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1 Introduction

The relation between flux compactifications of higher-dimensional supergravities and gaug-
ings of their effective four-dimensional theories has quite a long history [1], with an extensive
literature in the framework of superstring/M-theory compactifications (for a recent review
and references to the original literature, see e.g. [2]). When flux compactifications preserve
an exact or spontaneously broken extended supersymmetry in four dimensions and there
is a gap between the supersymmetry breaking scale and the compactification scale, the
resulting gaugings are not only sufficient to fully determine the two-derivative low-energy
effective Lagrangian, but also the only way in which a potential can be generated and
some or all supersymmetries spontaneously broken. While realistic four-dimensional effec-
tive theories have at most N' = 1 spontaneously broken supersymmetry,’ in orientifold,
orbifold and other string constructions a large amount of information can be extracted by
the study of some underlying theory with A > 1.

IBecause of the chiral nature of weak interactions and of the direct and indirect evidence against mirror
fermions.



In the present paper we concentrate on flux compactifications with exact or sponta-
neously broken N = 4 local supersymmetry in four dimensions. They are already quite
well understood in the framework of heterotic [3-6] and Type-II compactifications [7-13],
but many open questions remain, especially in the framework of Type-IIA orientifolds,
where the rich available structure of geometrical fluxes allows for interesting phenomena
such as stable supersymmetric AdSy vacua (as found, for example, in some N' = 1 orb-
ifolds [11, 14-16]), and, perhaps, locally stable vacua with spontaneously broken N' = 4,
d = 4 supersymmetry and positive vacuum energy, even if no example was produced so far.

The structure of our paper and its main results are described below. In section 2
we establish, in a quite general framework, the precise correspondence between Type-IIA
flux compactifications preserving an exact or spontaneously broken N = 4 supersymmetry
and gaugings of their effective supergravities. We focus on constructions with orientifold
6-planes (O6), in the presence of D6-branes parallel to the O6-planes and of general NSNS,
RR and metric fluxes. For simplicity, we neglect non-geometric fluxes and we consistently
set to zero all brane-localized excitations, leaving these generalizations to future work. We
begin by recalling (following [14, 17]) some well-known properties of the chosen scheme
for dimensional reduction: the field content of the effective theory, the allowed fluxes and
the bulk and localized Bianchi Identities (BI). We then recall the general structure of
gauged N = 4, d = 4 supergravity coupled to n vector multiplets [18, 19], specializing to
the case n = 6 relevant for our discussion. In particular, we recall the structure of the
covariant derivatives acting on the scalar fields, the quadratic constraints on the gauging
parameters, which play the role of generalized Jacobi identities, and the relation between
the scalar potential and the supersymmetry variations of the fermionic fields. We then spell
out the precise correspondence between fluxes and BI of the compactified ten-dimensional
theory on one side, generalized structure constants and Jacobi identities of the effective
four-dimensional theory on the other side. We confirm that, as implicitly introduced in [20]
and explicitly discussed in [11], non-trivial duality phases (also known as de Roo-Wagemans
phases) [18] are generated. We complete this section by discussing the role of a dilaton
flux to generate non-vanishing Schén-Weidner parameters £ [19] (in N/ = 4 supergravity,
these parameters play a role analogous to Fayet-Iliopoulos terms in N' = 1).

In section 3 we apply our results and discuss the A/ = 4 uplift of the family of N =1
AdS, supersymmetric vacua found in [14], performed by removing the Zs x Zy orbifold
projection used to reduce the amount of supersymmetry. As a result, we find a family of
Type-ITA AdS, vacua with spontaneous breaking of N' = 4 to N' = 1 and a number of
adjustable free parameters. These vacua [21, 22] can be obtained without source terms,
i.e. with a vanishing net number of parallel D6-branes and O6-planes, guaranteeing that
the ten-dimensional equations of motion are solved exactly. In the case of non-vanishing
D6-brane source terms the solution is still valid in the limit of smeared sources. We
comment on the associated geometry, on the uplift to A/ = 8 obtained by removing the
orientifold projection, and on the dual CFTj3 theories. We conclude, in section 4, with a
brief discussion on possible generalizations and further applications of our results. In the
body of the paper, we make an effort to keep the technicalities to a minimum. However,
we find that some technical details on the symplectic embeddings may be useful to the
supergravity specialists, thus we present them in the appendix.



2 Orientifold reduction and matching to N' = 4

In this section we describe the reduction of Type-IIA supergravity on twisted tori orien-
tifolds, where the orientifold involution acts non-trivially on three out of the six internal
coordinates. We allow for the presence of D6-branes parallel to the O6-planes, compatibly
with N = 4 supersymmetry, and for general NSNS and RR fluxes.? Since we are mainly
concerned with the closed string sector, we only look at backgrounds with vanishing vac-
uum expectation values (vev) for the open string excitations, which would correspond to
extra N' = 4 vector multiplets localized on the D6-branes. The reduced theory is then a
gauged N = 4, d = 4 supergravity with six vector multiplets. Our goal is to spell out
the precise correspondence between fluxes and Bianchi Identities (BI) of the compactified
ten-dimensional theory on one side, generalized structure constants and Jacobi identities
of the effective four-dimensional theory on the other side.

Here and in the following, we stick to the conventions of [23, 14] unless otherwise
stated. We will use p and i for the curved space-time indices corresponding to the four
non-compact and the three compact dimensions parallel to the O6-planes world-volume,
respectively, and a for the three compact dimensions orthogonal to the O6-planes.

2.1 Ten-dimensional fields, fluxes and constraints

The bosonic NSNS sector of D = 10 Type-IIA supergravity consists of the (string-frame)
metric g, the 2-form potential B and the dilaton ®. The intrinsic O6-parities are +1 for
g and ®, —1 for B. After the O6 orientifold projection, the independent bosonic degrees
of freedom in the NSNS sector of the reduced theory are the dilaton ® and the following
components of the metric and the B-field:

ds® = gy da"dz” + gayn™n” + gi;(n’ + Vida") (o + Vida"),
B = Buni, (2.1)

where here and in the following the wedge product is left implicit in antisymmetric forms.
The six internal 1-forms (7%, n%) satisfy the following relations:

1 |
d E_ = ki g - k. _a,b
n o Wis +2wab77777 (2.2)
dn® = w1 ",
which define the 9 (w;;*) + 9 (wap®) + 27 (wp°) metric fluxes. The NSNS 3-form fluxes
allowed by the O6 projection are (the numbers in brackets correspond to the multiplicities):

Fabc (1)’ H@'ja (9) . (23)

The bosonic RR sector contains in principle the p-form potentials C®) with p =
1,3,5,7,9, whose intrinsic O6-parities are +1 for p = 3,7 and —1 for p = 1,5,9. However,
these degrees of freedom are not all independent, being related by Poincaré duality. Before

2We do not consider non-geometric fluxes in this work, but we comment on some of the properties
associated to turning on such deformations in section 2.3.2.



discussing how to identify the independent RR degrees of freedom that lead to the standard
form of the effective N' = 4 supergravity, we display the field components that are invariant
under the orientifold parity, organized in blocks of dual potentials, with their multiplicities
in brackets:

1 3 3 5 5 3
scalars: Cc(z ) Cz(jlz Ci(ag Cl'(ja)tbc vectors: C,L(nc)tbc C;(La)b
! ) ) ) ! !
2.4)
7 5) 5) 3 3) 5) (
dual tensors: | C' ;(Lu)ij kbe C;(Luabc C;(LVj ke C ;(u/)k dual vectors: Cﬁ] k Cﬁl] ke
(3) (1) (9) (3) (3) (3)

In summary, the bosonic RR sector contains 16 independent real degrees of freedom that
can be described either by scalars or by 2-tensors, and 6 dual pairs of vectors. Finally the
candidate dual pairs of scalar and 4-tensor fluxes in the RR sector are

scalars: Iex @(3) _,(?,)lb éz(?l)mbc
! ! 1 1
st s | GO T GO G =
(1) 9) 9) (1)

Our goal is, as in [14], to keep the scalar fields and to remove the 2-tensor fields, to keep
the scalar fluxes and to remove the 4-tensor fluxes. As we shall see, however, the presence
of RR vectors in the d = 4, N' = 4 effective theory introduces additional complications:
the vector combinations that must be kept will be identified later.

Summarizing, the bosonic field content of the reduced theory consists of 38 scalar
degrees of freedom (22 from the NSNS sector, 16 from the RR sector) and 12 independent
vector degrees of freedom (6 from the NSNS sector, 6 from the RR sector) in a suitable
dual basis.

As it is well known, there are bulk and localized BI constraining the allowed systems
of fields and fluxes. The first constraints come from the closure of the external derivative,
dd = 0, which, applied to eq. (2.2), implies the following constraints on the metric fluxes:

Ww = —Wnp? wyl = 0. (2.6)

Notice that there are no localized source terms compatible with N' = 4 supersymmetry
that can modify the above equations.®> These however are not the only constraints that

3The KK5-monopoles discussed in [24] do preserve N = 4 supersymmetry, but it is not the same A = 4
supersymmetry preserved by the O6-planes. Therefore, the AdSs vacuum discussed in [11] corresponds
indeed to a gauged N' = 2 supergravity in the presence of the orientifold projection, and to a gauged N' = 4
supergravity only in the absence of the orientifold projection.



the metric fluxes must satisfy. The requirement that the compact six-manifold has no
boundary corresponds to the constraint
Wmnt =0 = wi® +wif=0. (2.7)
The general BI for H in the absence of NS5-branes (which would break the NV = 4 super-
symmetry) is simply
dH =0, (2.8)
whose solution can be written as

H=d,B+wB+H, (2.9)

where we separated the various contributions: the derivative of the 2-form field B with
respect to the external coordinates (first term), the torsion term from the derivatives of

the n with respect to the internal coordinates (second term) and a constant flux term (H ),
which must satisfy the integrability condition

wH=0. (2.10)
In the absence of localized sources, the BI for the RR field strengths G®) read
dG®) + HGP=2 =0, (2.11)
and, in analogy with the previous discussion for H, the general solution for G is
GP) = d,cP1) 4 =D 4 HCP3) 4 (G e B)?) | (2.12)
where G are constant fluxes subject to the integrability conditions
WGP L HGY Y Z0. (2.13)

The last term in the solution is understood as expanded and projected into a p-form wedge
product. The solution is valid in general, even when still keeping dual pairs of potentials, as
long as there are no localized sources. In the N' = 4 orientifold case under consideration, the
only admissible localized sources are parallel D6-branes and O6-planes. The integrability
condition for G@ is then modified to

wG? 1 HGY = Q(ny) (2.14)

where Q(mg) is the sum of all Poincaré duals [mg] to the internal 3-cycles wrapped by the
D6-branes and O6-planes. The presence of D6/06 sources also implies further constraints
that can be viewed as integrability conditions from the BI of localized fields. In particular
they read

Hmg] =0, w [mg] =0. (2.15)

The first corresponds to the Freed-Witten [25] anomaly cancellation condition, which in our
case is automatically satisfied, while the second (which is actually connected via dualities
to the first) corresponds to requiring that the volume wrapped by the orientifold plane has
no boundaries [17, 26, 27|. Explicitly the condition reads

wi" =0,  wit=0, (2.16)

where the second equation follows from the first using eq. (2.7).



2.2 Effective N = 4 gauged supergravity

The general structure of gauged N = 4, d = 4 supergravity, with its gravitational multiplet
coupled to n vector multiplets, is known [28, 18, 19]. Its bosonic content consists of: the
metric; 6 + n vector potentials Afy * (M =1,...,6 +n), transforming in the fundamental
vector representation of SO(6,n) and carrying charge +1 under the SO(1,1) subgroup
of SU(1,1); the corresponding dual potentials Aﬁ/f —, which also transform as a vector of
SO(6,n), but carry charge —1 under SO(1,1); 2 + 6n real scalar fields, parameterizing

the manifold
SU(1,1) SO(6,n)

U1)  SO(6) x SO(n) °

Since we restrict ourselves to backgrounds with trivial open string vevs, from now on it

(2.17)

will be sufficient to consider only the case n = 6, neglecting the vector multiplets coming
from D6-branes that act only as spectators. According to [19], the complete Lagrangian
is fully determined by two real constant tensors, fonmnp = fomnp) and §o v, under the
global on-shell symmetry group SU(1,1) x SO(6, 6), where & = +,— and M =1,...,12.
The index M is lowered and raised with constant metric ny/x and its inverse n™ % whose
explicit form will be given later.

The SU(1,1)/U(1) scalar manifold can be parameterized by the coset representatives

Y, = <T> (a=+-), (2.18)

Imr \ 1

where 7 is a complex scalar field whose real and imaginary components are often called
axion and dilaton, respectively. In the gauged theory,* the covariant derivative of 7 reads:

Dyt =0,m+ A" G+ (A G — AT ) T — AT ey TP (2.19)

The SO(6,6)/[SO(6) x SO(6)] scalar manifold can be parameterized by the coset rep-
resentatives

V= (Vii » Vi) - (2.20)

where M =1,...,12 is a vector index of SO(6,6), I,.J = 1,...,4 are indices in the funda-
mental representation of SU(4) ~ SO(6) and A =1,...,6 is a vector index of SO(6). We
exploit the fact that an SO(6) vector can alternatively be described by an antisymmetric
tensor VIV = VYl subject to the pseudo-reality constraint

« 1
Vi = (VIJ) = §€[JKLVKL . (2.21)

The coset representatives must obey the constraint

1
NMN = —§€[JKLV]I\ZJV]IV(L + Vj\‘}vf\‘, . (2.22)

4Tt is not restrictive to set all gauge coupling constants to one, by suitably rescaling the generalized
structure constants f and &.



The consistency of N' = 4 gaugings is enforced by a set of quadratic constraints on the
generalized structure constants £ and f, which in turn can be interpreted as generalized
Jacobi identities. They read:

2.23
2.24

€a'€pn =0, (2.23)

ofpypun =0, (2.24)

3 farunfarq + 2& o fanpg =0, (2.25)

€0 (& fapmn + Canréon) = 0, (2.26)

P (farrnrfarg"™ — €8 farpuipnoing — o INPQis + Calp foumngs) = 0. (2.27)

A useful formula, against which we are going to fit the output of our generalized

dimensional reduction, is the one giving the non-Abelian field strengths H™ in terms of the
A" and A~ potentials:

Ho ™ =20, AyM T = fakp AN AL+ (2.28)

where the dots refer to contributions from tensors, which cancel in the ‘electric’ field
strength combinations discussed later, and

—~ 3
famne = famnp — Eam MPIN — 5 SaNTIP - (2.29)

To study the number of supersymmetries preserved by a given ground state, it is
convenient to have explicit expressions for the supersymmetry variations of the fermions.
In the conventions of [19], the variations of the gravitino, dilatini and gaugini are given by

61% :2D“EI—§A{JFH€J—|—... . — giAéJeJ—l—... , M =20 (Agn) e+
2.30

respectively, where® | !
AlT = B yrpM YN IKpP TE fapnp (2.31)

Al = GO‘BVQV%LVNIKVP JLfﬁMNP + g ey, vl 524, (2.32)

(o)l = ~PVVEVY VD forinp = 1P VaVN Sh o (23)

These expressions show that the £,3s act in a very similar way to Fayet-Iliopoulos param-
eters in A/ = 1 supergravity. They do not appear in the mass matrix of the gravitini,
eq. (2.31), but provide a shift to the D-terms of eq. (2.32).

Finally, the scalar potential V' is fixed in terms of the squares of the fermion variations
by the following Ward identity of extended supergravity:

1 — 1 — 1 — 1
3 AR A gk — 9 AR Ay i - 3 Apas Ayp' i = — 1 V. (2.34)

SWe changed the convention for As 477 and took the complex conjugate with respect to [19], to have all
three A matrices to act on the same SU(4) vector gr.



2.3 Dimensional reduction from d = 10 to d = 4 with fluxes

Since the d = 4 effective supergravity is completely determined, at the two-derivative level,
by the gauging, we just need to focus on the effective action for the vector fields, from
which we can read the couplings. First of all, we need to relate the zero modes of the
ten-dimensional fields with the vectors Ai‘f *. In our case the relations work as follows:

o i ik (3 a- _ L g0 — _ L ijk_abe p(6)
AL = Vi, AL =¢” Cujlw AZ B ?61] Cuaijk’ AZ B 661] « cBuijkbc’
. . - 1 be ~(5) be ~(3) a
Aij_ - Vlj ’ ALJF = éea cCMabci ’ AZJF = §Ea cC’Mbc’ AZ+ = Bﬂa )

(2.35)
where the indices M = (i,7,a,a) in the fundamental vector representation of SO(6,6) are
raised and lowered with the 12 x 12 constant metric

013 0 O
15 0 0 O
MN 1 3
= =1 1o = 2.36
NMN =1 2®o0 13 00 015 ( )
0 013 0

Out of the 12412 vector fields above, only 12 are independent. In the ungauged case, we are
completely free to choose the ‘electric’ vectors, i.e. the independent combinations of vectors
that appear in the Lagrangian. When fluxes are turned on, however, the requirement of
having an action written only in terms of scalar fields (without tensors) determines the
electric and the magnetic combinations of vectors.® If among the electric vectors entering
the gauging both types of vector fields (those with positive and negative SO(1,1) charge) are
present, the gauging is said to possess non-trivial duality phases, also known as de Roo-
Wagemans (dRW) phases. The name ‘duality phases’ follows from the fact that such
a gauging corresponds to a non-trivial symplectic embedding of the gauge group inside
the full duality group of symmetries of the ungauged theory, i.e. an embedding providing
an action of the gauge group where the vector field strengths and their duals get mixed
(see [8, 10, 12] for discussions of various N' = 4 cases coming from flux compactifications).
Since this is a technical point, we leave it for the appendix.

In the following subsections we will first look at the covariant derivatives of the scalar
fields, to find the ‘electric’ combinations and identify the fluxes producing non-trivial dRW
phases. Then we will look at the covariant field strengths for the vectors, to read out the
mapping between the fluxes and the structure constants of the gauging, which will fix the

entire d = 4 action.

2.3.1 Universal axion and SW parameters

In our setup the universal axion (the one that, paired with a combination of the dilaton
and of the O6 volume, reconstructs the complex scalar parameterizing the SU(1,1)/U(1)
manifold) arises from the component of the RR 3-form potential parallel to the O6-plane,

SFor a discussion of the role of tensor fields in gauged supergravities coming from flux compactifications
and the relation between the standard and dual formulations see [29].



VIZ.

1 ..
ReT = Ee”kCg’; . (2.37)

We can read off its covariant derivative by looking at the reduction of the corresponding
RR 4-form on our background

3 3 3
DLC) = 0,0 — wi' O + Vihwn! €3 (2.38)

Comparing this expression with eq. (2.19), we see that the only components of £,5; that

can be turned on in the chosen class of compactifications are &,; = wy'.

However, the
constraint of eq. (2.16) exactly forbids this possibility, thus it seems that no gaugings with
non-trivial {47 can be obtained from these string compactifications. In section 2.4 we will

comment on extensions that go around this limitation by introducing a dilaton flux.

2.3.2 Electric and magnetic vectors

The ‘electric’ vectors can be identified by looking at the combinations of vectors that
appear in the covariant derivatives of the scalars. It is not difficult to see that the chosen
set of fluxes does not produce gaugings involving the vectors dual to the metric and to the
B-field, since in the NSNS sector all the scalars come from the dilaton, the metric and the
B field itself. In the RR sector, instead, scalars come from both C®) and its dual C®),
therefore in general we expect that non-trivial combinations of the RR vectors and their
duals can appear in the gauging. We can thus restrict our analysis to the subset of 646
RR vectors and just look at the RR scalars.

As in the previous subsection, by looking at the reduction of the RR field strengths
we can extract the relevant combinations:

D C(gl:i/)ﬁ‘ = a C(bl)c + wablc(k)l + 2wk[a C(|12]d + . (2.39)

D,CG) = 0,00 +wi" CO) L+ wa O~ HapeCl) — 3H 5, O

abcij — abcij ucijk g ulbc] +

where the dots stand for contributions from NSNS vectors. Rewritten in terms of d = 4
supergravity vectors, these contributions can be conveniently summarized as

Alm Aot ALt gE-

B lwwt wa 0 0 (2.40)

7

ij’jbc Hupe Hije  wij® wep”

which shows the fluxes that determine what vectors (columns) enter the covariant derivative
of each scalar (rows). The RR scalars are 12 (9 from C®) and 3 from C®)), thus in principle
we have 12 combinations of vectors in the covariant derivatives of the scalars. However, it
can be shown that no more than six independent combinations of vectors are present. To
do this, it is enough to take the 12 magnetic combinations, obtained by dualizing those in
eq. (2.39), and to check that they are all orthogonal to the electric ones in eq. (2.39). We



have checked that this is indeed the case once the constraints of egs. (2.6), (2.10) and (2.16)
are imposed.

As it is obvious from egs. (2.31)—(2.34), gaugings with non-trivial dRW phases are
essential for moduli stabilization, since otherwise the SU(1,1)/U(1) scalar would enter
homogeneously the scalar potential. From (2.40), we can see that the components w,, k
and H g are the only fluxes that involve vectors with negative SO(1,1) charge in the
corresponding gauging. This is in agreement with [11], which showed that exactly the same
fluxes were responsible for producing a non-trivial dilaton dependence in the potential.

This result can be easily generalized to any N = 4 orientifold compactification, includ-
ing those with non-geometrical fluxes (Q,,?", R?"*) [30]. Notice that all RR fluxes generate
the same dRW phase, which can be set to zero by a suitable convention. Then, if we denote
by Phyp.. the generic NSNS flux (Hpnp, wmn?, Qm?", RI™®), the rule-of-thumb reads:

The NSNS fluxes leading to non-trivial dRW phases are those and only those with lower
indices orthogonal to the O-planes and upper indices parallel to the O-planes.

For example, in the Type-I1IB/O3 case, all H-fluxes give non-trivial dRW phases, since
the indices are all orthogonal to the O3 planes, whereas all @Q-fluxes give vanishing dRW
phases. In the Type-IIA/O6 case, non-trivial dARW phases are generated by Hpe, Wap', Q.
R7*_ In the Type-IIB/09 case (and analogously in the heterotic case), all components of
the R-fluxes (and only those) give non-trivial phases, since all internal indices are parallel
to the O9-plane.

A similar reasoning applies to all the other cases, since by acting on an index with
a T-duality in the corresponding direction, the dualized index is lowered or raised in the
NSNS fluxes, but at the same time the corresponding direction changes from parallel to
orthogonal to the O-planes, and viceversa.

In principle, for every flux we could also identify an S-dual flux [31]. Therefore, there
should be other non-perturbative fluxes that generate non-trivial dRW phases. In this case
the rule just reverses, because by S-duality the SO(1,1) charge is inverted: S-dual NSNS
fluxes always lead to non-trivial dRW phases except for those and only those with lower
indices parallel to the O-planes and upper indices orthogonal to the O-planes. All S-dual
RR fluxes give now non-vanishing dRW phases. This is in agreement with the results
of [13] for the Type-IIB/O3 case, where the authors show that structure constants with a
negative SO(1,1) charge can be identified with non-trivial H-fluxes and with the S-dual of
the non-geometric Q-fluxes.

2.3.3 Gaugings from field-strength reduction

After having established that in the chosen compactifications it is always £y = €y =
0, our strategy to determine the remaining parameters of the N' = 4 gauging, i.e. the
generalized structure constants f,a/np, is to perform the dimensional reduction of the
various field strengths in the NSNS and RR sectors, and to compare them with eq. (2.28).

From the ten-dimensional Einstein term, adapting the results of [1] to our conventions,

,10,



we obtain:

Vi, =20,V —w" ViV (2.41)

By reducing the NSNS 3-form field strength, the relevant terms read

Hpya = 20, B,ja + 2V, w

ia“ Bep) + ViV Hija + ..., (2.42)
where, as before, the dots refer to contributions from tensor fields that cancel out when the
‘electric’ vector-field combinations are considered. In the RR sector, we have to consider
the 4-form and 6-form field strengths, namely

Gl = 20,CLjoy = 20 BaBogy + 2V, [wa Ol +wia"Clily, + @l
+2BM[GGE|2E;)]} +VIVIG ), + (2.43)
G,(Z)mbc = 28[MC£]5¢)@1;C +2 (WiadBd[uCﬁgc +2 Permutabc)
-2 (@EE)B[M‘I)BV}C + 2 Permutabc)
—QV[i {wijkclgii}abc + <wabkc;5?2ijk +2 Permutabc> (2.44)
—H,,.C ,L(L?Z)_] - (Fijacﬁgc +2 Permutabc> — (@S‘ZLbBM]C +2 Permutabc)]
FVIVIGS et

” stands for the two combinations obtained by cyclic per-

where the symbol “2 Permut,.
mutation of the indices abc of the preceeding term. Identifying the vector fields with the

combinations having a definite SO(1,1) charge, given previously in egs. (2.35), we obtain:

Vi, = 20,,A0" —wy P ALTATY (2.45)
Hyva = 20, A%, + 203 Al AN + Hijo AT AT+ (2.46)
% cabe GL4V)ab — 20, Aj]c _ 0 abe A:a A:rb + % wabk cabe €iji A;i AT 42w, © A[q; a A:r}z‘
—2GL At A%+ %Eﬁibe“bm;mjj +o (2.47)
éeach;(fi/)abci = 28[“Aj]i + 2wz‘acAFL\cAj}a + eabcag) A:bAIJ/rc + 2%']'1614?;\ kAj]j

1 _ T - . _ ,
—§wabke“bceijkA[u‘cA:}] + éHabceabceijkA[M]Aj}k —2H;j0AL A
—(4) i 1) .
_Gz(jabeabcA?;L‘cA:_]j _ 6 ijkabceabcA:]Ajk +.. (2.48)

We can now read the relation between fluxes and generalized structure constants by com-
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paring with eq. (2.28):

1—
b
fijk = _éHabceaceijk,
1
c __ k _abc
foigt = —gWay € €ijk
be _ 70) ab
eraC — G eac’

eribc — _6(2) eabc,

L= b
f+ijc = _§Gijab €, (2-49)
16
f+ijk = EGl('jlz:abc eabc’
k k
froj = wy",
f+ija = —Hija,

b
f+ia = Wiq -

Up to permutations of the indices (so that when all indices are lowered with the met-
ric (2.36) the structure constants are completely antisymmetric), all the other components
vanish. Notice that the system of equations from which we derived the generalized struc-
ture constants of eq. (2.49) was overconstrained: this provides a non-trivial cross-check of
the consistency of our results.

The above result completely defines all possible effective d = 4 N' = 4 supergravities
that can be obtained in the chosen class of Type-IIA O6 compactifications with fluxes.
For instance, the fermion variations and the scalar potential can be read off directly from
egs. (2.30)—(2.34), by substituting (2.49) and &, = 0.

A similar analysis and identification of structure constants with d = 10 fluxes was
performed in [8, 13], in the dual context of Type-IIB O3 compactifications. Following the
rule-of-thumb of the previous section, also in the examples of [8, 13] structure constants
with different SO(1,1) charges appear whenever non-trivial H-fluxes are turned on.

2.3.4 Jacobi identities from Bianchi identities

Having established with eq. (2.49) the precise correspondence between fluxes and gen-
eralized structure constants, we can now check that the generalized Jacobi identities of
egs. (2.23)—(2.27) are in one-to-one correspondence with the Bianchi identities discussed at
the end of subsection 2.1.

Since in our class of compactifications £, = 0, egs. (2.23)—(2.27) reduce just to the
two constraints

farpinforg ™ =0, e farnrfapg™ = 0. (2.50)

By taking the non-trivial components of the above constraints and substituting the explicit
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expressions of eq. (2.49), we get the following constraints on the fluxes:

(& +7G®) —o.

ijc
(@ 7)o,
ijkab
(ww);je” =0, (2.51)
(WH)z‘jka =0,
(wy)zabc = 0’
(ww)abi F= 0.

In particular, the first four constraints in (2.51) come from the first constraint in (2.50),
and the last two from the second. These are exactly the integrability conditions derived
from the d = 10 BI in subsection 2.1. The only BI constraint that is missing is the
one associated to the RR 2-form sourced by parallel D6-branes and O6-planes: this was
somewhat expected, since these sources are the only ones preserving N’ = 4 supersymmetry
in four dimensions, so that their number is not constrained by the consistency of NV = 4
supergravity (where the number of vector multiplets is indeed a free parameter).

2.4 ¢ #0 from the dilaton flux

We elaborate here on the possibility of generating non-vanishing values for the £, pa-
rameters in the presence of a ‘dilaton flux’, associated with an SO(1,1) axionic rescaling
symmetry. It is known that an SO(1,1) twist produces a gauging [32] associated with a
non-vanishing £ parameter [19]. Examples of this sort were later studied in [33] in heterotic
supergravity, we now explore the case of Type-IIA supergravity.

The Type-IIA d = 10 supergravity action is invariant (at the two-derivative level)
under the following SO(1,1) rescaling symmetry:

g—eM?g, BB, d—-d+N, CP e(i-D)A o) (2.52)

This symmetry is a remnant of the dilatonic symmetry arising from the circle compact-
ification of d = 11 supergravity. It still holds in the presence of localized sources, when
the full action contains also the Dirac-Born-Infeld and Chern-Simons terms, as long as the
world volume and the localized fields transform appropriately.

We can then use such a symmetry to perform a duality twist. Since the metric is not
invariant, such a twist corresponds also to a non-trivial Scherk-Schwarz twist, in particular

to a volume non-preserving one,

trw #0, (2.53)

since the volume form is not invariant under dilatations. After a suitable field redefinition,
however, we can go to a field basis where only the dilaton transforms non-trivially under
the symmetry, and appears in the action only via derivative terms. In a such a field basis

the axionic nature of this dilatonic symmetry is manifest.
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In practice, however, we can stick to the standard field basis and include an additional
modification to the external derivative that takes into account the non-trivial dilaton flux:

D=d;+w+QA +H, (2.54)
where @ is the charge under SO(1,1) dilatations and A is defined by:
d® = ds® + A. (2.55)
Using the generalized derivative D, we can now write the Bl as
D? =0, DG = Qrr - (2.56)
Their solutions read
H = dB+wB+%ZB+F,
GPt) — qo® 4 ,o® + %ZC(P) +HCP 2 4 (GG—B)(pH) , (2.57)
and are subject to the following constraints:

(d+w+QA+H)*=0

ww =0, wA =0, wH+ 5AH =0,

(d+w+ QA+ H)GPT) = Q(m7_)
. (2.58)
—(p+1 —4—~p+1 -1
el )+p44 Gt L gart = Q(m7—p) ,

(d4+w+ QA+ H)[r7—p] =0
=
w(mr—p] + pT%Z[WFp] =0, Him7-p] = 0.

The above formulae can be easily generalized to account for localized fields and local-
ized fluxes.

We now specialize to the case of D6/0O6 brane systems. Notice that the constraints in
eq. (2.58) actually imply that, when A; # 0, there must be also non-trivial metric fluxes,
wijj and wajj , which in order to have tr w = 0 read

3 ~ 3—
wl-jj = ZAZ, Waj] = _ZAZ . (259)

If we now look at the covariant derivative of the universal axion we find

1 —
th)]k = BMCZ(;’,z — (wijlcl(lf;)t + 2Permijk) — §(AZC](2L + 2Permijk)
= 0,00 + N, CT) + 2Permyy., (2.60)
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from where we can read that £,; = A; can now be different from zero, and compute all the
generalized structure constants of the N/ = 4 gauging with a procedure similar to the one
described in the previous subsections.

Notice, however, that the generalized BI of the RR sector automatically rule out the
possibility of switching on ¢ in the massive Type-IIA theory: indeed, the BI for G(0) receive
only the contribution from the dilaton flux

(it+w+QA+H)GO =0 = AGY =0, (2.61)

banning the possibility of having both these fluxes turned on at the same time (the only
way out would be to work with D8/O8 systems, or perhaps to add non-geometrical /non-
perturbative fluxes). The condition above can also be identified with an N = 4 Jacobi

b

identity, in particular with the ;;%°° component of

3farpin forq)™ + 28 faynrpg =0, (2.62)

since ff’c — G e and for this particular component the first contribution in the above
equation vanishes with the fluxes available in the Type-ITA theory.

The reader should keep in mind that the SO(1,1) symmetry used for the twist, both
in the heterotic [33] and in this case, is just an accidental symmetry of the two-derivative
action, and does not survive as such the introduction of higher-derivative terms corre-
sponding to o' corrections.” The difficulties in finding explicit string constructions with
non-vanishing £-parameters may be related to the analogous difficulties in generating non-
vanishing FI terms in A/ = 1 compactifications.

3 An N =1 family of vacua

Now that we have established the connection between Type-ITA O6 flux compactifications
and their consistent truncations to gauged d = 4, N' = 4 supergravity, we can use the
latter to study the vacuum structure of the former. Many interesting Type-IIA vacua
found recently in A/ = 1 compactifications, such as the A" = 1 AdS, supersymmetric vacua
in [14-16], and part of those in [34], are just specific truncations of the vacuum solutions
of the N = 4 effective potential described in the previous section. Moreover, our descrip-
tion could be exploited for a more systematic search for de Sitter vacua and cosmological
solutions, along the lines of [35]. It might also be useful for the construction of new AdS,
backgrounds dual to 3-dimensional conformal field theories with extended supersymmetry.
Finally, the extended duality group would make the study of non-geometric backgrounds
more tractable.

As an example, in the following we construct and discuss the embedding in N' = 4
supergravity of the AdS, family of vacua found in [14] and further studied in [16, 36].
From the ten-dimensional point of view, it corresponds to removing the Zo X Zso orbifold
projection in the compactification. We also discuss possible deformations of the solution
and some properties of the dual CFTj.

"We thank E. Witten for bringing this point to our attention.
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3.1 N =4 embedding of a family of AdS, vacua

The family of N/ = 1 AdS4 vacua found in [14] corresponds to compactifications of the
Type-ITA theory with O6 orientifold over T®/Zy x Zsy, with D6-branes and in the presence
of a particular combination of RR, NSNS and geometric fluxes. The orbifold projection
implies a factorization of the 6-torus into a product of three 2-tori, T® = T2 x T? x T?. For
the same reason, the scalar manifold for the closed string sector on this space reduces to a
Ké&hler manifold,

SU(LL) _ SO(6,6) ZyxZy  SU(LL) [ SO(2,2) ]3 _ [SU(l,l)T

U(1) SO(6) x SO(6) U(1) SO(2) x SO(2) U(1) ’

(3.1)
parameterized by seven complex moduli S, Uy and Ty (A =1,2,3).

For the sake of simplicity, we will now consider fluxes respecting the plane interchange
symmetry determined by arbitrary permutations among the T2 factors, though we will
come back to the more general case later on. If we indicate the fluxes and the vevs of the
scalar fields as

1 y 1 1 .

wi = gwijkfzjl5lk7 wy = gwabkeabl&k, w3 = gw@'bcelbd&zc,

— 11— _ 1— y

Hy= gHabCEGbc, H, = gHz‘jaGW,
_ _ _ 1o
g _ g G = 1g@m, (32)
_ 1_ . _ 1_ .
G(4) _ —gGg?ij‘Sm‘Sb] ’ G(G) _ EGE?I)mbc(Sméb] 5ck’

So = <S>, Uy = (UA>, to = (TA>,

then the values of the fluxes giving the family of AdS, vacua read

1) —(2)  touo soto to ug

§G = —tgG == Twl - TWQ — wafn

to— 13 _ — —

W _ g - g _ Y (3.3)
3 5 2 2

which determine a five-parameter family of AdS, vacua (3 scalar vevs plus 2 flux parame-
ters). The BI associated to NSNS fields are automatically satisfied, while those of the RR
sector can be satisfied by changing the number of D6-branes. Notice that solutions can be
found for arbitrary values of the scalar fields (up to quantization conditions coming from
fluxes), so that arbitrary large compact volume (thus small o/ corrections) and small string
coupling can be easily realized.

To embed this family of vacua in a gauged N = 4 supergravity, we must be sure that,
if D6-branes are present, they lie in directions parallel to the N' = 4 O6-planes. This
requirement is equivalent to satisfying the BI for the RR 2-form without sources, namely

5uf F? =3s3t2wl. (3.4)

This constraint reduces by one the number of free parameters of the vacua so that, once
the values of the scalar vevs are chosen, only an overall constant on the fluxes remains free.
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Accidentally, for this symmetric configuration, this condition also implies that the RR
BI along the O6-planes is automatically satisfied, indicating that this family of solutions
enjoys an N = 8 embedding. In other words, the above set of fluxes and fields is also a
solution of massive Type-IIA supergravity compactified on the same background without
any sources. We will come back to the importance of this observation later on.

Inspection of the supersymmetry variations of the fermions, eq. (2.30), provides a
simple way to prove that the choice of fluxes of eq. (3.3), together with the condition (3.4),
yields supersymmetric AdS, solutions of the A/ = 4 supergravity theory constructed in
the previous section. This analysis also shows that, on the same vacua, supersymmetry is
spontaneously broken to N' = 1. We are looking for vacua where all the fields are set to
vanish, with the exception of the metric and of the scalar fields in the last line of eq. (3.2),
which take constant values: then solving the conditions for unbroken supersymmetry also
implies that the equations of motion are satisfied. This in turn implies that the vevs of the
scalar fields minimize the potential V' in (2.34). Supersymmetric vacua are characterized
by an SU(4)r direction ¢/ and a set of scalar field vevs and fluxes (or gauge structure
constants) such that ¢/ is a null eigenvalue of the matrices AL/ and (A24)’;, defined
in (2.32) and (2.33) respectively. The gravitino mass matrix A{/ (projected on the same
SU(4)g direction) then tells us whether the vacuum is Minkowski or AdS. If the spin-i
field variations vanish in more SU(4)r independent directions, then the vacuum preserves
more supersymimetries.

Since we have already worked out the relation between fluxes and gauge structure
constants, we just need to identify the connection between the A = 1 moduli S, Up, Th
(and their vevs) and the N' = 4 scalar fields V,, V%, V% . The coset representatives V
obviously contain more scalars, which, however, were set to zero in our analysis of the
supersymmetry conditions. We checked that such a choice is consistent with the solution.
For the SU(1,1) sector of the scalar manifold (2.17) the identification is easy,

1 T 1 —iS
VQZE<1>:—\/M< | ) (35)

For the SO(6,6) sector the identification is more involved. After some calculations we find
for I/ M

VM — oM (whan + Z580)"7 oY (@Ran + #3807 (3.6)

SN0 (@R an + 3300, N (ahan + 180T,

where ap and () are six four-by-four matrices that map SU(4) indices into SO(6),

Cﬂ:%UQ@Ul, 012:—%0'2(80'3, ()43:%12@0'2, (37)
1 1 1
51=—§Ul®02, ﬁ2=—§02®12, 532503@)02, (3.8)
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and

T +iT) 1
2 | ;=2
Ty +iTy 2 UNT\ . — _

=4/ , th Ya = (Th +T)(U, Ujp). 3.9
Wi Vv | o, wi A= (TA +TA)(Ur+Unr) (3.9)
.%'jl\—i-lfjl\ N

Analogously, for WMIJ = VA/IQA 17 where Q4 = {ay, Br}, we can find a similar expression
to the one in (3.6), but with different scalar functions (ya instead of x,):

yx +iT5 1
y?\ + Z@J})’\ V YA 1Up ’ ’
yr + iyt —iTy

which corresponds to the exchange of T) with —T'x (or Uy with —U, if the complex
conjugate is taken) in the expressions for the z5. It is easy to check that, with this choice
of parameterization, the constraints (2.21) and (2.22) are satisfied and the known A" = 1
results in the truncated limit can be recovered. This last check can be performed by
looking at the gravitino mass matrix. In the basis for the (ap, 3r) matrices of eqs. (3.7)—
(3.8), the gravitino mass matrix is diagonal, with three degenerate eigenvalues (due to the
plane interchange symmetry of the fluxes). The fourth eigenvalue is the one surviving the
orbifold projection and after using eq. (2.49) reads

K/2
A eT [G(ﬁ) +iGD(T + Ty + T3) — GO (VT + ToTs + T5T1) — iGO TV Ty Ty
iHoS —iH(Uy + Uz + Us) + w1 (ThUy + ToUs + T3U3) — woS(T1 + 1o + 1)
—W3(T1U2 + ThU3 4+ ToU 4+ ToUs 4+ T30, —|—T3U2)] , (3.11)

which nicely matches the expression of the A/ = 1 superpotential found in [11, 14].
Using the same conventions, the SU(4)g direction corresponding to preserved super-
symmetry is thus
qr = 67, (3.12)

i.e. the one preserved by the orbifold projection. It is rather easy now to check explicitly
that the fermion supersymmetry variations projected along this direction vanish precisely
when the AdS, constraints (3.3)—(3.4) on the fluxes and the field vevs are satisfied. One
way to do so without doing any computation is to notice that, once the A(;) matrices
entering the spin—% supersymmetry transformations are contracted with the SU(4)g vector
qr, they reconstruct the /' = 1 F-terms. The vanishing of the latter then ensures the
vanishing of the A/ = 4 fermion variation. Notice that, because of the particular form of
the Kéahler manifold (3.1) and of the flux superpotential (3.11), the N' = 1 F-terms read:

Fqg = /2 W ‘ 3.13
§ 55 (3.13)
Ua € Up— T s ( )
Fr, = /2 W 3.15
Ta € Ty — Ty ( )
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These conditions exactly match the relation between the N' = 4 fermion variation A
and the gravitino mass A(;): the dilatino variation A 17 has indeed the same expression
of Ay with the substitution of V, with V; which corresponds to eq. (3.13), while the
components EHKLA(Q)HK[J and A(Q)L4]J correspond to substitute in A(l) one VM1J with
WMIJ thus exactly to the substitutions in egs. (3.14) and (3.15).

We can also check that the direction ¢/ = §] is indeed the only one that annihilates
the fermion variation. This means that even when the orbifold is removed we have N' =1
AdS, vacua, this time arising via spontaneous symmetry breaking from N = 4.

As we have discussed at length in the previous section, the reduction from 10 to 4
dimensions with fluxes leads to an N' = 4 gauged supergravity. This implies that the
choice of fluxes (3.3), leading to the family of AdS, vacua presented in [14], corresponds to
a non-trivial gauge group, specified by (2.49). More details on the general structure of the
gauge group and its symplectic embedding can be found in the appendix. It is interesting,
however, to point out that the general gauge group reduces to the semidirect product of
SU(2) with the group Ny 3 associated to a 3-step nilpotent algebra:

G= SU(2) X N973. (316)

More in detail, we can summarize the gauge algebra specified by the choices (3.3)
and (3.4) as
[Xi, Xj] = €ijx X, [Xi, Af] = €ijuAf, (3.17)

Here X; are the SU(2) generators and Al € ng 3, for I =1,2,3. At the N = 1 critical point
the 9 vectors gauging the nilpotent group are massive and the surviving gauge group is

Goae = SU(2). (3.19)

We point out that this gauge group, however, does not match the full symmetry group
of the corresponding type ITA solution. We will see in the next section that the d = 10
background has an SU(2)? isometry group and that the Scherk-Schwarz reduction sees
only its truncation to Gye. = SU(2). As we already explained, all BI are satisfied without
source terms. However, the presence of O6-planes from the orientifold projection requires
the further presence of 16 D6-branes (and their images) to cancel the corresponding charge:
we can do this by placing the D6-branes on top of the O6-planes so that their charge and
tension cancel locally. This configuration allows to solve the d = 10 equations of motion
and BI exactly, without the need of smearing the sources. This implies that at the A" =1
vacuum there are also matter fields associated to the fluctuations of the D6-branes, which
we put to zero to find the vacuum solution. In particular there are 8 O6-planes and 2
D6-branes on top of each O-plane to cancel their charge and tension. This configuration
adds an extra SO(4)® gauge factor to the d = 4 effective action. If we are interested in
recovering the full N' = 4 effective theory around this vacuum, we should in principle
consider also these fields, which enlarge both the scalar manifold and the gauge group. We
can anticipate that many of the extra scalar fields will get mass from fluxes.
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Since the D6 and O6 charges cancel without the need of a net flux contribution,
the solution will survive also in the absence of the orientifold projection. The family of
AdS, solutions described above is then also a solution of the massive oriented Type-ITA
equations of motion. The cancellation of the D6-brane charge is also a signal that the
truncated d = 4 theory without the orientifold projection can be embedded in a gauged
N = 8 supergravity. Indeed, as shown in the appendix, the gauge algebra can be embedded
in e7(7). In this context we can discuss again the structure of the effective theory and the
moduli stabilization process. While leaving all the technical details for the appendix, we
can summarize here a couple of interesting results of this analysis.

The gauge group of the resulting N' = 8 truncation is also a semidirect product of a
compact group, in this case SU(2) x U(1), with a nilpotent group, now of dimension 24.
On the vacuum, all the vector fields associated to the nilpotent group become massive as
they should. The compact part has an interesting structure, because the U(1) group is
compatible with the R-symmetry group of a residual N’ = 2 supersymmetric theory.

Gauged maximal supergravities in d = 4 have a natural link with M-theory reductions.
While most of the massive ITA fluxes are perturbative also from the M-theory point of
view, being either 4- and 6-form fluxes or metric fluxes, the ¢ flux has clearly a non-
perturbative origin. This can be explicitly seen from the embedding of our reduced model
in N' = 8 supergravity and the attempt at interpreting this theory as a Scherk-Schwarz
reduction of M-theory. The E(O) flux induces a gauging that involves the vector field coming
from the dual metric along the M-theory/IIA circle, therefore it cannot be obtained in a
usual compactification scheme. According to ref. [37], the massive ITA theory would arise
from M-theory by compactifying on a collapsing twisted 3-torus (in other words, by taking
a suitable zero-size limit of a compactification on T3 with metric flux wy,,?). This picture

(0)

nicely agrees with our analysis of the N' = 8, d = 4 gauged supergravity: G % induces

a gauging involving the vector fields Cf;,)mqrst, B and By, (where the index m is along

the twisted 3-torus, while ¢ is not). After the M-theory uplift these vectors are mapped
into Ag?qrst, V" and AS&, which are indeed gauged by the metric flux on the 3-torus (see
also (A.18)—(A.21) in the appendix).

In view of our analysis, this correspondence can be pushed further, extending it from

©) gauges the vector of the dual metric, which

fluxes to sources. As already stated, G
couples electrically to KK6-monopoles. This suggests that M-theory KK6-monopoles are
related to D8-branes, i.e. the sources of the IIA mass parameter. The above connection

can be described by the following chain of dualities:

IIA 1IB ITA M
1
—0 Twmw —ay Tn @ 5
G — Gy —— Gy W . (3.20)
T T, St

[77—8](] - [777]qm E— [7T6]qmn — [’QG]qmnp

In the above scheme, T, and T,, denote T-dualities along the m and n directions (m # n),
S; the M-theory uplift. Similarly, [rs], [77], [m6] and [kg] denote the Poincaré duals of the
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D8-, D7-, D6-brane world-volumes and of the M-theory KK6-monopole, respectively. Thus
D8-branes would correspond to M-theory KK6-monopoles localized on the twisted 3-torus,
with the fibres of the KK6-monopole and of the twisted 3-torus identified.

3.2 The geometry of the massive IIA vacuum

We now discuss the geometry of the d = 10 solution. In [36] it was shown that, in the
case t1 = ty = t3, the N =1 AdS, vacua of eq. (3.3) correspond to compactifications on
AdSy x Xg, with the internal manifold Xg having the topology of (S5 x S3)/Z3, where the
S35 were produced by the geometric fluxes and the Z3 projection was due to the Zs x Zo
orbifold plus the O6 orientifold involution. We now show that, even in the generic case, the
solution of our N' = 4 gauged supergravity theory corresponds to a compactification on a
S3 x S3 manifold with RR and NSNS fluxes turned on and an O6 orientifold involution that
exchanges the two 3-spheres. We discuss the geometric structure of the internal manifold,
showing explicitly that it solves the full massive IIA equations even for generic fluxes not
satisfying the plane-interchange symmetry of (3.2) and (3.3). This analysis, which follows
the lines of the analogous discussion in [36], will also lead us to the correct identification of
the flux quantization conditions as well as of the possible deformations of our background.

A Scherk-Schwarz reduction is equivalent to a compactification on a local group man-
ifold, which goes under the name of twisted torus. In our case, the metric on the internal

6-manifold Yg can be written as

3

2 PO
dsy, = ﬁ(ﬁl\)z + tatia ()2, (3.21)
A=1

in terms of two sets of three globally defined twisted-torus 1-forms (n®,7%) = (%, %) that
satisfy the conditions

dn* = wi ™0’ +wd "

~A ST ~. T (3'22)
dn™ = w3srn™n +wsrs NN,

where (A,X,T") = (1,2,3) and cyclic permutations. We recall here that ¢y = ReT) are
the volume moduli of the three T?’s before twisting and that @, are related to the AV =1
subsector (3.1) of the moduli space (2.17) by

ReS =¢® fitats RelUp = ® titatsUstup (3.23)
uyugus up ' '

On a generic ' = 1 vacuum, these moduli satisfy

A -~ A ALY A
3w up o wy uttt wy (3.24)
Tl A O ’ HAGE TS0 :
uxur Wy ur w3ayr u wy

where it is now clear that we did not impose the plane interchange symmetry leading
to (3.3). We can now show that the space resulting from imposing (3.24) is the product
of two 3-spheres. To do so, it is useful to change basis and use another set of vielbeins,

— 21 —



(€M, §A), defined as
é-A

UA -
Y wiwy (UA + 73 77A> )

R (3.25)

Py s, 0 (A WA A

= \Jwiw - — .

5 11 <77 \/377 >

These new vielbeins satisfy the simple conditions

deh = €5,

deh = ¢¥el

corresponding to a realization of an SU(2) x SU(2) group manifold, namely the product of
two 3-spheres. It should be noted that just like the (p*,7™) vielbeins of the original basis,
also the (€M, €M) vielbeins are globally defined, because S® is a parallelizable manifold.

In this new basis the metric takes the simple form
dst, = p? (€M) + (€42 - €4¢") (3.26)

with the overall radius given by

tytot Ve
p= (( — 13223 ) . (3.27)

The metric is actually that of two S% at angle. Since the angle reduces the SO(4)? isometry
of the two spheres to SU(2)3, the internal manifold corresponds to the coset
SU(2) x SU(2) x SU(2)

Vg = 50@) . (3.28)

Once more we can see that the full symmetry group of this background, namely SU(2)3, is
larger than the one we see at the vacuum of our d = 4 gauged supergravity model, which
is just SU(2). The reason for this lies in the fact that the gauged supergravity model of
the previous section is obtained by performing a Scherk-Schwarz reduction on the two S3
at angle. Each S® has a metric that is invariant under SU(2);,x SU(2)g, where the L, R
subscript refers to left or right multiplication by the SU(2) group. Because of the angle, the
metric (3.26) is invariant only under SU(2); 1, x SU(2)2,1,x SU(2)p g, where the subscripts
1, 2 refer to the two spheres and SU(2)p g is the diagonal right action. The Scherk-Schwarz
reduction, however, keeps only modes that are singlets under the action from the left of the
isometry group of the internal local group manifold. This means that only left invariant
Killing vectors will survive and hence only the SU(2)p g isometry group can be seen in the
reduced theory.

Note that, out of the various parameters that control the vacua, only the combination
corresponding to the total volume enters the metric. We can actually show that this is
also related to the ratio of two quantized parameters, which control all the other quantities
characterizing our solution. Using the relation between fluxes and moduli of eq. (3.24), we
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can rewrite the AdSy solution in the £ basis as a function of two integers: gg and gg. The
metric, the dilaton and the fluxes then read

2 2 9 A\2 “AND ATA 9 51/6 96 1/3
dsira = dsqs, + P ((§)+(§)—§§>7 =5 g ,

_ 24/3 .3

e = W(Qg’gﬁ)”g,

G(O) = 9o,

2 \1/3
2 _ _ (90 96) 171 272 373
G o) (e e+ 88 (3.29)
9 2\1/3 o o .
¢ = M) (2peP @R + O PET)

G = ;’—Z’gﬁ £,

g _ L <@> v <51£2£3 — P8+ 23¢ — 28 v el - 535152>
25/3.51/3 \ go .

It should be noted that G and H are trivial in cohomology on the spheres. This means
that to generate the background above we really need to switch on only two non-trivial
fluxes:®

A% =gy, TV =gselde@ee. (3.30)

All the other fluxes are trivial, because H = dB, G® = —BG©®) and GW = dC®) +
1BBGO), with

1 3 e e
B=mm s (%) (g€ + e+ e¢) (3.31)

0

OO = " (a0) V° (B86 +OPF + B + OPF + POC +£008)

Since this solution preserves N/ = 1 supersymmetry, we can see that the fluxes and
the geometry satisfy the SU(3) group-structure constraints derived in [22]. We recall that
in the case of a Scherk-Schwarz reduction, the internal manifold always defines a trivial
group structure. Each supersymmetry will especially define a complex structure, with its
associated 2-form J, and a holomorphic 3-form €. Given these forms, the fluxes will obey
the supersymmetry constraints derived in [22], which, in the string frame and with the
warp factor set to 1, read

4
dJ = 2mRef), Q=i (W;J—gmﬂ> ., H=—2mReQ; (3.32)

1 1
GO =5me?®, ®G? = —w; + S GW = gme*q’ﬁ, G = —§me*¢J3.

8Notice that flux quantization has to be imposed on the combinations (Ge?)™ which are closed because

of the BI (see eq. (2.11)). In our conventions this implies that the quantized fluxes are the G™ instead of
the G,
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Figure 1. The family of AdS, solutions discussed in the text. When m = 0 there are no metric
fluxes, the geometry collapses to T°/Zs OG6 orientifold. As i—z # 0 metric fluxes deform the torus
into S x S3, when i—z = 15 the net D6-brane charges cancel and the solution allows a description
in terms of N’ = 4 (or A = 8 in the absence of O6-planes) gauged supergravity. In the limit m? = 0

the massive parameter vanishes and the solution admits a geometrical M-theory uplift.

The solution is given by the SU(3) structure defined by

31/2.51/6 /gq e 121 | 272 | 373
J=—%n <%> <5 §+E&+¢ > (3.33)
and the (3,0)-form
514 [gg ~ o ~ . ~ .
_ 96 _2mi/3¢1 2 2mif342 3 2mi/3¢3
0= o (g e2mi/3¢ ) (g e2mi/3¢ ) (5 e2mi/3¢ ) . (3.34)
The other parameters are
) N 1 a0\ /8

This shows that the metric of Yg, leading to our NV = 4 supergravity vacuum, is actually
nearly-Kéhler. It therefore coincides with one of the special massive ITA AdS, solutions
found in [21].

As noted in [36], we could still solve the supersymmetry conditions by adding smeared
D6-branes that modify the 2-form BI and hence relax the relation between the parameters
m and m. For m? > 15m? we can obtain new solutions by adding D6-branes, because the
2-form BI reduces to

2
dG? + HGO) = ge_q’ (mQ — 15m2) ReQ) = Q(mg). (3.36)

From the flux point of view, this means that we can introduce a further parameter cor-
responding to the D6-brane density, which allows to interpolate between the cases with
gV = 0, TeNs # 0 of [38], the one with both fex # 0 and e # 0 and m? = 15m?
of [21], its generalizations (with e # 0 and e # 0 and m? # 15m?), and finally the
case E(O) #0, 5(6) = (. The latter case corresponds to switching off the metric fluxes and
the geometry becomes T®/Zs,, corresponding to the unorbifolded version of the solutions

of [14, 15, 39]. The case where the massive parameter is vanishing is especially interesting,
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because it allows for a lift to M-theory, where the resulting space should have G5 holonomy.
The 52 x S3 manifold can actually be used as the base of a non-compact Ga-holonomy
manifold built from its cone [40], and the relation between this cone and the ITA solution
has been discussed in [38].

3.3 Scales

As discussed above, in the absence of a net D6-brane charge, the solutions can be parame-
terized by two integer numbers: gg and gg. Neglecting for the moment order one coefficients,
the scaling of the volume and the dilaton with respect to those parameters reads

1/3
2 Je 29 1 1
g()/ 96/ 9oP

It is easy to see that for gg > go both the volume and the inverse string coupling can be
made arbitrary large, so as to justify the classical supergravity calculation.

We need now to check whether the AdS, scale (which gives the scale of the massive
modes) can be made parametrically smaller than the KK scale, to permit a 4d effective
field theory description. The KK scale is set by the radius of the spheres p, while the AdSy
length can be extracted by the 4d Hubble parameter

_ Vo 9339 —2
2= 20 VI 2 3.38
AdS M]ZD 672@)\/5 ( )

where V| is the vev of the d = 4 potential and Mp is the d = 4 Planck mass. We can see
that independently of the value of the parameters in this case the AdS scale is always of
the same order of the KK scale. This is a common feature of this type of compactifications
(as in AdS5 x S°, AdSy x S7, etc.), where the positive energy contributions from the RR
and NSNS fluxes to the effective potential are compensated by the negative contribution
from the geometric fluxes, i.e. the curvature of the internal manifold; therefore the net
contribution to the d = 4 curvature is basically given by the internal curvature itself,
giving the relation between the KK scale and the AdS length.

The relation between the AdS length and the KK scale also implies that, for this
class of solutions, gauged supergravity around the vacuum does not coincide with the full
d = 4 effective field theory. Rather it represents just a particular truncation, describing a
subset of the higher-dimensional spectrum in terms of a d = 4 gauged supergravity. The
latter can thus be seen as a tool for generating solutions. This explains why for example the
d = 4 gauged supergravity sees only an SU(2) gauged group instead of the expected SU(2)3
associated to the full isometry of the solution. The Scherk-Schwarz reduction procedure
truncated away part of the massless spectrum and kept part of the KK modes in order
to reconstruct a Lagrangian consistent with the N' = 4 and N/ = 8 gauged supergravity
constraints.

The constraint linking the AdS, length and the KK scale can be relaxed only in the
special case where m = 0. In this case both the contributions from gg and the curvature
are switched off and the dominant contributions become those from gy and the D6-brane
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sources, which must be negative to satisfy the BI constraints (see eq. (3.36)). In particular
the role of giving negative energy contributions to the potential, essential for stabilization,
is now played by O6-planes rather then by the curvature of the internal manifold. The
fact that such contribution scales differently with the volume and the dilaton allows to
disentangle the KK scale from the AdSy, indeed now

2 _ Vo 90VI QF
AdS M% 672<I>\/§ g(Q]pG’

(3.39)

where Qg is the net O6-plane charge contribution. In this case we have a hierarchy between
the AdSy and the KK scale, which allows for a d = 4 effective field theory description exactly
when the supergravity approximation holds, i.e. for large volume p > 1. Calabi-Yau and
orbifold limit of such solution have already been discussed in [14, 15, 39].

Finally, notice that, unless Qg > 0, flux quantization bounds the dilaton to be such
that e® < 1, forbidding the possibility of a perturbative M-theory uplift. This feature
might be connected to the fact that, when the massive parameter becomes important,
Type-ITA does not allow a perturbative/geometric M-theory limit anymore, so that the
M-theory description is doomed to be non-geometric in this case.

3.4 Comments on the dual CFTy

An interesting question we can ask is: what is the 3-dimensional conformal field theory
(CFT) dual to this family of AdS, vacua? We will not give the explicit CFT but we will
comment on some interesting features that can be extracted directly from the properties
of the supergravity solution.

We start with the special case m = 0, where the IIA massive deformation vanishes.
In the absence of gg, the two relevant parameters are then gg and QQg, the number of D6-
branes. Notice that Qg also determines G? through the BI dG = Qg, so that we can
trade Qg with the flux of G (gy). As in [41], we can be tempted to associate gg and go
with the CFT parameters N and k, which correspond to the rank of the gauge group and
the Chern-Simons (CS) level respectively. Indeed, as in [41], also in this case the number
of colors and the 't Hooft coupling would scale with respect to the volume (~ p%) and the
string coupling (e®) as

p° N g 4
NN%NGTP’ zw;wp. (3.40)
If we switch on the ITA mass parameter, we expect to split the CS levels by an amount
proportional to gg, analogously to [42]. When m? = 15m?, the net D6-brane charge vanishes
and the solution becomes exact, without the need of smearing the sources. Notice also that
in this case, as long as p > 1, go < g2, so that the splitting of the CS levels is still expected
to be a small deformation of the CFT.

In the solution without branes, the isometry group is SU(2)3, which corresponds to the
global flavor symmetry of the CFT. As already noted before, adding D6/0O6-brane systems
corresponds to performing a Zso truncation of the spectrum and to adding an SO(4)® gauge
group. Analogously, the CFT is expected to be some suitable deformation of the starting
CFT with global symmetries enhanced to SU(2)3xSO(4)8.
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A difference with respect to the CFT discussed in [41, 42] is the presence of 3-cycles
in the supergravity solution. The presence of such cycles (one for each S3) is associated
to flat axionic directions in moduli space arising from the internal components of the RR
3-form. Consider for example

C® = a(ele2ed + e1e28%), (3.41)

which is the component that survives also in the O6 case. This field corresponds to a
marginal dimension-3 operator in the gauge dual, which is a descendant of a long multiplet
containing also the inverse gauge coupling field in the effective d = 4 supergravity. Because
of this we may expect the axion to get a mass from non-perturbative effects. Indeed
Fuclidean D2-brane instantons wrapping the two 3-spheres exactly do the job, producing
corrections of the type

Ae— Joa(e”PReQ+iC®)) Ae—%fg)“a’ (3.42)
where the prefactor A can be in principle field-dependent. The anomalous dimension
of the dimension-3 operators associated to the axion would then get a non-perturbative
correction of the type (3.42). If the identification of the CFT parameters (3.40) is correct
such correction would scale as
fconst\/m, (343)

e

thus it would be non-perturbative both in the 't Hooft coupling and in the large-
N expansion.

4 Discussion

To summarize, we studied compactifications of Type-ITA string theory on (twisted) tori
with fluxes that admit a d = 4 description in terms of N' = 4 supergravity. Since in N' =4
supergravity the only deformations compatible with supersymmetry are gaugings, each
particular compactification will correspond to a different gauging, and each component of
the possible RR, NSNS and metric fluxes that can be turned on maps into a different gauge
structure constant and a different embedding into the duality group. We thus identified
the mapping between the d = 10 fluxes and d = 4 gauge structure constants. For the
considered class of compactifications, this allows us to reformulate the problem of finding
the solutions of the d = 10 equation of motions to the one of finding extrema of the d = 4
scalar potential of the associated N' = 4 gauged supergravity.

This correspondence is particularly useful since there is a large number of compact-
ifications with less supersymmetry (such as toroidal orbifolds), whose (untwisted) closed
string sector is constrained by the underlying extended supersymmetries to be just a trun-
cation of the N' = 4 supergravity one. It would be interesting to study systematically the
corresponding scalar potential because it would allow us to deduce general properties valid
for a large set of compactifications: for example, the (in)possibility to have full moduli
stabilization in Minkowski or de Sitter space.
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It is known [19] that the gaugings of N' = 4 supergravity include not only “normal” elec-
tric gaugings (associated to the structure constant f,asng), but also the so-called de Roo-
Wagemans phases (associated to magnetic gaugings with structure constants f_psnyg) and
the Schon-Weidner parameters ({437). The de Roo-Wagemans phases are essential for a
complete moduli stabilization. We identified which flux components allow us to turn on
such gaugings and formulated the general rule valid also for other string compactifications.
The Schon-Weidner parameters, on the other hand, enter the scalar potential in a differ-
ent way, with an intriguing similarity to Fayet-Iliopoulos terms in N = 1 supergravity.
We identified a d = 10 supergravity origin for such terms, which however does not seem
compatible with a superstring uplift, for it relies on an accidental global symmetry of the
two-derivative supergravity limit. Analogously to Fayet-Iliopoulos terms in AN/ = 1 super-
gravity, there are no known examples yet of consistent string compactifications producing
non-trivial Schon-Weidner parameters in four dimensions. It would be interesting to study
this possibility further, because it might play an important role in the search of de Sitter
vacua in string compactifications and extended supergravities.

Another interesting direction would be the extension of our results to the inclusion
of non-geometric fluxes, which would enrich the set of generated N’ = 4 gaugings. It has
recently been shown that non-geometric fluxes can produce supersymmetric Minkowski
solutions with all moduli stabilized. The extension to gaugings coming from non-geometric
fluxes might in principle lead to the identification of such vacua also in the context of
N = 4 supergravity, a result that is still lacking in the literature.

As an application of our results, we studied the A/ = 4 uplift of the family of super-
symmetric AdS solutions found in [14, 16, 36, 21, 22]. We found that for a particular
choice of parameters these solutions admit a description in terms of d = 4, N’ = 4 gauged
supergravity with spontaneous supersymmetry breaking to A/ = 1. We showed that in
this case also a description in terms of N = 8 gauged supergravity is possible, but that
there is no separation between the Kaluza-Klein and the AdSy scale, so that the gauged
supergravity theory does not represent the effective d = 4 action, but only a consistent
truncation of the d = 10 spectrum. We also showed that such solution, which corresponds
to a particular AdS, x S3 x 83 compactification with fluxes, satisfies the d = 10 supersym-
metry equations, which continue to be satisfied also away from the N' = 4 point, when the
solution is deformed via the introduction of sources for the D6-brane charge. The extra
parameter that control the net D6-brane charge allows to interpolate among other known
ITA solutions, such as those discussed in [38].

Finally, by AdS/CFT correspondence we expect new CFT3 to exist: we commented
on some of their peculiar properties, which may give a hint on how to construct them.
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A Symplectic embeddings

The d = 4 theory we obtained from the Scherk-Schwarz reduction of massive ITA super-
gravity is an N/ = 4 gauged supergravity model. Four-dimensional gauged supergravities
are specified by their gauge group G and its symplectic embedding, i.e. the embedding
of the gauge group in the electric-magnetic duality group: G C Sp(2ny), where ny is
the total number of vector fields. In this appendix we provide the symplectic embedding
specifying our model and comment on the A” = 8 extension and on other interesting group-
theoretical properties that may help to clarify the role and the origin of certain structures
of the effective theory.

The starting point is the gauge group G of the effective theory and its associated

M
i

Tam = Tonr- These generators fulfill a gauge algebra following from the commutators

algebra. For each of the vector fields A" = Aij we can introduce a gauge generator

[T, Tl = —Xpn" Tp = =Xy Tp. (A1)

We have computed in section 2.3.3, eq. (2.49), the structure constants foarn? of the gauge
algebra realized by our model. Following [19], the structure constants above are determined

in terms of foyvp and Eupr as

XmnT = Xompnt =

A.2)
1 (
03 farin® + 5 (0F10%€an — ORA2Eons — Symun€ll + casdREonre™)

For our model, the structure constants were derived in section 2.3.3 and the corresponding

gauge algebra reads:

— _ —(6 . 1— 4
[T4i, Tij) = wif" Thg, — Hijo 0" Tia + " €iji 6" Ty g — 3 Z(j()lb T, (A3)

[T, Tva] = —daa (wicaT+c ~ G e Ty + %agjll))c et 577 T+]> ; (A.4)
[Tia, Trp] = —win” 0aa 0" T, (A.5)
(T4, Ta) = Hijo 6" Thz + wia T, (A.6)
[Tyi,T-a] = baa (-% win® 0T 5 + % €1k Wy 5J’JT+J> : (A7)
[Tya, T3] = 6aadp (@(0) eaer, , — G2 e“bcéﬁTH) , (A.8)
T4, T_4] = —i €ijk Wap" €T + % wi " T + % €™ H ape €iji §r* T,

_% Hijo 6"T 4, (A.9)
[T4i, Ta) = —wis" G5 697 T, (A.10)
[T1a,T-;] = daa <%wica 0T - — ieijk wpe” €2b¢ 5j]T+]> ) (A.11)
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This generic algebra is realized for any configuration of D6-branes and O6-planes consistent
with the A/ = 4 supersymmetry constraints. However, when the number of D6-branes and
O6-planes gives a zero net charge, the model constructed in this paper becomes a truncation

)

of an N = 8 supergravity model. Moreover, when G = 0 the model can also be obtained
as an M-theory reduction with perturbative fluxes only. For these reasons, it must be
possible to embed the gauge algebra presented above into the larger e7(7) algebra, which is
the algebra generating the U-duality group of NV = 8 supergravity. We now provide this
embedding explicitly.

Although the approach we use is rather indirect, it will help us clarify some interesting
issues about the origin of and the constraints on the gauge group. Our starting point is the
e7(7) algebra. Following [43], we can construct the 133 e7(7) generators in the fundamental

56 representation as matrices

ditnm@  trons

T= - T ) (A.12)
MNTU £ U
! —Optg"
where M, N,... = 1,...,8, tMM are the 63 SU(8) antihermitian and traceless genera-
tors and
tMNPQ = 51 EMNPQRSTU tRSTU (A.13)

are the remaining 70 non-compact generators. We then rewrite the generators and the
corresponding algebra using a gl(7,R) decomposition, which is also appropriate for M-
theory embeddings. In this basis we can split M = (m,8) and the 133 generators are
(™, "™ trnp, t™, b ), as follows from the branching rule 133 — 48 + 1p + 352 +
35 9+ 7_4+ 7,4. The commutators defining the algebra then read

[t £7] = 87 t? — 00, 1,7,

[tn, tP1P2P3] = —3 57[71;1 p2psin g o {P1p2ps
[b™, ] = 67 by + % 5t
[tnannS’ tp1p2p3] — En1n2n3p1p2p3q tq ,
[tn", tpipaps) = 35[?)1 p2p3lm % Om Uprpeps »
[t 7] = —87. ¢ %5;; ) (A.14)

q
[tnmgnsa tp1p2p3] €ninanapipapag U s

[t", tm]

1
tm"+?5,’,gt,

1
[tm’ tn1n2n3] — - 6mn1n2n3p1p2p3t

6 P1P2P3 1
1
[tm’ tnlngng] — _6 €mninansp1paps 1P1p2p3 ,
24
[tmlmzmga tnmzns] = 18 5[[:;1722 th]ns} _ 7 5%11%121%3 t,
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) — 0 the gauge alge-

where t = t,,”". We realized this splitting because whenever E(O
bra (A.3)—(A.11) reduces to the one obtained from M-theory compactifications with geo-
metric fluxes, 4-form fluxes Gpppq and a 7-form flux G, and although this uplift can be
done only when the ITA mass parameter is switched off, the A/ = 8 embedding can still be
performed in the presence of non-trivial 6(0).

In the M-theory framework, the 56 vector fields and their corresponding generators
also split as 56 — 7_3 +21_1 + 21,1 + 7,3. We can actually label them as the ones

coming from the reduction of the metric fields (V") Z;,, the ones associated to the 3-form

fields (Aff}),m) W™ the dual ones coming from the 6-form (qurst) W and the dual

metric generators (‘N/Hm) Z™. These generators can now be embedded in the e7(7) ones by
recognizing the fluxes as intertwiners between the representations of the generators and
those of the e7(7) generators. The identification of the M-theory perturbative fluxes in
terms of our IIA fluxes is straightforward. The 4-form, the geometric fluxes and the 6-form
flux proportional to the volume of the internal space lift to objects of the same type (where
the volume of the internal space is now 7-dimensional):

G wis®, wid®y  wa, ¢ =G, (A.15)

ijab »
The other fields can also be identified easily as

1 _ ~(2)
Wiq — Gia 9

Gitija = Hija,  Gitabe = Hape - (A.16)

)

We are left with a single non-perturbative flux 6(0 , which, however, can also be easily iden-

tified by looking at the structure of the commutators of the gauge algebra as a component

of a flux in the 28,1 (see for instance section 4 of [44]):
mn __ =0) om on
g =G 6707 (A.17)
At this stage we can propose the embedding of the M-theory generators in the e7(7) ones as

Zm = aj Wmnp tpn + as Gmnpq P+ a3 ge tm,
W = by PP by PTGt 4 by €91,
Winn = c1wmn? tp,

7™M = dlgmn tna

leading to the embedding tensors

am,np = a1wma?, Hm,npq = a2Gmnpq7 am,n = a3965&7
Omn P = crwmn?,
77177:1717 1 m?m n] mn [m 57 mn mnpqrsu (A22)
Ot = 203890,°, 0"y = 2b1wppg 57"}, OGP = boeMPITING gy,
gmn = dyemn,
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For the gauging to be well defined, these tensors must satisfy some quadratic con-

straints:
9m7p6m’q + Hm"’pé?mmq — Hm’pé’m,q + Hmmpﬁm"’q =0, (A.23)
Hm’pﬂmms + Hmn,pﬁm"’qrs =0, (A.24)
Hm,Pam’qT + Hmmp(gmn,qr — 0 (A25)

It is straightforward to show that (A.25) is identically satisfied, while (A.23) corresponds
to the 3-form BI, and (A.24) gives the 4-form BI and the torsion constraints w - w = 0.

Hence we can finally derive the structure of the gauge algebra defined by the genera-

tors (A.18)—(A.21):

(Zm, Zn| = wimn? Zp + B GrnpgWP? + v g6 Winn, (A.26)
[Zps W] = 26w, [an]q t e PNRBUBG Wi + 2X gsolnZPl (A.27)
(Zms Wapl = Cwnp?Wing, (A.28)

[Wmr Wrd) = —ap glmpyyanl 4 og eparirarsralme 7] (A.29)
(W Wel = 20 wp ™27, (A.30)

with all the other commutators vanishing identically. Closure in e7(7) through the defini-
tions (A.18)—(A.21) fixes the various coefficients to

3 as as asby
f=3 by = 7 £ o (A.31)
_ -1 — L =_-= A.32
20 ¢=1, P= "5 n 3% (A.32)
a2b1 1

227 - __ A.

b= =l (A39)
and b b 2 c1b

be — 1 b, — G201 di = = 01_1. A.34
37 34y 2T 2 P34 (A-34)

Obviously we cannot have 56 independent generators and a simple inspection of (A.18)—
(A.21) immediately confirms this, leading to the following constraints:

3(12

3Wmn Wiglp) = §b_1Gmnquqa (A.35)
b 2 b
wpqmwpq — C;2_611Emmnzn3n4nsn6 Gn1n2n3n4 Wnsng + Z_fZ 1 gng (A.36)

At this stage, following [12], we can deduce how the action of the N' = 4 gauge
generators can be embedded in e7(7) in the case without net D6-brane charge, according
to the branching of the representations of ez(7y with respect to o(1,1) x sl(3) x sl(3). In
particular, from the branching of the 56 we get that the surviving 24 vectors transform as

(3,1) - +(3,1)4—— +(1,3) o +(1,3)
+ (3, 1) 444 +(3,1) 44 + (1,3) 104 + (1, 3)+07 ; (A.37)

\_/
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which is the representation content of our vector fields

V;7 ij7 Bum C,uab7 ‘7;”7 C,uabcia B,uijkab7 C,uijka ) (A38)
and of the corresponding generators
T+’i7 T—i7 T—f—fla T+a7 T—Ta T—i—ﬂ T—m T—&' (A39)

We can then proceed to embed the gauge generators in the ones of e7(7) using the fluxes as
intertwineres and splitting the indices as m = (i, a, 11). The result is

, _ Ty 0 _
1. = wijktkj + wiabtba + Ggi)tna + §G(4) b Hz‘jat]an — G(6) t;, (A.40)

ijab
1
Tho = —€apewia t + §€Z]kHaijtk, (A.41)
T,; = —65i§eijkwjkltl, (A.42)
P T _ _
Tya = b2 <wicat1“c =GR g LG by G(O)t11“> , (A.43)
_ 1 Jpkab 1 abcTr
T, = —§6ijkwab t + 66 H e ti, (A.44)
1
T_a = §5aa6abcwbcktk. (A.45)

As we have seen before, not all gauge vectors will be independent, therefore the corre-
sponding gauge generators will be constrained. For the case at hand, in the absence of net
D6-brane charge, the constraints follow from the above embedding in e7(7):

— wabkEijk(SjjTJrj + wi[aceb}cd §dd T 5=0, (A.46)
.. 1 _ - L _
wijk 6Zjl T |+ Wabk 6abc Tie+ g 6abc H ope 5kk T—i—fc _ Ezjk Hija §T o = 0. (A47)

This fact has an interesting application in the context of understanding the process by which
we have identified the electric vector fields and integrated out the magnetic ones. Indeed,
the above constraints are in one-to-one correspondence with the linear combinations of the
BI that have to be solved to obtain the physical vector fields, without introducing two-form
tensor fields in the d = 4 effective theory. For this purpose we can take as a starting point
the massive IIA action where both the standard and the dual field-strengths appear. We
then solve the BI resulting from the integration of the potentials we do not want in the
effective action. These BI read

d(eBa@) = 0. (A.48)

The standard formulation of the effective theory can be obtained by integrating out C'¥),
C( and C®), but by doing so, we get an effective N = 4 supergravity model with tensor
fields: C)y)p and Cpyp;. If we do not want tensor fields in the effective d = 4 theory, we have
to integrate out ¥, €M and some components of C®) together with some components of
C®). This means that we have to solve the BI for the 4-form and 6-form only partially. We
therefore need to identify which combinations of the BI have to be selected. This can be
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done in the following way. Start by taking the BI coming from integrating out the C®~1)
potentials and define

dGP + G + FGP—2) = ptl) (A.49)
where H = dB + wB + H. Trivial consistency conditions are

dF®e+) L ple=1) 4 g ape-1) — (. (A.50)

The parameterizations of the curvatures are obtained by first integrating out C¥) and C'(7),
leading to F") = 0 and F®) = 0. This results in the definition of the 6(0) flux and of the
curvature two-form G® = dC® + wCM + 6(2) — BE(O). However, when we proceed to
the integration of the 5-form, we solve the Bianchi identities corresponding only to some
of the components of C (5). These are Civpoar Cuvpias Cuvabe and Cluueij, which correspond
to all the forms of rank greater than one. These should not appear in the effective theory.
On the other hand we do not want to integrate out the scalar fields Cgpe;; and we have
to decide which components of the vector fields Cape; and Cpijrq have to survive. Their
minimal set is now easily determined by imposing the consistency conditions (A.50). If we
want to solve Fjap = 0, Flijr = 0 and F,i = 0 (corresponding to the 5-form tensor
fields with rank > 1), we also need to solve at least some of the Bianchi identities related
to the 5-form vector fields because of the consistency conditions

(dF(5));wpijk =0, (dF(E)))uupiab =0. (A'51)
Upon using Fj,,;jx = 0 and F),,;q, = 0, these consistency conditions read
3w[ile,ul/pk]l = O, (A52)
which is identically vanishing when w;;7 = 0, and

wablF,ul/pil +2 wi[acF

uvpble — 0. (A53)

These equations are selecting the linear combinations related to the tensor fields we have
integrated out. Moreover they are in one-to-one correspondence with the constraints (A.46)
on the corresponding gauge generators. It is easy to check that the combinations appearing
in (A.53) do not contain any tensor fields and hence we can solve G4 and Gvap in terms
of vector fields only.

At this point we can move to the integration of the 3-form degrees of freedom we do not
want to see in the effective action. This means the space-time 3-form C,,,,,, the three 2-forms
Cli and consequently the (up to 3) vector fields selected by the same mechanism as the
one described above. The integration of the 3 tensor fields C\,; implies that Fj,,;jqe = 0.
However, the consistency condition now reads

dFD 4+ wFD 4 g RO =, (A.54)

because we did not solve all the equations from F®) = 0, but only some of them. Looking
at the 3 directions labeled by uvpijabc we get that
wij' Fuptabe + 3wlab' Fupliijle) + 6wlitfa  Fyuspbeljlat

" “ (A.55)
+(Habc + 3W[abch}l)Fuupij + 3(Hij[a - wilel[a} + 2(")(1} [i}ch}c)Fuupbc} =0.
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We can see once more that only some parts of the vector field Bianchi identities participate

in the above conditions and once more they are in one-to-one correspondence with the
constraints (A.47).

References

1]

2]

J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153
(1979) 61 [SPIRES].

H. Samtleben, Lectures on gauged supergravity and flux compactifications,
Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [SPIRES].

K.S. Narain, M.H. Sarmadi and E. Witten, A note on toroidal compactification of heterotic
string theory, Nucl. Phys. B 279 (1987) 369 [SPIRES].

S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner, Superstrings with spontaneously broken
supersymmetry and their effective theories, Nucl. Phys. B 318 (1989) 75 [SPIRES].

M. Porrati and F. Zwirner, Supersymmetry breaking in string derived supergravities,

Nucl. Phys. B 326 (1989) 162 [SPIRES].

N. Kaloper and R.C. Myers, The O(dd) story of massive supergravity, JHEP 05 (1999) 010
[hep-th/9901045] [SPIRES].

A.R. Frey and J. Polchinski, N = 3 warped compactifications,
Phys. Rev. D 65 (2002) 126009 [hep-th/0201029] [SPIRES];

R. D’Auria, S. Ferrara and S. Vaula, N = 4 gauged supergravity and a IIB orientifold with
fluzes, New J. Phys. 4 (2002) 71 [hep-th/0206241] [SPIRES];

R. D’Auria, S. Ferrara, F. Gargiulo, M. Trigiante and S. Vaula, N = 4 supergravity
lagrangian for type IIB on T®/Zs in presence of flures and D3-branes, JHEP 06 (2003) 045
[hep-th/0303049] [SPIRES].

M. Berg, M. Haack and B. Kors, An orientifold with fluzes and branes via T-duality,
Nucl. Phys. B 669 (2003) 3 [hep-th/0305183] [SPIRES].

C. Angelantonj, S. Ferrara and M. Trigiante, New D = 4 gauged supergravities from N = 4
orientifolds with fluzes, JHEP 10 (2003) 015 [hep-th/0306185] [SPIRES];

C. Angelantonj, S. Ferrara and M. Trigiante, Unusual gauged supergravities from type IIA
and type IIB orientifolds, Phys. Lett. B 582 (2004) 263 [hep-th/0310136] [SPTRES].

J.P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in I1A
compactifications with general fluzes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276|
[SPIRES];

J.P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Fluzes and gaugings:

N =1 effective superpotentials, Fortsch. Phys. 53 (2005) 926 [hep-th/0503229] [SPIRES].

G. Dall’Agata and S. Ferrara, Gauged supergravity algebras from twisted tori
compactifications with fluzes, Nucl. Phys. B 717 (2005) 223 [hep-th/0502066] [SPIRES].

G. Aldazabal, P.G. Camara and J.A. Rosabal, Flux algebra, Bianchi identities and
Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21
[arXiv:0811.2900] [SPIRES].

G. Villadoro and F. Zwirner, N = 1 effective potential from dual type-ITA D6/06 orientifolds
with general fluzes, JHEP 06 (2005) 047 [hep-th/0503169] [SPIRES].

,35,


http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B153,61
http://dx.doi.org/10.1088/0264-9381/25/21/214002
http://arxiv.org/abs/0808.4076
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.4076
http://dx.doi.org/10.1016/0550-3213(87)90001-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B279,369
http://dx.doi.org/10.1016/0550-3213(89)90048-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B318,75
http://dx.doi.org/10.1016/0550-3213(89)90438-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B326,162
http://dx.doi.org/10.1088/1126-6708/1999/05/010
http://arxiv.org/abs/hep-th/9901045
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9901045
http://dx.doi.org/10.1103/PhysRevD.65.126009
http://arxiv.org/abs/hep-th/0201029
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0201029
http://dx.doi.org/10.1088/1367-2630/4/1/371
http://arxiv.org/abs/hep-th/0206241
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0206241
http://dx.doi.org/10.1088/1126-6708/2003/06/045
http://arxiv.org/abs/hep-th/0303049
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303049
http://dx.doi.org/10.1016/j.nuclphysb.2003.07.008
http://arxiv.org/abs/hep-th/0305183
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0305183
http://dx.doi.org/10.1088/1126-6708/2003/10/015
http://arxiv.org/abs/hep-th/0306185
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0306185
http://dx.doi.org/10.1016/j.physletb.2003.12.055
http://arxiv.org/abs/hep-th/0310136
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0310136
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.038
http://arxiv.org/abs/hep-th/0411276
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0411276
http://dx.doi.org/10.1002/prop.200410242
http://arxiv.org/abs/hep-th/0503229
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0503229
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.039
http://arxiv.org/abs/hep-th/0502066
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0502066
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.006
http://arxiv.org/abs/0811.2900
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2900
http://dx.doi.org/10.1088/1126-6708/2005/06/047
http://arxiv.org/abs/hep-th/0503169
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0503169

[15]

[16]

[17]

18]

0. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type ITA moduli stabilization,
JHEP 07 (2005) 066 [hep-th/0505160] [SPIRES].

P.G. Camara, A. Font and L.E. Ibanez, Fluzes, moduli fixzing and MSSM-like vacua in a
simple IIA orientifold, JHEP 09 (2005) 013 [hep-th/0506066] [SPIRES].

G. Villadoro and F. Zwirner, D terms from D-branes, gauge invariance and moduli
stabilization in flux compactifications, JHEP 03 (2006) 087 [hep-th/0602120] [SPIRES].

M. de Roo, Matter coupling in N = 4 supergravity, Nucl. Phys. B 255 (1985) 515 [SPIRES];
M. de Roo and P. Wagemans, Gauge matter coupling in N = 4 supergravity,

Nucl. Phys. B 262 (1985) 644 [SPIRES];

E. Bergshoeff, I.G. Koh and E. Sezgin, Coupling of Yang-Mills to N = 4, D = 4 supergravity,
Phys. Lett. B 155 (1985) 71 [SPIRES];

M. de Roo and P. Wagemans, Partial supersymmetry breaking in N = 4 supergravity,

Phys. Lett. B 177 (1986) 352 [SPIRES].

J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034
[hep-th/0602024] [SPTRES].

J. Michelson, Compactifications of type IIB strings to four dimensions with non-trivial
classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [SPIRES].

K. Behrndt and M. Cveti¢, General N = 1 supersymmetric flux vacua of (massive) type IIA
string theory, Phys. Rev. Lett. 95 (2005) 021601 [hep-th/0403049] [SPIRES].

D. Liist and D. Tsimpis, Supersymmetric AdS, compactifications of IIA supergravity,
JHEP 02 (2005) 027 [hep-th/0412250] [SPIRES].

J. Polchinski, String theory. Volume 2: Superstring theory and beyond, Cambridge University
Press, Cambridge U.K. (1998).

G. Villadoro and F. Zwirner, Beyond twisted tori, Phys. Lett. B 652 (2007) 118
[arXiv:0706.3049] [SPIRES].

D.S. Freed and E. Witten, Anomalies in string theory with D-branes, hep-th/9907189
[SPIRES].

F. Marchesano, D6-branes and torsion, JHEP 05 (2006) 019 [hep-th/0603210] [SPTIRES].

G. Villadoro and F. Zwirner, On general fluxz backgrounds with localized sources,
JHEP 11 (2007) 082 [arXiv:0710.2551] [SPIRES].

A K. Das, SO(4) invariant extended supergravity, Phys. Rev. D 15 (1977) 2805 [SPIRES];
E. Cremmer and J. Scherk, Algebraic simplifications in supergravity theories,

Nucl. Phys. B 127 (1977) 259 [SPIRES];

E. Cremmer, J. Scherk and S. Ferrara, SU(4) invariant supergravity theory,

Phys. Lett. B 74 (1978) 61 [SPIRES];

D.Z. Freedman and J.H. Schwarz, N = 4 supergravity theory with local SU(2) x SU(2)
invariance, Nucl. Phys. B 137 (1978) 333 [SPIRES];

S.J. Gates Jr. and B. Zwiebach, Gauged N = 4 supergravity theory with a new scalar
potential, Phys. Lett. B 123 (1983) 200 [SPIRES].

G. Dall’Agata, R. D’Auria, L. Sommovigo and S. Vaula, D =4, N = 2 gauged supergravity in
the presence of tensor multiplets, Nucl. Phys. B 682 (2004) 243 [hep-th/0312210] [SPIRES];
R. D’Auria, L. Sommovigo and S. Vaula, N = 2 supergravity lagrangian coupled to tensor
multiplets with electric and magnetic fluzes, JHEP 11 (2004) 028 [hep-th/0409097]
[SPIRES];

,36,


http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://arxiv.org/abs/hep-th/0505160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0505160
http://dx.doi.org/10.1088/1126-6708/2005/09/013
http://arxiv.org/abs/hep-th/0506066
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0506066
http://dx.doi.org/10.1088/1126-6708/2006/03/087
http://arxiv.org/abs/hep-th/0602120
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602120
http://dx.doi.org/10.1016/0550-3213(85)90151-8
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B255,515
http://dx.doi.org/10.1016/0550-3213(85)90509-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B262,644
http://dx.doi.org/10.1016/0370-2693(85)91034-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B155,71
http://dx.doi.org/10.1016/0370-2693(86)90766-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B177,352
http://dx.doi.org/10.1088/1126-6708/2006/05/034
http://arxiv.org/abs/hep-th/0602024
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602024
http://dx.doi.org/10.1016/S0550-3213(97)00184-3
http://arxiv.org/abs/hep-th/9610151
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9610151
http://dx.doi.org/10.1103/PhysRevLett.95.021601
http://arxiv.org/abs/hep-th/0403049
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403049
http://dx.doi.org/10.1088/1126-6708/2005/02/027
http://arxiv.org/abs/hep-th/0412250
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0412250
http://dx.doi.org/10.1016/j.physletb.2007.07.002
http://arxiv.org/abs/0706.3049
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.3049
http://arxiv.org/abs/hep-th/9907189
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907189
http://dx.doi.org/10.1088/1126-6708/2006/05/019
http://arxiv.org/abs/hep-th/0603210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0603210
http://dx.doi.org/10.1088/1126-6708/2007/11/082
http://arxiv.org/abs/0710.2551
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.2551
http://dx.doi.org/10.1103/PhysRevD.15.2805
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D15,2805
http://dx.doi.org/10.1016/0550-3213(77)90214-0
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B127,259
http://dx.doi.org/10.1016/0370-2693(78)90060-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B74,61
http://dx.doi.org/10.1016/0550-3213(78)90526-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B137,333
http://dx.doi.org/10.1016/0370-2693(83)90422-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B123,200
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.014
http://arxiv.org/abs/hep-th/0312210
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312210
http://dx.doi.org/10.1088/1126-6708/2004/11/028
http://arxiv.org/abs/hep-th/0409097
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0409097

[34]

[35]

~

W~
95

=
=

L. Sommovigo, Poincaré dual of D =4 N = 2 supergravity with tensor multiplets,
Nucl. Phys. B 716 (2005) 248 [hep-th/0501048] [SPIRES].

J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications,
JHEP 10 (2005) 085 [hep-th/0508133] [SPIRES].

G. Aldazabal, P.G. Camara, A. Font and L.E. Ibanez, More dual fluzes and moduli fixing,
JHEP 05 (2006) 070 [hep-th/0602089] [SPTRES].

G. Villadoro and F. Zwirner, The minimal N = 4 no-scale model from generalized
dimensional reduction, JHEP 07 (2004) 055 [hep-th/0406185] [SPIRES].

J.-P. Derendinger, P.M. Petropoulos and N. Prezas, Azionic symmetry gaugings in N = 4
supergravities and their higher-dimensional origin, Nucl. Phys. B 785 (2007) 115
[arXiv:0705.0008] [SPIRES].

C. Caviezel et al., The effective theory of type IIA AdS, compactifications on nilmanifolds
and cosets, Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458] [SPIRES].

M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA
string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [SPIRES];

C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure
manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] [SPIRES].

G. Aldazabal and A. Font, A second look at N =1 supersymmetric AdSy vacua of type I1A
supergravity, JHEP 02 (2008) 086 [arXiv:0712.1021] [SPIRES].

C.M. Hull, Massive string theories from M-theory and F-theory, JHEP 11 (1998) 027
[hep-th/9811021] [SPIRES].

B.S. Acharya, F. Denef, C. Hofman and N. Lambert, Freund-Rubin revisited,
hep-th/0308046 [SPIRES)].

B.S. Acharya, F. Benini and R. Valandro, Fizing moduli in exact type IIA flur vacua,
JHEP 02 (2007) 018 [hep-th/0607223] [SPIRES].

M. Atiyah and E. Witten, M-theory dynamics on a manifold of Go holonomy, Adv. Theor.
Math. Phys. 6 (2003) 1 [hep-th/0107177] [SPIRES].

O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal
Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091
[arXiv:0806.1218] [SPIRES].

D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, arXiv:0901.0969 [SPIRES].
B. de Wit and H. Nicolai, N = 8 supergravity, Nucl. Phys. B 208 (1982) 323 [SPIRES].

G. Dall’Agata, N. Prezas, H. Samtleben and M. Trigiante, Gauged supergravities from twisted
doubled tori and non-geometric string backgrounds, Nucl. Phys. B 799 (2008) 80
[arXiv:0712.1026] [SPIRES].

,37,


http://dx.doi.org/10.1016/j.nuclphysb.2005.03.029
http://arxiv.org/abs/hep-th/0501048
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0501048
http://dx.doi.org/10.1088/1126-6708/2005/10/085
http://arxiv.org/abs/hep-th/0508133
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0508133
http://dx.doi.org/10.1088/1126-6708/2006/05/070
http://arxiv.org/abs/hep-th/0602089
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602089
http://dx.doi.org/10.1088/1126-6708/2004/07/055
http://arxiv.org/abs/hep-th/0406185
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406185
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.021
http://arxiv.org/abs/0705.0008
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.0008
http://dx.doi.org/10.1088/0264-9381/26/2/025014
http://arxiv.org/abs/0806.3458
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3458
http://dx.doi.org/10.1088/1126-6708/2007/12/095
http://arxiv.org/abs/0711.2512
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.2512
http://dx.doi.org/10.1088/1126-6708/2009/04/010
http://arxiv.org/abs/0812.3551
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.3551
http://dx.doi.org/10.1088/1126-6708/2008/02/086
http://arxiv.org/abs/0712.1021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1021
http://dx.doi.org/10.1088/1126-6708/1998/11/027
http://arxiv.org/abs/hep-th/9811021
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9811021
http://arxiv.org/abs/hep-th/0308046
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0308046
http://dx.doi.org/10.1088/1126-6708/2007/02/018
http://arxiv.org/abs/hep-th/0607223
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0607223
http://arxiv.org/abs/hep-th/0107177
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0107177
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1218
http://arxiv.org/abs/0901.0969
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0969
http://dx.doi.org/10.1016/0550-3213(82)90120-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B208,323
http://dx.doi.org/10.1016/j.nuclphysb.2008.02.020
http://arxiv.org/abs/0712.1026
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0712.1026

	Introduction
	Orientifold reduction and matching to N=4
	Ten-dimensional fields, fluxes and constraints
	Effective N=4 gauged supergravity
	Dimensional reduction from d=10 to d=4 with fluxes
	Universal axion and SW parameters
	Electric and magnetic vectors
	Gaugings from field-strength reduction
	Jacobi identities from Bianchi identities

	xi =|= 0 from the dilaton flux

	An N=1 family of vacua
	N=4 embedding of a family of AdS(4) vacua
	The geometry of the massive IIA vacuum
	Scales
	Comments on the dual CFT(3)

	Discussion
	Symplectic embeddings

