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Abstract Elaborating on the observation that two-particle unitarity-cuts of scat-
tering amplitudes can be computed by applying Stokes’ theorem, we relate the
optical theorem to the Berry phase, showing how the imaginary part of arbitrary
one-loop Feynman amplitudes can be interpreted as the flux of a complex 2-form.
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1 Introduction

Unitarity and geometric phases are two ubiquitous properties of physical systems.
The Berry phase is the phase acquired by a system when it is subjected to a

cyclic evolution, resulting only from the geometrical properties of the path tra-
versed in the parameter space because of anholonomy (1; 2).

Unitarity represents the probability conservation in particle scattering pro-
cesses described by the unitary scattering operator, S. The relation, S = 1 + iT ,
between the S-operator and the transition operator, T , leads to the optical theo-
rem,

− i(T −T †) = T †T. (1)

The matrix elements of this equation between initial and final states are expressed,
in perturbation theory, in terms of Feynman diagrams. The evaluation of the right
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hand side requires the insertion of a complete set of intermediate states. Therefore,
since −i(T −T †) = 2 ImT , Equation (1) yields the computation of the imaginary
part of Feynman integrals from a sum of contributions from all possible interme-
diate states. A Feynman diagram is thus responsible for an imaginary part of the
scattering amplitudes when the intermediate, virtual particles go on-shell.

The Cutkosky–Veltman rules, implementing the unitarity conditions, allow the
calculation of the discontinuity across a branch cut of an arbitrary Feynman ampli-
tude, which corresponds to its imaginary part (3; 4; 5; 6; 7; 8; 9). Accordingly, the
imaginary part of a given Feynman integral can be computed by evaluating the
phase–space integral obtained by cutting two internal particles, which amounts
to applying the on-shell conditions and replacing their propagators by the corre-
sponding δ -function, (p2−m2 + i0)−1 → (2πi) δ (+)(p2−m2).

In later studies the problem of finding the discontinuity of a Feynman integral
associated to a singularity was addressed in the language of homology theory and
differential forms (10).

More recently multi-particle cuts have been combined with the use of complex
momenta (11) for on-shell internal particles into very efficient techniques, by-now
known as unitarity-based methods, to compute scattering amplitudes for arbitrary
processes (see (12; 13) for a comprehensive list of references).

In this letter we establish an explicit relation between Unitarity and Berry’s
phase, by showing that the imaginary part of a general one-loop Feynman ampli-
tude, computed by applying the optical theorem, can be interpreted as a Berry
phase, resulting from the curved geometry in effective momentum space experi-
enced by the two on-shell particles going around the loop.

In a recent work (14) it has been shown that double-cuts of one-loop scatter-
ing amplitudes can be efficiently evaluated by using the well-known Generalised
Cauchy Formula, also known as Cauchy-Pompeiu Formula, or Cauchy-Green For-
mula as well (17). In the case of double-cuts, the 4-dimensional loop-momentum
can be decomposed in terms of an ad hoc basis of four massless vectors whose
coefficients depend on two complex-conjugated variables, left over as free com-
ponents after imposing the two on-shell cut-constraints. Therefore, the double-cut
phase–space integral is written as a twofold integration over these two variables.

The integration is finally carried out by using Generalised Cauchy Formula as
an application of Stokes’ Theorem for rational function of two complex-conjugated
variables. As such, the result of the phase–space integration can be naturally inter-
preted as the flux of a 2-form that is given by the product of the two tree-level
amplitudes sewn along the cut.

2 Double-Cut

The two-particle Lorentz invariant phase–space (LIPS) in the K2-channel is defined
as,

∫
d4

Φ =
∫

d4`1 δ
(+)(`2

1−m2
1) δ

(+)((`1−K)2−m2
2), (2)
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where Kµ is the total momentum across the cut. We introduce a suitable parametriza-
tion for `

µ

1 (14; 15; 16), in terms of four massless momenta, which is a solution of
the two on-shell conditions, `2

1 = m2
1 and (`1−K)2 = m2

2,

`
µ

1 =
1−2ρ

1+ zz̄

(
pµ + zz̄ qµ + zε

µ

+ + z̄ε
µ

−
)
+ρKµ , (3)
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where pµ and qµ are two massless momenta with the requirements,

pµ +qµ = Kµ ,

p2 = q2 = 0, (4)

2p ·q = 2p ·K = 2q ·K ≡ K2;

the vectors ε
µ

+ and ε
µ

− are orthogonal to both pµ and qµ , with the following
properties,1

ε
2
+ = ε

2
− = 0 = ε± · p = ε± ·q, (5)

2ε+ · ε− = −K2. (6)

The parameter ρ is the pseudo-threshold,

ρ =
K2 +m2

1−m2
2−

√
λ (K2,m2

1,m
2
2)

2K2 , (7)

with the Källen function defined as,

λ (K2,m2
1,m

2
2) = (K2)2 +(m2

1)
2 +(m2

2)
2−2K2m2

1−2K2m2
2−2m2

1m2
2, (8)

and depends only on the kinematics.
The complex conjugated variables z and z̄ parametrize the degrees of freedom

left over by the cut-conditions.
Analogously to the massless case (14), corresponding to the ρ → 0 limit,

because of (3), the LIPS in (2) reduces to the remarkable expression,

∫
d4

Φ = (1−2ρ)
∫∫ dz∧dz̄

(1+ zz̄)2 . (9)

The double-cut of a generic n-point amplitude in the K2-channel is defined as

∆ ≡
∫

d4
Φ Atree

L (`1) Atree
R (`1), (10)

where Atree
L,R are the tree-level amplitudes sitting at the two sides of the cut (see

Figure 1). By using (9) for the LIPS, and (3) for the loop-momentum `
µ

1 , one has,

∆ = (1−2ρ)
∫∫

dz∧dz̄
Atree

L (ρ,z, z̄) Atree
R (ρ,z, z̄)

(1+ zz̄)2 , (11)

1 In terms of spinor variables that are associated to massless momenta, we can define pµ =
(1/2)p.γµ .p and qµ = (1/2)q.γµ .q, hence ε

µ

+ = (1/2)q.γµ .p and ε
µ

− = (1/2)p.γµ .q.
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Fig. 1 Double-cut of one-loop amplitude in the K2-channel.

where the tree-amplitudes Atree
L and Atree

R are rational in z and z̄. Notice that ρ

is independent of z and z̄, therefore its presence in the integrand does not affect
the integration algorithm. For ease of notation, we give the ρ-dependence of the
integrand as understood.

In (14), we aimed at proposing an efficient method for computing the double-
cut of one-loop scattering amplitudes. Accordingly, by applying a special version
of the so called Generalised Cauchy Formula also known as the Cauchy-Pompeiu
Formula (17), one can write the twofold integration in z- and z̄-variables appearing
in Equation (11) simply as a convolution of an unbounded z̄-integral and a contour
z-integral,2

∆ = (1−2ρ)
∮

dz
∫

dz̄
Atree

L (z, z̄) Atree
R (z, z̄)

(1+ zz̄)2 , (12)

where the integration contour has to be chosen as enclosing all the complex
z-poles.

In this letter we rather want to focus on what links Equations (11) and (12),
namely Stokes’ Theorem (14), and on the geometrical interpretation of its conse-
quence: the double-cut ∆ in Equation (11) is the flux of a 2-form. It corresponds
to an integral over the complex tangent bundle of the Riemann sphere, where the
curvature 2-form, Ω , is defined as,3

Ω =
dz∧dz̄

(1+ |z|2)2 . (13)

The product Atree
L Atree

R is a rational function of z and z̄, hence it can be written
as ratio of two polynomials, P and Q,

Atree
L (z, z̄) Atree

R (z, z̄) =
P(z, z̄)
Q(z, z̄)

, (14)

with the following relations among their degrees,

degzQ = degzP, degz̄Q = degz̄P. (15)

2 The roles of z and z̄ can be equivalently exchanged.
3 In (14) it has been shown that the double-cut of the scalar 2-point function, ∆ I2 =

∫
d4Φ

amounts to the integral
∫∫

Ω =−2πi. This result corresponds to the integration of the first Chern
class, (i/π)

∫∫
Ω = 2.
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3 Optical Theorem

In the double-cut integral (11), we did not make any assumptions on the tree-level
amplitudes sewn along the cut, thus providing a general framework to the inte-
gration method developed in (14). If we now choose Atree

L = A∗,tree
m→2 , that is the

conjugate scattering amplitude of a process m → 2, and Atree
R = Atree

n→2, that is the
amplitude of a process n→ 2, then ∆ reads,

∆ =
∫

d4
Φ A∗,tree

m→2 Atree
n→2 =−i

[
Aone−loop

n→m −A∗,one−loop
m→n

]
= 2 Im

{
Aone−loop

n→m

}
,

(16)

which is the definition of the two-particle discontinuity of the one-loop ampli-
tude Aone−loop

n→m across the branch cut in the K2-channel, corresponding to the field-
theoretic version of the optical theorem (1) for one-loop Feynman amplitudes.

On the other side, because of Stokes’ Theorem in Equations (11) and (12), one
has,

∆ = (1−2ρ)
∫ ∫

dz∧dz̄
A∗,tree

m→2 Atree
n→2

(1+ zz̄)2 = (1−2ρ)
∮

dz
∫

dz̄
A∗,tree

m→2 Atree
n→2

(1+ zz̄)2 ,

(17)

which provides a geometrical interpretation of the imaginary part of one-loop
scattering amplitudes, as a flux of a complex 2-form through a surface bounded by
the contour of the z-integral (the contour should enclose all the poles in z exposed
in the integrand after the integration in z̄ (14)).

Given the equivalence of (16) and (17), a correspondence between the imag-
inary part of scattering amplitudes and the anholonomy of Berry’s phase does
emerge, since the latter is indeed defined as the flux of a 2-form in presence of
curved space (1; 2). In this context, one could establish a parallel description
between the Aharonov–Böhm (AB) effect and the double-cut of one-loop Feyn-
man integrals.

In the AB-effect (18), an electron-beam splits with half passing by either side
of a long solenoid, before being recombined. Although the beams are kept away
from the solenoid, so they encounter no magnetic field (B = 0), they arrive at the
recombination with a phase-difference that is proportional to the magnetic flux
through a surface encircled by their paths. The non-trivial anholonomy in this
case is a consequence of Stokes’ Theorem, where the 2-form Berry curvature is
written as the differential of the 1-form vector potential (∇×A).

In the case of the double-cut of one-loop Feynman integrals, we could describe
the evolution of the system depicted in Figure 1, from the left to the right. The
two particles produced in the AL-scattering, going around the loop and initiating
the AR-process, at the AR-interaction point would experience a phase-shift due to
the non-trivial geometry in effective momentum space induced by the on-shell
conditions. As in the AB-effect, the anholonomy phase-shift is a consequence of
Stokes’ Theorem, and here it corresponds to the imaginary part of the one-loop
Feynman amplitude.



Unitarity-Cuts and Berry’s Phase 7

Acknowledgements I wish to thank Mario Argeri, Bruce Campbell, Gero von Gersdorf, Bryan
Lynn, Ettore Remiddi and Aleksi Vuorinen, for stimulating and clarifying discussions, and
Michael Berry for his feedback on the manuscript.

References

1. M.V. Berry (1984) Quantal phase factors accompanying adiabatic changes
Proc. R. Soc. Lond. A 392 45

2. Shapere, A.D., Wilczek, F. (ed.): Geometric Phases in Physics. Adv. Ser.
Math. Phys. 5(1) (1989)

3. L.D. Landau (1959) On analytic properties of vertex parts in quantum field
theory Nucl. Phys. 13 181

4. S. Mandelstam (1958) Determination of the Pion-Nucleon scattering ampli-
tude from dispersion relations and unitarity Gen. Theory. Phys. Rev. 112 1344

5. S. Mandelstam (1959) Analytic properties
of transition amplitudes in perturbation theory
Phys. Rev. 115 1741

6. R.E. Cutkosky (1960) Singularities and discontinuities of Feynman ampli-
tudes J. Math. Phys. 1 429

7. Eden, R.J., Landshoff, P.V., Olive, D.I., Polkinghorne, J.C.: The Analytic S
Matrix. Cambridge University Press, London (1966)

8. M.J.G. Veltman (1963) Unitarity and causality in a renormalizable field the-
ory with unstable particles Physica 29 186

9. E. Remiddi (1982) Dispersion relation for Feynman graphs Helv. Phys. Acta
54 364

10. Hwa, R.C., Teplitz, V.L.: Homology and Feynman Integrals. Mathematical
Physics Monographs. W. A. Benjamin Inc., New York (1966)

11. R. Britto F. Cachazo B. Feng (2005) Generalized unitarity and one-loop
amplitudes in N = 4 super-Yang-Mills Nucl. Phys. B 725 275

12. Bern, Z., et al.: The NLO multileg working group: summary report.
arXiv:0803.0494 [hep-ph]

13. Z. Bern L.J. Dixon D.A. Kosower (2007) On-shell methods in perturbative
QCD Ann. Phys. 322 1587

14. Mastrolia, P.: Double-cut of scattering amplitudes and Stokes’ theorem. Phys.
Lett. B. (2009, in press). arXiv:0905.2909 [hep-ph]

15. C. Anastasiou R. Britto B. Feng Z. Kunszt P. Mastrolia (2007) D-
dimensional unitarity cut method Phys. Lett. B 645 213

16. C. Anastasiou R. Britto B. Feng Z.
Kunszt P. Mastrolia (2007) Unitarity cuts
and reduction to master integrals in D
dimensions for one-loop amplitudes JHEP
0703 111

17. Ablowitz, M.J., Fokas, A.S.: Complex Variables. Cambridge Texts in Applied
Mathematics, 2nd edn (2003)

18. Y. Aharonov D. Bohm (1959) Significance of electromagnetic potentials in
the quantum theory Phys. Rev. 115 485


