning
is fine enough, so that both the phase difference ∆δD and the amplitude |fD| remain
constant across the area of each bin, the expressions (383,384) reduce to ci = cos(∆δD)
and si = sin(∆δD). The si coefficients can be obtained as si = ±

√
1− c2i . Using this

equality if the amplitude varies across a bin will lead to bias in the x±, y± fit results.
Since ci is obtained directly, and the absolute value of si is overestimated, the bias will
mainly affect y± determination, resulting in lower absolute values of y±.
A unique possibility to find si independent of ci is available in a sample where both

D mesons from the ψ(3770) decay into the K0
Sπ

+π− state [1033]. Since the ψ(3770) is a
vector, the two D mesons are produced in a P -wave, and the wave function of the two
mesons is antisymmetric. Then the four-dimensional density of the two correlated Dalitz
plots is given by:

〈M〉ij = Acorr[KiK−j +K−iKj−
2
√
KiK−iKjK−j(cicj + sisj)].

(387)
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Fig. 74. Phase binning of the D0 → K̄0
Sπ

+π− Dalitz plot.

The indices i, j correspond to the two D mesons from ψ(3770) decay. This decay is
sensitive to both ci and si for the price of having to deal with the four-dimensional phase
space.
The original idea of Giri et al. was to divide the Dalitz plot into square bins [257]. In

case of limited statistics unavoidably the number of the bins could be relatively small.
Consequently, a large loss of sensitivity can be expected due to variation of amplitude and
phase over the bin. Bondar et al. noted [1033] that increased sensitivity can be obtained
if the bins are chosen to minimize the variation in ∆δD over each bin. One can divide
the Dalitz phase space into N bins of equal size with respect to ∆δD as predicted, for
example, by the BaBar isobar model [260]. In the half of the Dalitz plot m2

+ < m2
−, the

ith bin is defined by the condition

2π(i− 3/2)/N < ∆δD(m
2
+,m

2
−) < 2π(i− 1/2)/N , (388)

The −ith bin is defined symmetrically in the lower portion of the Dalitz plot. Such a
binning with N = 8 is shown in Fig. 74. One might suspect that, since we are using a
model to determine our bins, we are not free of model dependence. In fact any binning
is acceptable in that it will give a correct, unbiased answer for γ, at the cost of larger
uncertainties compared to an optimal binning with respect to ∆δD.
Using 818 pb−1 of e+e− collisions produced at the ψ(3770), the CLEO-c collaboration

has made a first determination [1034] of the strong phase parameters, ci and si, which
are listed in Tab. 61. From a toy Monte Carlo study with a large sample of B± → D̃0K±

data generated with γ = 60◦, δB = 130◦ and rB = 0.1, CLEO found that the decay
model uncertainty on γ is reduced to about 1.7◦ due to these new measurements. As a
result, the precision of the γ measurement using B+ → D̃0K+ decays will not be limited
by model-dependent assumptions on strong phase behavior in the D̃0 → K0

Sπ
+π− decay.
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Table 61
Fit results for ci and si. The first error is statistical, the second error is the systematic uncertainty, the

third error is the model uncertainty due to including K0
Lπ

+π− events in the analysis.

i ci si

0 0.743± 0.037± 0.022± 0.013 0.014 ± 0.160 ± 0.077 ± 0.045

1 0.611± 0.071± 0.037± 0.009 0.014 ± 0.215 ± 0.055 ± 0.017

2 0.059± 0.063± 0.031± 0.057 0.609 ± 0.190 ± 0.076 ± 0.037

3 −0.495± 0.101± 0.052± 0.045 0.151 ± 0.217 ± 0.069 ± 0.048

4 −0.911± 0.049± 0.032± 0.021 −0.050 ± 0.183 ± 0.045 ± 0.036

5 −0.736± 0.066± 0.030± 0.018 −0.340 ± 0.187 ± 0.052 ± 0.047

6 0.157± 0.074± 0.042± 0.051 −0.827 ± 0.185 ± 0.060 ± 0.036

7 0.403± 0.046± 0.021± 0.002 −0.409 ± 0.158 ± 0.050 ± 0.002

8.3.2. Prospects for LHCb
The measurement of the CKM angle γ in tree dominated processes is one of the

principal goals of LHCb. Extensive simulation studies have been conducted in a variety
of channels. The results summarized here derive from [1035] and references therein.
LHCb will measure γ in tree dominated processes using two main approaches:
(i) Time-dependent measurements The extraction of γ has been studied using

both B0 → D∓π± and Bs → D∓
s K

±. Although the CP-asymmetries in these
modes involve a contribution arising from the mixing diagram, this contribution
can be subtracted using the result from complementary measurements in other
processes, allowing for a pure tree-level γ determination.

(ii) B → DK strategies The modes that have so far been investigated which have
significant weight in the γ measurement include B∓ → DK∓, with the neutral
D reconstructed in the K+K−, π+π−, K∓π±, K∓π±π+π− and K0

Sπ
+π− final

states, and B0 → D(K±π±,K+K−, π+π−)K∗0(K−π+) (+c.c.). The fact that no
initial-state flavor tagging is required means that the relative sensitivity of the
B → DK method is particularly high at LHCb compared with time-dependent
measurements, in which the tagging power is in general lower than is the case at
Υ (4S) experiments.

The expected yields in 2 fb−1 of data taking in these channels are given in Tab. 62.
Note that the goal of the baseline LHCb experiment is to accumulate around 10 fb−1 of
integrated luminosity. In all modes the selection benefits from the good performance of
the π −K separation provided by the LHCb RICH system.
The physics processes underlying the event rates and kinematic distributions in the

B → DK channels have many parameters in common. This means that the observables
for these channels may be combined in a global fit to achieve the best possible sensitivity
to these parameters, most notably γ itself. The power of such a fit has been investigated
in a toy Monte Carlo study, taking as input the expected sensitivities on the observ-
ables arising from the full simulation. For the two and four body D decay modes the
observables are the event rates in each mode; for the D → K0

Sπ
+π− decay they are the

populations of bins in Dalitz space, as defined by the expected strong-phase difference.
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Table 62
Summary of expected LHCb signal and background yields for 2 fb−1. In those rows where more than one

channel is specified (eg. B± → D(K±π∓)K± or B+ → D(K+K− + π+π−)K+), the yields correspond
to the sum over all indicated modes. The physics parameters assumed in calculating these numbers can
be found in [1035].

Channel Signal Background

B± → D(K±π∓)K± 56k 35k

B+ → D(K−π+)K+ 680 780

B− → D(K+π−)K− 400 780

B+ → D(K+K− + π+π−)K+ 3.3k 7.2k

B− → D(K+K− + π+π−)K− 4.4k 7.2k

B± → D(K±π∓π+π−)K± 61k 40k

B+ → D(K−π+π+π−)K+ 470 1.2k

B− → D(K+π−π+π−)K− 350 1.2k

B0 → D(K+π−)K∗0, B̄0 → D(K−π+)K̄∗0 3.4k 1.7k

B0 → D(K−π+)K∗0 350 850

B̄0 → D(K+π−)K̄∗0 230 850

B0 → D(K+K− + π+π−)K∗0 150 500

B̄0 → D(K+K− + π+π−)K̄∗0 550 500

B± → D(K0
Sπ

+π−)K± 5k 4.7k

Bs, B̄s → D∓
s K

± 6.2k 4.3k

B0, B̄0 → D∓π± 1,300k 290k

Important components of this fit are the external constraints which come from the D
decay properties from the quantum-correlated measurements at CLEO-c. These are the
measured strong phase difference in D → Kπ decays [988, 1016], the measured coher-
ence factor [1036] and average strong phase difference in D → Kπππ decays [1023], and
the expected sensitivity on the cosine and sine of the strong phase differences in the
D → K0

Sπ
+π− Dalitz plot bins [1034]. 24 The results of this fit have a dependence on

the assumed values of the physics parameters; the least well known of these is δB0 , the
strong phase difference between the interfering diagrams in B0 → DK∗0 decays, and so
in Tab. 63 the expected sensitivity on γ is shown as a function of this phase. The CLEO-c
inputs allow for a significant improvement on the overall precision.
The results from the global B → DK fit may be combined with the expected uncer-

tainty on γ from the time-dependent measurements, the most important of which is the
analysis of Bs → D∓

s K
± decays. The expected precision on γ from all of these measure-

ments is shown in Tab. 64. It can be seen that with the modes under consideration a
sensitivity of 2− 3◦ is expected in the lifetime of the experiment.

24Note that the results shown here take as input preliminary estimates of the CLEO-c sensitivity to the
D-meson decay properties for both D → Kπππ and D → K0

Sπ
+π−.
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Table 63
Expected LHCb sensitivity to γ from B → DK strategies for data sets corresponding to integrated

luminosities of 0.5, 2 and 10 fb−1, with and without CLEO-c constraints.

δB0 (◦) 0 45 90 135 180

0.5 fb−1

σγ without CLEO-c constraints (◦) 11.5 12.9 13.1 12.5 9.7

σγ with CLEO-c constraints (◦) 9.0 12.0 10.7 11.1 8.6

2 fb−1

σγ without CLEO-c constraints (◦) 5.8 8.3 7.8 8.4 5.0

σγ with CLEO-c constraints (◦) 4.6 6.1 5.7 6.0 4.3

10 fb−1

σγ without CLEO-c constraints (◦) 2.6 5.4 3.5 4.8 2.4

σγ with CLEO-c constraints (◦) 2.3 3.5 2.9 3.2 2.2

Table 64
Expected LHCb combined sensitivity to γ from B → DK and time-dependent measurements for data
sets corresponding to integrated luminosities of 0.5, 2 and 10 fb−1.

δB0 (◦) 0 45 90 135 180

σγ for 0.5 fb−1 (◦) 8.1 10.1 9.3 9.5 7.8

σγ for 2 fb−1 (◦) 4.1 5.1 4.8 5.1 3.9

σγ for 10 fb−1 (◦) 2.0 2.7 2.4 2.6 1.9

9. Measurements of the angles of the unitarity triangle in charmless
hadronic B decays

9.1. Theory estimates for hadronic amplitudes

9.1.1. Angles, physical amplitudes, topological amplitudes
Any standard-model (SM) amplitude for a decay B → f can be written, by integrating

out the weak interactions to lowest order in GF (Sec. 2.1), as a linear combination

A(B → f) =
∑

i,U

CiVUDV
∗
Ub〈f |Qi|B〉 (389)

of matrix elements of local operators Qi in QCD × QED. Here D = d, s and U =
u, c, t. By CKM unitarity, one term in the sum over U can be removed. This gives a
decomposition into (physical) tree and penguin amplitudes (the names are motivated by
Wick contractions of the operators Qi contributing to them),

A(B → f) = Tfe
iθT + Pf e

iθP ,

A(B → f) = Tfe
−iθT + Pf e

−iθP , (390)

where Tf and Pf (“strong amplitudes”) and θT and θP (“weak phases”) have definite
CP transformation properties. For decays into two light mesons, conventionally U = c
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(or U = t) is eliminated, giving θP = β (θP = 0), and θT = γ. For decays involving
charmonium, the tree is associated with U = c (θT = 0), and one of U = u, t is eliminated
(both are expected to be negligible). The prototypical angle measurement derives from
the time-dependent CP asymmetry

ACP(f ; t) ≡
Γ(B(t) → f)− Γ(B(t) → f)

Γ(B(t) → f) + Γ(B(t) → f)
≡ −Cf cos∆mt+ Sf sin∆mt, (391)

where f is a CP eigenstate of eigenvalue ηCP(f), ∆m is the absolute value of the mass
difference between the two mass eigenstates in the B0–B0 system, and

Cf =
1− |ξ|2
1 + |ξ|2 , Sf =

2Imξ

1 + |ξ|2 , ξ = e−i2β
A(B̄ → f)

A(B → f)
. (392)

(We assume CPT conservation, and neglect lifetime differences and CP violation in
mixing throughout.) If Pf can be neglected, |ξ| = 1, Cf = 0, and Sf gives a clean mea-
surement of sin 2(β + θT ). This is true to very good approximation for decays into final
states containing charmonium such as B → J/ψKS (θT = 0, −ηCP(f)Sf = sin 2β). It
holds less accurately for b → d transitions like B → (π+π−, ρ+π−, ρ+ρ−), where the
CKM hierarchy is [Pf/Tf ]CKM = O(1), but some suppression of penguin amplitudes fol-
lows from theoretical arguments reviewed below. In these modes, one has approximately
−ηCP(f)Sf ≈ sin 2(β + γ) = − sin 2α. Conversely, penguin-dominated b → s modes
B → (πK, φK, η(′)K, . . . ), where [Tf/Pf ]CKM = O(λ2), probe sin2β.
In view of these considerations, it is clear that the interpretation of the time-dependent

CP asymmetries (and more generally, the many charmless B and B decay rates) in terms
of CKM parameters and possible new-physics contributions requires some information on
at least the amplitude ratios P/T , hence on the hadronic matrix elements 〈f |Qi|B〉. In
principle, the latter are determined by the QCD and electromagnetic coupling and quark
masses via (for the case of a two-particle final state) four-point correlation functions
involving three operators destroying the B-meson and creating the final-state mesons, as
well as one insertion of the operator Qi. Formally, they are expressible in terms of a path
integral

〈M1M2|Qi|B〉 ∼
∫
dA

∫
dψ̄ dψ jµB(x)j

ν
M1

(y)jρM2
(z)Qi(w)e

i(SQCD+QED). (393)

The currents jB, jM1 , jM2 must have the correct quantum numbers to create/destroy
the initial- and final-state particles, for instance jµB = b̄γµγ5d for a B0 decay, but are
otherwise arbitrary. In practice, this path integral cannot be evaluated; however, the
inner (fermionic) path integral can be represented as a sum of Wick contractions which
provide a nonperturbative definition of “topological” amplitudes (Fig. 75). We stress
that no expansion of any kind has been made; the lines represent the full inverse Dirac
operators, rather than perturbative (“free”) propagators, averaged over arbitrary gluon
backgrounds by the outer (gluonic) path integral. A complete list has been given in [1037].
Topological amplitudes can also be defined equivalently (and were originally) as matrix
elements of the SU(3) decomposition of the weak Hamiltonian [1038,1039].
Each physical amplitude decomposes into several topological ones. For a tree, in the

notation of [1040],
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q2Qi

q3

b

Fig. 75. Examples of Wick contractions. Left: Tree contraction. Right: Penguin contraction. The
scheme-independent topological amplitudes correspond to certain sums of contractions of several opera-
tors in the weak Hamiltonian. The lines are “dressed” propagators, depending on the gluonic background.
Arbitrarily many gluons not shown. From [1037].

TM1M2 = |VubVuD|[AM1M2(α1(M1M2) + α2(M1M2) + αu4 (M1M2))

+BM1M2(b1(M1M2) + b2(M1M2) + bu3 (M1M2) + bu4 (M1M2))

+O(α)] + (M1 ↔M2) . (394)

The first two terms on the first line are known as the color-allowed and color-suppressed
trees, while the third term is due to a set of penguin contractions. The terms on the
second lines are due to annihilation topologies, where both fields in the current jB are
contracted with the weak vertex. We have not spelled out O(α) terms, which include the
electroweak penguin terms, as well as long-distance QED effects. 25 Not all topological
amplitudes are present for every final state. 26 On the other hand, if both ai(M1M2) and
ai(M2M1) are present, they must be summed. For instance [1040],

Tπ0ρ0 =
i

2
|VubVud|

GF√
2
m2
B

[
fBπ+ (0)fρ(α2(π

0ρ0)− αu4 (π
0ρ0))− fBfπfρb1(π

0ρ0)

+ABρ0 (0)fπ(α2(ρ
0π0)− αu4 (ρ

0π0))− fBfπfρb1(ρ
0π0) +O(α)

]
, (395)

where we have also spelled out the normalization factors AM1M2 , which like BM1M2

consists of form factors, decay constants, GF , etc. as a convention (and in anticipation of
the heavy-quark expansion), neglecting terms O(mπ/mB,mρ/mB). Moreover, for flavor-
singlet mesons M1 or M2 there are additional amplitudes.
Similarly, for a penguin, we have the decomposition

PM1M1 = |VcbVcD|[AM1M2α
c
4(M1M2) +BM1M2(b

c
3(M1M2) + bc4(M1M2))]

+(M1 ↔M2) . (396)

The parametrization are general, but we have now fixed a convention where V ∗
tbVtD has

been eliminated.
Present theoretical knowledge on the topological amplitudes derives from expansions

(i) in the Wolfenstein parameter λ (see above discussion), (ii) around the SU(3) flavor
symmetry limit (i.e., in ms/Λ), (iii) in the inverse number of colors 1/Nc, and (iv) the
heavy-quark expansion in Λ/mb and αs, where Λ ≡ ΛQCD is the QCD scale parameter.
The counting for the various topological amplitudes is shown in Tab. 65. The λ and

25These effects include emissions of soft photons from the final-state particles [1041] and are modeled in
extracting the two-body rates and asymmetries (which are not infrared safe if soft photons are included)
from data.
26More precisely, one would write αi(M1M2) → ci(M1M2)αi(M1M2) where ci(M1M2) = 0 if the
amplitude is not present and a Clebsch-Gordan coefficient otherwise [1040].
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Table 65
Hierarchies among topological amplitudes from expansions in the Cabibbo angle λ, in 1/Nc, and in

ΛQCD/mb. Some multiply suppressed amplitudes (e.g. EW penguin amplitudes that are CKM suppressed
in b → s transitions) are omitted.

T/a1 C/a2 Put/αu4 Pct/α
c
4 PEW /α3EW PC

EW /α4EW bc3 bc4 E/b1 A/b2

Cabibbo (b → d) all amplitudes are O(λ3)

Cabibbo (b → s) λ4 λ4 λ4 λ2 λ2 λ2 λ2 λ2 λ4 λ4

1/N 1 1
N

1
N

1
N

1 1
N

1
N

1
N

1
N

1

Λ/mb 1 1 1 1 1 1 Λ/mb Λ/mb Λ/mb Λ/mb

1/Nc counting provide only (rough) hierarchies. Existing SU(3) analyses work at zeroth
order, providing relations between topological amplitudes for different final states. (In
the case of π+π−, ρ+ρ−, isospin alone provides useful relations. This is the basis for the
α determinations reviewed in Sec. 9.3 below.) The virtue is the possibility to completely
eliminate some of the theoretically difficult amplitudes from the analysis, removing the
need for their theoretical computation. This comes of the expense of eliminating some
of the experimental information that is in principle sensitive to short-distance physics
(SM and beyond) from the analysis, as well. For instance, in the α determinations, six
observables are needed to determine one parameter.
Both the 1/Nc expansion and the heavy-quark expansion rely on an expansion in Feyn-

man diagrams. The virtue of the heavy-quark expansion is that, to lowest order in the
expansion parameter Λ/mb, and in some cases to subleading order, the amplitudes them-
selves are calculable in perturbation theory. More precisely, they factorize into products
of form factors and of convolution of a perturbative expression with non-perturbative me-
son wave functions. Moreover, all the bi (annihilation) amplitudes are power-suppressed.
The theoretical basis of the 1/mb expansion is discussed in Sec. 2.2. The rest of this
section is devoted to quantitative results and phenomenology of the topological (and
physical) amplitudes.

9.1.2. Tree amplitudes: results
The most complete results are available for the topological tree amplitudes, whose

factorization at leading power in the 1/mb expansion is pictured in Fig. 76. The gray
blobs and the violet ‘spring’ lines contain the soft and collinear gluon degrees of freedom
(virtualities <

√
Λmb). The hard subgraph, formed by the remaining gluon lines and

the pieces of quark lines between their attachments and the weak vertex, connects the
quark legs of the weak operators Q1 and Q2 with valence quark lines for the external
states but not with each other, hence the name ”tree”. For either operator, the hard
scale mb (wavy lines) can be matched onto two operators OI,II in SCETI (see Sec. 2.2).
At leading power, all terms at O(αs) (NLO) [38–40] and O(α2

s) (NNLO) [1042–1046]
have been computed. In particular, these results establish the validity of factorization
and the good behavior of the perturbation expansion up to NNLO. The hard-collinear
scale

√
Λmb can also be factorized. This has been performed for the operators of type II

in [1044, 1047–1049]. Again, a stable perturbation expansion is observed. Depending on
the flavor of the valence quark lines, color factors differ, giving rise to a “color-allowed”
amplitude α1 and a “color-suppressed” one α2. The type-II (hard-spectator-scattering)
contributions then take the form
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b

QiB̄

M1

M2

Fig. 76. Factorization of the tree amplitudes. Left: Matrix element of a weak Hamiltonian current-current
operator Q1,2 in the effective 5-flavor QCD×QED theory. The red, wavy lines close to the vertex have
virtualities of order m2

b
; the system of green ‘cut-spring’ lines connecting to the spectator, of order Λmb.

The purple ‘spring’ lines entering the mesons indicate the soft gluon background in which the hard
subprocess takes place. Middle: Factorization into a product of a wave function and a form factor (to be
convoluted with a hard kernel HI or HII). Right: The B-type bilocal form factor (convoluted with HII)
factorizes further into wave functions. (According to the pQCD framework, this is also true for the soft
(A-type) form factor.)

AM1M2α
II
1,2 ∝ [HII ∗ φM2 ] ∗ [φB ∗ J ∗ φM1 ] (397)

of a convolution of hard and hard-collinear scattering kernels HII and J with meson wave
functions. An alternative is not to perform the hard-collinear factorization and define a
non-local form factor ζJ = φB ∗ J ∗ φM , information on which has to be extracted from
experiment. This works in practice to zeroth order in αs(mb) [51]. At higher orders,
the kernel HII acquires a dependence on how the momentum is shared between the M1

valence quarks, i.e. the convolution HII ∗ζJ becomes nontrivial. No higher-order analyses
have been performed. 27

For the type-I operators, in the collinear expansion one encounters divergent convo-
lutions in factorizing the hard-collinear scale already at the leading power, indicating
a soft overlap breaking (perturbative) factorization of soft and collinear physics. In this
case, however, not performing this factorization is more feasible, as it leaves a single form
factor (which can be taken to be an ordinary QCD form factor or the SCET soft form
factor) multiplying a convolution of a hard-scattering kernel with one light-meson wave
function,

AM1M2α
I
1,2 ∝ fBM1(0)HI ∗ φM2 . (398)

[By convention, the form factor is factored out into AM1M2 .] An alternative treatment
is kT factorization (“pQCD”) [48], where a transverse-momentum-dependent B-meson
wave function is introduced, which regularizes the endpoint divergence. In this case, a
convergent convolution arises (at lowest order), and within the uncertainties on the wave
function it is generally possible to accommodate the observed data. 28

Finally, certain power corrections were identified as potentially large in [40]. One class,
which is only relevant for final states containing pseudoscalars, consists of “chirally en-

27Strictly speaking, the convolution of the ζJ factor with HII might diverge at the endpoint. Correspond-
ingly, to such a convolution in general a non-perturbative soft rescattering phase should be associated.
An endpoint divergence indeed appears in the attempt to perturbatively factorize ζJ at first subleading
power, see below.
28 Independently of the convergence issue, a perturbative calculation in the kT (or any other) factorization
scheme must demonstrate that the result is dominated by modes which are perturbative.
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hanced” terms, which are proportional to the ratio rPχ = m2
P /(mbmq), where P is a pion

or Kaon and mq an average of light quark masses; another class of certain annihilation
topologies with large color factors (first pointed out in [48]) is discussed in Sec. 9.1.3
below. Power corrections are of phenomenological relevance in αII

2 , which contains a
chirally-enhanced power correction involving the large Wilson coefficient C1, where the
convolution of HII with the power-suppressed analogue ζtw3

J of ζJ is divergent. These
power corrections are therefore not dominated by perturbative gluon exchange. They
have been modeled in [40] by introducing an IR cutoff O(500MeV) on the convolutions
and associating an arbitrary rescattering phase with the soft dynamics.
Quantitatively, combining the phenomenological analysis in [1050] (where values for

hadronic parameters are specified) with the results of [1045, 1046] gives

α1(ππ) = 1.015 + [0.025 + 0.012i]V + [0.024 + 0.026i]V V

−
[ rsp
0.485

]{
[0.020]LO + [0.034 + 0.029i]HV + [0.012]tw3

}

= 0.999+0.034
−0.072 + (0.009+0.024

−0.051)i, (399)

α2(ππ) = 0.184− [0.153 + 0.077i]V − [0.030 + 0.042i]V V

+
[ rsp
0.485

]{
[0.122]LO + [0.050 + 0.053i]HV + [0.071]tw3

}

= 0.245+0.228
−0.135 + (−0.066+0.115

−0.081)i. (400)

In each amplitude, the terms on the first and second lines correspond to the type-I and
type-II contributions. These are further split into terms O(1), O(αs) (V, LO), and O(α2

s)
(VV, HV), and an estimate of a chirally enhanced power correction following a model
defined in [40] (“tw3”). The relative normalization factor of the spectator-scattering
contributions, rsp = (9fπfB)/(mbf

Bπ
+ (0)λB), contains the bulk of the parametric uncer-

tainty of that term. We observe that the color-allowed tree is perturbatively stable and
has small uncertainties resulting from the poor knowledge of hadronic input parameters.
Moreover, the spectator-scattering contribution is small, including a weak dependence
on endpoint-divergent power corrections (labeled “tw3”).
Conversely, the color-suppressed tree amplitude is dominated by the type-II contri-

bution, and it exhibits large sensitivity to a chirally enhanced, non-factorizable power
correction. It is important to keep in mind that the estimate for the latter, unlike all
other pieces, is based on a model. Several phenomenological analyses of the B → ππ
data favor large values α2(ππ) = O(1), which is sometimes called a puzzle. In the Stan-
dard Model, a large value can come from a large rsp, for instance through the moment
λ−1
B ≡

∫
dωφB+(ω)/ω of the relevant B-meson wave function. Information on λB can

be obtained by operator product expansions in HQET [1051, 1052] and from QCD sum
rules [1053,1054], but with considerable uncertainties. An interesting possibility is to de-
termine λB more directly from radiative semileptonic decay, discussed in Sec. 9.1.5 below.
Second, is not inconceivable that a large value originates from the presently incalculable
twist-three spectator scattering. Such an interpretation would be consistent with the fact
that data suggest a small value of α2(ρρ), which is not sensitive to chiral enhancement.
In the treatment advocated in [51], ζJ is not factorized. The generic prediction is

argα2/α1 = O(αs) (this is set to zero in the analysis). A prediction on the magnitude
requires knowledge on ζ and ζJ from outside sources, in analogy with the results described
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above. For more details, see [51, 53, 1055].
In the pQCD approach, the issue of a large α2/α1 (possibly with a large phase) has

been addressed in [1056] and again in [1057]. The latter paper augments the structure in
the original approach by an extra soft rescattering factor which represents an additional
non-perturbative parameter that has to be adjusted to experimental data. We note that
the computation in [1056] uses the hard (type-I) vertex from [38–40] as a building block
to estimate NLO effects in the pQCD approach. Taking, for the sake of the argument,
the asymptotic form of the distribution amplitude φM2 , the contribution is proportional
to

C2(µ) +
C1(µ)

Nc

[
1 +

αs(µ)CF
4π

(
−37

2
− 3 i π + 12 ln

mb

µ

)]
, (401)

where C1(µ) is the large current-current Wilson coefficient. In order to obtain both a
large magnitude and phase, one would need to evaluate this expression at a low scale
µ≪ mb, where perturbation theory is questionable. 29 In the pQCD approach the above
expression appears inside a convolution integral, where the scale µ is fixed by the internal
kinematics of the spectator scattering. The enhancement and the large phase of the color-
suppressed tree amplitude found in [1056] therefore has to be associated to a rather low
effective renormalization scale (see also the discussion in [1058]). Correspondingly, scale
variations or alternative scale-setting procedures in the pQCD approach represent an
additional source of potentially large theoretical uncertainties associated to this kind of
NLO effects.
Finally, the (physical) tree amplitudes receive contributions from penguin and anni-

hilation contractions as discussed above. The factorization properties of the former are
very similar to those of the penguin amplitudes discussed in the following section and
give rise to corrections that are subleading with respect to α1, α2. For the annihilation
amplitudes b1 and b2 there is no factorization in the collinear expansion. Both the model
of [40] and the kT factorization of [48] result in small numerical values. 30

9.1.3. Penguin amplitudes: results
The penguin contraction αc4(M1M2) entering the physical penguin amplitude PM1M2

decomposes in the heavy-quark expansion as

αc4 = ac4 + rχa6 + higher powers and terms not chirally enhanced. (402)

Factorization of ac4 (as defined here) to leading power has been argued (to one loop) and
the hard kernels computed in [38–40] but has been the subject of some controversy over
the existence of an extra leading-power long-distance nonrelativistic “charming-penguin”
contribution [51, 1060, 1061]. Such an incalculable extra term would, in practice, imply
that no prediction for penguin amplitudes can be made. It appears that this theoretical
issue has recently been resolved [1062] (in favor of calculability in the sense of [38–40]).

29More precisely, the apparent µ-dependence is formally a NNLO effect.
30 In [1037] it has been noted that b2 is leading in the 1/Nc counting. On the other hand, the diagrams
that are leading in the 1/Nc counting combine to the product of a decay constant and the matrix element
of the divergence of a current that is conserved in the limit ms,d,u → 0. A hard-scattering approach
then implies bN=∞

2 = O(ms,d,u/mb). This suppression is also found in the QCD light-cone sum rules
treatment in [1059]. Nevertheless we do not know a rigorous argument why this amplitude could not be
as large as O(ms/Λ) in B → πK decays.
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Again, there are two contributions, labeled I and II as in the case of the trees. The compu-
tation of the spectator scattering term aII4 has been performed to O(α2

s) [1050,1055]. The
“scalar-penguin” term rχa

c
6 is again a chirally enhanced power correction, which however

is calculable. At O(αs) [38–40] it dominates over ac4 whenM2 is a pseudoscalar (otherwise
it is negligible). Finally, the physical penguin amplitudes contain a penguin annihilation
term with a large color factor that is not chirally enhanced. Twist-three spectator scatter-
ing is unlikely to be very important, as the type-I contributions are significant (similarly
to the color-allowed tree). Because the perturbative results for the penguin amplitudes, in
comparison to the tree amplitudes, are rather incomplete at this time (only one piece at
O(α2

s) has been computed, as discussed above), we refrain from giving numerical results;
for an exhaustive compendium of O(αs) results we refer to [1040]. Rather, we recall the
following “anatomy”. As just mentioned, physical penguin amplitudes are approximately
described in terms of a leading-power piece, a chirally enhanced power correction, and
an annihilation term:

PM1M2 ∝ ac4(M1M2)± rM2
χ ac6(M1M2) +

BM1M2

AM1M2

bc3(M1M2). (403)

The sign in front of a6 provides for constructive interference in the case of a PP final state
and destructive one for a V P final state; moreover the enhancement factor rχ is absent
(or small) for PV final states. This results in a particular pattern for the magnitudes
and phases of penguin amplitudes (and P/T ratios) that can be compared to data in
∆B = ∆S = 1 decays [1040, 1050], with a reasonable agreement within uncertainties.
The comparison also indicates the presence of substantial annihilation contributions (as
included in the ‘S4’ scenario favored in [1040]). For instance, a complex annihilation term
is essential to account for the observed sign of CP asymmetries in B0 → K+π− and B0 →
π+π−. (A caveat to this is that the O(α2

s) contribution to a6 is currently not known; as it
involves the large coefficient C1 it might make a non-negligible contribution to the phase
of P/T .) As with the endpoint divergent twist-three spectator scattering (and with the
same caveats) the annihilation term is rendered finite in pQCD (kT factorization) and
one can obtain the “correct” sign of the penguin amplitudes through the annihilation
amplitude. A treatment based on the approach of [51], but extended by an a6 term and
a real annihilation amplitude, can be found in [1055]. The phenomenologically required
phase is assigned there to a nonperturbative charming-penguin parameter.

9.1.4. Application to angle measurements
As explained in Sec. 9.1.1, various time-dependent CP asymmetries measure CKM

angles via their S-parameter in the limit of vanishing T or P . The predictions obtained
from the heavy-quark expansion can be directly applied to correct for non-vanishing
subleading amplitudes. For the case of the angle β in b→ s penguin transition, where

∆Sf = −ηCP(f)Sf − sin(2β) ≈ 2 cos(2β) sin γ Re
Tf
Pf
, (404)

such analyses have been performed in [53,1063–1066], following the different treatment of
hadronic inputs and (divergent) power corrections outlined above. Results are compared
in Tab. 66.
Analogous expressions hold for b → d transitions. This allows a measurement of

Sπ+π−,π+ρ−,ρ+ρ− to be directly turned into one of γ. These determinations are com-
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Table 66
Predictions for ∆S defined in the text for several penguin-dominated modes. Note: For the QCDF results,

we quote the result of a scan over input parameters (conservative). For the SCET results, double results
correspond to two solutions of a fit of hadronic parameters, and errors are combined in quadrature.
Results for PP final states are from [53], for PV from [1065]; both papers assume SU(3) to reduce the
number of theory papers but differ over the inclusion of certain chirally enhanced terms.

mode QCDF/BBNS [1063] SCET/BPRS [53, 1065] pQCD [1066] experiment

φKS 0.01 . . . 0.05 0 / 0 0.01 . . . 0.03 −0.23± 0.18

ωKS 0.01 . . . 0.21 −0.25 . . .−0.14 / 0.09 . . . 0.13 0.08 . . . 0.18 −0.22± 0.24

ρ0KS −0.29 . . . 0.02 0.11 . . . 0.20 / −0.16 . . .−0.11 −0.25 . . .−0.09 −0.13± 0.20

ηKS −1.67 . . . 0.27 −0.20 . . . 0.13 / −0.07 . . . 0.21

η′KS 0.00 . . . 0.03 −0.06 . . . 0.10 / −0.09 . . . 0.11 −0.08± 0.07

π0KS 0.02 . . . 0.15 0.04 . . . 0.10 −0.10± 0.17

petitive with the average of isospin-triangle “α” determinations, and in fact even of
the global unitarity triangle fit: γππ = (70+13

−10)
◦, γπρ = (69 ± 7)◦ [1058], and γρLρL =

(73.2+7.6
−7.7)

◦ [1067]. (These involve QCDF calculations of P/T ; we have not updated ex-
perimental inputs.) For a combination of heavy-quark expansion and SU(3) flavor argu-
ments, see [1068].

9.1.5. Prospects
The discovery that predictions for hadronic two-body decay amplitudes can be made in

perturbation theory in an expansion in Λ/mb has led to a lot of activity at the conceptual,
technical, and phenomenological level. At the former, it provides a highly nontrivial
application of soft-collinear effective theory, while at the latter it bore the promise to
discuss many more observables separately than is possible based on isospin and flavor-
SU(3) arguments alone. So far, the available technical results are between the NLO
and NNLO stage, where they show a good behavior of the perturbation series. The
NNLO computations should be completed also for the (topological) penguins, including
chirally enhanced power corrections. This means one-loop corrections to aII6 and two-loop
corrections to aI4 and aII6 , and analogous electroweak amplitudes. Not before then will it
be really possible to compare to data (preferably from new-physics-insensitive channels)
to assess the importance of certain incalculable power corrections, which will then likely
dominate the uncertainties on all amplitudes. A related issue is the status of required
nonperturbative inputs – foremost, form factors and moments of the B-meson wave
functions. While some progress on the former is expected from improved lattice results,
the latter has to be obtained in other ways, such as from QCD light-cone sum rules or
from data itself. Most important are the first inverse moments λ−1

B and λ−1
Bs

. They are
intimately related to the size of spectator-scattering terms, hence to the color-suppressed
tree (and electroweak-penguin) amplitudes. Interestingly, in the case of Bd mesons this
parameter can already be constrained from the search for the radiative semileptonic decay
B+ → γℓ+ν [1069]. Here, a more sophisticated theoretical analysis taking into account
known higher-order and power corrections in that mode would be interesting.
For the non-factorizable power corrections themselves, significant conceptual progress

would be necessary before one might gain quantitative control. The fate of soft-collinear
factorization is a hard problem but is important. Meanwhile, a comparison of data with
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refined theory predictions may give us more (or less) confidence in present models of the
power corrections.

9.2. Measurement of β

9.2.1. Theoretical aspects
Measurements of time-dependent CP violation in hadronic b → s penguin dominated

decay modes provide an interesting method to test the SM. Naively, decays to CP eigen-
state final states f (with CP eigenvalues ηf ) which are dominated by VtbV

∗
ts amplitudes

should have small values of ∆Sf ≡ −ηfSf − SJ/ψK0
S
since, in the SM, arg (VtbV

∗
ts) ≈

arg (VcbV
∗
cs). Although one expects hadronic corrections in these modes to be only of

O(λ2) ≈ 5% [1070, 1071], this is difficult to confirm rigorously. In fact in the past few
years many theoretical studies [1063, 1064, 1066, 1072, 1073] of the “pollution” from the
amplitude proportional to VubV

∗
us to these modes have been undertaken. Recall that the

amplitude can be written as

A(B̄ → f) = VcbV
∗
cs a

c
f + VubV

∗
us a

u
f ∝ 1 + e−iγ df , (405)

where schematically the hadronic amplitude ratio is given by

df ∼
∣∣∣∣
VubV

∗
us

VcbV ∗
cs

∣∣∣∣
{Pu, C, . . .}
P c + . . .

. (406)

Since for small df , the correction ∆Sf ≈ 2Re(df ) cos(2β) sin γ, these contributions have
to be negligibly small for time-dependent CP asymmetry measurements in b → s tran-
sitions to provide a clean and viable test of the SM, or df has to be under very good
theoretical control. The problem is that precise model independent estimates are rather
difficult to make. Most theoretical calculations suggest that the two penguin amplitudes
P c, Pu are similar resulting in a universal positive contribution 0.03 to Sf , while the
final-state dependence results mainly from the interference of the color-suppressed tree
amplitude C with the dominant penguin amplitude, Re(C/P c). For more detailed re-
views, see Refs. [1074, 1075].
In fact, it is important to note that there are actually (at least) three ways to determine

sin2β in the SM:
– First, the gold-plated method via B0 → J/ψK0

S
,

– Via the b→ s penguin-dominated decay modes,
– From the “predicted” value of sin2β, based on the SM CKM Unitarity Triangle fit.
Unlike the previous two, which are directly measured values of sin2β, the predicted
value is typically obtained by using hadronic matrix elements, primarily from lattice
calculations, along with experimental information on CP violating and CP conserving
parameters ǫK , ∆ms/∆md and Vub/Vcb. In fact, recently it has been shown that the
precision in one hadronic matrix element (BK) has improved so that even without
using Vub/Vcb a non-trivial constraint can be obtained for the predicted value of sin2β
in the SM [1076]. This is important since there is an appreciable disagreement between
inclusive and exclusive determinations of Vub [261].

Differences in the resulting three values of sin2β may imply new physics and need to be
carefully understood.
In the discussion of experimental results below, we see that ten b → s penguin dom-

inated decay modes have been identified so far. Several theoretical studies find that
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three of the modes: φK0
S
, η′K0

S
and K0

S
K0

S
K0

S
are the cleanest with SM predictions of

∆Sf . 0.05, since either there is no pollution from the color-suppressed tree ampli-
tude, or the penguin amplitude is large, in which case df is estimated to be only a few
percent; this also generally means that the uncertainties on these estimates are small.
On the other hand, theoretical calculations find appreciably larger tree contributions
(with large uncertainties) in several of the other modes, such as ηK0

S
, ρK0

S
, ωK0

S
. It

therefore no longer seems useful to average the CP asymmetry over all of the penguin
modes. Factorization-based calculations suggest that the uncertainty in the case of π0K0

S

is intermediate between the two sets of final states above. However, for π0K0
S
additional

information is available: a general amplitude parametrization of the entire set of πK final
states together with SU(3) flavor symmetry allows to constrain Sπ0K0

S
by other πK and

ππ observables [1077–1079]. At present this method yields Sπ0K0
S
≃ 0.8–1, if one allows

for an anomalously large color-suppressed tree amplitude that is suggested by the current
πK branching fractions and direct CP asymmetries. Hence improved measurements of
the direct and time-dependent asymmetries may still provide useful tests of the SM.
Finally, we note that the current experimental errors of 0.07 (η′K0

S
) and 0.17 (φK0

S

and K0
S
K0

S
K0

S
), as shown in Fig. 80, are statistics dominated and are also still large

compared to the expected theory uncertainties. At a Super Flavor Factory (≈ 50–75 ab−1

of data) the experimental errors will get significantly reduced down to around 0.01–
0.03 [167, 1074, 1080–1082]. Looking to the future, another interesting channel is Bs →
φφ [1070,1083], where the näıve Standard Model expectation for Sf is zero, and which will
be measured by LHCb. As mentioned above, in the SM it is theoretically quite difficult
to explain ∆Sf larger than 0.05 in these modes. Therefore if improved experimental
measurements show ∆S & 0.1 then that would be an unambiguous sign of a CP -odd
phase beyond the SM-CKM paradigm.

9.2.2. Experimental results
B0 → η′K0 and B0 → ωK0

S

Both the BaBar and Belle experiments reconstruct seven decay channels ofB0 → η′K0,
B0 → η′(ργ, ηγγπ+π−, η3ππ+π−)K0

S
(π+π−),

B0 → η′(ργ, ηγγπ+π−)K0
S
(π0π0) and

B0 → η′(ηγγπ+π−, η3ππ+π−)K0
L
.

BaBar identifies the decays with a K0
S
using mES, ∆E and a Fisher discriminant which

separates continuum fromBB events [249]. Similarly, Belle usesMbc, ∆E and a likelihood
ratio, RS/B, which performs the same task of qq discrimination [949]. For K0

L
modes,

only the K0
L
direction is measured, so either mES or ∆E is calculated. BaBar uses ∆E

while Belle chooses Mbc. Fig. 77 shows ∆t and asymmetry projections for B0 → η′K0.
For B0 → ωK0

S
, the only useful decay channel is, B0 → ω(π+π−π0)K0

S
(π+π−). BaBar

uses mES, ∆E, a Fisher discriminant, the ω mass and its helicity to discriminate between
signal and background [249] while Belle usesMbc, ∆E, RS/B and the ω mass [1084]. The
fit results are summarized in Tab. 67 and Fig. 80.
In these modes there is no evidence for direct CP violation while mixing-induced

CP violation is consistent with charmonium. The significance of the mixing-induced CP
violation effect in B0 → η′K0 is greater than 5σ in both BaBar and Belle analyses.

B0 → K0π0, B0 → K0
S
K0

S
K0

S
and B0 → K0

S
π0π0

258



 

 

 

  

0

50

100

150

 

 

 

 

0

50

100

150

t (ps) ∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

 

-1

-0.5

0

0.5

1

t (ps) ∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

 

-1

-0.5

0

0.5

1

(a)

(b)

(c)

E
ve

nt
s 

/ p
s 

t (ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

-1

-0.5

0

0.5

1 (c)

t (ps)∆
-6 -4 -2 0 2 4 6

A
sy

m
m

et
ry

-1

-0.5

0

0.5

1
-6 -4 -2 0 2 4 60

50

100

(b)

-6 -4 -2 0 2 4 60

50

100

-6 -4 -2 0 2 4 60

50

100

(a)

-6 -4 -2 0 2 4 60

50

100

E
ve

nt
s 

/ p
s (a) B0 → η′K0

0

50

100

150 q=+1
q=−1

E
n
tr

ie
s
 /
 1

.5
 p

s

-0.5

0

0.5

-7.5 -5 -2.5 0 2.5 5 7.5
-ξf∆t(ps)

A
s
y
m

m
e
tr

y

B0 tags B0 tags

B0 tags B0 tags

Fig. 77. Signal enhanced ∆t projections and asymmetry plots for B0 → η′K0. The left (middle) plot
shows BaBar’s fit results for B0 → η′K0

S (B0 → η′K0
L) and the right plot shows Belle’s combined fit

result.

Table 67
Summary of B0 → η′K0 and B0 → ωK0

S .

BaBar Belle

B0 → η′K0

Yield (N(BB)× 106) 2515 ± 69 (467) 1875 ± 60 (535)

B0 → ωK0

Yield (N(BB)× 106) 163± 18 (467) 118± 18 (535)

These modes are distinguished by the lack of a primary track coming from the recon-
structed B vertex. In such cases, the B vertex is determined by extrapolating the K0

S

pseudo-track back to the interaction point. However, due to the relatively long lifetime
of the K0

S
meson, the vertex reconstruction efficiency is less than 100% as the charged

pion daughters may not be able to register hits in the innermost sub-detector.
For B0 → K0π0, BaBar describes signal events with the reconstructed B mass and

the mass of the tag-side B calculated from the known beam energy and reconstructed
B momentum constrained with the nominal B mass. In addition, the cosine of the polar
angle of the B candidate in the Υ (4S) frame and ratio of angular moments, L2/L0, which
discriminate against continuum are also used [249]. Belle uses Mbc, ∆E, and RS/B to
describe signal events and additionally considers the B0 → K0

L
π0 channel for which ∆E

cannot be calculated [1085]. Fig. 78 shows ∆t and asymmetry projections forB0 → K0π0.
For B0 → K0

S
K0

S
K0

S
and B0 → K0

S
π0π0 [1086], BaBar uses mES, ∆E and a neural

network (NN) which distinguishes BB from qq events to describe signal [1087, 1088]
and similarly, Belle uses Mbc, ∆E and RS/B [949, 1089]. For B0 → K0

S
K0

S
K0

S
, both

experiments include the case where one K0
S
decays to a neutral pion pair. The fit results

are summarized in Tab. 68 and Fig. 80.
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B0 → K0π0. The left plot shows BaBar’s fit result and the right plot shows Belle fit result.

Table 68
Summary of B0 → K0 π0, B0 → K0

S K0
S K0

S and B0 → K0
S π0 π0.

BaBar Belle

B0 → K0π0

Yield (N(BB)× 106) 556 ± 32 (467) 657± 37 (657)

B0 → K0
SK

0
SK

0
S

Yield (N(BB)× 106) 274 ± 20 (467) 185± 17 (535)

B0 → K0
Sπ

0π0

Yield (N(BB)× 106) 117 ± 27 (227) 307± 32 (657)

In these modes the direct CP components are all consistent with Standard Model
expectations and the mixing-induced parameters are consistent with charmonium with
current statistics. The largest discrepancy, which is not statistically significant, is in the
mixing-induced CP violation parameter in B0 → K0

S
π0π0, which appears to have the

wrong sign.

B0 → K0
S
π+π− and B0 → K0

S
K+K−

To extract CP violation parameters of modes such as B0 → K0
S
ρ0 (ρ0 → π+π−)

or B0 → K0
S
φ (φ → K+K−), it is necessary to perform a time-dependent Dalitz plot

analysis as interfering resonances in the three-body final states make the results of quasi-
two-body analyses difficult to interpret. As the relative amplitudes and phases of each
decay channel in the Dalitz plot are determined in such an analysis, the angle βeff can
be directly obtained, rather than measuring Seff

CP .
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For B0 → K0
S
π+π−, the signal model contains the K∗+(892), K∗+

0 (1430), ρ0(770),
f0(980), f2(1270), fX(1300) states and a nonresonant component. BaBar describes signal
events with mES, ∆E and the output of a neutral network [1090] while Belle just uses
∆E [1091]. Belle finds two solutions given in Tab. 69 with consistent CP parameters but
different K∗+

0 (1430)π− relative fractions due to the interference between K∗+
0 (1430) and

the non-resonant component. The high K∗+π− fraction of Solution 1 is in agreement
with some phenomenological estimates [1092] and may also be qualitatively favored by
the total K–π S-wave phase shift as a function of m(Kπ) when compared with that
measured by the LASS collaboration [1020]. The fit results for both experiments are
summarized in Tab. 71 and Fig. 79, which includes the preferred solution from Belle.

Table 69
Multiple solutions in B0 → K0

Sπ
+π− at Belle where the first error is statistical, the second systematic

and the third is the model uncertainty.

Sol. 1 Sol. 2

βeff (ρ0(770)K0
S) (20.0+8.6

−8.5 ± 3.2± 3.5)◦ (22.8± 7.5± 3.3± 3.5)◦

βeff (f0(980)K0
S) (12.7+6.9

−6.5 ± 2.8± 3.3)◦ (14.8+7.3
−6.7 ± 2.7± 3.3)◦

The decay B0 → K0
S
K+K− is also studied with a time-dependent Dalitz plot analysis.

The signal model contains the f0(980), φ(1020), fX(1500) and χc0 states and a nonres-
onant component. The BaBar collaboration additionally uses the K0

S
decay channel to

neutral pions and describes signal events with mES and ∆E [1093]. Similarly, Belle uses
Mbc and ∆E [1094].
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Fig. 79. CP parameters of B0 → K0
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+π− and B0 → K0
SK

+K−.
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Belle finds four solutions as shown in Tab. 70 due to the interference between f0(980),
fX(1500) and the non-resonant component. Using external information from B0 →
K0

S
π+π−, if the fX(1500) is the f0(1500) for both B

0 → K0
S
π+π− and B0 → K0

S
K+K−,

the ratio of branching fractions, B(f0(1500) → π+π−)/B(f0(1500) → K+K−), prefers
the solution with the low fX(1500)K0

S
fraction. Similarly other measurements of the rela-

tive magnitudes of the f0(980) → π+π and f0(980) → K+K− widths prefer the solution
with the low f0(980)K

0
S
fraction. The fit results for both experiments are summarized

in Tab. 71 and Fig. 79, which includes the preferred solution from Belle, while Fig. 80
gives a summary of these results together with those from other charmless hadronic B
decays. In the time-dependent CP violation analyses, there is no evidence for direct CP
violation and βeff is consistent with charmonium.

Table 70
Multiple solutions in B0 → K0

SK
+K− at Belle where the error is statistical only.

Sol. 1 Sol. 2 Sol. 3 Sol. 4

βeff (f0(980)K0
S ) (28.2+9.8

−9.9)
◦ (64.1+7.6

−8.0)
◦ (61.5+6.5

−6.5)
◦ (36.9+10.9

−9.6 )◦

βeff (φ(1020)K0
S ) (21.2+9.8

−10.4)
◦ (62.1+8.3

−8.8)
◦ (65.1+8.7

−8.7)
◦ (44.9+13.2

−13.6)
◦

Table 71
Summary of B0 → K0

Sπ
+π− and B0 → K0

SK
+K−.

BaBar Belle

B0 → K0
Sπ

+π−

Yield (N(BB)× 106) 2172 ± 70 (383) 1944 ± 98 (657)

B0 → K0
SK

+K−

Yield (N(BB)× 106) 1428 ± 47 (467) 1269 ± 51 (657)

9.3. Measurements of α

9.3.1. Theoretical aspects
The b→ u tree amplitude (Fig. 81(a)) is proportional to Vub and, in the usual conven-

tion, carries the weak phase γ. Since B0B0 mixing carries the weak phase 2β, at the tree
level the time-dependent CP -violation measurements in the B0 → π+π− and B0 → ρ+ρ−

decays are sensitive to 2β + 2γ = 2π − 2α.
The decay-time distribution for B0 → π+π− is given by

dN

d∆t
=
e−|∆t|/τ

4τ
×
{
1− qtag[Cππ cos(∆md∆t)− Sππ sin(∆md∆t)]

}
, (407)

where τ is the neutral B lifetime, ∆md is the B
0–B0 mixing frequency, ∆t is the difference

in decay times tππ − ttag, and the parameter qtag equals +1 (−1) when the tag-side B

decays as a B0(B0). The parameter Cππ characterizes direct CP violation and is also
referred to in the literature as −Aππ. At the tree level, the CP -violating asymmetries
Sππ = sin 2α (α ≡ arg [−VtdV ∗

tb/VudV
∗
ub]) and Cππ ≡ −Aππ = 0. However, since the

leading higher-order b→ d contribution to the B0 → π+π− decay amplitude (Fig. 81(b))
is sizable and carries the weak phase −β, direct CP violation Cππ 6= 0 becomes possible

262



Cf = -Af

H
F

A
G

C
K

M
20

08
H

F
A

G
C

K
M

20
08

H
F

A
G

C
K

M
20

08
H

F
A

G
C

K
M

20
08

H
F

A
G

C
K

M
20

08

H
F

A
G

C
K

M
20

08

H
F

A
G

C
K

M
20

08
H

F
A

G

C
K

M
20

08

H
F

A
G

C
K

M
20

08
H

F
A

G
C

K
M

20
08

φ 
K

0

η′
 K

0

K
S
 K

S
 K

S

π0  K
0

ρ0  K
S

ω
 K

S

f 0 
K

S

π0  π
0  K

S

φ 
π0  K

S

K
+
 K

-  K
0

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

BaBar -0.14 ± 0.19 ± 0.02
Belle -0.31 +-

0
0

.

.
2
2

1
3 ± 0.04 ± 0.09

Average -0.23 ± 0.15
BaBar -0.08 ± 0.06 ± 0.02
Belle 0.01 ± 0.07 ± 0.05
Average -0.05 ± 0.05
BaBar -0.16 ± 0.17 ± 0.03
Belle -0.31 ± 0.20 ± 0.07
Average -0.23 ± 0.13
BaBar 0.13 ± 0.13 ± 0.03
Belle -0.14 ± 0.13 ± 0.06
Average 0.01 ± 0.10
BaBar 0.02 ± 0.27 ± 0.08 ± 0.06
Belle -0.03 +-

0
0

.

.
2
2

4
3 ± 0.11 ± 0.11

Average -0.01 ± 0.20
BaBar -0.52 +-

0
0

.

.
2
2

2
0 ± 0.03

Belle 0.09 ± 0.29 ± 0.06
Average -0.32 ± 0.17
BaBar 0.16 ± 0.19
Belle 0.05 ± 0.18
Average 0.10 ± 0.13
BaBar 0.23 ± 0.52 ± 0.13
Belle 0.17 ± 0.24 ± 0.06
Average 0.18 ± 0.22
BaBar -0.20 ± 0.14 ± 0.06
Average -0.20 ± 0.15
BaBar -0.05 ± 0.09 ± 0.04
Belle 0.09 ± 0.10 ± 0.05
Average 0.01 ± 0.07

H F A GH F A G
CKM2008

PRELIMINARY

sin(2βeff) ≡ sin(2φe
1
ff)

H
F

A
G

C
K

M
20

08

H
F

A
G

C
K

M
20

08
H

F
A

G
C

K
M

20
08

H
F

A
G

C
K

M
20

08

H
F

A
G

C
K

M
20

08
H

F
A

G
C

K
M

20
08

H
F

A
G

C
K

M
20

08
H

F
A

G
C

K
M

20
08

H
F

A
G

C
K

M
20

08

H
F

A
G

C
K

M
20

08

H
F

A
G

C
K

M
20

08

b→ccs

φ 
K

0

η′
 K

0

K
S
 K

S
 K

S

π0  K
0

ρ0  K
S

ω
 K

S

f 0 
K

S

π0  π
0  K

S

φ 
π0  K

S

K
+
 K

-  K
0

-2 -1 0 1 2

World Average 0.67 ± 0.02
BaBar 0.26 ± 0.26 ± 0.03
Belle 0.67 +-

0
0
.
.
2
3
2
2

Average 0.44 +-
0
0
.
.
1
1
7
8

BaBar 0.57 ± 0.08 ± 0.02
Belle 0.64 ± 0.10 ± 0.04
Average 0.59 ± 0.07
BaBar 0.90 +-

0
0
.
.
1
2
8
0 

+
-
0
0
.
.
0
0
3
4

Belle 0.30 ± 0.32 ± 0.08
Average 0.74 ± 0.17
BaBar 0.55 ± 0.20 ± 0.03
Belle 0.67 ± 0.31 ± 0.08
Average 0.57 ± 0.17
BaBar 0.61 +-

0
0
.
.
2
2
2
4 ± 0.09 ± 0.08

Belle 0.64 +-
0
0
.
.
1
2
9
5 ± 0.09 ± 0.10

Average 0.63 +-
0
0
.
.
1
2
7
1

BaBar 0.55 +-
0
0
.
.
2
2
6
9 ± 0.02

Belle 0.11 ± 0.46 ± 0.07
Average 0.45 ± 0.24
BaBar 0.64 +-

0
0
.
.
1
1
5
8

Belle 0.60 +-
0
0
.
.
1
1
6
9

Average 0.62 +-
0
0
.
.
1
1
1
3

BaBar -0.72 ± 0.71 ± 0.08
Belle -0.43 ± 0.49 ± 0.09
Average -0.52 ± 0.41
BaBar 0.97 +-

0
0
.
.
0
5
3
2

Average 0.97 +-
0
0
.
.
0
5
3
2

BaBar 0.86 ± 0.08 ± 0.03
Belle 0.68 ± 0.15 ± 0.03 +-

0
0
.
.
2
1
1
3

Average 0.82 ± 0.07

H F A GH F A G
CKM2008

PRELIMINARY

Fig. 80. CP parameters of charmless hadronic B decays.

263



and Sππ = sin 2αeff

√
1− C2

ππ , where, in general, the phase difference α−αeff = ∆α ≡ δ 6=
0. Contributions from physics beyond the Standard Model could affect the CP -violating
asymmetries Sππ and Cππ primarily through additional penguin amplitudes.
The value of δ can be extracted through a model-independent analysis that uses the

SU(2) isospin-related decays B± → π±π0 and B0 → π0π0 [37]. Let us denote the Bij →
πiπj and Bij → πiπj decay amplitudes Aij and Aij , respectively. Assuming isospin
symmetry, these amplitudes are related by the equations

A+−/
√
2 +A00 = A+0, A+−/

√
2 +A00 = A−0, (408)

which can be represented graphically in the form of “isospin triangles” (Fig. 81(c)).
Neglecting electroweak penguins, |A+0| = |A−0| (evidence of direct CP violation in B± →
π±π0 would show that such contributions cannot be neglected, and would be a signal
for new physics contributions). If the (arbitrary) global phase of all Aij amplitudes is
chosen such that A+0 = A−0, it can be shown that the phase difference between A+−

and A+− is 2δ. Note that the value of δ extracted in this manner carries an eightfold
ambiguity. Moreover, the value of α that is obtained is insensitive to new physics effects,
unless they violate isospin. In the B → ππ system (as in the B → ρρ case, discussed
below), knowledge of A00 and A00 is the limiting factor in the extraction of δ.
For B → ρρ decays, the same formalism applies separately to each helicity amplitude

(where CP = +1 (L = 0, 2) and CP = −1 (L = 1)). Thus, the extraction of α requires
knowledge of the polarization. In practise, the fraction of longitudinal polarization (fL)
is measured by fitting the ρ helicity angle distribution. The probability density function
(PDF) used is

d2N

d cos θ1 d cos θ2
= 4fL cos

2 θ1 cos
2 θ2 + (1 − fL) sin

2 θ1 sin
2 θ2 , (409)

where θ1 (θ2) is the angle between the daughter π0 and direction opposite the ρ− (ρ+)
direction in the ρ+ (ρ−) rest frame (see Fig. 82). B0 → ρ+ρ− is found to be almost
purely fL= 1, which implies that the CP -odd L=1 component is negligible. This high
polarization is fortunate, as it gives a larger CP asymmetry and thus greater sensitivity
to α. (Conversely, the possibility to resolve some of the ambiguities in the solution for α
from the interference between different helicity amplitudes is precluded.) Moreover, the
contributions from penguin amplitudes (Fig. 81b) are found to be small for B → ρρ,
allowing a determination of α with small theoretical uncertainty.
A second complication in B → ρρ decays is that the final state ρ mesons have non-zero

decay width, and thus their masses are not necessarily equal. As a consequence, Bose-
Einstein symmetry no longer holds, and the I=1 isospin state is allowed [1095]. In this
case the isospin relations needed to extract α (Fig. 81c) do not hold. The problem can
be studied by restricting the ππ invariant mass window used to select ρ→ ππ candidates

(a) (b) (c)

Fig. 81. (a) Tree and (b) gluonic-penguin contributions to B0 → (π/ρ)+(π/ρ)−. (c) London–Gronau
isospin triangles for B → ππ, B → ρρ [37].

264



ρφ

θ

θ

π

π

π

π

+

−

0

0

1

2
−

+ρ

Fig. 82. Definition of helicity angles θ1 and θ2 used to fit for fL, the fraction of longitudinal polarization.

to a narrow range and checking whether the fitted value of sin2α shifts. No such shift
has been observed, and hence possible isospin violation is below the sensitivity of current
measurements.
The decays B0 → ρ+π−, B0 → ρ−π+, and B0 → ρ0π0 (collectively referred to as

B0 → ρπ) are also mediated by the b→ uūd transition, and thus the interference between
B0 → ρπ and B0 → ρπ is also sensitive to α. However, these modes have an advantage
over B → ππ and B → ρρ decays, as pointed out in Ref. [1096]: the three-body π+π−π0

final state yields a Dalitz plot that can be analyzed to measure all three B0 → (ρπ)0

modes simultaneously. The decay-time distributions of these three states allows one to
resolve the penguin contribution and determine α with very little theoretical uncertainty
and only a single unresolvable ambiguity (α −→ α + π). In addition, one can use the
branching fractions for the charged modes B+ → ρ+π0 and B+ → ρ0π+ along with
isospin relations to improve the determination of α [1097, 1098].
The Dalitz plot has a time dependence

|A(t, s+, s−)|2 ∝ e−Γ|t|
{
(|A3π |2 + |A3π|2) −

qtag · (|A3π |2 − |A3π|2) cos(∆m∆t) +

qtag · 2 · Im
(
q

p
A∗

3πA3π

)
sin(∆m∆t)

}
, (410)

where A3π = A(B0 → πππ), A3π = A(B0 → πππ), s+ = (p++p0)
2, s− = (p−+p0)

2, and
p+, p−, and p0 are the four-momenta of the π+, π−, and π0, respectively. The parameter

qtag equals +1 (−1) when the tag-side B decays as a B0(B0), and q/p is the ratio of

complex coefficients relating the B0 and B0 flavor eigenstates to the mass eigenstates.
The amplitudes A3π and A3π are further decomposed into
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A3π(s+, s−) = f+(s+, s−)A+ + f−(s+, s−)A− + f0(s+, s−)A0 (411)
(
q

p

)
A3π(s+, s−) = f̄+(s+, s−)A+ + f̄−(s+, s−)A− + f̄0(s+, s−)A0 , (412)

where the subscript “+” represents ρ+π−, “−” is for ρ−π+, and “0” is for ρ0π0. The
kinematic functions fi and f̄i are the products of Breit-Wigner functions to describe the
ππ lineshape and an angular function to describe the helicity distribution. The goal of
the analysis is to fit the time-dependence of the Dalitz plot to determine the six complex
amplitudes Ai and Ai; from these one determines α via the relationship

ei2α =
A+ +A− + 2A0

A+ +A− + 2A0

. (413)

Note that the description of the ππ lineshape introduces some systematic error in the
Dalitz plot analysis. This can be checked by changing the lineshape in within a reasonable
range or by using an alternative SU(3)-based method to extract α that does not use the
tails of ππ lineshapes [1099].
All the above methods use isospin to estimate the penguin pollution. They are thus

theoretically limited by isospin breaking. While hard to compute these corrections are
expected to be at the degree level, with the smallest impact expected in the B → ρπ
extraction [1100–1102].

9.3.2. Experimental measurements
B → ππ
High-quality separation of charged Kaons and pions is a distinctive experimental chal-

lenge in the B0 → π+π− and B± → π±π0 analyses. Indeed, B(B0 → K+π−)/B(B0 →
π+π−) ≈ 3.8 and B(B± → K±π0)/B(B± → π±π0) ≈ 2.3 [560], and the separation be-
tween the Kπ and ππ candidates in the kinematic quantity ∆E at e+e− B-meson facto-
ries is only about 1.5σ. Both Belle and BABAR employ sophisticated likelihood-based pion-
Kaon separation in the branching-fraction and CP -violation analyses in these modes. In
addition to the B factories, the CDF experiment, thanks to its 1.4σ dE/dx-based Kaon-
pion separation, aided by the invariant-mass separation of the K±π∓ and π+π− candi-
dates, is able to provide a competitive measurement of the B(B0 → K+π−)/B(B0 →
π+π−) ratio, and thus of the less-well-known B(B0 → π+π−).
The most up-to-date measurements in the B → ππ modes, along with the September

2008 HFAG averages, are quoted in Tab. 72. With the exception of Cπ0π0 , the sensitiv-
ities of the BABAR and Belle measurements are very similar. Plots of B0 → π+π− ∆t
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Fig. 83. (a) Distributions of ∆t for B0 (q = +1) and B0 (q = −1) tags and (b) their CP -violating
asymmetry in B0 → π+π− signal events reported by Belle [1105]. Distributions of ∆t for (c) B0 and (d)
B0 tags and (e) their CP -violating asymmetry in B0 → π+π− signal events reported by BABAR [1104].
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Table 72
Branching fractions and CP asymmetries in B → ππ. First error is statistical and second systematic.

Please note that Belle quotes A ≡ −C. The April 2008 online update of the preliminary CDF result is
B(π+π−) = (5.02± 0.33± 0.35)× 10−6 [1103]. Values given in parentheses are the numbers of BB pairs
in the datasets used in the analyses, where appropriate.

BABAR Belle HFAG avg.

Sππ −0.68± 0.10± 0.03 [1104] (467M) −0.61 ± 0.10± 0.04 [1105] (535M) −0.65± 0.07

Cππ −0.25± 0.08± 0.02 [1104] (467M) −0.55 ± 0.08± 0.05 [1105] (535M) −0.38± 0.06

B(π+π−)× 106 5.5± 0.4± 0.3 [1106] (227M) 5.1± 0.2± 0.2 [1107] (449M) 5.16± 0.22

B(π+π0)× 106 5.02± 0.46± 0.29 [1108] (383M) 6.5± 0.4+0.4
−0.5 [1107] (449M) 5.59+0.41

−0.40

A(π+π0) 0.030 ± 0.039 ± 0.010 [1108] (383M) 0.07 ± 0.03± 0.01 [1109] (535M) 0.050± 0.025

B(π0π0)× 106 1.83± 0.21± 0.13 [1104] (467M) 1.1± 0.3± 0.1 [1110] (535M) 1.55± 0.19

Cπ0π0 −0.43± 0.26± 0.05 [1104] (467M) −0.44+0.62
−0.73

+0.06
−0.04 [1110] (535M) −0.43+0.24
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Fig. 84. Sππ and Cππ ≡ −Aππ in B0 → π+π−: central values, uncertainties, and confidence-level (C.L.)
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(5σ), 1.97 × 10−9 (6σ) and 2.56 × 10−12 (7σ): (a) BABAR [1104], (b) Belle [1105]. (c) BABAR and Belle
∆χ2 = 1 (Sππ , Cππ) contours, corresponding to 60.7% C.L., and their HFAG correlated average. BABAR
and Belle results are consistent at 0.055 (1.9σ) C.L.
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distributions for the B0 and B0 tags and their CP -violating asymmetries are shown in
Fig. 83, and the (Sππ, Cππ) confidence-level contours are shown in Fig. 84. Interpreta-
tion of the latest BABAR and Belle B → ππ results in terms of constraints on the angle
α is shown in Fig. 85. Only the isospin-triangle relations are used in these constraints.
Values of α near 0 or π can be excluded with additional physics input [1108,1111]. The
key point is that the isospin analysis requires no knowledge about either the magnitude
or phase of the penguin contribution. However, using CKM unitarity the relative phase
between penguin and tree can be chosen to be α, so that the direct CP violation param-
eter Cππ ∝ α. Consequently, the observation Cππ 6= 0 requires α 6= 0 (or alternatively
hadronic parameters must unphysically tend to infinity).
Both Belle and BABAR observe a non-zero CP -violating asymmetry Sππ in the time

distribution of B0 → π+π− decays, with significances of 5.3σ and 6.3σ, respectively.
Belle observes, with a significance of 5.5σ, direct CP violation (Cππ 6= 0) in B0 → π+π−;
BABAR sees 3.0σ evidence of Cππ 6= 0.

B → ρρ

The decay B0 → ρ+ρ− has been measured by Belle and BABAR several times with
increasingly larger data samples. Both experiments measure the branching fraction, fL,
and the CP -violating parameters Aρρ and Sρρ. The most recent results are listed in
Tab. 73. The measured values of Aρρ and Sρρ are consistent with zero, i.e., there is no
evidence for CP violation. The decay-time distributions and CP asymmetry distribution
(ACP in bins of ∆t) are shown in Figs. 86 and 87. From the same analysis, Belle has also
set a limit on the nonresonant B0 → ρ0π+π− contribution at Γ(ρ±π∓π0)/Γ(ρ+ρ−) =
0.063 ± 0.067.

Table 73
Belle and BABAR results for B0 → ρ+ρ− decays [1112–1114].

Data Branching fL Aρρ Sρρ

( fb−1) fraction ×10−6

Belle 253/492 22.8 ± 3.8+2.3
−2.6 0.941+0.034

−0.040 ± 0.030 0.16 ± 0.21 ± 0.08 0.19 ± 0.30 ± 0.08

BABAR 349 25.5 ± 2.1+3.6
−3.9 0.992 ± 0.024+0.026

−0.013 −0.01 ± 0.15 ± 0.06 −0.17 ± 0.20+0.05
−0.06

The most recent results from Belle [1115] and BABAR [1116] on the decay B+ → ρ+ρ0

are listed in Tab. 74. Both measured values of ACP are consistent with zero, implying
that a possible electroweak penguin contribution is small. Belle has also set a limit on
the nonresonant B+ → (ρππ)+ contribution of Γ[(ρππ)+]/Γ(ρ+ρ0) < 0.17 at 90% C.L.

Table 74
Belle and BABAR results for B+ → ρ+ρ0 decays, from Refs. [1115, 1116].

Data Branching fL ACP

( fb−1) fraction ×10−6

Belle 78 31.7 ± 7.1+3.8
−6.7 0.95 ± 0.11 ± 0.02 −0.12 ± 0.13 ± 0.10

BABAR 211 16.8 ± 2.2 ± 2.3 0.905 ± 0.042+0.023
−0.027 0.00 ± 0.22 ± 0.03

The decay B0 → ρ0ρ0 has proved difficult to measure due to its small branching
fraction, and has only recently been observed. Measurements from BABAR [1117] and
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Fig. 86. Decay time distributions from Belle [1112]. (a) B0 → ρ+ρ− decays (b) B0 → ρ+ρ− decays, and
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the fit result for the total.
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Fig. 87. Decay time distributions from BABAR [1113]. (a) B0 → ρ+ρ− decays (b) B0 → ρ+ρ− decays, and
(c) the asymmetry (N −N)/(N +N), where N (N) is the number of signal B0 → ρ+ρ− (B0 → ρ+ρ−)
decays. The dashed curve shows the fit result for all backgrounds, and the solid curve shows the fit result
for the total.
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Belle [1118] are listed in Tab. 75. Both experiments obtain the signal yield from unbinned
maximum likelihood fits to Mbc (or mES ≡ Mbc), ∆E, and Mππ. The fit is complicated
by possible contributions from ρ0f0(980), f0f0, f0π

+π−, and a1π final states, as well as
from B0 → ρ0π+π− and B0 → π+π−π+π−.
The BABAR experiment requires that Mππ ∈ (0.50, 1.05)GeV/c2; they subsequently fit

to variables mES, ∆E, helicity angles cos θ1, cos θ2, and the decay time difference ∆t.
Including the helicity angles in the fit yields a measurement of fL, and including ∆t
yields a measurement of Aρρ and Sρρ. BABAR observes an excess of signal events with
3.1σ significance, and no significant nonresonant contributions. The measured values of
Aρρ and Sρρ are consistent with zero, i.e., there is no evidence for CP violation.
The Belle experiment requires Mππ ∈ (0.55, 1.70)GeV/c2– a wider window than that

used by BABAR (see Fig. 88). Belle observes a higher rate of nonresonant ρππ and 4π
components than BABAR does, and the significance of Belle’s ρ0ρ0 signal is only 1.0σ.
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Fig. 88. Monte Carlo simulated Mππ distributions for (a) B0 → ρ0ρ0, (b) B0 → ρ0π+π−, and (b)
B0 → π+π−π+π− decays, from Belle. The plots are symmetrized by randomly choosing the mass
combination plotted against the horizontal axis. The fitted region for Belle isMππ ∈ (0.55, 1.70)GeV/c2,
whereas that for BABAR is Mππ ∈ (0.55, 1.05)GeV/c2.

Table 75
Belle and BABAR results for B0 → ρ0ρ0 decays [1117, 1118].

Mode Branching fL Aρρ Sρρ

fraction (10−6)

Belle (605 fb−1)

ρ0ρ0 0.4 ± 0.4+0.2
−0.3 − − −

ρ0π+π− 5.9+3.5
−3.4 ± 2.7 − − −

π+π−π+π− 12.4+4.7
−4.6

+2.1
−1.9 − − −

BABAR (423 fb−1)

ρ0ρ0 0.92 ± 0.32 ± 0.14 0.75+0.11
−0.14 ± 0.05 −0.2 ± 0.8 ± 0.3 0.3 ± 0.7 ± 0.2

ρ0π+π− −1.6+5.0
−4.5 ± 2.2 − − −

π+π−π+π− 3.0+11.6
−9.9 ± 4.1 − − −
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Both Belle and BABAR constrain α using isospin analysis [37]. The fitted observables
are the branching fractions and fractions of longitudinal polarization for B+ → ρ+ρ0,
B0 → ρ+ρ−, and B0 → ρ0ρ0, the coefficients Aρρ and Sρρ for B0 → ρ+ρ− decays,
and Aρρ for B0 → ρ0ρ0 decays. The fitted parameters are the magnitudes |A(B0 →
ρ+ρ0)|, |A(B0 → ρ+ρ−)|, and |A(B0 → ρ0ρ0)|, the average phase of, and phase difference
between, amplitudes A(B0 → ρ+ρ−) and A(B0 → ρ+ρ−), and α. To obtain a confidence
interval for α, the experiments scan values of α and, for each value, fit the measured
observables. The resulting χ2 is input into the cumulative χ2 distribution to obtain a
confidence level (p-value) for that value of α. Plotting this confidence level (C.L.) versus
α allows one to read off a confidence interval.
The most recent Belle result [1118], obtained using world average values [560] for all

observables except B(B0 → ρ0ρ0) for which only the Belle result is used, is shown in
Fig. 89 (top). The “flat-top” region results from the fact that no measurement of Aρρ
for B0 → ρ0ρ0 decays is used. From the plot one reads off three disjoint 68.3% C.L.
intervals; the interval consistent with unitarity (α + β + γ = 180◦) is (75.8, 106.2)◦.
Requiring symmetric errors gives α = (91.7± 14.9)◦.
The most recent BABAR result [1117], made using BABAR results exclusively, is shown in

Fig. 89 (bottom). The dotted contour is the nominal solution; however, including in the fit
the parameter Sρρ from B0 → ρ0ρ0 decays reduces the four-fold ambiguity for α to three
solutions (solid contour). The final result is expressed in terms of the shift δ ≡ α − αeff

that results from the penguin contribution (recall that Sρρ = −
√
1−A2

ρρ sin 2αeff , see

Eq. 407). The upper limit is |δ| < 17.6◦ at 90% C.L.

B0 → ρπ

The time-dependent Dalitz plot analysis of B0 → π+π−π0 has been performed by
BABAR using 346 fb−1 of data [1119] and by Belle using 414 fb−1 [1120]. In principle,
one inserts the parametrization (411) and (412) into (410) to obtain the PDF for fit-
ting. However, the resulting PDF is nonlinear in the amplitudes Ai and Ai, and the
fit is not well-behaved for current statistics. To stabilize the fit, one defines new fitting
parameters [1121]

U±
i = |Ai|2 ± |Ai|2 (414)

U±
ij = AiA

∗
j ± AiA

∗
j (415)

Ii = Im(AiA
∗
i ) (416)

Re(Iij) = Re(AiA
∗
j − Aj A

∗
i ) (417)

Im(Iij) = Im(AiA
∗
j + Aj A

∗
i ) . (418)

Eqs. (414)-(418) define 27 real parameters from six complex amplitudes, and thus these
parameters are not all independent. The overall normalization is fixed by setting U+

+ = 1,
and then there are 26 free parameters in the fit. The fit results for BABAR and Belle are
listed in Tab. 76.
To constrain α, a χ2 fit is performed to the 27 measured observables listed in Tab. 76.

The χ2 statistic takes into account all correlations between the observables. There are in
principle 12 free parameters in the fit, corresponding to the six complex amplitudes Ai
and Ai. However, the additional parameter α is included along with the (complex) isospin
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Fig. 89. Plot of 1−CL versus α from Belle [1118] (top), and 1−CL versus α − αeff from BABAR [1117]
(bottom). From these plots one reads off confidence intervals. In the top plot, the flat-top region results
from not using Aρρ from B0 → ρ0ρ0 in the fit; in the bottom plot, the solid curve results from using
both Aρρ and Sρρ from B0 → ρ0ρ0.

relation (413); together these reduce the number of free parameters to 11. The constraint
U+
+ = 1 fixes the overall normalization, and a global phase factor can be neglected; thus

the final number of free parameters is nine. A scan is performed over values of α, where
for each value the other eight parameters are floated in order to minimize the χ2. The
resulting change in the χ2 from the minimum value is converted into a confidence level
(CL) either by using the cumulative χ2 distribution for one degree of freedom, or by
finding the p-value from an ensemble of toy MC experiments.
The resulting plots of 1−CL versus α for BABAR and Belle are shown in Fig. 90. The

values of α that have (1−CL) > 0.317 determine 1σ confidence intervals for α. As can be
seen from the plots, the 1−CL contour has large variations that result in multiple regions,
i.e., non-simply-connected intervals. Typically, the experiments quote only the interval
consistent with unitarity. Belle obtains a second 1−CL contour by including additional
observables: the branching fractions for B0 → ρ+π−, ρ−π+, ρ0π0 obtained from their
analysis, and world average values [560] for the branching fractions and CP asymmetries
measured for the charged modes B± → ρ±π0 and B± → ρ0π±. With these four new
observables, two additional isospin relations are used; the final number of parameters
floated in the fit is 12. The resulting 1− CL contour is also shown in Fig. 90. The final
result from BABAR is α = (87+45

−13)
◦, whereas the final result from Belle is α ∈ (68◦, 95◦)

at 68.3% CL.
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Table 76
Fit results for the U and I coefficients from Refs. [1119] (BABAR) and [1120] (Belle). The first error listed

is statistical, and the second is systematic.

Parameter BABAR Belle

U+
+ 1.0 (fixed) +1 (fixed)

U+
− 1.32± 0.12± 0.05 +1.27± 0.13± 0.09

U+
0 0.28± 0.07± 0.04 +0.29± 0.05± 0.04

U+,Re
+− 0.17± 0.49± 0.31 +0.49± 0.86± 0.52

U+,Re
+0 −1.08± 0.48± 0.20 +0.29± 0.50± 0.35

U+,Re
−0 −0.36± 0.38± 0.08 +0.25± 0.60± 0.33

U+,Im
+− −0.07± 0.71± 0.73 +1.18± 0.86± 0.34

U+,Im
+0 −0.16± 0.57± 0.14 −0.57± 0.35± 0.51

U+,Im
−0 −0.17± 0.50± 0.23 −1.34± 0.60± 0.47

U−
+ 0.54± 0.15± 0.05 +0.23± 0.15± 0.07

U−
− −0.32± 0.14± 0.05 −0.62± 0.16± 0.08

U−
0 −0.03± 0.11± 0.09 +0.15± 0.11± 0.08

U−,Re
+− 2.23± 1.00± 0.43 −1.18± 1.61± 0.72

U−,Re
+0 −0.18± 0.88± 0.35 −2.37± 1.36± 0.60

U−,Re
−0 −0.63± 0.72± 0.32 −0.53± 1.44± 0.65

U−,Im
+− −0.38± 1.06± 0.36 −2.32± 1.74± 0.91

U−,Im
+0 −1.66± 0.94± 0.25 −0.41± 1.00± 0.47

U−,Im
−0 0.12± 0.75± 0.22 −0.02± 1.31± 0.83

I+ −0.02± 0.10± 0.03 −0.01± 0.11± 0.04

I− −0.01± 0.10± 0.02 +0.09± 0.10± 0.04

I0 0.01± 0.06± 0.01 +0.02± 0.09± 0.05

IRe
+− 1.90± 2.03± 0.65 +1.21± 2.59± 0.98

IRe
+0 0.41± 1.30± 0.41 +1.15± 2.26± 0.92

IRe
−0 0.41± 1.30± 0.21 −0.92± 1.34± 0.80

IIm+− −1.99± 1.25± 0.34 −1.93± 2.39± 0.89

IIm+0 −0.21± 1.06± 0.25 −0.40± 1.86± 0.85

IIm−0 1.23± 1.07± 0.29 −2.03± 1.62± 0.81

B0 → a±1 π
∓

As proposed by Gronau and Zupan [1122], the ∆t distribution for B0 → a±1 π
∓ decays

can be fit to determine α. However, there can be a penguin amplitude that substantially
shifts the measured α value from the true value, as found for B → ππ decays. Thus, to
determine α from B0 → a±1 π

∓ requires external input, e.g., assuming SU(3) symmetry
and using measurements of B → a1K [1123] and B0 → K1Aπ [1124] decays. This method
has uncertainties arising from SU(3)-breaking corrections and unknown decay constants
fa1 and fK1

.
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Fig. 90. 1 − CL versus α resulting from χ2 fits to the 27 observables listed in Tab. 76. The left plot
is from BABAR [1119], and the right plot is from Belle [1120]. The horizontal line at 1 − CL = 0.317
corresponds to 68.3% CL and is used to determine 1σ confidence intervals for α. For Belle, the dashed
contour corresponds to a nine-parameter fit, and the solid contour corresponds to a twelve parameter fit
(see text).

Experimentally, one simultaneously fits the four distributions B0 → a±1 π
∓ and B0 →

a±1 π
∓ to the PDF

dN(a±1 π
∓)

d∆t
= (1±ACP )

e−|∆t|/τ

8τ
×

{
1− qtag

[
(C ±∆C) cos(∆m∆t)− (S ±∆S) sin(∆m∆t)

]}
, (419)

where qtag =+1 (−1) when the tag-side B decays as a B0 (B0). The parameters ACP ,
C, and S are CP -violating, and the parameters ∆C and ∆S are CP -conserving. BABAR
has performed this fit using 349 fb−1 of data [1125]; the results are listed in Tab. 77.
The values obtained are subsequently used to determine αeff = α− δ within a four-fold
ambiguity. The solution closest to the α value favored by B → ρρ and B → ππ decays is
αeff =(78.6± 7.3)◦. This result differs from α by the unknown penguin contribution δ.

Table 77
BABAR results for B0 → a±1 π∓ decays, from Ref. [1125].

Parameter Value

ACP −0.07 ± 0.07 ± 0.02

C −0.10 ± 0.15 ± 0.09

S 0.37 ± 0.21 ± 0.07

∆C 0.26 ± 0.15 ± 0.07

∆S −0.14 ± 0.21 ± 0.06
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9.4. Measurements of γ in charmless hadronic B decays

In this subsection we review the methods to determine the weak phase in the CKM
matrix using ∆S = 1 charmless hadronic B decays: B → Kπ, B → Kππ. Conventionally
this is rewritten as a constraint on γ, but in many instances it also involves the knowledge
of the B0B0 mixing phase. This is taken to be well known as it is measured precisely in
B0 → J/ψK0

S
. The B → Kπ and B → Kππ decays are dominated by QCD penguins

and are as such sensitive to new physics effects from virtual corrections entering at 1-
loop. Comparing the extracted value of γ with that from a tree level determination using
B → DK constitutes a test of Standard Model.

9.4.1. Constraints from B(s) → hh
We can write any amplitude as a sum of two terms

A(B → f) = PeiδP + TeiγeiδT , (420)

where the “penguin” P carries only a strong phase δP , while the “tree” T has both strong
phase δT and a weak phase γ. The latter flips signs for the CP conjugated amplitude
A(B → f̄)). The sensitivity to γ comes from the interference of the two contributions. In
∆S = 1 decays the tree contribution is doubly CKM suppressed — it carries the CKM
factor |V ∗

ubVus| – while the penguin contribution has a CKM factor |V ∗
cbVcs| that is ∼ 1/λ2

times larger. We can thus expand in T/P , which gives for the direct CP asymmetry and
branching fraction respectively

ACP = 2
T

P
sin(δP − δT ) sin γ +O

((T
P

)2)
,

B = P 2
[
1 + 2

T

P
cos(δP − δT ) cos γ +O

((T
P

)2)]
.

(421)

Using the above expression for B(B0 → K+π−) one can get a very simple geometric
bound on γ, if P is known. Obtaining P from B(B+ → π+K0) — neglecting very
small color suppressed electroweak penguins — one has | cos γ| >

√
1−R valid for R <

1 [1126,1127] (R is defined in Eq. 422 below). At present this gives γ < 77◦ at 1σ.
The extraction of γ requires more theoretical input. One needs to determine the strong

phase difference δP − δT and the ratio T/P . This can be achieved either by relating T/P
to ∆S = 0 decays using SU(3) [1077, 1128–1137] or by using the 1/mb expansion and
factorization theorems to calculate the T/P ratio [40, 51, 52, 1040,1056,1138].
The methods that use SU(3) flavor symmetries exploit the fact that ∆S = 0 decays

such as B → ππ are tree dominated. The CKM factors multiplying the “tree” (V ∗
ubVud)

and “penguin” terms (V ∗
cbVcd) are of comparable size (unlike ∆S = 1 decays where

the “tree” is CKM suppressed). From these decays one can then determine the size of
T/P and feed it into ∆S = 1 decays to extract γ. In doing this quite often some 1/mb

suppressed annihilation or exchange amplitudes need to be neglected. These methods
are hard to improve systematically, while already at present the determined value of γ
is dominated by theoretical errors due to SU(3) breaking and the neglected amplitudes.
These were estimated to be of order 8◦ − 10◦ in [1132] for the extraction of γ from B →
ππ and B → πK. Some improvement can be expected, if one does not need to neglect
annihilation amplitudes but rely only on flavor symmetry. One interesting method of
this type uses Bs → K+K− and B → π+π− decays [1137, 1139]. In this analysis, the
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theoretical error on the extracted value of γ due to SU(3) breaking was estimated to
be of the order of 5◦ [1136]. This is a promising avenue of investigation for the LHCb
experiment.
If instead of extracting γ the goal is to make a precision test of the Standard Model, one

can rather take as an input the value of γ determined from B → DK or from global fits.
A theoretically clean prediction of SK0

S
π0 is then possible using isospin relations, while

theoretical calculations based on the 1/mb expansion are used only for SU(3) breaking
terms [1078] (see also [1079]).
If the 1/mb expansion is used to determine γ, a number of different observables can

be used, since in principle all the observables are now calculable. At present in the
1/mb expansion calculations γ is taken as an input, but it could of course be extracted
from data instead. Different groups treat differently various terms in the expansion, for
instance expanding or not expanding in αS(

√
Λmb), including different 1/mb suppressed

terms in the expansion, etc., and this may lead to slightly different extracted values of γ
(but the estimated theoretical errors should account for the differences). The important
point is that the expansion is systematically improvable so that the errors could at least
in principle be reduced in the future. For instance, the theoretical errors on the value of
γ extracted from Sρπ are about 5◦ and about 10◦ if extracted from Sππ [1040]. Much
larger errors can be expected for γ extracted from ∆S = 1 decays, since the interference
is CKM suppressed.
As an example let us consider the ratios

R =
B(B0 → π∓K±)τB+

B(B± → π±K0)τB0

, Rc =
2B(B± → π0K±)

B(B± → π±K0)
, Rn =

B(B0 → π∓K±)

2B(B0 → π0K0)
, (422)

for which part of the theoretical and experimental uncertainties cancel [1140]. Tab. 78
summarizes the current experimental measurements of the B → Kπ branching frac-
tions and CP asymmetries [560, 1104, 1106–1108, 1141, 1142], while τB+/τB0 = 1.073 ±
0.008 [560]. In Tab. 78 we also quote the resulting world averages for the ratios, ignoring
the correlations between the individual branching fraction measurements. These translate
into the following bounds on γ at 68% confidence level [1056]

R ⇒ 55◦ < γ < 95◦, Rc ⇒ 55◦ < γ < 80◦, Rn ⇒ 40◦ < γ < 75◦. (423)

The measurements of Bs decays to two light hadrons can provide further constraints on
γ [1133]. Following its earlier discovery of Bs → K+K− [1143], the CDF collaboration has
recently produced updated measurements of the branching fraction and CP asymmetry
of the decay Bs → K−π+ [1144, 1145]:

B(Bs → K−π+) = (5.0± 0.7± 0.8)× 10−6 , (424)

ACP (Bs → K−π+) = (39± 15± 8)% . (425)

It has been recently pointed out that these results have implications for SU(3) and QCD
factorization [1146], which prefer a larger value of the branching fraction for the Standard
Model value of γ.

9.4.2. Constraints from B → Kππ Dalitz-plot analyses
Three-body decays have an added benefit that quasi-two-body decays such as B →

K∗π and B → Kρ can interfere through the same final Kππ state. Measuring the
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Table 78
Summary of B → Kπ experimental measurements.

Quantity BaBar Value Belle Value World Average Value

B(B± → π±K0) (23.9± 1.1± 1.0) × 10−6 (22.8+0.8
−0.7 ± 1.3)× 10−6 (23.1 ± 1.0)× 10−6

B(B± → π0K±) (13.6± 0.6± 0.7) × 10−6 (12.4 ± 0.5± 0.6)× 10−6 (12.9 ± 0.6)× 10−6

B(B0 → π∓K±) (19.1± 0.6± 0.6) × 10−6 (19.9 ± 0.4± 0.8)× 10−6 (19.4 ± 0.6)× 10−6

B(B0 → π0K0) (10.1± 0.6± 0.4) × 10−6 (9.7± 0.7+0.6
−0.7)× 10−6 (9.8± 0.6)× 10−6

ACP (B
± → π±K0) (−2.9± 3.9± 1.0)% (+3± 3± 1)% (+0.9± 2.5)%

ACP (B
± → π0K±) (+3.0± 3.9± 1.0)% (+7± 3± 1)% (+5.0± 2.5)%

ACP (B
0 → π∓K±) (−10.7± 1.6+0.6

−0.4)% (−9.4 ± 1.8± 0.8)% (−9.8+1.2
−1.1)%

ACP (B
0 → π0K0) (−13 ± 13 ± 3)% (+14± 13± 6)% (−1± 10)%

R · · · · · · 0.90± 0.05

Rc · · · · · · 1.12± 0.07

Rn · · · · · · 0.99± 0.07

interference pattern in the Dalitz plot then allows to determine not only the magnitudes
of the amplitudes as in the two body decays, but also the relative phases between the
amplitudes. This can then be used either to check 1/mb predictions or as an additional
input for the determination of the CKM weak phase using flavor symmetries. We will
review such a method below [1147, 1148]. The cleanest method requires measurements
from the B0 → K+π−π0 and B0 → K0

S
π+π− Dalitz plots [1147–1149]. Other methods

also use B+ → K0
S
π+π0 [1147], B+ → K+π+π− and B0 → K0

S
π+π− [1150], and Bs →

K+π−π0 and Bs → K0
S
π+π− [1151].

The main idea of the method [1147, 1148] is that by using isospin decomposition one
can cancel the QCD penguin contributions (∆I = 0 reduced amplitudes) in B → K∗π
decays. The I = 3/2 (∆I = 1) final state, is for instance given by

3A3/2 = A(B0 → K∗+π−) +
√
2A(B0 → K∗0π0) , (426)

with an equivalent definition for the amplitude for charge-conjugated states, Ā3/2. Since
both magnitudes and relative phases of amplitudes are measurables, this is now an ob-
servable quantity — up to an overall phase. In the absence of electroweak penguin (EWP)
terms A3/2 carries a weak phase γ, so that in this limit

γ = Φ3/2 ≡ −1

2
arg
(
R3/2

)
, where R3/2 ≡ Ā3/2

A3/2
. (427)

The constraint in ρ− η plane in the absence of EWP is a straight line, η = ρ tanΦ3/2.
The inclusion of EWP shifts this constraint to [1148]

η = tanΦ3/2

[
ρ+ C[1− 2Re(r3/2)] +O(r23/2)

]
, (428)

where C is a quantity that depends only on electroweak physics and is well known, with
a theoretical error below 1% (λ = 0.227)

C ≡ 3

2

C9 + C10

C1 + C2

1− λ2/2

λ2
= −0.27 , (429)
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Fig. 91. Geometry for Eq. (426) and its charge-conjugate, using notations A+− ≡ A(B0 → K∗+π−),
A00 = A(B0 → K∗0π0) and similar notations for charge-conjugated modes [1148].

while the nonperturbative QCD effects enter only through a complex parameter

r3/2 ≡ (C1 − C2)〈(K∗π)I=3/2|O1 −O2|B0〉
(C1 + C2)〈(K∗π)I=3/2|O1 +O2|B0〉 . (430)

Here O1 ≡ (b̄s)V−A(ūu)V−A and O2 ≡ (b̄u)V−A(ūs)V−A are the V-A current-current
operators. In naive factorization r3/2 is found to be real and small, r3/2 ≤ 0.05 [1147].
This is in agreement with the estimate using flavor SU(3) from B → ρπ, r3/2 = 0.054±
0.045± 0.023 [1148], where the first error is experimental and the second an estimate of
theoretical errors. This then gives the constraint

η = tanΦ3/2 [ρ− 0.24± 0.03] . (431)

The phase Φ3/2 can be determined by measuring the magnitudes and relative phases
of the B0 → K∗+π−, B0 → K∗0π0 amplitudes and their charge-conjugates. A graph-
ical representation of the triangle relation Eq. (426) and its charge conjugate is given
in Fig. 91. The above four magnitudes of amplitudes and the two relative phases, φ ≡
arg[A(B0 → K∗0π0)/A(B0 → K∗+π−)] and φ̄ ≡ arg[A(B0 → K∗0π0)/A(B0 → K∗−π+)],
determine the two triangles separately. Their relative orientation is fixed by the phase
difference ∆φ ≡ arg[A(B0 → K∗+π−)/A(B0 → K∗−π+)].
A similar analysis is possible using B → ρK decays. Although each ρ meson has only

a single dipion decay, the relative phase between the amplitudes in Eq. (426) can be
determined exploiting the fact that the K∗π amplitudes appear in both Kππ Dalitz
plots and therefore can be used as a common reference. The same approach could also
be applied to B → K∗ρ decays.
The B+ → K+π+π− Dalitz plot provides the highest signal event yield of the Kππ

Dalitz plots and so can be used to establish a working isobar model. This informa-
tion can be used by the other analyses, leading to smaller systematic uncertainties. The
K+π+π− Dalitz plot also contains the intermediate state ρ0(770)K+, which is predicted
to have a large direct CP asymmetry ∼ 40%. Measuring this asymmetry, interesting in
its own right, tells us that the tree and penguin contributions are of similar order and
that we do indeed have sensitivity to γ in these decays. BaBar [1152] and Belle [1153]
have recently updated their analyses of this Dalitz plot and both see strong evidence
of direct CP violation in B+ → ρ0(770)K+. The results are in excellent agreement
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and are summarized in Tab. 79. The signal Dalitz-plot model used in these analyses con-
tains contributions fromK∗0(892)π+,K∗0

0 (1430)π+, ρ0(770)K+, ω(782)K+, f0(980)K
+,

f2(1270)K
+, fX(1300)K

+, χc0K
+, and a nonresonant component; the BaBar model also

contains K∗0
2 (1430)π+. The main difference between the approaches of the two experi-

ments concerns the nonresonant model. Belle uses two e−αs distributions, where α is a
free parameter, one with s = m2

K+π− and one with s = m2
π+π− . BaBar uses a phase-space

component in addition to a parametrization of the low-mass K+π− S-wave that follows
that of the LASS experiment [1020].

Table 79
Summary of results for ACP of B+ → ρ0(770)K+. The uncertainties are statistical, systematic and
model-dependent respectively.

Experiment ACP (ρ
0(770)K+)

BaBar (+44 ± 10± 4+5
−13)%

Belle (+41 ± 10 ± 3+3
−7)%

HFAG Average (+42+8
−10)%

The B0 → K0
S
π+π− Dalitz plot is an extremely rich physics environment. As well

as providing measurements of the B0B0 mixing phase 2β, discussed in Sec. 9.2.2, it is
possible to measure the phase difference ∆φ between B0 → K∗+π− and B0 → K∗−π+,
one of the crucial ingredients in the determination of γ with the method of Refs. [1147–
1149]. Both BaBar [1090] and Belle [1094] have performed time-dependent Dalitz-plot
analyses of this mode. Details of the analyses are discussed in Sec. 9.2.2. Belle find
two fit solutions that correspond to different interference between the K∗+

0 (1430) and
nonresonant components. These two solutions prefer different values of ∆φ. The results
for ∆φ are illustrated in Fig. 92 and summarized in Tab. 80. There is some disagreement
between the BaBar and Belle results. The experimentally measured values of ∆φ include
the B0B0 mixing phase since they come from time-dependent analyses. This has to be
removed before the values can be used in the extraction of γ.

)π(892)*(Kφ∆
-250 -200 -150 -100 -50 0 50 100

2 χ

0

5

10

15

20

25

 CL > 32%-30.1
+30.9-163.5

 CL > 5%-60.9
+61.5-163.5 BABAR

preliminary

φ∆
-100 -75 -50 -25 0 25 50 75 100

lo
g

 L
∆

-2

0
5

10
15
20
25
30
35

-30.9
+31.3) = -0.7-π *+(Kφ∆

φ∆
-100 -75 -50 -25 0 25 50 75 100

lo
g

 L
∆

-2

0
5

10
15
20
25
30
35

-29.0
+28.4) = +14.6-π *+(Kφ∆

Fig. 92. Likelihood scans of ∆φ from Dalitz-plot analyses of B0 → K0
Sπ

+π−. The left plot is from BaBar,
the middle and right plots are from Belle and represent the scans of the two different solutions.

The other two parameters required to determine γ are φ and φ̄. These are the relative
phases of B0 → K∗+π− and B0 → K∗0π0 and B0 → K∗−π+ and B0 → K∗0π0,
respectively. Both of these quantities can be determined from a time-integrated Dalitz-
plot analysis of B0 → K+π−π0 (and its charge conjugate). Such an analysis has not
yet been performed by Belle but BaBar has published results based on 232 × 106 BB
pairs [1154] and has preliminary results based on the full BaBar dataset of 454×106 BB
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Table 80
Summary of results for ∆φ(K∗+π−) from time-dependent Dalitz-plot analyses of B0 → K0

Sπ
+π−. The

uncertainties are statistical, systematic and model-dependent respectively.

Experiment ∆φ(K∗+π−)

BaBar (−164 ± 24 ± 12± 15)◦

Belle Soln. 1 (−1+24
−23 ± 11± 18)◦

Belle Soln. 2 (+15+19
−20 ± 11 ± 18)◦

pairs [248]. The published analysis includes contributions from ρ−(770)K+,K∗+(892)π−,
K∗0(892)π0, K∗+

0 (1430)π− and K∗0
0 (1430)π0. The higher K∗ resonances are modeled

by the LASS parametrization, which also includes a slowly varying nonresonant term.
The fit exhibits multiple solutions that are not well separated. This can be seen in the
likelihood scans in Fig. 93 and unfortunately leads to a weaker constraint on γ. BaBar’s
preliminary results on the larger data sample indicate much better separation between
solutions, however likelihood scans of φ and φ̄ are not yet completed.
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Fig. 93. Likelihood scans of φ (left) and φ̄ (right) from BaBar Dalitz-plot analysis of B0 → K+π−π0.

The BaBar results on ∆φ [1090], φ and φ̄ [1154] have been combined [1149] to create
a constraint

39◦ < Φ3/2 < 112◦ (68%CL) , (432)

which can be converted to a constraint on the ρ− η plane, using the relation (431). Both
of these constraints are shown in Fig. 94.

10. Global Fits to the Unitarity Triangle and Constraints on New Physics

The large variety of precise measurements reported so far can be used to place con-
straints on theoretical models of flavor particles and their interactions. The impact of
these constraints has been studied using global fits to the predictions of the Standard
Model and other theoretical models.
In this section, results of such studies will be presented. First, the results described in

this report are interpreted within the Standard Model (Sec. 10.1). Next, Sec. 10.2 sum-
marizes the constraints imposed by these measurements on deviations from the Standard
Model. Discussions of constraints, first in a model independent approach, then for Grand
Unified Theories, and for models with Extra Dimensions conclude the report.
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Fig. 94. Constraint on the angle Φ3/2 (left) from combined information from Kππ Dalitz plot analyses.

The dashed purple line is for the case when
∣∣R3/2

∣∣ is unconstrained while the solid blue line is for the case

when 0.8 <
∣∣R3/2

∣∣ < 1.2. Constraint on the ρ − η plane (right) from combined information from Kππ
Dalitz plot analyses. The dark shaded region corresponds to the experimental 1σ range while the light
shaded region includes the theoretical error on the contributions from electroweak penguin processes.

10.1. Constraints on the Unitarity Triangle Parameters

The measured quantities reported so far are sensitive to different combinations of the
parameters of the CKM matrix (see Sec. 1.1.3 for details). Their relations to the angles
and sides of the Unitarity Triangle (UT) place constraints on the coordinates of its apex
(ρ, η) and thus can be used to test the predictions of the Standard Model or any other
theory describing flavor physics. The most powerful way to make such tests is to perform
global fits comparing the data to theoretical predictions.
To combine a large number of measurements of different quantities performed with

different methods and data samples, widely different in size and composition, and thus
with different statistical and systematic errors, not all of them Gaussian in nature, is
a non-trivial task. Theoretical predictions have uncertainties that are very difficult to
assess and that are usually not expected to adhere to Gaussian distributions. Two groups
have independently developed global analysis tools to determine the CKM parameters
in the framework of the Standard Model and its extensions. The two approaches differ
significantly, in particular in the treatment of uncertainties of data and of the theory
predictions. The results of this report have been analyzed by the UTfit group. Most
of this section therefore discusses their Bayesian approach in detail, the work of the
CKMfitter group being summarized for comparison in Sec. 10.1.5.

10.1.1. Fitting technique
The Unitarity Triangle analysis developed by the UTfit group relies on the Bayes

Theorem. Its specific application is briefly described in the following, more details can
be found in elsewhere [1155].
A given constraint cj relates the coordinates of the apex of the Unitarity Triangle

(ρ, η) to quantities that have been experimentally determined or theoretically calculated
(x = {x1, x2, ..., xN}), through functional dependencies that are prescribed by the theory
that is being tested, cj = cj(ρ̄, η̄,x).
In the case of perfect knowledge of cj and xi, each of the constraints would represent a

well defined curve in the (ρ, η) plane. In the presence of uncertainties, the constraints are
represented by distributions of curves, each weighted according to the probability density
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derived from the error distributions. Based on Bayes Theorem, the UTfit group derives
for M constraints cj and N free parameters xi, a pdf or probability density function,

f(ρ̄, η̄,x|ĉ1, ..., ˆcM ) ∝
∏

j=1,M

fj(ĉj | ρ, η,x)×
∏

i=1,N

fi(xi)× f◦(ρ, η). (433)

By integrating Eq. (433) over x, one obtains,

f(ρ, η | ĉ, f) ∝ L(ĉ | ρ, η, f)× f◦(ρ, η) , (434)

where ĉ stands for the set of measured constraints, and

L(ĉ | ρ, η, f) =
∫ ∏

j=1,M

fj(ĉj | ρ, η,x)
∏

i=1,N

fi(xi) dxi (435)

is the effective overall likelihood function which takes into account all possible values
of xj and their weights based on their associated error distributions. This expression
underlines the dependence of the likelihood on the best knowledge of all xi, described by
f(x). Assuming a flat a priori distribution for ρ and η, i.e. all values are equally likely,
the final (unnormalized) pdf is,

f(ρ, η) ∝
∫ ∏

j=1,M

fj(ĉj | ρ, η,x)
∏

i=1,N

fi(xi) dxi . (436)

The integration is done by Monte Carlo methods, in which a large sample is extracted
for the free parameters and a weight is assigned for each extraction . In this way an
a posteriori pdf for each parameter is obtained, generally different from the a priori one,
because of the weighting procedure. The result of each extraction is considered more or
less likely, depending on the agreement of the corresponding measured quantities with the
actual experimental results or theoretical calculation. The UTfit group treats theoretical
and experimental parameters in a uniform way, adopting the error distributions, Gaussian
or non-Gaussian, directly as a priori probability density functions.
The a posteriori pdfs depend by construction on the choice of the a priori ones, which

are based on - to a certain degree subjective - assessments of systematic uncertainties,
experimental and theoretical, on theoretical approximations and assumptions. In many
Unitarity Triangle analyses, the precise and abundant measurements and theoretical
inputs represent very stringent constraints and the results are not very sensitive to the
particular choice of the a priori distributions for the parameters. If this is not the case,
an assessment of the sensitivity of the result to variations of the prior is required.
As part of theUTfit analysis, the agreement of the measured quantities is quantified in

the so-called compatibility plots [1156]. An indirect determination of a particular quantity
is obtained from a global fit including all the available constraints, except those from
the direct measurement of the quantity of interest. This indirectly determined value
represents the prediction by the Standard Model or any other theory from which the
constraints are derived. The comparison of the prediction and the direct measurement,
including their respective uncertainties, can be used to assess the compatibility with the
underlying theoretical calculations or model.
Specifically, if f(xth) and f(xfit) are the pdfs for the predicted and the measured

values, respectively, their compatibility is evaluated by constructing the pdf for the dif-
ference, xth − xfit, and by estimating the distance of its most probable value from zero,
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in units of standard deviations. In the compatibility plots, contours of constant distance
are shown in two dimensions, σ(xfit) versus x̄fit. The compatibility between xth and
xfit can be directly estimated, for any central value and error on xfit. In this way, the
compatibility of constraints with the measurements is simply assessed by comparing two
different pdfs, without any assumption about their shapes. Examples of compatibility
plots are shown in section 10.1.3.

10.1.2. Inputs to the Unitarity Triangle Analysis
Not all measurements have sensitivity to the Unitarity Triangle parameters and there

are determinations of the same observable that are equivalent but not identical. A choice
has to be made. The best selection of experimental results discussed in this report has
been used as input to the CKM analysis using UT fits. They are summarized in Tab. 81.
The set of lattice inputs (see Ref. [887] for details) chosen for UT fits is summarized in

Table 81
Most relevant experimental inputs to the UT fits. Internal references with the details of the choice of
the inputs are also included.

Input Source Value Reference

|Vud| Nuclear decays 0.97425 ± 0.00022 Eq. 117

|Vus| SL Kaon decays 0.2259 ± 0.0009 Eq 178

|Vcb|incl. SL charmed B decays (41.54 ± 0.73)× 10−3 Eq. 265

|Vcb|excl. SL charmed B decays (38.6 ± 1.1)× 10−3 Eq. 259

|Vub| incl. SL charmless B decays (4.11+0.27
−0.28)× 10−3 Eq. 280

|Vub| excl. SL charmless B decays (3.38± 0.36) × 10−3 Eq. 229

B(B+ → τ+ν) Leptonic B decays (1.51± 0.33) × 10−4 Tab. 44

∆md BdB̄d mixing (0.507 ± 0.005) ps−1 Fig. 58

∆ms BsB̄s mixing (17.77 ± 0.12) ps−1 Sec. 7.2.2

|ǫK | KK̄ mixing (2.229± 0.012) × 10−3 Eq. 341

sin 2β Charmonium B decays 0.671± 0.023 Fig. 60

B & CP parameters B → ππ, ρρ, ρπ decays Sec. 9

(x±, y±), B & A B → D(∗)0K(∗)± (GGSZ, GLW, ADS) Sec. 8

Tab. 82.

Table 82
Phenomenological inputs obtained from Lattice QCD calculations

Input Value

fBs (MeV) 245± 25

B̂Bs 1.22 ± 0.12

fBs/fBd
1.21 ± 0.04

B̂Bs/B̂Bd
1.00 ± 0.03

BK 0.75 ± 0.07
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10.1.3. Results of Global Fits
Figure 95 displays the results of the global fit in the (ρ̄, η̄) plane. A summary of the

fitted parameters of the CKM matrix (see Sec. 1 for definitions) is presented in Table 83.
The global fits also result in improved determinations of the measured quantities, the

Table 83
Results of the global fit for the parameters of the CKM matrix. Parameters obtained with the CKMfitter
approach (see Sec. 10.1.5) are also shown for comparison.

Parameter Result CKMfitter

ρ̄ 0.158 ± 0.021 0.139+0.025
−0.027

η̄ 0.343 ± 0.013 0.341+0.016
−0.015

A 0.802 ± 0.015 0.812+0.010
−0.024

λ 0.2259 ± 0.0016 0.2252 ± 0.0008
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Fig. 95. Individual and global constraints in the (ρ̄, η̄) plane from the global UT fits. The shaded areas
indicate the individual constraints at 95% CL. The contours of the overall constraints defining the apex
of the UT triangle correspond to 68% and 95% C.L. .

angles and sides of the Unitarity Triangle which are listed in Tab. 84.

Table 84
Improved measurements of angles and sides of the Unitarity Triangle obtained from the global fits.
Results obtained with the CKMfitter approach (see Sec. 10.1.5) are also shown for comparison.

Parameter Results CKMfitter

α(o) 92.6± 3.2 90.6+3.8
−4.2

sin2β 0.698± 0.019 0.684+0.023
−0.021

γ(o) 65.4± 3.1 67.8+4.2
−3.9

|Vub| 0.00359 ± 0.0012 0.00350+0.00015
−0.00014

|Vcb| 0.0409± 0.0005 0.04117+0.00038
−0.00115

|Vtd| 0.00842 ± 0.00021 0.00859+0.00027
−0.00029

The increasing precision of the measurements and of the theoretical calculations have
significantly improved the knowledge of the allowed region for the apex position (ρ, η).
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Good overall consistency between the various measurements at 95 % C.L. is observed,
thus establishing the CKM mechanism as the dominant source of CP violation in B-
meson decays.
Furthermore, measurements of CP -violating quantities from the B-factories are now

so abundant and precise that the CKM parameters can be constrained by the angles of
the Unitarity Triangle alone, as shown in Fig. 96. In addition, (ρ, η) can be determined
independently using experimental information from CP -conserving processes, |Vub|/|Vcb|
from semileptonic B decays, ∆md and ∆ms from the Bd − B̄d and Bs − B̄s oscillations)
and the direct CP violation measurements in the Kaon sector, ǫK (see Fig. 96). Prior
to the precise BABAR and Belle measurements this was the strategy used to predict the
value of sin 2β [1157].
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Fig. 96. Allowed regions for (ρ, η), as constrained by the measurement of |Vub|/|Vcb|, ∆md, ∆ms and
ǫK (left) and of the angles α, sin 2β, γ, 2β + γ, β and cos 2β (right) . The closed contours indicate the
regions of 68% and 95% C.L. for the triangle apex, while the colored zones mark the 95% C.L. for each
constraint.

Although the global fits show very good agreement overall, there are some measure-
ments for which the agreement is less convincing. As described in Sec. 10.1.1,UTfit quan-
tifies the overall agreement of individual measurements with predictions of the global fit
by means of compatibility plots. Such plots for α, sin 2β, γ and ∆ms are shown in Fig.
97. The direct measurements for α and ∆ms are in excellent agreement with the indirect
determination from the global fits, although for ∆ms the effectiveness of the comparison
is limited by the precision on the theoretical inputs, resulting in sizable uncertainties
(compared to the experimental one) for the prediction extracted from the fit. The direct
measurement of γ yields a slightly higher value of (78± 12)o than the indirect one from
the overall fit, (65 ± 3)o, though they are compatible within 1σ. The measurement of
sin 2β based on the CP asymmetry in B0 → J/ψK0 is slightly shifted with respect to
the indirect determination, but compatible to within 2σ.
It has been observed for several years that the direct measurement of sin 2β favors a

value of |Vub| that is more compatible with the direct determination of |Vub| based on
exclusive rather than inclusive charmless semileptonic decays. The problem is illustrated
in Fig. 98 and reflects the great challenge that the extraction of |Vub| from charmless
semileptonic decays represents. Experimentally, these charmless decays are impacted by
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very large backgrounds which are difficult to understand in detail and difficult to suppress
due to the presence of a neutrino in the final state. Theoretically, the required normal-
ization and corrections for hadronic effects based on QCD calculations are dominating
the uncertainties. The QCD calculations and models are different for the two processes
and their uncertainties are impacted by the selection of the experimental data. While
there are now several calculations available, it remains very difficult to assess the overall
theoretical uncertainties for the extraction of |Vub|. The fact that the current values of
|Vub| from exclusive and inclusive decays are only marginally consistent could be taken
as an indication that the uncertainties are larger than stated.
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Fig. 97. Compatibility plots for α, sin 2β sin 2β from the measurement of the CP asymmetry in
B0 → J/ψK0, γ and ∆ms. The color code indicates the compatibility between direct and indirect
determinations, given in terms of standard deviations, as a function of the measured value and the ex-
perimental uncertainty. The crosses indicate the world averages and errors of the direct measurements.

Given the present experimental measurements, no significant deviation from the CKM
picture has been observed. Of course, this statement does not apply to observables that
have no or very small impact on ρ̄ and η̄ (for instance the Bs mixing phase).

10.1.4. Impact of the Uncertainties on Theoretical Quantities
Given the abundance of constraints now available for the determination of the UT

Triangle, ρ̄ and η̄, one can perform the global fit without the hadronic parameters derived

286



ls ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1
γ

β

α

γ+β2

ρ
-1 -0.5 0 0.5 1

η

-1

-0.5

0

0.5

1

ubV
0.003 0.0035 0.004 0.0045 0.005

)
u

b
(Vσ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
-310×

0

1

2

3

4

5

6 σ

Fig. 98. Left: Allowed regions for ρ̄ and η̄ obtained by using the measurements of |Vub|/|Vcb|, ∆md,
∆ms, ǫK , The colored zones indicate the 68% and 95% probability regions for the angle measurements,
which are not included in the fit. Right: Compatibility plot for Vub. The cross and the star indicate the
exclusive and inclusive measurements, respectively.

from lattice calculations as input. In this way, one can quantify the impact that future
improvements in the lattice QCD calculation will have on the UT analysis.
Figure 99, shows the 68% and 95% probability regions for different lattice quanti-

ties, obtained from a UT fit using the measurements of angles and the constraints from
semileptonic B decays. The relations between observables and theoretical quantities used
in this fit are obtained assuming the validity of the SM. Numerical results are given in
Table 85.
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10.1.5. Comparison with the Results of CKMfitter
Extracting Standard Model best values of parameters from the very large number of

different measurements is difficult. It is not trivial to combine measurements with very
different statistical errors and extract the best the information. However, it is much more
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Table 85
The values obtained for the theoretical parameters from a UT analysis using the angles and Vub/Vcb
measurements are compared with the results of lattice calculations.

Parameter UT (angles+Vub/Vcb) Lattice QCD results

BK 0.78± 0.05 0.75± 0.07

fBs

√
BBs [MeV] 266.8± 4.1 270 ± 30

ξ =
fBs

√
BBs

fBd

√
BBd

1.23± 0.03 1.21± 0.04

fBd
[MeV] 195 ± 11 200 ± 20

difficult to combine measurements with widely different sources and estimations of the
systematic errors, in many cases there is need for case-to-case judgment and margin for
interpretation.
For these reasons, it has been extremely important to have more than one approach

to fits of the UT Triangle. In this section the results obtained by the UTfit group
are compared with the most recent results of the CKMfitter group as summarized in
http://ckmfitter.in2p3.fr/. The inputs to the two fitting methods are different, and the
choice of the lattice parameters differs and experimental inputs are taken from a slightly
different sets of measurements, some of them taken from earlier publications. Nonetheless,
the comparison is important, because it shows that different approaches lead to somewhat
different results.
Statistical method
The CKMfitter was developed in parallel to UTfit to perform global UT analyses. The

most significant difference to theUTfit approach is the treatment of non-Gaussian errors.
In particular, the CKMFitter group introduced RangeF it [956], a special procedure to
deal with uncertainties of theoretical predictions.
The CKMfitter method is described briefly as follows. The experimental input is a set of

Nexp measurements, xexp, related to a set of theoretical expressions or constraints, xtheo.
The theoretical expressions are model-dependent functions of of Nmod parameters ymod.
A subset of Ntheo parameters in ymod are considered fundamental and free parameters
of the theory, e.g. the four Wolfenstein parameters in the SM or the top quark mass.
These parameters are denoted as ytheo. The remaining NQCD = Nmod − Ntheo input
parameters, which currently are less well known due to the difficulty of computing strong
interaction effects, e.g. fbd , Bd,... are denoted as yQCD.
The fit is set up to minimize the quantity, χ2 = −2 lnL(ymod), with the likelihood

function L(ymod), defined as a product two types of contributions,

L(ymod) = Lexp(xexp − xtheo(ymod))× Ltheo(yQCD). (437)

Lexp depends on the experimental measurements xexp, with errors that are Gaussian
distributed in general (and correlations, if known, are taken into account), and their
theoretical predictions xtheo, which are functions of the model parameters ymod. In the
case of a non-Gaussian experimental errors, the exact description of the associated like-
lihood is used in the fit. Ltheo describes the imperfect knowledge of the QCD parameters
yQCD ∈ ymod, where the theoretical uncertainties σsyst are considered to be bound by
a range, [yQCD −σsyst,yQCD +σsyst]. In RangeF it the theoretical likelihood functions
Ltheo(i) do not contribute to the χ2 of the fit, as long as the yQCD values are within
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their range. With these constraints, all results should be understood as valid only if the
allowed ranges contain the true values of the ymod.
The minimization is performed in two steps. First, the global minimum, χ2

min,global,
is determined with respect to all Nmod parameters. Due to the systematic uncertainties
from experiment and theory, this minimum does in general not correspond to a unique
ymod . Second, a selected subspace of the parameter space, e.g. a = (ρ̄, η̄) is scanned,
to determine the local minimum χ2, χ2

min,local(a), for each fixed point on a grid in the

parameter space a, with respect to the remaining parameters. The offset-corrected χ2 is
calculated as, ∆χ2(a) = χ2

min,local(a) − χ2
min,global, where its minimum is equal to zero

by construction.
Finally, a confidence level (C.L.) for a is obtained, assuming Gaussian distributions,

by using the cumulative χ2 distribution:

1− CL = Prob(∆χ2(a),Ndof) (438)

=
1√

2NdofΓ(Ndof/2)

∫ ∞

χ2(ymod)

e−t/2tNdof/2−1dt. (439)

Inputs
The inputs to the fits performed by the CKMfitter group differ slightly from the results

of this report and different choices of parameters estimated with lattice QCD calculations
have been made. The latter difference is mostly due to the difference in the treatment of
systematic errors. These differences are presented in Tables 86 and 87 to be compared
with Tables 81 and 82. Identical input values are not included in these tables. The

Table 86
Most relevant experimental inputs used by CKMfitter for the global UT fit that are different from
those used by UT fit. The numbers marked in bold are theoretical uncertainties treated using Rfit (flat
likelihood).

Input Source Value Reference

|Vud| Nuclear decays 0.97418 ± 0.00026 [275]

|Vus| SL Kaon decays 0.2246 ± 0.0012 [346]

|Vcb| SL charmed B decays (40.59 ± 0.38± 0.58)× 10−3 [560] 31

|Vub| SL charmless B decays (3.87 ± 0.09± 0.46) × 10−3 [560]

B(B+ → τ+ν) Leptonic B decays (1.73 ± 0.35) × 10−4 Tab. 44 combined with [1158]

Table 87
Phenomenological inputs from Lattice QCD calculations as adopted by the CKMfitter group. The errors
treated according to the Rfit (see text) prescription are highlighted in bold.

fBs (MeV) 228± 3± 17

B̂Bs 1.196± 0.008± 0.023

fBs/fBd
1.23± 0.03± 0.05

B̂Bs/B̂Bd
1.05± 0.02± 0.05

BK 0.721± 0.005± 0.040

sources of the experimental inputs are given in Tables 86, the different choices of lattice
parameter are justified in the following.
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First of all, only unquenched lattice calculations with 2 or 2+1 dynamical fermions,
published in journals or proceedings are taken into account. The Gaussian and flat com-
ponents of the errors are separated and the latter is treated according to Rfit prescrip-
tion [956].
The Gaussian errors comprise purely statistical errors as well as systematic uncertain-

ties that are expected to also have normal error distributions (e.g.interpolation errors).
The remaining systematic uncertainties are handled as Rfit errors. If there are several
error sources in the Rfit category, they are added linearly.
If Rfit is taken stricto sensu and the individual likelihood functions are combined by

multiplication, the resulting overall uncertainty might be underestimated. This effect is
corrected for by adopting the following procedure: first, the likelihood functions for the
Gaussian uncertainties are combined; next this combination is assigned the smallest of the
individual Rfit errors. The underlying idea is as follows: The estimated error should not
be smaller than the best of all estimates, but this best estimate should not be impacted
by less precise methods, as would be the case if one took the dispersion of the individual
central values as a guess of the combined theoretical uncertainty. All this underlines the
fact that theoretical uncertainties are often ill-defined, and procedures to combine such
errors should be judged critically. The CKMFitter approach is only one among several
the alternatives that can be found in the literature.
Results of CKM Fitter
Figure 100 displays the result of global fits performed with the CKMfitter, together

with the 96% C.L. contours of the individual constraints. For comparison with UT fit,
the results are listed in Tables 83 and 84). The two global fit procedures give comparable
results, although they arrive at somewhat different contours for the individual constraints.
The results are an excellent proof of robustness of the fit methods, indicating that at
present precision the different choices for the treatment of errors do not impact the
conclusions significantly.
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10.2. CKM angles in the presence of New Physics

10.2.1. Model independent constraints on New Physics from global fits
The Standard Model (SM) of electroweak and strong interactions works beautifully

up to the highest energies presently explored at colliders. However, there are several
indications that it must be embedded as an effective theory into a more complete model
that should, among other things, contain gravity, allow for gauge coupling unification
and provide a dark matter candidate and an efficient mechanism for baryogenesis. As
discussed in Sec. 2.5, this effective theory can be described by a Lagrangian of the form

L(MW ) = Λ2H†H + LSM +
1

Λ
L5 +

1

Λ2
L6 + . . . ,

where the logarithmic dependence on the cutoff Λ has been neglected. Barring the possi-
bility of a conspiracy between physics at scales below and above Λ to give an electroweak
symmetry breaking scale Mw ≪ Λ, we assume that the cutoff lies close to Mw. Then the
power suppression of higher dimensional operators is not too severe for L5,6 to produce
sizable effects in low-energy processes, provided that they do not compete with tree-level
SM contributions. Therefore, we should look for new physics effects in quantities that are
zero at the tree level in the SM and are finite and calculable at the quantum level. Within
the SM, such quantities fall in two categories: i) electroweak precision observables (pro-
tected by the electroweak symmetry) and ii) Flavor Changing Neutral Currents (FCNC)
(protected by the GIM mechanism). In the SM, all FCNC and CP violating processes
are computable in terms of quark masses and of the elements of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1, 2]. This implies very strong correlations among observables
in the flavor sector. NP contributions, or equivalently the operators in L5,6, violate in
general these correlations, so that NP can be strongly constrained by combining all the
available experimental information on flavor and CP violation.
A very useful tool to combine the available experimental data in the quark sector is

the Unitarity Triangle (UT) analysis [956, 1156]. Thanks to the measurements of the
Unitarity Triangle (UT) angles recently performed at B factories, the UT fit is over-
constrained. Therefore, it has become possible to add NP contributions to all quantities
entering the UT analysis and to perform a combined fit of both NP and SM parameters.
In general, NP models introduce a large number of new parameters: flavor changing
couplings, short distance coefficients and matrix elements of new local operators. The
specific list and the actual values of these parameters can only be determined within a
given model. Nevertheless, each of the meson-antimeson mixing processes is described by
a single amplitude and can be parametrized, without loss of generality, in terms of two
parameters, which quantify the difference between the full amplitude and the SM one.
Thus, for instance, in the case of B0

q − B̄0
q mixing we define [36]:

CBq
e2iφBq =

〈B0
q |H full

eff |B̄0
q 〉

〈B0
q |HSM

eff |B̄0
q 〉

; C∆mK
=

Re[〈K0|H full
eff |K̄0〉]

Re[〈K0|HSM
eff |K̄0〉] ; CǫK =

Im[〈K0|H full
eff |K̄0〉]

Im[〈K0|HSM
eff |K̄0〉]
(440)

where q = d, s, HSM
eff includes only the SM box diagrams, while H full

eff includes also the NP
contributions. For theK0−K̄0 mixing, we find it convenient to introduce two parameters
related to the real and imaginary parts of the total amplitude to the SM one. In summary,
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all NP effects in ∆F = 2 transitions are parametrized in terms of six real quantities, CǫK ,
C∆mK

, CBd
, φBd

, CBs
and φBs

[1155].
To further improve the NP parameter determination in the Bs sector, mainly uncon-

strained in the classical UT analysis, we include in the NP fit recent results from the
Tevatron. We use the following experimental inputs: the semileptonic asymmetry in Bs
decays AsSL, the dimuon charge asymmetry AµµSL from CDF and D0, the measurement
of the Bs lifetime from flavor-specific final states, and the two-dimensional likelihood
ratio for ∆Γs and φs = 2(βs − φBs

) from the time-dependent tagged angular analysis of
Bs → J/ψφ decays by CDF and D0 32 . The new input parameters used in our analysis
are given in Ref. [36] and continuously updated in [1159]. The relevant NLO formulas for
∆Γs and for the semileptonic asymmetries in the presence of NP have been discussed in
Refs. [36, 1160,1161].
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, (ANP/ASM) vs. φNP for NP in the Bd sector

and the resulting selected region on the ρ̄− η̄ plane obtained from the NP analysis [36].
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Fig. 102. From left to right, p.d.f.’s for CBs , φBs , φBs vs. CBs and (ANP/ASM) vs. φNP for NP in the
Bs sector [1162].

We also include in the fit NP effects in ∆B = 1 transitions that can also affect some
of the measurements entering the UT analysis, in particular the measurements of α, ASL

and ∆Γs [36, 1160,1161].
The results obtained in a global fit for the six NP parameters are shown in Fig. 101,

together with the corresponding regions in the ρ̄–η̄ plane. More details on the analysis
can be found in Ref. [1161] (see Ref. [956, 1160] for previous analyses).
Writing CBq

e2iφBq = (ASMe
2iβq +ANPe

2i(βq+φNP))/(ASMe
2iβq ) and given the p.d.f. for

CBq
and φBq

, we can derive the p.d.f. in the (ANP/ASM) vs. φNP plane as seen in Fig. 101.

32We use the latest D0 results without assumptions on the strong phases

292



We see that in the Bd system, the NP contribution can be substantial if its phase is close
to the SM phase, while for arbitrary phases its magnitude has to be much smaller than
the SM one. Notice that, with the latest data, the SM (φBd

= 0) is disfavored at 68%
probability due to the slight disagreement between sin 2β and |Vub/Vcb|. This requires
ANP 6= 0 and φNP 6= 0. For the same reason, φNP > 90◦ at 68% probability and the plot
is not symmetric around φNP = 90◦. Assuming that the small but non-vanishing value
for φBd

we obtained is just due to a statistical fluctuation, the result of our analysis
points either towards models with no new source of flavor and CP violation beyond the
ones present in the SM (Minimal Flavor Violation, MFV), or towards models in which
new sources of flavor and CP violation are only present in b→ s transitions.
Conversely, from the results of our analysis in the Bs system, we see that the phase

φBs
deviates from zero at ∼ 3.0σ. The solution around φBs

∼ −20◦ corresponds to
φNP
s ∼ −50◦ and ANP

s /ASM
s ∼ 75%. The second solution is much more distant from the

SM and it requires a dominant NP contribution (ANP
s /ASM

s ∼ 190%). In this case the
NP phase is thus very well determined. The strong phase ambiguity affects the sign of
cosφs and thus Re ANP

s /ASM
s , while Im ANP

s /ASM
s ∼ −0.74 in any case.

This result shows an hint of discrepancy with respect to the SM expectation in the Bs
CP-violating phase. We are eager to see updated measurements using larger data sets
from both the Tevatron experiments in order to strengthen the present evidence, waiting
for the advent of LHCb for a high-precision measurement of the NP phase.
It is remarkable that to explain the result obtained for φs, new sources of CP violation

beyond the CKM phase are required, strongly disfavoring the MFV hypothesis. These
new phases will in general produce correlated effects in ∆B = 2 processes and in b → s
decays. These correlations cannot be studied in a model-independent way, but it will be
interesting to analyze them in specific extensions of the SM. In this respect, improving
the results on CP violation in b→ s penguins at present and future experimental facilities
is of the utmost importance.
If we now consider the most general effective Hamiltonian for ∆F = 2 processes

(H∆F=2
eff [36]), we can translate the experimental constraints into allowed ranges for

the Wilson coefficients of H∆F=2
eff . These coefficients in general have the form

Ci(Λ) =
FiLi
Λ2

(441)

where Fi is a function of the (complex) NP flavor couplings, Li is a loop factor that
is present in models with no tree-level Flavor Changing Neutral Currents (FCNC), and
Λ is the scale of NP, i.e. the typical mass of the new particles mediating ∆F = 2
transitions. For a generic strongly-interacting theory with arbitrary flavor structure, one
expects Fi ∼ Li ∼ 1 so that the allowed range for each of the Ci(Λ) can be immediately
translated into a lower bound on Λ. Specific assumptions on the flavor structure of NP,
for example Minimal or Next-to-Minimal Flavor Violation (see Sec. 2.5), correspond to
particular choices of the Fi functions. To obtain the p.d.f. for the Wilson coefficients at
the NP scale Λ, we switch on one coefficient at a time in each sector and calculate its
value from the result of the NP analysis presented above.
The connection between the Ci(Λ) and the NP scale Λ depends on the general prop-

erties of the NP model, and in particular on the flavor structure of the Fi. Assuming
strongly interacting new particles, we have
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Λ =

√
Fi
Ci

. (442)

In deriving the lower bounds on the NP scale Λ, we assume Li = 1, corresponding to
strongly-interacting and/or tree-level NP. Two other interesting possibilities are given by
loop-mediated NP contributions proportional to α2

s or α2
W .

Assuming strongly interacting and/or tree-level NP contributions with generic flavor
structure (i.e. Li = |Fi| = 1), we can translate the upper bounds on Ci into the lower
bounds on the NP scale Λ. Conversely, in case of hints of NP effects, an upper bounds
on the NP scale Λ is extracted.

Table 88
95% probability lower bounds on the NP scale Λ (in
TeV) for several possible flavor structures and loop
suppressions from the K and Bd systems.

Scenario strong/tree αs loop αW loop

MFV 5.5 0.5 0.2

NMFV 62 6.2 2

General 240000 24000 8000

Table 89
95% probability upper bounds on the NP scale Λ (in
TeV) for several possible flavor structures and loop
suppressions from the Bs system.

Scenario strong/tree αs loop αW loop

NMFV 35 4 2

General 800 80 30

From the lower bound Tab. 88, we could conclude that any model with strongly inter-
acting NP and/or tree-level contributions is beyond the reach of direct searches at the
LHC. Flavor and CP violation remain the main tool to constrain (or detect) such NP
models. Weakly-interacting extensions of the SM can be accessible at the LHC provided
that they enjoy a MFV-like suppression of ∆F = 2 processes, or at least a NMFV-like
suppression with an additional depletion of the NP contribution to ǫK .
If we consider the current effect in the Bs mixing, we obtain the upper bound Tab. 89

and we notice that the general model is strongly problematic being the upper bound at
a much lower scale with respect to the corresponding lower bound resulting from the
K and Bd systems. NMFV models are less problematic, but they can hardly reproduce
with the current size of the NP effect in the Bs system while keeping small effects in the
Bd and even smaller effects in the K system. Finally, MFV models would have possible
solutions in this scheme but they cannot generate the effect in the Bs phase. So the
current hint suggests some hierarchy in NP mixing which is stronger that the SM one.

10.2.2. Impact of flavor physics measurements on grand unified
In a model of physics beyond the Standard Model, it is expected that observables in

the flavor physics are affected by the contributions from new particles which couple to the
quarks and leptons. Comparing measured values of flavor observables with the Standard
Model predictions enables us to obtain information on the new physics contributions. If
the measured value of certain observable differs from the Standard Model prediction, the
difference shows the magnitude of the new physics contribution. If the measured value
is consistent with the Standard Model prediction, that measurement is still useful as a
constraint on the new physics.
Here we focus on the cases of supersymmetric grand unified models. For general reviews

of supersymmetric models, see Refs. [154, 1163,1164] and references therein.
In supersymmetric extensions of the Standard Model, there exist superpartners of the

Standard Model particles, namely squarks, sleptons, gauginos and higgsinos. Supersym-
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metrized interactions include quark-squark-gaugino and quark-squark-higgsino couplings.
The mass matrices of the superparticles are different from corresponding ones of the Stan-
dard Model particles because of the supersymmetry breaking. Therefore the flavor mixing
among the squarks depend on flavor structure of the supersymmetry breaking mecha-
nism. The mismatch between the flavor bases of quarks and squarks generates mixing
matrices at the quark-squark-gaugino(higgsino) interactions. These mixing matrices are
not necessarily the same as the CKM matrix and affect the flavor changing amplitudes
through loop diagrams with squarks in the internal lines.
Importance of the flavor physics in supersymmetric models have been recognized since

early 1980’s [161, 162]. It was pointed out that squarks of the first and second gener-
ations must be almost degenerate in mass, since otherwise too large contribution to
the K − K̄ mixing would be given by squark-gaugino loops. This requirement, which
is known as “SUSY flavor problem”, motivates us to build a model of supersymmetry
breaking mechanism that controls the squark mass matrices. The minimal supergravity
(mSUGRA) model is one of those models. In mSUGRA, it is assumed that the supersym-
metry breaking occurs in a hidden sector and its effect is transferred to the observable
sector by (super-)gravitational interactions. Consequently, the supersymmetry breaking
masses and interactions of the superparticles are generated near the Planck scale and
flavor-blind. Mass differences and flavor mixings of the squarks are induced by the (su-
persymmetrized) Yukawa interactions through radiative corrections. Therefore the de-
generacy of the first and the second generation squarks is explained by the smallness of
the Yukawa couplings of the light quarks. On the other hand, masses of the third gen-
eration squarks, particularly stop, receive significant corrections from large top Yukawa
coupling. Squark flavor mixing occurs in left-handed squarks and the mixing matrix is
approximately the same as the CKM matrix [1165–1167].
Effects of the superparticles on flavor observables have been studied in the past decades

[1168–1170], and it turns out that deviations from the Standard Model predictions are
small in the simplest mSUGRA scenario, under the improved constraints from direct
searches for the superparticles and the Higgs bosons at LEP and Tevatron experiments.
An exception is the b → s γ decay. b → s γ in supersymmetric models has been studied
intensively in 1990’s [1171–1174]. It is shown that the contributions from the suparpar-
ticle loops can be as large as the Standard Model one, thus the agreement between the
measured value of B(b → s γ) and its Standard Model prediction gives us an important
constraint on the parameter space of a supersymmetric model.
After the existence of the neutrino masses is established by neutrino oscillation experi-

ments, flavor mixing in the lepton sector has been also taken into account. Although
the the neutrino masses are very small compared to the quark and charged lepton
masses, Yukawa couplings of the neutrinos need not to be small. If the see-saw mech-
anism [1175–1177] works and the Majorana masses of the right-handed neutrinos are
sufficiently large, the Yukawa coupling constants of the neutrinos may be O(1). In the
mSUGRA scenario, the neutrino Yukawa coupling generates the flavor mixing in the
slepton mass matrices through radiative corrections. The flavor mixing in the sleptons
eventually induces the lepton flavor violating processes such as µ→ e γ [1178, 1179].
In the supersymmetric grand unified models, the Yukawa interactions of quarks and

leptons are unified at the energy scale of the grand unification. Therefore both squark
and slepton mass matrices receive flavor off-diagonal contributions due to the unified
Yukawa interactions above the GUT scale. In a SU(5) unification model, flavor mixings

295



Fig. 103. Mixing-induced CP asymmetry in Bd → K∗ γ decay as a function of the lightest down-type
squark mass in the SU(5) SUSY GUT with right-handed neutrinos [1186].

of the left-handed squarks and the right-handed charged sleptons are governed by the
Yukawa coupling matrix of the up-type quarks that consists of the top Yukawa coupling
[1180,1181]. On the other hand, the right-handed down-type squarks and the left-handed
sleptons receive contributions form the neutrino Yukawa coupling matrix, which is related
to the Maki-Nakagawa-Sakata neutrino mixing matrix [1182]. Since the neutrino mixing
angle between the second and the third generations is known to be large, it is expected
that significant b̃R − s̃R mixing is induced when the magnitudes of the neutrino Yukawa
couplings are sufficiently large [1183–1185].
The squark flavor mixings, which are generated by the (grand-unified) neutrino Yukawa

interactions, contribute to the quark flavor changing amplitudes. Since these additional
contributions are independent of the CKM matrix, it is possible that deviations from the
Standard Model predictions of the flavor observables in the B decays are sizably large
while those in K decays are suppressed. Fig. 103 [1186] shows the mixing-induced CP
asymmetry in Bd → K∗ γ decay as a function of the lightest down-type squark mass in
the SU(5) SUSY GUT with right-handed neutrinos. Each dot in the plot corresponds
to a different choice of supersymmetry breaking parameters in the mSUGRA scenario.
CKM matrix elements and neutrino parameters are fixed. The neutrino Yukawa coupling
matrix is chosen so that the flavor mixing between the second and the third generations
is large, whereas the mixing between the first and the second generations is suppressed.
With this choice, SUSY contributions to the K − K̄ mixing (εK) and µ → e γ are
small enough. It is seen that there exist parameter regions where the asymmetry is as

296



Fig. 104. Correlation between the mixing-induced CP asymmetry in Bd → K∗ γ and the branching
fraction of τ → µγ [1186].

large as ±20% for the squark mass ∼ 1TeV satisfying other experimental constraints.
Other observables in b → s transition, such as the time-dependent CP asymmetries in
Bd → φKS and Bs → J/ψ φ are also affected significantly in the same parameter region.
Another characteristic feature is that the SUSY flavor signals in the quark and lepton

sectors are correlated with each other [1186]. As can be seen in Fig. 104, the branching
fraction of τ → µ γ can be as large as 10−8 in the parameter region with large corrections
to b→ s observables.
The pattern of deviations from the Standard Model predictions depends on the flavor

structure of the masses and interactions of the squarks and sleptons. Therefore a com-
bined analysis of many flavor observables provides us with important clue on physics
determining the structure of the SUSY breaking sector.

10.2.3. New physics in extra-dimension models
In recent years a lot of interest was dedicated to extensions of the Standard Model

involving one or more extra dimensions (ED), motivated by the possibility to find a
natural solution, in this context, of the hierarchy between the electroweak and the Planck
scale. ED models can be grouped basically into three classes according to the space-time
geometry of the ED and the localization properties of SM fields. In ADD [1187, 1188]
models the space-time is extended by one or more large (sub-millimeter) EDs with flat
geometry. Only gravity is allowed to propagate in the higher-dimensional bulk, while
all gauge and matter fields are confined to a 4d brane. In a different class of models,
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dubbed Universal Extra Dimensions (UED) [1189], the EDs have flat geometry and are
compactified, but now the SM fields are free to propagate in the bulk. Finally, in RS [1190,
1191] models, a 5d warped space-time is considered. Nowadays, in most phenomenological
applications modifications of the original RS1 setup [1190] are considered, where gauge
and matter fields propagate in the 5d bulk [176, 1192, 1193] and only the Higgs boson
is confined on or near the IR brane. In the following we will summarize flavor physics
constraints on UED and warped models.

10.2.3.1. Universal extra dimensions (UED). For what concerns UEDs we consider the
so called minimal UED5 [1189] and minimal UED6 [1194–1196] models, characterized by
one ED compactified on S1/Z2 and two EDs compactified on T 2/Z2, respectively. The
minimality refers to the absence of flavor non-universal boundary terms that would lead to
unacceptably large flavor changing neutral currents. With these assumptions the Kaluza-
Klein (KK) modes of the SM fields induce new contributions to flavor violating processes.
As the models are minimal flavor violating (see Sec. 2.5), those interactions are entirely
controlled by the CKM matrix and the relevant free parameters of the models are the
compactification radiusR and the cut-off scale Λ at which the full (5d/6d) theory becomes
non-perturbative. Detailed analyses of FCNC processes in UED5 and UED6 have been
presented in [660–662,842,1197–1206] and [660,663], respectively. Lower bounds on 1/R
come from oblique corrections, Z → bb̄, (g−2)µ and b→ sγ, with the latter providing by
far the strongest constraint. It is interesting to note that UED contributions to b → sγ
tend always to decrease the branching ratio and, within the 5d (6d) theory, have a
negligible (logarithmic) dependence on the cut-off Λ. Utilizing the world average B(B̄ →
Xsγ)exp = (3.55± 0.24+0.09

−0.10± 0.03) ·10−4 the authors of Refs. [662,663] find that in both
models the inverse compactification radius has to be larger than about 600GeV, with
the exact bound depending quite sensitively on the theoretical prediction for the central
value. Their findings are summarized in Fig. 105. A discussion of these models in the
context of dark matter and accelerator searches can be found, for instance, in Ref. [1207].

10.2.3.2. Bulk fermions in a warped ED. The case of bulk fermions in a warped ED
is more interesting from the flavor physics point of view, as the localization of fermion
zero modes along the 5th dimension provides an intrinsic explanation of the observed
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Fig. 106. left: Required Barbieri-Giudice [1224] fine-tuning ∆BG(εK) as a function of εK in the cus-
todially protected RS model. The blue curve displays the average fine-tuning [182]. right: Correlation
between the CP-asymmetries AsSL and Sψφ in the custodially protected RS model, fulfilling all available
∆F = 2 constraints [182].

Fig. 107. left: Br(KL → π0νν̄) as a function of Br(K+ → π+νν̄) in the custodially protected
RS model [181]. The shaded area represents the experimental 1σ-range for Br(K+ → π+νν̄). right:
Br(KL → µ+µ−) versus Br(Bs → µ+µ−) in the custodially protected RS model [181].

hierarchies in fermion masses and mixings [176, 1193, 1208]. Due to the absence of KK
parity, here new physics contributions to FCNC observables appear already at the tree
level, however they are strongly suppressed thanks to the so-called RS-GIM mechanism
[178]. In contrast to the UED models, this class of models goes beyond MFV and many
new flavor violating parameters and CP phases are present, in addition to new flavor
violating operators beyond the SM ones.
In order to obtain agreement with the electroweak T parameter, usually an enlarged

gauge sector SU(2)L × SU(2)R × U(1)X is considered [1209,1210], together with custo-
dially protected fermion representations that avoid large anomalous ZbLb̄L [1211–1214]
and at the same time also ZdiLd̄

j
L [181, 182, 1215] couplings. Consequently the KK mass

scale can be as low as MKK ≃ (2 − 3)TeV and therefore in the reach of direct LHC
searches.
The impact of RS bulk matter on quark flavor violating observables has been dis-

cussed extensively in the literature, see e.g. [178, 181, 182, 1216–1223] for details. Here
we focus only on the most stringent constraint, coming from the εK observable, that
measures indirect CP-violation in the neutral K meson sector, and on implications for
flavor observables that have not yet been measured with high precision.
In contrast to the SM, the tree level exchange of KK gauge bosons induces amongst

others the presence of left-right operators QLR contributing to ∆F = 2 processes. These
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operators receive large renormalisation group corrections and are in the case of K0− K̄0

mixing in addition chirally enhanced. It turns out then that the otherwise so powerful
RS-GIM mechanism in this case is not sufficient to suppress the new physics contribution
below the experimental limits, so that assuming completely anarchic 5d Yukawa couplings
a lower bound on the KK mass scaleMKK ≃ 20TeV is obtained [182,1221]. In [182] it has
been shown however that allowing for modest hierarchies in the 5d Yukawas agreement
with εK can be obtained even without significant fine-tuning (see Fig. 106), so that
a natural solution to the “εK-problem” even for low KK scales cannot be excluded.
Imposing then all available ∆F = 2 constraints on the RS parameter space, large new
CP-violating effects in Bs−B̄s mixing can still be found in this model [182], offering a neat
explanation of the recent CDF and D0 data [232, 958, 1225]. In addition slight tensions
between CP-violation in K and Bd observables [872,1076] could easily be resolved thanks
to the presence of non-MFV interactions [182]. An interesting pattern of deviations from
the SM can also be found in the case of rare K and Bd,s decays (see Fig. 107) [181]. As
the dominant contribution stems from tree level flavor changing couplings of the Z boson
to right-handed down-type quarks, generally larger effects are to be expected in rare K
decays, e. g. Br(KL → π0νν̄) can be enhanced by up to a factor 5. While the effects in
Bd,s decays are much more modest (e. g. ±20% in Br(Bd,s → µ+µ−)), flavor universality
can be strongly violated, so that interesting deviations from the MFV predictions appear.
Striking correlations arise not only between various rare K decays, but also between K
and Bd,s physics observables, thus allowing to distinguish this framework from other new
physics scenarios.
Alternative solutions to solve the “εK-problem”, based on flavor symmetries, have

as well been discussed in the recent literature. One approach is to protect the model
from all tree level FCNCs by incorporating a full 5d GIM mechanism [183], in which
the bulk respects a full U(3)3 flavor symmetry. Although this model is safe, since its
effective theory is MFV, it leaves the origin of the large hierarchies in the flavor sector
unanswered. More recent proposals therefore seek to suppress dangerous FCNCs and
simultaneously try to explain the hierarchical structure of the flavor sector. One of them
is the so called “5d MFV” model [1226]. Here one postulates that the only sources of
flavor breaking are two anarchic Yukawa spurions. The low-energy limit is not MFV, and
the additional assumption, that brane and bulk terms in the down sector are effectively
aligned, is needed to suppress dangerous FCNCs. Recently, an economical model has
been proposed [1227] in which one assumes a U(3) flavor symmetry for the 5D fields
containing the right handed down quarks. Dangerous contributions to QLR are then
only generated by suppressed mass insertions on the IR brane where the symmetry is
necessarily broken. Another recent approach [184] presents a simple model where the key
ingredient are two horizontal U(1) symmetries which induce an alignment of bulk masses
and down Yukawas, thus strongly suppressing FCNCs in the down sector. FCNCs in the
up sector, however, can be close to experimental limits.
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