
High energy factorization in nucleus-nucleus collisions. III. Long range rapidity correlations

François Gelis,1,2 Tuomas Lappi,2 and Raju Venugopalan3

1Theory Division, PH-TH, Case C01600, CERN, CH-1211, Geneva 23, Switzerland
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We obtain a novel result in QCD for long range rapidity correlations between gluons produced in the

collision of saturated high energy hadrons or nuclei. This result, obtained in a high energy factorization

framework, provides strong justification for the Glasma flux tube picture of coherent strong color fields.

Our formalism can be applied to ‘‘near side ridge’’ events at the Relativistic Heavy Ion Collider and in

future studies of long range rapidity correlations at the LHC.
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I. INTRODUCTION

Long range rapidity correlations in high energy hadronic
collisions are of interest in QCD because causality dictates
that these correlations are produced at very early times.
They therefore provide insight into how color correlations
in the hadron wave functions become dynamically mani-
fest in multiparticle final states. Recent observations in
nucleus-nucleus collisions at the Relativistic Heavy Ion
Collider (RHIC) of a ‘‘near side ridge’’ structure in two-
particle correlations [1–3] and significant forward-
backward multiplicity correlations [4] have reinvigorated
interest in the underlying dynamics of these correlations in
QCD. At the LHC, with its wider rapidity coverage, such
correlation studies can prove a powerful diagnostic tool
both of multiparton correlations in QCD and of highly
coherent strong color fields generated at early times in
nuclear collisions.

Long range rapidity correlations were previously studied
in color flux tube models where the nonperturbative dy-
namics is at the QCD scale �QCD � 1 fm�1. However, the

rapid growth of parton distributions, and the requirement
that occupation numbers in QCD saturate at�1=�s, where
�s is the QCD coupling constant, suggests that the dynam-
ics of color correlations is controlled instead by a semihard
saturation scale Qs � �QCD. The properties of gluons

with maximal occupation numbers are described by the
color glass condensate (CGC) [5]; this saturated regime
and the approach to it can be computed in a weak coupling
effective field theory (EFT).

In the CGC EFT, partons with longitudinal momenta kþ
larger than a cutoff momentum�þ in a high energy hadron
or nucleus (moving in the þz direction) are described as
static light-cone color sources while modes with kþ <�þ
are treated as QCD gauge fields that couple to these color
sources [6]. Because the physics is independent of this
separation scale, one obtains a renormalization group
(RG) equation—the JIMWLK equation [7]—describing
the evolution of the distribution of fast sources as �þ is
lowered.

The QCD matter formed immediately after a nucleus-
nucleus collision is a Glasma [8]. At leading order, solu-
tions of the Yang-Mills equations reveal that the Glasma
corresponds at early times, � & Q�1

s , to highly coherent
longitudinal chromoelectric and chromomagnetic field
configurations [9,10] with maximal occupation numbers
1=�s. At leading order, the Glasma fields are invariant
under boosts in the space-time rapidity � and only depend
on their transverse positions in the nuclei and the proper
time �. Further, the LO Glasma fields have the spatial
structure of flux tubes stretching between the two nuclei,
each localized transversely in a region of size 1=Qs. This
geometrical picture naturally explains the rapidity correla-
tions observed in the near side ridge in heavy ion collisions
[11,12]. However, the boost invariance of the Glasma
configurations at LO is broken by quantum effects, and it
is important to understand their impact on multiparticle
correlations.
In two previous papers [13,14]—hereafter referred to as

papers I and II—we applied this effective field theory to the
inclusive multigluon spectra in nucleus-nucleus collisions.
The main result in these papers is a proof of the fact that all
the leading logarithms that arise in loop corrections to
these quantities can be absorbed into universal distribu-
tions for the fast sources of the two nuclei. However, in the
case of the multigluon spectra, our proof was limited to the
very peculiar situation where all the observed gluons lie in
a small region in rapidity (of size �y � �s

�1). This
limitation was due to the fact that we did not resum
corrections of the form �sjyi � yjj, where yi;j are the

rapidities of the gluons i and j. These corrections become
important when the rapidity separation between the ob-
served gluons is of order �s

�1 or larger. Physically, these
corrections arise from the radiation of extra gluons be-
tween those that are measured. This has a high probability
of occurring if the rapidity interval between two measured
gluons is larger than �s

�1.
The goal of the present paper, the third in this series, is to

extend the treatment in the previous papers to compute
inclusive multigluon spectra (to leading logarithmic accu-
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racy) for arbitrary rapidity intervals between the observed
gluons. In the case of the two-gluon spectrum, this is the
basis for a detailed quantitative study of long range rapidity
correlations in heavy ion collisions.1 These results are new
and are valid (for any number of colors including the
physical Nc ¼ 3) in a weak coupling scheme where higher
order in �s contributions—enhanced by the same powers
of the rapidity—are resummed to all orders. In this leading
logarithmic approximation, we will demonstrate that ex-
pectation values of operators can be factorized as a con-
volution of density functionals from each of the nuclei
times the operator computed with leading order classical
fields. These density functionals evolve according to the
JIMWLK equation and are universal; they can be ex-
tracted, for instance, in electron-nucleus collisions.
Albeit the focus here will be on nucleus-nucleus collisions,
the results also apply to the collision of two ‘‘saturated’’
hadrons at very high energies.

We note that while multiparticle correlations in the
strong interactions have been extensively studied [15,16],
none of the literature addresses nucleus-nucleus collisions,
for finite Nc, in a framework where gluon fields are the
dynamical degrees of freedom. We will comment later on
interesting earlier studies [15] on two-particle correlations
in the context of local Reggeon field theory.

The essence of the ‘‘technology’’ needed to resum all the
leading logs in multigluon spectra for arbitrary rapidity
separations is already contained in papers I and II, albeit in
a somewhat hidden form. In Sec. II, we review the main
results of these papers and we prove a general formula for
the renormalization group flow in the CGC when one
moves the cutoff �þ of the effective theory by an infini-
tesimal amount. In Sec. III, we show how one- and two-
gluon inclusive spectra can be obtained from this master
formula. Our formula for the two-gluon spectrum is ex-
pressed in terms of the usual distributions of color sources,
and of a new object that has the interpretation of a propa-
gator (in functional space) for the JIMWLK evolution. In
the limit where the two gluons are nearby in rapidity, we
recover known results for the two-gluon spectrum. Finally,
in Sec. IV, we discuss the complications that arise when
one wants to extend these results to the case where one (or
both) of the projectiles is dilute instead of being in the
saturation regime. We end with a brief summary and out-
look for future work.

II. LEADING LOGARITHMS AT NEXT-TO-
LEADING ORDER (NLO)

Consider an inclusive multigluon field operator O. In
papers I and II, we have shown that its LO value OLO can
be expressed in terms of light-cone gauge classical Yang-
Mills solutions A�, with retarded boundary conditions
limx0!�1A�ðxÞ ¼ 0. In coordinate space, in the CGC
effective field theory, the classical sources are localized
along the light cones in two strips, 0 � x� � 1=�þ and
0 � xþ � 1=��. We denote by � the surface located at a
distance �x� ¼ 1=�� above the backward light cone, as
illustrated in Fig. 1. Because the classical fields involved in
OLO obey retarded boundary conditions, OLO can be ob-
tained by solving an initial value problem with initial
conditions defined on the surface �.
It is convenient to describe color sources in the nuclei by

distributions of Wilson lines

�1;2ðy; x?Þ � T expig
Z x�y

0
dz�

1

r2
?
~�1;2ðz�; x?Þ; (1)

where ~�1;2 are the color source densities in Lorenz gauge.

Here the upper bound x�y in the integral is related to y by

y � lnðP�x�y Þ, with P� the longitudinal momenta of the

respective nuclei.2

In papers I and II, the NLO inclusive multigluon spec-
trum was shown to take the form

O NLO ¼
�Z

�
d3 ~u½� 	Tu
þ1

2

X
�;a

Z d3k

ð2	Þ32Ek

�
Z
�
d3 ~ud3 ~v½a�k�a 	Tu
½aþk�a 	Tv


�
OLO; (2)

up to terms that do not contribute at leading logarithmic
accuracy. The fields��ðxÞ and a��k�aðxÞ are small quantum

fluctuations propagating over the classical field A�. The
former has a vanishing boundary condition in the remote
past and its evolution is driven by a source term consisting
of a one-loop tadpole graph. The latter evolves without any

Σ

z

t

FIG. 1. Initial space-time surface � used in the initial value
problem for the retarded classical field A�.

1In [11,12], a simpler leading order formula was used that does
not resum the corrections in �sjyi � yjj. This was sufficient to
justify the existence of long range rapidity correlations and to
suggest its relevance for the RHIC data. In particular, for STAR
data, where the relevant rapidity window is �y� 1:5, these
resummation effects are not likely to be large. Resummations
of long range rapidity corrections are, however, expected to
improve the quantitative description of the STAR and
PHOBOS data [2,3] and, in the future, of the LHC data that
have a significantly wider rapidity coverage.

2With this convention, y is the rapidity measured from the
beam rapidity and y ¼ 0 corresponds to including only valence
partons that have 0 � x� � 1=P�.
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source term, but its boundary condition in the remote past
is a plane wave Ta


�
� e

�ik	x (�, a, and k denote the polar-
ization, color, and momentum of the initial fluctuation).
Here, d3 ~u is the measure on�. Further,OLO is a functional
of the value of the classical fieldA� on the surface �, and
the differential operator Tu acting on OLO is the generator
of shifts of the value of A� on �. The only part of the
expression for this operator that is important for computing
leading logarithmic contributions is3

a 	 Tu ¼ @�ð�ab
1;2a

�
b Þ

�

�@�ð�ac
1;2A

�
c ðuÞÞ ; (3)

with �1;2 defined as in Eq. (1) with y � lnðP�=��Þ.
The next step in evaluating the NLO corrections is to

integrate over the momentum k in Eq. (2). One integral
appears explicitly in the term that has two operators T, and
another momentum integral is hidden in the source term of
the fluctuation field ��. Since in the CGC effective theory
the modes described as fields are bounded by k� <��,
these longitudinal momentum integrals have an upper
bound. We shall compute only the contribution of modes
in the small slices �0þ < kþ <�þ and �0� < k� <��.
By integrating out the field modes in these slices, one is
going from the original CGC EFT to a new CGC0 EFT. The
latter differs from the former because it has an additional
layer of (slower) sources while its field modes now extend
only up to smaller cutoffs �0�.

Using the results of paper I, we have, to leading loga-
rithmic accuracy,Z

�
d3 ~u½� 	 Tu
 þ 1

2

X
�;a

Z d3k

ð2	Þ32Ek

�
Z
�
d3 ~ud3 ~v½a�k�a 	 Tu
½aþk�a 	 Tv


¼
�0�<k�<��

ln

�
�þ

�0þ

�
H �þ þ ln

�
��

�0�

�
H �� : (4)

In this equation, H �� are the JIMWLK Hamiltonians of
the right and left moving nuclei, respectively, at the scales
��. For the nucleus moving in the þz direction, the
explicit form of the JIMWLK Hamiltonian is

H �þ � 1

2

Z
x?;y?

�

� ~Aþ
a ð
�; y?Þ

�ab
1 ðx?; y?Þ

� �

� ~Aþ
b ð
�; x?Þ

; (5)

with 
� ¼ 1=�þ and where4

�ab
1 ðx?; y?Þ ¼ 1

	

Z d2u?
ð2	Þ2

ðxi? � ui?Þðyi? � ui?Þ
ðx? � u?Þ2ðy? � u?Þ2

� ½1þ�1ðx?Þ�y
1 ðy?Þ ��1ðx?Þ�y

1 ðu?Þ
��1ðu?Þ�y

1 ðy?Þ
ab: (6)

There is a similar definition for the second nucleus moving
in the �z direction.
An important point to note here is that the relation in

Eq. (4) is a property of the operator enclosed in the curly
brackets of Eq. (2), regardless of the details of the observ-
able O under consideration. The second remarkable prop-
erty of this result is that the leading logarithms can be
assigned to one or the other of the two nuclei, without any
mixing that would violate factorization.
The expectation value of O, at NLO, can be represented

in the CGC effective theory as

hOLO þONLOi ¼
Z
½D�1ðy; x?ÞD�2ðy; x?Þ


�W�þ½�1ðy; x?Þ
W��½�2ðy; x?Þ

� ½OLO þONLO
; (7)

whereW��½�1;2ðy; x?Þ
 are the functional probability dis-
tributions for the Wilson line configurations �1;2ðy; x?Þ.
Inserting Eq. (4) in Eq. (2) and substituting the resulting

expression on the right-hand side (r.h.s.) of Eq. (7), one can
perform an integration by parts5 such that H �� operates
on the distributions W�� . Let us denote6

W�0þ ½�0
1ðy;x?Þ
 �

�
1þ ln

�
�þ

�0þ

�
|fflfflfflffl{zfflfflfflffl}

dy

H �þ

�
W�þ½�1ðy;x?Þ
:

(8)

This equation is the infinitesimal form of the JIMWLK
evolution equation, where �0

1 is the Wilson line corre-
sponding to a source distribution ~�0

1 ¼ ~�1 þ �~�1 and
�~�1 has support only in the interval ½y; yþ dy
.
The argument ofW�0þ in Eq. (8) extends one step further

in rapidity than the argument of W�þ—it is defined over
the range 0 � y � lnðPþ=�0þÞ and is hence a Wilson line
in the CGC0 EFT. Thus our derivation proves that

hOLO þ ONLO|ffl{zffl}
�0�<k�<��

i ¼ hOLOi0: (9)

The prime on the r.h.s. indicates that the average is per-
formed with a probability distribution corresponding to the
Wilson lines of the CGC0 effective theory. In other words,
this identity states that the classical expectation value ofO
in the original EFT, corrected by quantum fluctuations in a
small slice of field modes, can be expressed as a purely
classical expectation value in a new EFT with a lower

3The complete operator a 	 Tu is made of three terms, but two
of them (not written explicitly here) do not provide any leading
logarithmic contributions.

4Wilson lines without a rapidity argument are defined as in
Eq. (1) with y � lnðP�=��Þ—they integrate over all the sources
of the CGC EFT down to the cutoff ��. Moreover, the deriva-
tives in the JIMWLK Hamiltonian are with respect to the slowest
sources of the EFT.

5The JIMWLK Hamiltonian is Hermitian.
6An identical analysis also applies to the second nucleus.
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cutoff and with a distribution of Wilson lines evolved
according to Eq. (8).

Equation (9) describes how to resum the leading loga-
rithmic quantum corrections in a small slice of longitudinal
momentum. Successive leading logarithmic contributions
down to k� ¼ 0 are obtained by repeating this elementary
step infinitely many times while letting the thickness of the
slices go to zero. One then obtains

hOiLLog ¼
Z
½D�1ðy; x?ÞD�2ðy; x?Þ
W½�1ðy; x?Þ


�W½�2ðy; x?Þ
OLO; (10)

where W � lim��!0W�� . This expression is the central
result of this paper. Equation (10) shows that all the leading
logarithms of rapidity, whether they correspond to the
rapidity intervals between the nuclei and the tagged gluons
or between the various tagged gluons, can be absorbed into
the probability distributions W for the trajectories of
Wilson lines of the two projectiles. This formula applies
to any inclusive observable for which Eq. (2) is valid,
regardless of whether the observable is local in rapidity
or not. Because our result contains an average over
y-dependent ‘‘trajectories’’ of Wilson lines, rather than
an average over Wilson lines at a given fixed rapidity, it
contains a lot of information about multigluon correlations
at different rapidities.

III. ONE- AND TWO-GLUON INCLUSIVE
SPECTRA

We will now extract from our general result in Eq. (10)
expressions for single and double inclusive gluon spectra.
The single inclusive gluon spectrum dN1=d

3p at LO de-
pends only on the Wilson lines �1;2ðy; x?Þ at the rapidity

y ¼ yp of the produced gluon and not on the whole rapidity

range as in Eq. (10). Therefore, we can simplify Eq. (10) by
inserting the identity

1 ¼
Z
½DU1;2ðx?Þ
�½U1;2ðx?Þ ��1;2ðyp; x?Þ
 (11)

and by defining the corresponding probability distributions
for configurations of Wilson lines at the rapidity yp,

Zyp½U1;2ðx?Þ
 �
Z
½D�1;2ðy; x?Þ
W½�1;2ðy; x?Þ


� �½U1;2ðx?Þ ��1;2ðyp; x?Þ
: (12)

One then obtains the all-order leading log result for the
single inclusive gluon spectrum in the following form:�

dN1

d2p?dyp

	







LLog
¼

Z
½DU1ðx?ÞDU2ðx?Þ
Zyp½U1


� Zyp½U2
 dN1½U1; U2

d2p?dyp









LO
: (13)

Note that the distribution Zyp½U
 obeys the JIMWLK

equation,

@ypZyp½U
 ¼ H ypZyp½U
; (14)

which must be supplemented by an initial condition at a
rapidity close to the fragmentation region of the projectiles.
Equation (13) is illustrated in Fig. 2.
At leading order, the inclusive two-gluon spectrum is

simply the disconnected product of two single gluon spec-
tra [14,17], each of which depends on Wilson lines at the
rapidity of the corresponding gluon. Using Eq. (11) in
Eq. (10) (now we need to insert four such delta functions),
one obtains for the resummed two-gluon spectrum the
expression

dN2

d2p?dypd2q?dyq









LLog
¼
Z
½DUp

1 ðx?ÞDUp
2 ðx?ÞDUq

1 ðx?Þ

�DUq
2 ðx?Þ
Zyp;yq½Up

1 ;U
q
1 


�Zyp;yq½Up
2 ;U

q
2 


�dN1½Up
1 ;U

p
2 


d2p?dyp









LO

�dN1½Uq
1 ;U

q
2


d2q?dyq









LO
; (15)

where we have introduced the double probability distribu-
tion of Wilson lines as

Zyp;yq½Up
1;2; U

q
1;2
 �

Z
½D�1;2ðy; x?Þ
W½�1;2ðy; x?Þ


� �½Up
1;2ðx?Þ ��1;2ðyp; x?Þ


� �½Uq
1;2ðx?Þ ��1;2ðyq; x?Þ
: (16)

[dN1/d
3p]

LO

JIMWLK evolution
for nucleus 1

Initial configuration
for nucleus 1

FIG. 2 (color online). Diagrammatic representation of the
various building blocks in the factorized formula for the inclu-
sive single gluon spectrum. The lower part of the figure, repre-
senting nucleus 2, is made up of identical building blocks.
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This double distribution obeys the JIMWLK equation with
respect to the largest of the two rapidities,

if yq > yp; @yqZyp;yq½Up;Uq
 ¼ H yqZyp;yq½Up;Uq
;
(17)

with the boundary condition

lim
yq!yp

Zyp;yq½Up;Uq
 ¼ Zyp½Up
�½Up �Uq
: (18)

Alternately, this double distribution can be expressed as

Zyp;yq½Up;Uq
 ¼ Gyq;yp½Uq;Up
Zyp½Up
; (19)

where the Green’s function Gyq;yp½Uq;Up
 satisfies the

JIMWLK equation7

@yqGyq;yp½Uq;Up
 ¼ H yqGyq;yp½Uq;Up
; (20)

with the initial condition

lim
yq!yp

Gyq;yp½Uq;Up
 ¼ �½Uq �Uq
: (21)

This Green’s function describes multigluon evolution, be-
tween two tagged gluons, in the presence of strong color
sources from the projectiles.
Our result for the double inclusive gluon spectrum, to

leading logarithmic accuracy, can thus be expressed as
follows:

�
dN2

d2p?dypd2q?dyq

	







LLog
¼

Z
½DUp

1 ðx?ÞDUp
2 ðx?ÞDUq

1 ðx?ÞDUq
2 ðx?Þ
Zyp½Up

1 
Gyp;yq½Up
1 ; U

q
1 
Zyq½Uq

2 
Gyq;yp½Uq
2 ; U

p
2 


� dN1½Up
1 ; U

p
2 


d2p?dyp









LO

dN1½Uq
1 ; U

q
2


d2q?dyq









LO
: (22)

Equation (22) generalizes the result in paper II—that re-
sult, as implied by Eq. (21), is recovered when the rapid-
ities of the two gluons are close to each other. Our formula
for the two-gluon spectrum in Eq. (22) is illustrated in
Fig. 3. By using Eq. (10), it is straightforward to write
down similar formulas for higher gluon correlations.

Factorization is obviously manifest in Eq. (10). It is
slightly less apparent in Eq. (22) because there are more
factors in the integrand. However, both the Z functionals
and the G Green’s functionals are universal objects that
describe the partonic content of a nucleus at high energy.
The part of the integrand which is specific to the observable
under consideration is relegated to the factors dN1=d

3p
and dN1=d

3q.

Note also that these distributions are far more general
than the k?-dependent correlators of Wilson lines that are
often discussed in the literature of high energy QCD. The
latter appear in a form of factorization which goes under
the rubric of k? factorization. This type of factorization is
formulated in terms of single gluon distributions, but is
known to be violated [16] for two-gluon correlations in
collisions involving at least one saturated projectile. It is in
this context that one should interpret the results of [15]
which concludes that factorization is violated. In stark
contrast, our universal density functionals and Green’s
functions contain all the relevant information on rapidity-
dependent n-gluon correlations. In fact, our factorization
result is a general consequence of causality and for this
reason should even be valid beyond leading log accuracy.
In practice, solving the JIMWLK equation to compute

the r.h.s. of Eq. (22) is more conveniently achieved by
writing this equation as a Langevin equation for Wilson
lines living on the SU(3) group manifold [18]. This sto-
chastic formulation was implemented in the only extant
numerical study of the JIMWLK equation [19]. Because
solving the JIMWLK equation can be numerically chal-
lenging, a simpler formulation of high energy evolution is
provided by the Balitsky-Kovchegov (BK) equation [20],
which is a closed-form, mean field simplification of the
JIMWLK expression for two-point Wilson line correlators
in the CGC.8 The BK equation corresponds to a nonlocal
Gaussian form of the Zyp , Zyq functionals [21] (when ex-

pressed in terms of the color source distributions) with a
variance �2

Aðyp;q; x?Þ. Because the weight functionals at

[dN1/d
3p]

LO

[dN1/d
3q]

LO

Initial configuration
for nucleus 1

JIMWLK evolution
for nucleus 1

from Ybeam to Yq

JIMWLK evolution
for nucleus 1

from Yq to Yp

FIG. 3 (color online). Diagrammatic representation of the
various building blocks in the factorized formula for the inclu-
sive two-gluon spectrum. As in the previous figure, the corre-
sponding evolution from nucleus 2 at the bottom of the figure is
not shown explicitly.

7We use here, and previously, the fact that the JIMWLK
Hamiltonian acts only on objects at equal or higher rapidities.

8The BK equation is valid in the largeNc limit for large nuclei.
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both yp and yq have this Gaussian form, the Green’s

function Gyp;yq connecting the two must also be a

Gaussian, whose variance can be determined from numeri-
cal solutions of the BK equation. Therefore, quantitative
results for Eq. (22) can be obtained within this BK frame-
work. These will be discussed in future work.

IV. DILUTE-DENSE LIMIT

The results obtained here are valid for the collision of
two dense projectiles whose color charge densities are
given by ~�1;2 � g�1. This is the case in large nuclei or in

nucleons at very high energies. An interesting question is
whether decreasing the magnitude of ~�1 and/or ~�2 in the
formulas we have obtained so far gives the correct answer
for dilute-dense or dilute-dilute collisions. Before going
further, let us note that the permitted range for dilute to
dense color charge densities is between g and g�1. The
upper value, assumed in our study, corresponds to a fully
saturated projectile. The lower value corresponds to a very
dilute projectile whose parton density is of order unity,
ensuring that its color charge density is proportional to g.

The answer to the question posed is affirmative for the
single inclusive gluon spectrum [Eq. (13)]. By taking the
limit ~�2 � g in this formula, one recovers immediately the
well-known result for the single inclusive spectrum in pA
collisions and likewise for pp collisions when we let both
~�1;2 become of order g.
However, taking this limit in the two-gluon spectrum

[Eq. (22)] does not lead to the correct results for the
inclusive two-gluon spectrum in pA or pp collisions
[16]. The reason for this discrepancy is that the correspond-
ing power counting for the two-gluon spectrum is very
different for ‘‘dense’’ color sources �g�1 relative to the
case of ‘‘dilute’’ sources �g. In the power counting for
dense sources �g�1, certain graphs are suppressed that
would also be leading graphs for dilute sources�g. This is
illustrated in Fig. 4, where we have displayed the order of
magnitude of three different contributions to the two-gluon
spectrum, as a function of ~�2. (For pA collisions, ~�1 is
fixed to be of order g�1.) One sees that in the dense case,
only one of these graphs is important, while they are all
important in the dilute limit. Since Eq. (22) is obtained by
assuming dense projectiles, it contains only the discon-
nected graph and misses the other two—this implies that
Eq. (22) is not the complete answer in the dilute limit. As
noted, this subtlety affects correlations between two or
more gluons but not the single gluon spectrum.

The previous discussion only deals with contributions at
leading order. However, a similar discrepancy between the
power counting in the dense-dense and dilute-dense limits
occurs in the resummation of the leading logarithmic con-
tributions. There, one sees that the operators included in
the JIMWLK Hamiltonian are not the only ones that con-
tribute at leading log accuracy in the dilute regime. For
instance, when ~�� g, an operator of the form

g4 ~�2ð�=�~�Þ4 has the same order of magnitude as the
operators in the JIMWLK Hamiltonian in the dilute limit
(but is totally suppressed in the dense regime). Such an
operator, with a prefactor of order ~�2 and four derivatives
with respect to the color source, corresponds to ‘‘Pomeron
splittings’’ in the energy evolution [16,22–25]—while the
JIMWLK evolution only has ‘‘Pomeron mergings’’ (be-
cause the number of ~�’s in the prefactor is always equal to
or greater than the number of derivatives). In principle, one
would like a formalism where both limits contain the right
physics. Unlike previous works which address the full S-
matrix for high energy scattering, our focus will be on the
more limited goal of computing inclusive gluon spectra in
dense-dilute collisions. We believe that substantial
progress in this direction is feasible and we will further
address this topic in a future publication.

V. CONCLUSIONS

In this paper, we obtained in Eq. (10) a general result for
inclusive n-gluon production at arbitrary rapidities in the
collision of two dense projectiles (such as heavy nuclei)
with charge densities given by ~�1;2 � g�1. The result is

expressed in terms of universal W-density matrix func-
tionals which contain information on n-gluon correlations
in the wave functions of the dense projectiles. Our formal-
ism is strictly valid in the leading logarithmic approxima-
tion in x. We anticipate, on the basis of simple causality
arguments, that the structure of our result will hold beyond
leading logarithmic accuracy.
We explicitly wrote down the corresponding expressions

for single and double inclusive gluon production with
arbitrarily large rapidity separations between tagged glu-

ρ
2

g 1 g-1

g-4

g-2

1

g2

g4

p q

p

q

p

q

FIG. 4 (color online). Order of magnitude of various contribu-
tions to the two-gluon spectrum as a function of the color charge
density �2 in the small projectile [the color charge density in the
large projectile is held fixed, �1 ¼ Oðg�1Þ]. Large logarithms of
the energy, which become relevant in the leading logarithmic
resummation, are not considered here.
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ons. Until this point, there has been no microscopic QCD-
based formalism that allows the computation of the near
side ridge correlations in nucleus-nucleus collisions when
the rapidity separation between the measured particles is of
the order of 1=�s or more. Our formalism fills this gap and
allows for future quantitative comparisons and predictions
for the rapidity dependence of the ridgelike structures
observed in central nucleus-nucleus collisions at the
RHIC and in the future at the LHC. At the LHC, one
may have the possibility of studying such structures that
may span 6–10 units in rapidity. Such long range correla-
tions therefore open a new window on the study of multi-
parton correlations in QCD, as well as provide a
‘‘chronometer’’ of the strong field initial ‘‘Glasma’’ stage
of heavy ion collisions.

When both projectiles are dense, we argued that only
Pomeron mergings that are fully included in the JIMWLK
Hamiltonian are relevant for inclusive gluon production.
When one or both of the projectiles become dilute, our
power counting suggests that Pomeron splitting contribu-
tions become equally important as the ‘‘merging’’ contri-
butions for the correlations involving two or more gluons.
Because these are not included in the JIMWLK formalism,

they cannot be obtained by taking a naive low density limit
of the dense-dense formalism discussed in this paper. A
smooth interpolation from the dilute-dense limit to the
dense-dense limit for multigluon inclusive distributions
requires that we first compute corrections to the
JIMWLK Hamiltonian in the dilute-dense limit. While
there have been several such studies in the context of the
S-matrix for high energy scattering, they are in their in-
fancy for inclusive multigluon production [26]. These
studies will be important for extending our studies for
nucleus-nucleus collisions to asymmetric systems such as
high energy proton-nucleus collisions. This work is in
progress and will be addressed in a future publication.
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