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We consider the hypothesis that dark matter (DM) has tree-level interactions only with leptons. Such a

framework, where DM recoils against electrons bound in atoms, has been proposed as an explanation for

the annually modulated scintillation signal in DAMA/LIBRA data versus the absence of a signal for

nuclear recoils in experiments like CDMS or XENON10. However, even in such a leptophilic DM

scenario there are loop-induced DM-hadron interactions, where photons emitted from virtual leptons

couple to the charge of a nucleus. Using a general effective field theory approach we show that, if such an

interaction is induced at one- or two-loop level, then DM-nucleus scattering dominates over DM-electron

scattering. This is because the latter is suppressed by the bound state wave function. One obtains a

situation similar to standard DM-nucleus scattering analyses with considerable tension between the results

of DAMA and CDMS/XENON10. This conclusion does not apply in the case of pseudoscalar or axial-

vector coupling between DM and leptons, where the loop diagrams vanish. In this case the explanation of

the DAMA signal in terms of DM-electron scattering is strongly disfavored by the spectral shape of the

signal. Furthermore, if DM can annihilate into neutrinos or tau leptons, the required cross sections are

excluded by many orders of magnitude using the Super-Kamiokande bound on neutrinos from DM

annihilations in the Sun.
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I. INTRODUCTION

The DAMA Collaboration provided strong evidence for
an annually modulated signal in the scintillation light from
sodium iodine detectors. The combined data from DAMA/
NaI [1] (7 annual cycles) and DAMA/LIBRA [2] (4 annual
cycles) with a total exposure of 0.82 ton yr show a modu-
lation signal with 8:2� significance. The phase of this
modulation agrees with the assumption that the signal is
due to the scattering of weakly interacting massive parti-
cles (WIMPs) forming the dark matter (DM) halo of our
Galaxy.

However, many interpretations of this signal in terms of
DM scattering are in conflict with constraints from other
DM direct detection experiments. Spin-independent elastic
WIMP-nucleon scattering accounting for the DAMA
modulation is tightly constrained by bounds from several
experiments, most notably from CDMS [3] and XENON10
[4]. While conventional WIMPs with masses m� *

50 GeV are excluded by many orders of magnitude, light
WIMPs with& 10 GeV masses might be marginally com-

patible with the constraints, see, e.g. [5–12] for recent
studies. Spin-dependent couplings to protons can account
for the DAMA signal without being in conflict with CDMS
and XENON10, but in this case strong constraints from
COUPP [13], KIMS [14], and PICASSO [15], as well as
(somewhat model dependent) bounds from Super-
Kamiokande [16] searches for neutrinos from DM annihi-
lations inside the Sun apply [11,17]. Inelastic scattering of
a DM particle to a nearly degenerate excited state has been
proposed in [18]; see [19–23] for recent analyses, though
also in this case tight constraints apply, in particular, from
CRESST-II [24] and ZEPLIN-II [25]. Other proposals
include mirror world DM [26] or DM with electric or
magnetic dipole moments [27].
In this work we consider the hypothesis that the DM

sector has no direct couplings to quarks, only to leptons, in
particular, the electrons. While electronic events will con-
tribute to the scintillation light signal in DAMA, most other
DM experiments like CDMS or XENON reject pure elec-
tron events by aiming at a (close to) background free search
for nuclear recoils. DM scattering off electrons at rest
cannot provide enough energy to be seen in a detector,
however, exploiting the tail of the momentum distribution
of electrons bound in an atom may lead to a scintillation
light signal in DAMA of the order of a few keV [28]. The
signal in direct detection experiments from DM-electron
scattering has been considered recently also in Ref. [29].
An affinity of DM to leptons might also be motivated by
recent cosmic ray anomalies [30–32] observed in elec-
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trons/positrons, but not in antiprotons. A simple model for
‘‘leptophilic’’ DM has been presented in Ref. [33]; see in
this context, for example, also [34,35] and references
therein.

In the following we will use effective field theory to
perform a model independent analysis. Wewill consider all
possible Lorentz structures for the effective DM-electron
interaction and show that in many cases a DM-quark
interaction is induced at one- or two-loop level by photon
exchange. In these cases the loop-induced DM-nucleon
scattering always dominates, since the DM-electron scat-
tering cross section is suppressed by the momentum wave
function. This reintroduces the tension between DAMA
and other searches. We identify only one possible Lorentz
structure, the axial-vector type coupling, where DM-
electron scattering dominates and the scattering cross sec-
tion is not additionally suppressed by small quantities.
Taking special care of the kinematics in the DM scattering
off bound electrons, we show that in this case the fit to the
DAMA event spectrum is very bad. Super-Kamiokande
constraints on neutrinos from DM annihilations inside
the Sun also disfavor this possibility. Our results thus
suggest that leptonically interacting DM is not a viable
explanation of the DAMA annual modulation signal.

The plan of the paper is as follows. In Sec. II we
introduce the effective Lagrangian for DM-lepton interac-
tions, discuss three possible experimental signatures of
leptophilic DM, and estimate their relative sizes. In
Sec. III we discuss all the possible Lorentz structures and
the implications for tree-level interactions with electrons as
well as loop-induced DM-nucleus interactions. In Sec. IV
the event rates in direct detection experiments are calcu-
lated, while Sec. V contains the numerical results for two
representative examples, namely, vectorlike couplings,
where the count rate is dominated by loop-induced
WIMP-nucleus scattering (Sec. VA), and axial-vector cou-
pling, where no loop contribution is present and WIMP-
electron scattering off bound electrons dominates
(Sec. VB). In Sec. VI we show that the cross sections
required in the axial-vector case are ruled out by Super-
Kamiokande constraints assuming that DM annihilations
in the Sun produce neutrinos; we point out the importance
of the nonzero temperature of the electrons in the Sun. We
summarize our results in Sec. VII. Technical details and
supplementary information is given in Appendixes A, B, C,
and D.

II. LEPTONICALLY INTERACTING DARK
MATTER

A. Effective dark matter interactions

The goal of our study is a model independent analysis
under the assumption that the DM particle � couples
directly only to leptons but not to quarks. The appropriate
description is in terms of effective interactions. Let us first
focus on the case of fermionic DM. The most general

dimension six four-Fermi effective interactions are then,
shown pictorially also in Fig. 1 (right diagram),

L eff ¼
X
i

Gð ���i
��Þð �‘�i

‘‘Þ with G ¼ 1

�2
; (1)

where � is the cutoff scale for the effective field theory
description, while the sum is over different Lorentz struc-
tures. A complete set consists of scalar (S), pseudoscalar
(P), vector (V), axial-vector (A), tensor (T), and axial-
tensor (AT) currents. The four-Fermi operators can thus
be classified to be of

scalar type: �� ¼ c
�
S þ ic

�
P�5; �‘ ¼ c‘S þ ic‘P�5;

vector type: �
�
� ¼ ðc�V þ c

�
A�5Þ��;

�‘� ¼ ðc‘V þ c‘A�5Þ��;

tensor type: ���
� ¼ ðcT þ icAT�5Þ���; �‘�� ¼ ���;

(2)

where ��� ¼ i
2 ½��; ���.1 If DM is a Majorana particle,

vector and tensorlike interactions are forbidden, i.e., c
�
V ¼

c
�
T ¼ c

�
AT ¼ 0.

In our work we do not rely on any specific realization of
the effective interaction. The simplest example would just
be assuming that the interaction is induced by the exchange
of an intermediate particle whose mass is much larger than
the recoil momenta that are of order of a few MeV. The
intermediate particle can then be integrated out leaving an
effective point interaction. Let us look at the �-lepton
interaction mediated by a scalar field �, shown in Fig. 1.
It gives an amplitude

ig
�
S ð �u�u�Þ

i

q2 �m2
� þ i�

ig‘Sð �u‘u‘Þ

! i
g�Sg

‘
S

m2
�

ð �u�u�Þð �u‘u‘Þ; (3)

where on the right-hand side we have neglected the mo-
mentum transfer q2 ¼ ðp0 � pÞ2 � m2

�. The same ampli-

tude is obtained from a local operator ð ���Þð �‘‘Þ with a
Wilson coefficient g

�
Sg

‘
S=m

2
� [in the notation used in

Eqs. (1) and (2) we have c
�
S ¼ g

�
S , c

‘
S ¼ g‘S, and � ¼ m�].

In the case of scalar DM, at lowest order there is only
one dimension five operator. The effective Lagrangian is
given by

L eff ¼ G5ð�y�Þ½ �‘ðdS þ idP�5Þ‘� with G5 ¼ 1

�
:

(4)

1The relation ����5 ¼ i
2 �

���	��	 implies that the AT � AT
coupling is equivalent to T � T, and T � AT ¼ AT � T.
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B. Signals in direct detection experiments

Let us now discuss the signals that arise when a lepto-
philic DM particle interacts in a detector. One can distin-
guish the following types of signals (see also [29]):

(1) WIMP-electron scattering (WES): The whole recoil
is absorbed by the electron that is then kicked out of
the atom to which it was bound.

(2) WIMP-atom scattering (WAS): The electron on
which the DM particle scatters remains bound and
the recoil is taken up by the whole atom. The
process can either be elastic (el-WAS) in which
case the electron wave function remains the same,
or inelastic (ie-WAS), in which case the electron is
excited to an outer shell.

(3) Loop-induced WIMP-nucleus scattering (WNS):
Although per assumption DM couples only to lep-
tons at tree level, an interaction with quarks is
induced at loop level, by coupling a photon to virtual
leptons, see Fig. 2. This will lead to scattering of the
DM particle off nuclei.

WES produces a prompt electron and possibly addi-
tional Auger electrons or x rays. This leads to a signal in
scintillation detectors such as DAMA, but is rejected in
nuclear recoil experiments like CDMS and XENON. If
WES was the dominant mechanism, it might be possible
to explain both the DAMA signal and the absence of the
signal in CDMS and XENON. In the other two cases, WAS
and WNS, the signal consists of a scattered nucleus and
shows up in all direct detection experiments searching for

FIG. 2. DM-nucleus interaction induced by a charged lepton loop and photon exchange at one loop (top) and two loop (bottom).

FIG. 1. Example for generating an effective local DM-electron interaction vertex (right diagram) as used in our analysis by the
exchange of a heavy intermediate particle � (left diagram).
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DM nuclear recoils. If WAS or WNS was the dominant
signal, then the leptophilic nature of DM would not help to
resolve the tension between DAMA and the remaining
experiments. In the following we will first give rough
estimates for the relative sizes of these three signal types
for different DM-lepton effective interactions, while giving
a more detailed calculation of the event rates later in
Sec. IV and Appendix B.

The event rate in direct detection experiments is propor-
tional to the differential cross section d�=dEd, where

Ed ¼ E� � E0
�; (5)

is the energy deposited by the WIMP in the detector. The
DAMA annual modulation signal is observed at Ed ’
3 keV. Also for other direct detection experiments typical
values are in the few to tens of keV range. As we will see in
Sec. IV and Appendix B, just from kinematics the cross
section is proportional to

d�

dEd

/ G2meðG2mNÞ for WES ðWAS;WNSÞ; (6)

where G is defined in Eq. (1) and me (mN) is the electron
(nucleus) mass. This suppresses the WES induced event
rate by a factor me=mN with respect to WAS and WNS.

In order for WES to deposit �keV energy in the detec-
tor, the electron that aWIMP scatters off has to have quite a
high momentum. Indeed, the maximal detectable energy
from DM scattering on electrons at rest is 2mev

2, with
typical DM velocities of v� 10�3c. Hence, the maximal
detectable energy is of order eV, far too low to be relevant
for the DAMA signal at few keV. Therefore, one has to
explore the scattering off bound electrons with non-
negligible momentum [28]. In this case the energy transfer
to the detector is Ed �OðpvÞ, and an electron momentum
p�MeV is required to obtain Ed � keV. Since electrons

are bound in the atom, there is a finite yet small probability
that it carries such high momentum. The detailed calcu-
lations below will show that the suppression factor from
the wave function is given by the expression

�WES ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðEd � EBÞ

q
ð2lþ 1Þ

Z dpp

ð2
Þ3 j�nlðpÞj2

� 10�6: (7)

The integral is over MeV momenta, while �nlðpÞ is the
momentum wave function of the shell nl with the binding
energy EB. Some wave functions are shown in Fig. 3,
which we have used to obtain the numerical estimate for
�WES � 10�6 given above.
Similarly, WAS is also suppressed by the overlap of

atomic wave functions of the initial and final states of the
electron:

�WAS ¼X jhn0l0m0jeiðk�k0Þxjnlmij2 � 10�19; (8)

where the numerical estimate follows from Fig. 10 for a

momentum transfer of jk� k0j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNðEd � �EBÞ

p �
10 MeV.
Loop-induced WNS does not suffer from any wave

function suppression, but instead carries a loop factor. At
1-loop the suppression is of order ð�emZ=
Þ2, with Z being
the charge number of the nucleus. Combining this with
Eqs. (6)–(8), we obtain the following rough estimate for
the ratios of WAS, WES, and WNS induced event rates
(neglecting order-one factors but also possible different v
dependences):
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FIG. 3 (color online). Momentum space wave functions of iodine and sodium. Solid colored curves correspond to shells that
contribute to WES in DAMA, while thin light curves are for shells that are not accessible in DAMA.
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RWAS:RWES:RWNS � �WAS:�WES

me

mN

:

�
�emZ




�
2

� 10�17:10�10:1; (9)

where in the last step we usedmN ¼ 100 GeV and Z ¼ 53.
We conclude that whenever a loop-induced cross section

is present it will dominate the rate in direct detection
experiments. This holds for 1-loop as well as 2-loop cross
sections, since the latter will be suppressed by another
factor ð�emZ=
Þ2 ’ 5� 10�6Z2 relative to 1-loop, and
hence they are still much larger than theWES contribution.
As we will show in the next section for axial-vectorlike
DM-lepton coupling no loop will be induced. Therefore, in
this case the signal in DAMAwill be dominated by WES.
Then, WAS is still irrelevant for DAMA, but since WES
will not contribute to the rate in CDMS and XENON, WAS
might in principle lead to a signal in those experiments.

III. DM-ELECTRON SCATTERINGVERSUS LOOP-
INDUCED NUCLEAR RECOIL

Having estimated the strong hierarchy among the WAS,
WES, and WNS signals in the previous section, we now
discuss which type of signal is present for a given Lorentz
structure of the effective DM-lepton vertex, Eqs. (2) and
(4).

A. DM scattering on electrons

Let us start by investigating DM scattering on electrons,
relevant for WES and WAS. To simplify the discussion we
consider � scattering on electrons at rest. This will enable
us to see for which types of Lorentz structures in the
effective DM-lepton Lagrangian, Eq. (1), this interaction
is relevant. We defer the complications introduced by the
fact that electrons are actually bound in atoms to Sec. IV
and Appendix B.

We consider a DM particle � of mass m� scattering

elastically on a free electron at rest, assuming that all the
particles are nonrelativistic. The scattering cross sections
for fermionic DM are then

scalar type: � ¼ �0
�e

�
ðc�SceSÞ2 þ

�
ðc�ScePÞ2 þ ðc�PceSÞ2

m2
e

m2
�

�

� v2

2
þ ðc�PcePÞ2

3

m2
e

m2
�

v4

�
; (10)

vector type: � ¼ �0
�e

�
ðc�VceVÞ2 þ 3ðc�AceAÞ2

þ ½ðc�VceAÞ2 þ 3ðc�AceVÞ2�
v2

2

�
; (11)

tensor type: � ¼ �0
�ef12c2T þ 6c2ATv

2g: (12)

In the above expressions there are two suppression factors,
the DM velocity in our halo v� 10�3c and the ratio

me=m�. The cross section for each Lorentz structure is

given to leading order in these expansion parameters. Up to
the velocity or electron mass suppression the typical size of
the scattering cross section is

�0
�e � G2m2

e



¼ m2

e


�4
� 3:1� 10�39 cm2

�
�

10 GeV

��4
:

(13)

For scalar DM the �e scattering cross section is induced
by the dimension 5 operator, Eq. (4), giving

� ¼ �0
�e;5

�
d2S þ

d2P
2
v2

�
; (14)

with

�0
�e;5 �

G2
5

4


m2
e

m2
�

¼ 1

4
�2

m2
e

m2
�

¼ 7:7� 10�42 cm2

�
�

10 GeV

��2
�

m�

100 GeV

��2
:

(15)

Compared to fermionic DM two powers of � are replaced
by m� which typically is larger than �. The scalar DM

scattering cross section is thus further suppressed com-
pared to the fermionic case for given �. The results of
Eqs. (10)–(12) and (14) are summarized in the middle
column of Table I.

TABLE I. Scattering cross section suppression by small pa-
rameters for DM-electron scattering and loop-induced DM-
nucleon scattering for all possible Lorentz structures. Here, v�
10�3 is the DM velocity, re ¼ me=m�, and q‘ ¼ m‘=mN (‘ ¼ e,

�, �). The reference cross sections �0
�e, �

0
�e;5, �

1
�N , and �1

�N;5

are defined in Eqs. (13), (15), and (26). The couplings c�, c‘, and
d have been set to 1. The entries for �N ! �N are orders of
magnitude estimates.

Fermionic DM

�� � �‘ �ð�e ! �eÞ=�0
�e �ð�N ! �NÞ=�1

�N

S � S 1 �2
em (2 loop)

S � P Oðv2Þ 	 	 	
P � S Oðr2ev2Þ �2

emv
2 (2 loop)

P � P Oðr2ev4Þ 	 	 	
V � V 1 1 (1 loop)

V � A Oðv2Þ 	 	 	
A � V Oðv2Þ v2 (1 loop)

A � A 3 	 	 	
T � T 12 q2‘ (1 loop)

AT � T Oðv2Þ q2‘v
�2 (1 loop)

Scalar DM

�‘ �ð�e ! �eÞ=�0
�e;5 �ð�N ! �NÞ=�1

�N;5

S 1 �2
em (2 loop)

P Oðv2Þ 	 	 	
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B. Loop-induced DM-nucleus interactions

We have assumed that DM is leptophilic, so that at scale
� only operators connecting DM to leptons, Eqs. (1), (2),
and (4), are generated. However, even under this assump-
tion, at loop level one does induce model independently
also couplings to quarks from photon exchange between
virtual leptons and the quarks. The diagrams that can arise
at one- and two-loop order are shown in Fig. 2.2 The lepton
running in the loop can be either an electron or any other
charged lepton to which the DM couples.

The one loop contribution involves the integral over loop
momenta of the form

Z d4q

ð4
Þ4 Tr

�
�‘

q6 0 þm‘

q02 �m2
‘

�� q6 þm‘

q2 �m2
‘

�
; (16)

with q0 ¼ k� k0 þ q and k, k0 the incoming momenta as
denoted in Fig. 2 and �‘ the Dirac structures given in
Eqs. (2) and (4). The one-loop contribution is nonzero
only for vector and tensor lepton currents, �‘ ¼ ��,

���. For the scalar lepton current, �‘ ¼ 1, the loop inte-

gral vanishes, reflecting the fact that one cannot couple a
scalar current to a vector current. The DM-quark interac-
tion is then induced at two loops through the diagrams
shown in Fig. 2. In contrast for pseudoscalar and axial-
vector lepton currents, �‘ ¼ �5, ���5, the diagrams van-

ish to all loop orders. One insertion of �5 gives either zero
or a fully antisymmetric tensor ��	��. Since there are only
three independent momenta in a 2 ! 2 process, two in-
dices need to be contracted with the same momentum,
yielding zero.
The calculation of the one-loop and two-loop cross

sections for scattering of DM on a nucleus is relegated to
Appendix A. There we give the full one-loop expressions,
whereas here we collect the main results in the ‘‘leading
log’’ approximation, neglecting the remaining logarithmic
dependence on momentum transfer. The approximate two-
loop results are obtained in the limit of heavy leptons.
Expanding also in the � velocity v� 10�3 to first nonzero
order, the differential cross sections d�=dEd are

vector type:
d�

dEd

¼ d�1
N

dEd

�
log

�
m2

‘

�2

��
2 1

9

�
ðc�Vc‘VÞ2 þ ðc�Ac‘VÞ2

�
v2 þ v2

d

�
2�m2

N

�2
N

���
FðqÞ2; (17)

tensor type:
d�

dEd

¼ d�1
N

dEd

�
log

�
m2

‘

�2

��
2 4

v2
d

m2
‘

m2
N

fc2Tv2 þ c2ATgFðqÞ2; (18)

scalar type:
d�

dEd

¼
�
�emZ




�
2 d�1

N

dEd

�

2

12

�
2 m2

N

m2
‘

v2
d

�
ðc�Sc‘SÞ2 þ

1

4
ðc�Pc‘SÞ2v2

d

m2
N

m2
�

�
~FðqÞ2; (19)

scalar DM:
d�

dEd

¼
�
�emZ




�
2 d�1

N;5

dEd

�

2

12

�
2 m2

N

m2
‘

v2
dðd‘SÞ2 ~FðqÞ; (20)

where the common one-loop cross section prefactor is

d�1
N

dEd

¼ mN

2
v2

�
�emZ



G

�
2
; (21)

and d�1
N;5=dEd is given by the same expression with G !

G5=ð2m�Þ. Here mN and Z are the nucleus mass and
charge, respectively, while �N ¼ mNm�=ðmN þm�Þ is
the reduced mass of the two-particle system. The two small
parameters are the � velocity v� 10�3 and the velocity of
the recoiled nucleus, vd ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ed=mN

p
. The kinetic recoil

energy of the nucleus Ed in the �N ! �N scattering,
cf. Equation (5), has a size Ed � keV.

In the calculations we set � ¼ �, since this is the
scale at which the Wilson coefficient G is generated. The
form factors FðqÞ and ~FðqÞ account for the nuclear

structure. For the form factor FðqÞ entering the one-loop

induced scattering cross section we use [36] FðqÞ ¼
3e�2s2=2½sinðrÞ � r cosðrÞ�=ðrÞ3, with s ¼ 1 fm,

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � 5s2

p
, R ¼ 1:2A1=3 fm,  ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mNEd

p
(and q2 ’

�2). The form factor ~FðqÞ entering the two-loop expres-
sions accounts for nuclear structure in the case of two-
photon exchange. Its precise form is not needed in the
subsequent analysis, though. The two-loop scalar-type dif-
ferential cross section in Eq. (19) was calculated integrat-
ing out first the leptons assuming they are heavy. This is an
appropriate limit for muon and tau intermediate states,
where m�, m� 
 , while for electrons me �  and the

expression for the cross section is only approximate; see
Appendix A for details.
For easier comparison with the previous section we also

quote the results for the total �N ! �N cross sections,
integrated over the recoil energy Ed. For simplicity we
neglect the dependence on the nuclear form factors and set
FðqÞ ¼ ~FðqÞ ¼ 1 for this comparison, giving

2Similar diagrams with a photon replaced by a Z0 or a Higgs
boson are power suppressed by ðk� k0Þ2=M2

Z0;H
and thus

negligible.
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vector type: � ¼ �1
N

�
log

�
m2

‘

�2

��
2 1

9

�
ðc�Vc‘VÞ2 þ ðc�Ac‘VÞ2v2

�
1þ 1

2

�2
N

m2
N

��
; (22)

tensor type: � ¼ �1
N

�
log

�
m2

‘

�2

��
2 m2

‘

�2
N

�
c2T þ c2AT

1

v2

�
log

�
Emax
d

Emin
d

�
; (23)

scalar type: � ¼
�
�emZ




�
2
�1

N

�

2

12

�
2
�
�Nv

m‘

�
2
�
2ðc�Sc‘SÞ2 þ

4

3
ðc�Pc‘SÞ2v2 �

2
N

m2
�

�
; (24)

scalar DM: � ¼
�
�emZ




�
2
�1

N;5

�

2

12

�
2
�
�Nv

m‘

�
2
2ðd‘SÞ2; (25)

where �1
N is the integral of the differential cross section of

Eq. (21)

�1
N ¼ �2

N




�
�emZ



G

�
2

� 1:9� 10�32 cm2

�
�

10 GeV

��4
�

�N

10 GeV

�
2
�
Z

53

�
2
;

(26)

and �1
N;5 is obtained from the above expression with G !

G5=ð2m�Þ. The above results are summarized in Table I,
facilitating comparison with � scattering on free electrons.
In Table I we took �N �mN �m�, while the scaling for
other values of nucleon and DM masses is easy to obtain
from the above results.

C. Discussion of Lorentz structures

In Sec. II B we have estimated a strong hierarchy be-
tween the three types of signals as RWAS � RWES �
RWNS; see Eq. (9). These results imply that whenever
WNS at one loop or two loop is generated it dominates
the event rate in direct detection experiments. The Lorentz
structures for which this situation applies can be read off
from Table I. To be specific we will use as a representative
example of this class the V � V coupling in the rest of this
paper. From the table we also see that there is one case—
the A � A coupling—where no �N scattering is induced at
loop level and moreover the WIMP-electron cross section
is not additionally v and/or me=m� suppressed. Hence, we

chose the A � A coupling as our second representative
example to quantitatively discuss the case of a WES domi-
nated event rate. The results from these two examples can
be qualitatively extrapolated to other Lorentz structures
using Table I.

As we will see in the following, the �e ! �e cross
section in the A � A case has to be very large [correspond-
ing to ��Oð100 MeVÞ] in order to be relevant for
DAMA. For the cases in Table I where �0

�e is further

suppressed by small numbers, like for example S � P or
P � P, the scale�would have to be even lower, so that the
effective field theory description would break down.

Finally, let us mention the tensor coupling T � T, where
the one-loop cross section is suppressed by m2

‘=m
2
N , while

�e scattering is enhanced by a factor of 12. If DM couples
only to the electron and not to � and � the suppression of
the loop is of order m2

e=m
2
N � 10�10, and hence, WES and

WNS rates can be of comparable size. However, in general
one expects also a coupling to the � and � leptons. To be
specific, in our numerical analysis of V � V and A � A
cases we will assume equal couplings to all three leptons.
For the tensor case the same choice would mean that WNS
dominates.

IV. EVENT RATES

In this section we provide the event rates in direct
detection experiments. For WES and WAS we assume A �
A coupling and for WNS we take V � V. These rates will
be used for the numerical fits to DAMA, CDMS, and
XENON data in the following. As argued above, the A �
A and V � V cases are representative enough to cover
qualitatively all possible Lorentz structures.
The differential counting rate in a direct DM detection

experiment (in units of counts per energy per kg detector
mass per day) is given by

dR

dEd

¼ �0

m�

�

�det

Z
d3v

d�

dEd

vf�ðvÞ; (27)

where Ed ¼ E� � E0
� is the energy deposited in the detec-

tor, �0 is the local DM density (which we take to be
0:3 GeV cm�3), � is the number density of target particles,
and �det is the mass density of the detector. If the target
contains different elements (like in the case of the DAMA
NaI crystals), the sum over the corresponding counting
rates is implied.
In Eq. (27), f�ðvÞ is the local WIMP velocity distribu-

tion in the rest frame of the detector, normalized according
to
R
d3vf�ðvÞ ¼ 1. It follows from the DM velocity dis-

tribution in the rest frame of the galaxy, fgalðvÞ, by a

Galilean transformation with the velocity of the Sun in
the Galaxy and the motion of the Earth around the Sun. For
fgalðvÞ ¼ fgalðvÞ we assume the conventional Maxwellian
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distribution with �v ¼ 220 kms�1 and a cutoff due to the
escape velocity from the galaxy of vesc ¼ 650 kms�1:
fgalðvÞ / expð�v2= �v2Þ � expðv2

esc= �v
2Þ for v � vesc and

zero for v > vesc. We have checked that the precise value
of the escape velocity has a negligible impact on our
results.

A scattered nucleus does not deposit all its energy in the
form of scintillation light. This effect is taken into account
by the so-called quenching factors, which are qNa ’ 0:3 for
sodium recoils and qI ’ 0:085 for iodine recoils [37] in
DAMA. In Refs. [38,39] it has been pointed out that the so-
called channeling effect could be relevant, implying that
for a certain fraction of events no quenching would occur
due to the special orientation of the recoil with respect to
the crystal. So far this effect has not been confirmed
experimentally in the relevant energy range. Indeed, the
results of Ref. [40] do not indicate the presence of any
variation of the count rate for special crystal directions.
Quenching and channeling is relevant in DAMA in the
cases of WAS and WNS, while the scattered electrons in
the case of WES produce unquenched scintillation light. In
our fit to DAMA data for WNS we do include channeling
following Ref. [39] (similar as in [10]), but we comment
also on the case when no channeling occurs.

A. WIMP-electron scattering

To obtain an expression for the event rate in the case of
WES it is necessary to take into account the fact that
electrons are bound to the atoms. The kinematics of scat-
tering off bound electrons has some important differences
compared to scattering off free particles. The bound elec-
tron does not obey the free-particle dispersion relation
E2
eðfreeÞ ¼ p2 þm2. Instead it has a fixed energy Ee ¼

me � EB, determined by the binding energy of the atomic
shell, EB  0, whereas its momentum p follows a distri-
bution which is given by the square of the Fourier trans-
form of the bound state wave function corresponding to
that shell. Energy conservation reads in this case E� þ
me � EB ¼ E0

� þ E0
e, or

E0
e ¼ me þ Ed � EB: (28)

After some tedious algebra one arrives at the following
expression for Ed:

Ed � � p2

2m�

� pv cos�; (29)

where3 cos� ¼ kp=kp and we used the approximation
Ed � me � Ee � m� and v� 10�3. We see that to ob-

tain detectable energies relevant for DAMA (Ed of a
few keV), electron momenta of order MeV are required.

In Appendix B we give the details on the calculation of
the scattering cross section and count rate in the case of
WES, taking into account the peculiarities of scattering on
bound electrons. Here we only report the final results.
Assuming the axial-vector Dirac structure, �� ¼ �e ¼ A,

as motivated above, the count rate is (we also set c
�
A ¼

ceA ¼ 1 for simplicity)

dRWES

dEd

’ 3�0meG
2

4
ðmI þmNaÞm�

X
nl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðEd � EB;nlÞ

q
ð2lþ 1Þ

�
Z dpp

ð2
Þ3 j�nlðpÞj2IðvWES
min Þ: (30)

Here �nlðpÞ is the momentum wave function of the elec-
tron, and the function IðvminÞ is

IðvminÞ �
Z

d3v
f�ðvÞ
v

�ðv� vminÞ; (31)

while the minimal velocity required to give detectable
energy Ed follows from Eq. (29):

vWES
min � Ed

p
þ p

2m�

: (32)

For m� * 10 GeV and p of order MeV the first term

dominates.
The sum in Eq. (30) is over the atomic shells of both

iodine and sodium with quantum numbers nl, and EB;nl is

the corresponding binding energy. The electron can only be
kicked out of its atomic shell if its binding energy is
smaller than the total energy deposited in the detector
[cf. Eq. (28)]:

Ed  EB;nl: (33)

Only the shells satisfying this requirement can contribute
to the event rate in Eq. (30). The momentum wave function
�nlðpÞ is defined in Eq. (B3) in Appendix B. Technical
details on how we implement the wave function numeri-
cally are given in Appendix C; the results for the iodine and
sodium wave functions are shown in Fig. 3. We see that the
dominant contribution to WES scattering in DAMA comes
from the inner s shells of iodine because these are largest at
high p. Electrons from the 1s, 2s, 2p shells—depicted as
thin light curves in Fig. 3—do not contribute to the DAMA
signal region of Ed ’ 2–4 keV since the binding energies
are too large, respectively, 33.2, 5.2, and 4.7 keV [41]. The
shell dominating the signal in the 2–4 keV region is the 3s
shell of iodine, with a binding energy of about 1 keV.
Apparently this has been overlooked in Ref. [28], while
it has important consequences on the size of the needed
cross section; see the discussion in Sec. VB.

B. WIMP-atom scattering

Let us consider now the case when the electron on which
the DM particle scatters remains bound and the recoil is
taken up by the whole atom. According to the coordinate

3We always denote the DM momentum with k and the
electron (or nucleus) momentum with p, see Fig. 1. Bold
symbols refer to 3-vectors and k � jkj, and similar for p.
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space Feynman rules, the matrix element for WAS for an
electron in atomic shell nlm in the initial state and n0l0m0 in
the final state is given by

Mrr0ss0
nlm;n0l0m0 ¼ G

Z
d3xc �

n0l0m0 ðxÞc nlmðxÞe�ip0xeiðk�k0Þx

� �ur
0
��

�
�ur� �u

s0
e �e�u

s
e: (34)

Here, k and k0 are the initial and final momenta of the
WIMP, and p0 is the average momentum of the electron in
the final state resulting from the motion of the whole atom
after the scattering. Since most of the recoil momentum is
carried by the nucleus, jp0j is smaller than jk� k0j by a
factor of me=mN , and can therefore be neglected. The
coordinate space wave function of the electron in the state
with orbital quantum numbers nlm is denoted by c nlmðxÞ.
Again we specialize to the case of axial-vector coupling,
��
� ¼ ��

e ¼ ���5 and set c�A ¼ ceA ¼ 1. We use nonrela-

tivistic spinors, which is certainly justified for ur� and ur
0
� ,

and also for use except, perhaps, for electrons from the 1s
shell of iodine. In this last case, relativistic corrections are
of order 20%.

Let us first consider the case when the electron remains
in its state, and hence the scattering on the atom is elastic
(el-WAS). Then we have s ¼ s0 and nlm ¼ n0l0m0.
Furthermore, we have to sum coherently over all shells
and electron spins, since it is impossible in principle to
identify on which electron theWIMP has scattered. It turns
out that for the axial-vector case the spin sum

P
s �u

s
e�

��5use
vanishes. This can be verified by using explicit expressions
for the spinors use, and follows from the fact that the
different sign due to �5 of right-handed and left-handed
components of the electron cancel each other in the case of
a coherent sum over spins.4 The elastic scattering may be
relevant for other Lorentz structures where this cancella-
tion does not occur. However, in Sec. III C we have argued
that the only case of practical relevance is the axial cou-
pling, and therefore we will not consider el-WAS further.

We are left now with the case where the electron is
excited to an outer free shell which corresponds to inelastic
WIMP-atom scattering (ie-WAS). In this case the sum over
all occupied electron states nlm, over all unoccupied states
n0l0m0, and over WIMP and electron spins has to be inco-
herent because one can distinguish in principle different
initial and final states, e.g. by x-ray spectroscopy. The
differential cross section in this case is obtained as

d�WAS

dEd

¼ mNjMj2
32
m2

em
2
�v

2
: (35)

Plugging in the matrix element from Eq. (34) we get

d�ie-WAS

dEd

¼ 3mNG
2

2
v2

X
nlm

X
n0l0m0

jhn0l0m0jeiðk�k0Þxjnlmij2;

(36)

with

hn0l0m0jeiðk�k0Þxjnlmi �
Z

d3xc �
n0l0m0 ðxÞc nlmðxÞeiðk�k0Þx:

(37)

The expression for the counting rate is obtained from
Eq. (27),

dRie-WAS
N

dEd

¼ mN

mI þmNa

3�0G
2

2
m�

�X
nlm

X
n0l0m0

jhn0l0m0jeiðk�k0Þxjnlmij2Iðvie-WAS
min Þ;

(38)

with N ¼ I, Na. The function I is defined in Eq. (31), and
the minimal velocity required to give detectable energy Ed

follows from the kinematics implied by energy conserva-
tion, Ed ¼ E� � E0

� ¼ �EB þmNv
2
N=2, and momentum

conservation, k ¼ k0 þmNvN:

vie-WAS
min ¼ Edðm� þmNÞ �mN�EB

m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNðEd � �EBÞ

p ; (39)

where �EB is the difference of the binding energies of the
initial and final shells: �EB ¼ EB;nlm � EB;n0l0m0 . Details on

how we calculate the matrix elements involving the wave
function in Eq. (38) are given in Appendix C.

C. Loop-induced WIMP-nucleus scattering

The event rate for loop-induced DM-nucleus scattering
is easy to obtain from the differential cross sections
d�N=dEd in Eqs. (17)–(20) and the general expression
for the counting rate Eq. (27):

dRWNS
N

dEd

¼ �0

m�

1

mI þmNa

�
d�N

dEd

v2

�
IðvWNS

min Þ: (40)

The function I is defined in Eq. (31), while the minimal
velocity to produce a detectable energy Ed is given for

WIMP-nucleus elastic scattering by vWNS
min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EdmN=2�

2
N

q
with �N ¼ m�mN=ðm� þmNÞ.
We now specialize to the V � V case. The event rate

depends on the � mass and the coupling constant of the
effective operator G (we set c

�
V ¼ c‘V ¼ 1 from now on).

For easier comparison with previous works, it is useful to
trade G for the total �e ! �e cross section �0

�e ¼
G2m2

e=
, Eq. (13). For the V � V case we thus have

4This argument will not hold if an unpaired valence electron is
available so that we cannot sum over spins. However, most
chemically bound systems are formed in such a way that this
does not happen. Even in this case el-WAS would be suppressed
since scattering on outer electrons is highly suppressed by the
smallness of the binding energy of these electrons compared to
the transferred momentum.
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d�N

dEd

v2 ¼ �0
�e � mN

18m2
e

�
�Z




�
2
FðqÞ2

�
log

�
m2

‘

�2

��
2
; (41)

to be inserted in Eq. (40). As discussed in Appendix A this
leading log approximation is quite accurate. Nevertheless,
in the numerical calculations we use the full expressions
given in Appendix A. We set � ¼ 10 GeV, since this
corresponds roughly to the scale �, where our effective
theory is defined. Furthermore, we assume (somewhat
arbitrarily) equal couplings to all three leptons. The loga-
rithm in Eq. (41) implies then a relative contribution of
e:�:� ’ 30:7:1. Note that the rate is dominated by the
contribution from the electron in the loop assuming equal
couplings at the scale �� 10 GeV. Therefore, our results
are conservative, in the sense that per assumption DM has
to couple to the electron.

V. FIT RESULTS FOR DAMA, CDMS, AND
XENON10

A. Vectorlike interactions and loop-induced
WIMP-nucleon scattering

The event rate in the case of the loop-induced WNS,
Eq. (40), is very similar to the corresponding expression for
usual spin-independent elastic WIMP scattering on the
nucleus (see, e.g., Refs. [10,11,36]), denoted as the ‘‘stan-
dard case’’ in the following. The main difference is the
replacement of the atomic mass number A by the charge
number Z (and an additional logarithmic Ed dependence
beyond the leading log approximation). Therefore we ex-
pect that the fit of DAMA and the compatibility to CDMS
and XENON will be very similar to the standard case, see
e.g., Refs. [9–11].

Our numerical analysis of DAMA, CDMS, and XENON
data closely follows Ref. [10] where technical details on
the fit can be found. For the DAMA fit we use the spectral
data on the annual modulation amplitude Sm from the
threshold of 2 keV up to 8 keV. The data above this energy
are consistent with no modulation and since our model
does not predict any features in that region they do not
provide an additional constraint on the fit, apart from
diluting the overall goodness of fit. In addition to the
data on the amplitude of the modulated count rate we use
also the unmodulated event rate as a constraint in the fit.
While the bulk of these events will come from various
unidentified backgrounds, every model has to fulfill the
constraint of not predicting more unmodulated events than
actually observed in DAMA. Figure 4 shows the predicted
spectrum at the best fit point compared to the DAMA data.
Note that the error bars on the unmodulated rate (lower
panel) are hardly visible for most of the data points, as a
result of the huge number of events in DAMA. For the
analysis using data from 2–8 keV the best fit point is at
m� ¼ 12:4 GeV, �0

�e ¼ 4:5� 10�44 cm2, and we obtain

the excellent fit of �2=dof ¼ 9:1=10. If we drop the first
data point the fit even improves to �2=dof ¼ 2:8=9.

The allowed regions in the plane of DM mass and
scattering cross section are shown in Fig. 5. For easier
comparison with the case of scattering off electrons we
parametrize the cross section on the vertical axis in terms
of �0

�e; see Eq. (41). The spectral data on the modulated

signal results in an allowed region for rather small DM
masses around m� ’ 12 GeV. If channeling is not taken

into account an allowed region appears at similar DM
masses but at higher cross sections (due to scattering off
sodium [42]).5 This DAMA allowed region has to be
compared to the constraints from CDMS and XENON.
The compatibility with these bounds is similar to the
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FIG. 4 (color online). Predicted spectrum for the modulated
(top panel) and unmodulated (bottom panel) event rate in DAMA
at the best fit point assuming loop-induced WIMP-nucleus
scattering resulting from vectorlike DM-lepton couplings.
Results are shown for using all data points from 2–8 keV (solid
lines) and for omitting the 1st bin (dashed lines). The parameter
values and the �2 values are given in the legend.

5In both cases (with and without channeling) there is also a
local minimum around a WIMP mass of about 80 GeV from
unchanneled scatterings off iodine. In Fig. 5 we show confidence
regions defined with respect to the global minimum, and this
second region does not appear at 3� if channeling is included.
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standard case: while marginal compatibility might remain
there is clearly severe tension between the DAMA signal
and the CDMS and XENON bounds in this framework.
Here we will not elaborate on this question further and
refer to Refs. [9–11] for detailed discussions of the DAMA
versus CDMS/XENON compatibility in the standard case.

The main motivation for considering electron interacting
DM—namely, avoiding the constraints from nuclear recoil
experiments, is thus invalidated by the loop-induced nu-
cleon scattering. We now turn to the axial-axial coupling,
where the loop-induced scattering can be avoided.

B. Axial-vectorlike interactions and WIMP-electron
scattering

We perform a similar fit to DAMA data as before but
using now Eq. (30) for the event rate for WES. The
predicted modulated and unmodulated DAMA event rates
at the best fit in this case are shown in Fig. 6. Using the data
from 2–8 keV we obtain a rather bad fit to the modulated
spectrum with �2=dof ¼ 55:9=10, which corresponds to a
probability of 2� 10�8. The prediction drops too fast with
energy in order to provide a satisfactory fit to the data. If
we omit the first energy bin the fit improves considerably to
�2=dof ¼ 20:6=9 corresponding to a probability of 1.4%.
We find, however, that the parameter values from this fit
predict a very sharp rise for the spectrum of the unmodu-

lated event rate in DAMA, see the lower panel of Fig. 6. In
the fit we have required that the unmodulated prediction
stays below the observed rate within the analysis window
down to 2 keV. However, DAMA shows also some data
points for the unmodulated rate below 2 keV, which are not
compatible with the predicted rate. While it is not possible
to use data below 2 keV for the modulation, it seems likely
that they rule out models predicting more events than
observed. The WES fit shown as a dashed curve in Fig. 6
predicts more than a factor of 3 more events than observed
in the first two bins below 2 keV, where error bars are still
very small. We conclude that WES has severe problems to
explain the spectral shapes of the modulated and unmodu-
lated components of DAMA data.
If we ignore the problems of the spectral fit and despite

the low goodness of fit consider ‘‘allowed regions’’ in the
plane of WIMP mass and cross section relative to the best
fit point we obtain the results shown in Fig. 7. We observe

101 102 10310 46

10 45

10 44

10 43

10 42

m GeV

e0
cm

2

C
D

M
S

II
G

e
90

X
E

N
O

N
10

90

DAMA
90 3

DAMA 90 3
no channeling

SK, 90

SK, 90

Leptophilic DM, Vector interactions
Scattering on nuclei 1 loop

FIG. 5 (color online). DAMA allowed region at 90% and 3�
C.L. in the case of one-loop induced WIMP-nucleus scattering
(V � V coupling) in the plane of the WIMP mass and the WIMP-
electron cross section �0

�e ¼ G2m2
e=
. Regions are shown with

and without taking into account the channeling effect.
Furthermore, we show the bounds at 90% C.L. from CDMS-II
and XENON10. The dashed curves show the 90% C.L. con-
straint from the Super-Kamiokande limit on neutrinos from the
Sun, by assuming annihilation into � �� or � ��; see Sec. VI for
details.
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FIG. 6 (color online). Predicted spectrum for the modulated
(top panel) and unmodulated (bottom panel) event rate in DAMA
at the best fit point assuming WIMP-electron scattering resulting
from axial-vectorlike DM-electron couplings. Results are shown
for using all data points from 2–8 keV (solid lines) and for
omitting the 1st bin (dashed lines). The parameter values and the
�2 values are given in the legend.
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that very large cross sections are required:

�0
�e � 10�31 cm2 �

�
m�

100 GeV

�
; (42)

where the linear dependence on m� holds for m� *

10 GeV. The vastly different best fit cross sections for
WNS and WES follow from the discussion in Sec. II B
where we estimated the relative size of the corresponding
counting rates; see Eq. (9). Here we do not explore other
phenomenological consequences of such a large cross
section. Just note from Eq. (13) that we can realize a cross
section of this order of magnitude only with a relatively
low scale for the new physics of � & 0:1 GeV, where we
have assumed for the couplings c

�
A � ceA � 1. If in a par-

ticular model constraints on the coupling constant ceA apply
(see, for example [43]), � has to be accordingly smaller.
Note that the momentum transfer for WES is given by the
momentum of the bound electron, which has to be of order
MeV. This provides a lower bound on � in order to
describe the interaction by using the effective theory.

The cross section from Eq. (42) is about 5 orders of
magnitude larger than the result obtained in Ref. [28],
which finds pb-size �0

�e at m� � 100 GeV. Let us com-

ment, therefore, on the differences of our analysis to the
one from [28]. Apparently the main difference is that we
take into account the special kinematics related to the

scattering off bound electrons, whereas in Ref. [28] elec-
trons are treated as effectively free with a momentum
distribution obtained from the wave function. Our calcu-
lation outlined in Sec. IVA and Appendix B leads to
several suppression factors in the WES event rate with
respect to the expression used in [28]. Our minimal veloc-
ity vWES

min from Eq. (32) is roughly a factor of 2 larger than

the one used in [28] requiring one to go farther out in the
tail of the WIMP velocity distribution. Furthermore, the
condition Eq. (33), Ed  EB, which prevents the contribu-
tion of the inner shells of iodine, has not been imposed in
[28]. From Fig. 3 we see that at p� 1 MeV the wave
function of the iodine 1s shell is about 2 orders of magni-
tude larger than the one of the 3s shell, which actually
gives the first relevant contribution after requiring that the
binding energy be lower than Ed � few keV.
As mentioned above, in the case under consideration

inelastic WAS may contribute to experiments searching for
nuclear recoils. To calculate this effect we would have to
perform the sum in Eq. (38) over all occupied shells nlm
and all free shells n0l0m0. It turns out numerically that
transitions from s shells to s shells give the largest con-
tributions; see also Appendix C. In order to estimate the
order of magnitude we have taken into account transitions
from the 1s, 2s, and 3s orbitals to the first two free
s orbitals of the germanium and xenon nuclei relevant in
CDMS and XENON, respectively. In Fig. 7 we show the
constraints resulting from this estimate of the ie-WAS
event rate. Numerically these constraints turn out to be
very weak and the limits are several orders of magnitude
above the region indicated by DAMA; the good sensitiv-
ities of CDMS and XENON to nuclear recoils cannot
compensate the large suppression of the ie-WAS count
rate compared to WES, as estimated in Eq. (9).
Although the poor quality of the fit in the case of WES

already disfavors this mechanism as an explanation for the
DAMAmodulation signal, we will show in the next section
that constraints on neutrinos from DM annihilations inside
the Sun are even more stringent and exclude the cross
sections required for DAMA by many orders of magnitude
if DM annihilations provide neutrinos in the final states.

VI. NEUTRINOS FROM DM ANNIHILATIONS
INSIDE THE SUN

Any DM candidate has to fulfill the constraints on the
upward through-going muons coming from water
Cerenkov detectors, like Super-Kamiokande [16], and
from neutrino telescopes [44–46]. Some recent papers
[17,47] have discussed the constraints on the DAMA re-
gion in the framework of standard WIMP-nucleus scatter-
ing. Here, we reanalyze the bound coming from the Super-
Kamiokande experiment in the framework of leptonically
interacting DM.
One important ingredient for the prediction of the neu-

trino flux coming from DM annihilations inside a celestial
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SK, 90

SK, 90

Leptophilic DM, Axial vector interactions
Scattering on bound electrons

FIG. 7 (color online). DAMA allowed region at 90% and 3�
C.L. in the case of WIMP-electron scattering (axial-axial cou-
pling) in the plane of the WIMP mass and the WIMP-electron
cross section �0

�e ¼ G2m2
e=
. We stress that these regions are

obtained with respect to the best fit point, which by itself does
not provide a satisfactory fit to DAMA modulated and unmodu-
lated spectral data; see Fig. 6. We show also the bounds at 90%
C.L. from CDMS-II and XENON10 from inelastic WIMP-atom
scattering. The dashed curves show the 90% C.L. constraint from
the Super-Kamiokande limit on neutrinos from the Sun, by
assuming annihilation into � �� or � ��; see Sec. VI for details.
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body is the capture rate C�, which is proportional to the
DM scattering cross section; see, e.g. [36]. In the calcu-
lation of this quantity, usually, the WIMPs are assumed to
interact with material at zero temperature, neglecting the
solar temperature of about 1:5� 107 K in the center and
8:1� 104 K at the surface. Although this is a reasonable
assumption for WIMP candidates interacting with hydro-
gen and the other nuclei inside the Sun, it fails for the case
of DM scattering on the free electrons in the Sun. The
effect of nonzero temperature on the capture rate depends
on the ratio of the thermal velocity of the target to the
WIMP velocity. The thermal kinetic energy kBT is inde-
pendent of the mass, but the thermal velocity is larger by a

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp=me

q
’ 45 for electrons compared to hydrogen.

We calculate the rate for WIMP capture by a body at
finite temperature following Ref. [48], where the expres-
sion given there has to be extended to include the motion of
the Sun with respect to the DM halo. The temperature
distribution for the electrons inside the Sun is taken from
the solar model BS2005-AGS, OP [49]. Figure 8 shows the
effect of the nonzero temperature on the capture rate for
electrons, hydrogen, and all other nuclei in the Sun. We
find that the capture rate on electrons is enhanced by about
1 order of magnitude, while the effect is hardly visible at
the scale of the plot for hydrogen. The temperature effect
can be neglected for scattering off heavier nuclei, which
dominates the capture in the case of loop-induced WNS. In
this case one has to include also a suppression due to the

nuclear form factor. Furthermore, we neglect the effect of
WIMP evaporation, important only for DM masses lower
than 10 GeV [50] and the gravitational effects from planets
like Jupiter [51].
The annihilation rate �� is related to the capture rate C�

by [36]

�� ¼ C�
2

tanh2
�
t�
�

�
; � ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

C�CA

p ; (43)

where t� ’ 4:5 Gyr is the age of the Sun and the parameter
CA depends on theWIMP annihilation cross section and on
the effective volume of the confining region in which the

DM particles are trapped: CA ¼ h�annviV2=V
2
1 with Vj ¼

6:6� 1028ðjm�=10 GeVÞ�3=2 cm3. We denote by h�annvi
the thermally averaged total annihilation cross section
times the relative velocity, at the present time. Capture
and annihilation are in equilibrium if � � t�. Then the
annihilation rate is just half the capture rate and becomes
independent of the annihilation cross section h�annvi. For
our calculations we assume this limit; we comment on its
validity in Appendix D.
The neutrino flux at the detector from the annihilation

channel f with branching ratio BRf is given by

d�f
�

dE�

¼ BRf

��
4
d2

dNf
�

dE�

; (44)

with d being the distance between the Earth and the Sun.
Here we are interested in annihilations into leptons. We
consider the following four channels: � ��, �e ��e, �� ���, and

�� ���. Note that annihilations into electrons do not provide
neutrinos, and muons are always stopped before decay,
giving rise to neutrinos in the MeV energy range which is
below the Super-Kamiokande threshold [52]. In the case of
direct neutrino channels, the initial neutrino spectrum is
simply a Dirac � function centered at E� ¼ m�, and we

assume a flavor-blind branching ratio, i.e., BR�e ��e
¼

BR�� ���
¼ BR�� ���

¼ 1=3. The results do not depend

strongly on this assumption, since flavors are mixed due
to oscillations.6 For the � �� channel, we use the initial
neutrino spectrum given in [53].

The neutrino spectrum dNf
�=dE� at the detector is cal-

culated considering the effect of neutrino oscillation, co-
herent Mikheyev-Smirnov-Wolfenstein matter effect,
absorption, and regeneration (see e.g., [53,54]) by solving
numerically the evolution equations of the neutrino density
matrix within the Sun. The neutrino oscillation parameters10 200 400 600 800 1000
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FIG. 8 (color online). WIMP capture rate in the Sun as a
function of the WIMP mass assuming DM scattering off elec-
trons, hydrogen, and all other nuclei in the Sun, with a scattering
cross section of 10�36 cm2. The solid curves correspond to
scattering off particles at zero temperature, whereas the dotted
curves show the effect of the actual temperature distribution
inside the Sun [49] for electrons and hydrogen.

6There is some difference of the �� ��� channel due to �
regeneration effects, which are important for high energies.
Assuming annihilations with branching ratios equal to one for
each of the three flavors we find that the muon neutrino flux at
the Earth is practically the same for all three initial flavors up to
m� ’ 100 GeV. For m� ¼ 1 TeV the ratio of the muon neutrino
fluxes at Earth is roughly 1:3:5:6:4 for annihilations into
�e ��e:�� ���:�� ���.
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and mass squared differences are fixed to the best fit values
reported in [55]. We set �13 to zero, avoiding in this way
possible Earth matter effects.

The total muon flux is given by the formula, see e.g.
[56]:

�� ¼
Z m�

Eth
�

dE�

Z m�

E�

dE��

d�f
�

dE�

NAR�ðE�;E
th
�Þ

�
�
N p

d�p
�

dE�

ðE�; E�Þ þN n

d�n
�

dE�

ðE�; E�Þ
�
; (45)

where N p and N n are the fractional number of protons

and neutrons at the point of muon production. We consider
N p ’ N n ’ 0:5, since for the through-going muons in

the Super-Kamiokande detector the interaction can be
assumed to occur in standard rock for which the number
of protons is almost equal to the number of neutrons (Z ¼
11, A ¼ 22). NA is Avogadro’s number, and the effective
number of nucleons per unit volume is given by NA�rock,
with �rock the density of the material. The muon range R�

is defined as the distance traveled by a muon with initial
energy E� and final energy equal to the detector energy

threshold Eth
�:

R�ðE�; E
th
�Þ ¼ 1

	
ln

�
�þ 	E�

�þ 	Eth
�

�
; (46)

with � ’ 2:2� 10�3 GeV=ðg cm�2Þ and 	 ’ 4:4�
10�6=ðg cm�2Þ. The muon energy threshold has been fixed
to Eth

� ¼ 1:6 GeV, corresponding to the 7 m path-length

cut applied on upward through-going muons in the Super-
Kamiokande detector. For the differential cross sections
d�p;n

� =dE�, we use the analytic expressions for deep in-

elastic scattering given e.g. in Ref. [56].
Super-Kamiokande gives 90% C.L. limits on the muon

flux induced by neutrinos from DM annihilations in the
Sun for cones of different opening angles around the
direction of the Sun [16]. To be conservative we use the
limit for a cone with half-angle of 20�, which should
include 90% of all muons at m� ’ 18 GeV [16], and a

fraction approaching 100% for larger WIMP masses. The
corresponding limit is �� � 1:1� 10�14 cm�2 s�1 [16].

Using this upper bound on �� we obtain via Eq. (45) an

upper bound on the DM scattering cross section as a
function of m�.

These bounds are shown in Figs. 5 and 7 for the case of
loop-induced WNS and WES, respectively. We show the
limit for annihilations into � �� and � �� (assuming equal
branchings into the 3 flavors). In the case of WNS, anni-
hilations into neutrinos exclude the region compatible with
DAMA, while annihilations into tau leptons might be
marginally consistent with it at 3�. In contrast, in the
case of WES the neutrino bound excludes the region
indicated by DAMA by more than 6 orders of magnitude.
This implies that if DM couples to electrons with a cross

section as large as indicated by the WES DAMA fit, cf.
Eq. (42), DM annihilation into neutrinos must be very
strongly suppressed. This will be hard to achieve because
annihilation into charged leptons generates almost model
independently also annihilation into neutrinos from W
exchange at 1 loop. Thus annihilation into neutrinos is
typically suppressed by a loop factor ofOð10�4Þ compared
to annihilation into charged leptons. This rules out all
leptophilic DM models with dominant direct annihilation
into leptons as an explanation of DAMA/LIBRA.

VII. CONCLUSIONS

In this study we have considered the hypothesis that DM
has tree-level couplings only to leptons but not to quarks.
Such a model has been proposed in Ref. [28] to reconcile
the DAMA annual modulation signal with constraints from
searches for nuclear recoils from DM scattering. Our re-
sults imply, however, that this is not possible for the
following reasons:
(1) By closing the lepton legs to a loop, we obtain a

coupling to the charge of the nucleus by photon
exchange. Whenever the Dirac structure of the
DM-lepton coupling allows such a diagram at 1 or
2 loop WIMP-nucleus scattering will dominate over
the scattering rate from the direct coupling to elec-
trons, because the latter is highly suppressed by the
high momentum tail of the bound state wave func-
tion. This leads to a situation very similar to the
standard WIMP case, implying the well-known ten-
sion between DAMA and the constraints from
CDMS and XENON10; see Fig. 5.

(2) If the DM-lepton coupling is axial vectorlike, no
loop will be induced and hence the scattering pro-
ceeds only by the interaction with electrons bound
to the atoms of the detector. We have performed a
careful analysis of this case, taking into account the
peculiarities of scattering off electrons in bound
states. We find that this model is strongly disfavored
as an explanation of the DAMA signal because
(a) the predicted spectral shape of the modulated

and/or unmodulated signal in DAMA provides a
very bad fit to the data as shown in Fig. 6, and

(b) the cross section required to explain the DAMA
signal is ruled out by Super-Kamiokande con-
straints on neutrinos from DM annihilations in
the Sun; see Fig. 7.

The arguments 1 and 2(a) are rather model independent,
relying only on the presence of the effective DM-lepton
vertex, while the argument in 2(b) depends on the assump-
tion that neutrinos are produced by DM annihilations.
Because of SUð2ÞL gauge symmetry, generically one ex-
pects that DM will couple to both, charged leptons and
neutrinos, which would open the annihilation channel into
� ��. If for some reason DM couples only to charged leptons,
DM would generically also annihilate into � ��, leading
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again to the neutrino signal. In order to evade the Super-
Kamiokande constraint one has to forbid the coupling of
DM to neutrinos and to the tau lepton. Let us mention that
the most generic way to avoid coupling to neutrinos is the
chiral coupling only to right-handed leptons. Note, how-
ever, that such a chiral V þ A coupling involves a vector-
like coupling which will induce DM-quark scattering via
the loop diagram and argument 1 applies. Another way to
evade the bound from annihilations would be to assume
that DM is not self-conjugate and postulate the presence of
a large �� �� asymmetry in our halo; see e.g., Refs. [57–
59].

In conclusion, we have shown that the hypothesis of DM
interactions only with leptons does not provide a satisfac-
tory solution to reconcile the DAMA annual modulation
signal with constraints from other direct detection
experiments.
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Noted added.—After the completion of this work we
became aware of Ref. [68], where CDMS publishes con-
straints on electronlike events above 2 keV in their detec-
tor. These results apply to the case of axial coupling, where
scattering off electron dominates. From Fig. 6 we find that
our fit predicts an unmodulated rate of 0.4 (1.5)
events=d=kg=keV at 2 keV if the lowest energy bin of
the modulated rate is (is not) taken into account. CDMS
observes 1:93� 0:24 events=d=kg=keV at 2 keV.
Assuming a flat background in the energy range of interest
an upper limit on a possible signal from DM of
0:5 events=d=kg=keV at 90% C.L. is obtained at 2 keV
(see Fig. 3 of [68]). The signal in Ge is expected to be
roughly 1 order of magnitude smaller than in iodine due to
wave function suppression. This estimate suggests that the
results of [68] do not rule out the DAMA region shown in
Fig. 7. A more detailed analysis may still be of interest,
though.

APPENDIX A: LOOP-INDUCED DM-QUARK
INTERACTIONS

In this Appendix we calculate the cross sections for DM-
nucleon scattering through the loop-induced interactions
shown in Fig. 2. The main results were already collected in
Sec. III B in the leading log approximation, while here we
give full one-loop results and describe how the approxi-
mate two-loop results were obtained. For calculations we
use the FEYNCALC package [60]. The cross section for

scattering of a nonrelativistic DM particle � with mass
m� on a nucleus at rest carrying charge Z and having a

mass mN is

d�

dEd

¼ jMj2
32
mNm

2
�v

2
; (A1)

with v� 10�3 the � velocity, Ed the kinetic recoil energy
of the nucleus, and M the matrix element for �N ! �N
scattering.
We start with the vector type interaction between leptons

and DM, L‘ ¼ Gð ����
��Þð �‘c‘V��‘Þ with �

�
� ¼

ðc�V þ c
�
A�5Þ��; see Eq. (1). The matrix element for �N !

�N scattering generated through the one-loop diagram of
Fig. 2 is then

M ¼ Cð1ÞV ð�Þð �u0���
�u�Þ

�
Nðp0Þ

								X
i

Qið �qi��qiÞ
								NðpÞ




¼ Cð1ÞV ð�Þð �u0���
�u�ÞZFðqÞð �u0N��uNÞ: (A2)

The sum is over the light quarks qi with chargesQi, FðqÞ is
the nuclear form factor defined in Sec. III B, and Cð1ÞV ð�Þ is
the one-loop factor calculated in the MS scheme

C ð1Þ
V ð�Þ ¼ 2�em



Gc‘V

Z 1

0
dxxð1� xÞ

� log

��xð1� xÞq2 þm2
‘ � i0

�2

�
; (A3)

where q2 ’ �2 ¼ �2mNEd is the momentum transfer [in
the calculation of the Super-Kamiokande bounds we used
q2 ’ �Oðm2

�v
2Þ]. In the calculation we set � ¼ �, with

�� 10 GeV, because this is the scale at which the Wilson
coefficient G is generated.7 For m‘ 
  one can neglect
the momentum transfer in the above integral, giving an
approximate expression

C LL
V ð�Þ ¼ �em

3

Gc‘V logðm2

‘=�
2Þ; (A4)

which is very precise for muon and tau running in the loop.
It is quite precise also for the electron, even though me �
. The reason is that there is still a hierarchyme � � ’ �.
Neglecting the difference between me and  then corre-
sponds to a leading log (LL) approximation in the renor-
malization group running, while the induced error is only
logarithmic in 1þOð=meÞ.
The �N ! �N differential cross section d�=dEd in the

leading log approximation is given in Eq. (17). Multiplying

it by jCð1ÞV =CLLV j2 one obtains the full one-loop prediction. In

7This choice of � does not minimize the size of the logarithm
in Cð1ÞV ð�Þ. However, since the expansion parameter �em is small
this does not invalidate the use of perturbation theory. For a
choice of � � � one would need to take into account renor-
malization group flow and mixing of operators.
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Fig. 9 we show the value of Cð1ÞV =CLLV form‘ ¼ me and� ¼
10 GeV. Note that above the pair production threshold,
q2 > 4m2

e, it develops an imaginary part, since electrons in
the loop can go on shell. The important thing for our

purposes, though, is that Cð1ÞV =CLLV is a slowly varying
function of q2 and is ofOð1Þ in the range of spacelike q2 �
�m2

e of interest to us, so that the LL approximation is quite
precise. Even so, in the numerical analysis in Sec. V we use
the full one-loop results.

Let us next move to the tensor DM-lepton interaction,

L‘ ¼ Gð �����
� �Þð �‘���‘Þ with ���

� ¼ ðcT þ icAT�5Þ���.

The matrix element for �N ! �N scattering is

M ¼ CTð�Þð �u0����
� u�Þ q

�

q2

�
Nðp0Þ

								X
i

Qið �qi��qiÞ
								NðpÞ




¼ CTð�Þð �u0����
� u�Þ q

�

q2
ZFðqÞð �u0N��uNÞ; (A5)

with the one-loop factor in dimensional regularization (as

before the pole is to be subtracted using the MS scheme)

C ð1Þ
T ð�Þ ¼ � 2�em



m‘GB0ðq2; m2; m2Þ: (A6)

Here B0ðk2; m2;M2Þ is a two-point scalar Veltman-
Passarino function. Explicit expressions for it can be found
e.g. in [61]. In the leading log approximation the above

expression becomes (in the MS scheme)

C LL
T ð�Þ ¼ 2�em



m‘G logðm2

‘=�
2Þ: (A7)

In this limit the differential scattering cross section is given
in Eq. (18), while the full one-loop result is obtained by

multiplying it with jCð1ÞT =CLLT j2. The numerical value for the

ratio Cð1ÞT =CLLT is shown in Fig. 9, obtained using the
LOOPTOOLS package [62].

The scalar-type DM-lepton interaction Leff ¼
Gð �����Þð �‘c‘S‘Þ with �� ¼ ðc�S þ ic

�
P�5Þ induces DM-

quark interaction through two-loop diagrams; see Fig. 2.
This contribution is relatively easy to compute in the limit
of heavy leptons using the operator product expansion.
First one integrates out the heavy leptons, thus matching
onto the local dimension seven operator

L eff ¼ CSð�Þ 1

m‘

ð �����ÞF��F
��=e2; (A8)

where the Wilson coefficient is

CS ¼ 2
3�

2
emGc

‘
S: (A9)

This then enters a loop with two photons attached to the
nucleon current. We evaluate this one-loop diagram in the
heavy nucleon limit, which gives for the matrix element

M ¼ CS

16
2

2
2

m‘

ð �u0���u�ÞZ2 ~FðqÞ
�
�u0N

1

2
ð1þ �0ÞuN

�
;

(A10)

with  ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mNEd

p
the recoil three-momentum of the nu-

cleus, and ~FðqÞ the two-loop nuclear form factor. The
resulting differential cross section is given in Eq. (19).
The derivation for scalar DM follows along the same

lines. One matches onto the dimension 6 operator

L eff ¼ CS;5ð�Þ 1

m‘

ð�y�ÞF��F
��=e2; (A11)

with the Wilson coefficient CS;5 ¼ 2
3�

2
emG5d

‘
S, which then

gives a matrix element for �N scattering

M ¼ CS;5

16
2

2
2

m‘

Z2 ~FðqÞ
�
�u0N

1

2
ð1þ �0ÞuN

�
: (A12)
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FIG. 9 (color online). The real (solid line) and imaginary (red dashed line) parts of the loop factor ratios rC ¼ Cð1Þ=CLL as a function
of q2=m2

e for vector (thick lines) and tensor (thin lines) lepton currents (these two lines overlap within the precision that can still be
seen on the plot). The left plot is for q2 negative (spacelike momentum exchange), the right for q2 positive (timelike momentum
exchange). We take m‘ ¼ me and � ¼ 10 GeV.
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APPENDIX B: DERIVATION OF THE COUNTING
RATE FOR WIMP-ELECTRON SCATTERING

Using coordinate space Feynman rules we obtain for the
matrix element for WIMP scattering on an electron bound
in the atomic shell with quantum numbers nlm

M rr0ss0
nlm ¼ G

Z
d3xc nlmðxÞeiðk�k0�p0Þx �ur0��

�
�ur� �u

s
e�e�u

s
e:

(B1)

Here, k and k0 are the initial and final momenta of the
WIMP, and p0 is the momentum of the electron in the final
state. The momentum of the initial state bound electron is
determined by momentum conservation: p � k0 þ p0 � k.
Specializing now to the axial-vector case ��

� ¼ ��
e ¼

���5 we obtain for nonrelativistic � and electrons8

jMnlmj2 ¼ 1

4

X
rr0ss0

jMrr0ss0
nlm j2 ¼ 48m2

em
2
�G

2jc nlmðpÞj2;

(B2)

where the momentum space wave function c nlmðpÞ is
defined by

c nlmðpÞ ¼
Z

d3xc nlmðxÞe�ipx � �nlðpÞYlmð�;�Þ;
(B3)

with the normalization

Z d3p

ð2
Þ3 jc nlmðpÞj2 ¼ 1: (B4)

For the differential cross section we have

d�WES
nlm

dEd

¼ jMnlmj2
32
E�Eev�ejkþ pj : (B5)

Here, E� � m�, Ee � me (using EB � me), and v�e is the

relative velocity of the WIMP and the bound electron. The
event rate is obtained by summing over all shells and
integrating over the electron momenta in each shell:

dRWES

dEd

¼ �0�e

m��det

Z d3p

ð2
Þ3
Z

d3vv�ef�ðvÞ
X
nlm

d�WNS
nlm

dEd

:

(B6)

The angular dependence of the wave function disappears
due to the orthogonality relation

P
mYlmð�;�ÞY�

lmð�;�Þ ¼
ð2lþ 1Þ=4
 for the spherical harmonics. In the laboratory
frame the electron and DM momentum form an angle �, so
that cos� ¼ kp=kp. For the integration over cos� from the
d3p integral we have to take into account Eq. (29), which
holds under the approximation Ed � me � Ee � m� and

implies

cos� � � 1

v

�
Ed

p
þ p

2m�

�
: (B7)

The leading order corrections to this expression give the
kinematically available range for cos�:

ðcos�Þmax � ðcos�Þmin

� 1

m�vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðEd � EBÞðm2

�v
2 � 2m�EdÞ

q
: (B8)

Then, jkþ pj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�v
2 � 2m�Ed

q
, and Eq. (B6) leads to

the expression for the counting rate given in Eq. (30). The
approximations we have made in deriving the formulas are
accurate up to about 10% for m� � 1 GeV, but the error

decreases with increasingm�, and we estimate an accuracy

of Oð1%Þ for m� * 100 GeV.

APPENDIX C: NUMERICAL EVALUATION OF
ATOMIC MATRIX ELEMENTS

In this Appendix, we describe how we compute the
radial momentum space wave function �ðpÞ for WIMP-
electron inelastic scattering and the matrix elements

hn0l0m0jeiðk�k0Þxjnlmi defined in Eq. (37) for WIMP-atom
elastic and inelastic scattering.
WIMP-electron scattering: The momentum space radial

wave function �nlðpÞ, see Eq. (B3), required for the evalu-
ation of the event rate for WES, is obtained by splitting the
coordinate space wave function c nlmðxÞ into its angular
part Ylmð�;�Þ and its radial part RnlðrÞ, and computing

�nlðpÞ ¼ 4


2lþ 1

X
m

c nlmðpÞYlmð�p;�pÞ

¼ 2

Z

drr2RnlðrÞ
Z

dðcos�ÞPlðcos�Þeipr cos�

¼ 4
il
Z

drr2RnlðrÞjlðprÞ: (C1)

Here, p is a momentum space vector with modulus p and
arbitrary orientation ð�p;�pÞ, and Plðcos�Þ is a Legendre

polynomial. In the second line, we have used the orthogo-
nality of the spherical harmonics, and in the third line, we
have used Gegenbauer’s formula [63], which relates the
Fourier type integral over a Legendre polynomial to the
spherical Bessel function of the same degree.
The radial wave functions RnlðrÞ can be approximated

by a linear combination of so-called Slater type orbitals
[64]:

RnlðrÞ ¼
X
k

cnlk
ð2ZlkÞnlkþ1=2

a3=20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nlkÞ!
p ðr=a0Þnlk�1 expð�Zlkr=a0Þ:

(C2)
8Using hydrogenlike atom approximation we estimate the

relativistic corrections to be of order 20% for electrons from
the 1s shell of iodine and smaller for the other shells.
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Here, a0 is the Bohr radius, and the parameters cnlk, nlk, and Zlk are taken from [64].
With RnlðrÞ given in the form of Eq. (C2), we can evaluate (C1) analytically, which gives

�nlðpÞ ¼
X
k

cnlk2
�lþnlk

�
2
a0
Zlk

�
3=2
�
ipa0
Zlk

�
l ð1þ nlk þ lÞ!ffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nlkÞ!

p 2F1

�
1

2
ð2þ lþ nlkÞ; 12 ð3þ lþ nlkÞ; 32þ l;�

�
pa0
Zlk

�
2
�
; (C3)

with 2F1ða; b; c; xÞ being a hypergeometric function.
WIMP-atom elastic scattering: The matrix element for this case can be written as

X
m

hnlmjeiðk�k0Þxjnlmi ¼X
m

Z
drd�r2½RnlðrÞ�2Y�

lmð�;�ÞYlmð�;�ÞeiKr cos� (C4)

¼ ð2lþ 1Þ
Z

drr2½RnlðrÞ�2 sinKrKr
(C5)

with the abbreviation K � jKj � jk� k0j. This integral has the form of a Fourier sine transform, and can be evaluated
efficiently using the fast Fourier transform algorithm. For RnlðrÞ, we use again the expansion Eq. (C2), with the coefficients
taken from [64].

WIMP-atom inelastic scattering: Here the numerical evaluation of the atomic matrix elements is slightly more involved
than for el-WAS because now c n0l0m0 ðxÞ � c nlmðxÞ. We expand the factor eiKx in Eq. (37) in spherical harmonics [65] and
rewrite the angular integral over a product of three spherical harmonics in terms of the Wigner-3j symbols [66]. This gives

hn0l0m0jeiKxjnlmi ¼ 4

Z

drr2RnlðrÞRn0l0 ðrÞ
X
L;M

jLðKrÞYLMð�K;�KÞ ð�1Þmffiffiffiffiffiffiffi
4


p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2Lþ 1Þ

p

� l l0 L

0 0 0

 !
l l0 L

m m0 M

 !
; (C6)

where jL denotes a spherical Bessel function of the first kind, and �K,�K are the angular components ofK. To compute the
cross section, we need the expressionX

mm0
jhn0l0m0jeiKxjnlmij2 ¼ ð2lþ 1Þð2l0 þ 1ÞX

L

ð2Lþ 1Þ
�

l l0 L
0 0 0

� ��
2
�Z

drr2RnlðrÞRn0l0 ðrÞjLðKrÞ
�
2
: (C7)

Here, we have used the symmetry and orthogonality rela-
tions of the Wigner-3j symbols and of the spherical har-
monics. The expression in the second set of square brackets

has the form of a spherical Bessel transform, which we
evaluate by using an algorithm due to Sharafeddin et al.
[67], based on rewriting the spherical Bessel function as a
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FIG. 10 (color online). A few examples for ie-WAS matrix elements of germanium and xenon. The plot shows transitions from the
1s, respectively, 2s orbitals to some of the lowest unoccupied states.
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finite Fourier series, thus converting the integral to a sum of
Fourier sine and Fourier cosine transforms. The initial state
wave functions Rnl are again given by Eq. (C2) and
Ref. [64], while for the final state wave functions Rn0l0 ,
we use the hydrogenlike approximation (with an effective
charge Z ¼ 3 due to screening of the nuclear charge by
inner electrons) since accurate tabulated wave functions
for excited atoms were not available. Also, we consider
only transitions from the 1s, 2s, and 3s levels to the first
two unoccupied s shells; we have checked numerically that
these transitions are the most important ones. Figure 10
shows some of the ie-WAS matrix elements for germanium
and xenon. We find that for germanium (xenon) transitions
from the 1s (2s) orbital dominate. Our approximations
should correctly reproduce the qualitative behavior of the
matrix elements at large momentum transfer and should
lead to a good order of magnitude estimate of the ie-WAS
event rate.

APPENDIX D: ON THE EQUILIBRIUM OF DM
CAPTURE AND ANNIHILATIONS IN THE SUN

In the calculation of the neutrino flux from DM annihi-
lations in the Sun we have assumed that WIMP captures
and annihilations are in equilibrium, which makes the
result independent of the DM annihilation cross section
h�annvi. Here we comment on the validity of this assump-
tion. Let us first estimate the cutoff scale� for the effective
theory description of the DM-lepton coupling. For the two
examples of V � V and A � A couplings, the neutrino
bounds are of order �0

�e � 10�43 cm2 and 10�38 cm2,

respectively; see Figs. 5 and 7. From Eq. (13) we can
estimate the corresponding cutoff scales as �V �
100 GeV and �A � 10 GeV, where we took coupling
constants c�i to be of order Oð1Þ. In DM annihilations the
four-momentum transfer squared is of orderm2

�. Form� �
10 GeV, relevant for WNS, the WIMP annihilations may
then also be described by effective field theory. Using
effective interactions in Eq. (1) (extending them to neutri-
nos), we find

vector: h�annvi �
G2m2

�



¼ �0

�e

m2
�

m2
e

� 10�24 cm3 s�1

�
�0

�e

10�43 cm2

��
m�

10 GeV

�
2
:

(D1)

In the WES case, however, the effective theory typically
cannot be applied since the momentum transfer for anni-
hilations is above the cutoff scale. Therefore, in general we

cannot make model independent statements about h�annvi
without specifying the UV completion of the effective �‘
vertex. An order of magnitude estimate can still be ob-
tained from dimensional analysis as

axial: h�annvi � g4

m2
�

� 10�21 cm3 s�1 � g4
�

m�

100 GeV

��2
;

(D2)

with g a typical coupling constant between leptons and the
dark sector.
Equilibrium of WIMP capture and annihilations is ob-

tained if tanh2ðt�=�Þ is close to 1; see Eq. (43). Figure 11
shows the values of h�annvi for which t�=� ¼ 1 and 5 as a
function ofm�. The values of scattering cross sections �

0
�e

for V � V and A � A Lorentz structures were chosen to be
above (but close to) the Super-Kamiokande bounds shown
in Figs. 5 and 7. Since tanh2x � 1 for x * 5, WIMP
capture and annihilations are in equilibrium in the Sun
for values of h�annvi above the curve for t�=� ¼ 5.
Comparing Eqs. (D1) and (D2) with the ranges shown in
the figure we conclude that the assumption of equilibrium
is very well justified in the cases of our interest.
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FIG. 11 (color online). Contours of t�=� ¼ 5 and t�=� ¼ 1;
see Eq. (43). For the case of vector (axial-vector) coupling we
have used a scattering cross section of �0

�e ¼ G2m2
e=
 ¼

10�43ð10�38Þ cm2, motivated by the results of the Super-
Kamiokande bound. For values of h�annvi above the curve for
t�=� ¼ 5, WIMP capture and annihilations are in equilibrium in
the Sun.
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