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1. Introduction

T he relation between ux com pacti cations of higherdin ensional supergravities and
gaugings of their e ective four-din ensional theories has quite a long history [1], w ith
an extensive literature in the fram ework of superstring/M -theory com pacti cations
(for a recent review and references to the original literature, see eg. [2]). W hen ux
com pacti cations preserve an exact or spontaneously broken extended supersym —
m etry in four din ensions and there is a gap between the supersym m etry breaking
scale and the com pacti cation scale, the resulting gaugings are not only su cient to

fully determ ine the two-derivative low -energy e ective Lagrangian, but also the only
way In which a potential can be generated and som e or all supersym m etries spon—
taneously broken. W hile realistic fourdin ensional e ective theories have at m ost
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N = 1 spontaneously broken supersymm etry ', in orientifold, orbifold and other
string constructions a large am ount of Inform ation can be extracted by the study of
som e underlying theory with N > 1.

In the present paperwe concentrate on ux com pacti cationsw ith exact or spon-—
taneously broken N = 4 local supersymm etry in four din ensions. T hey are already
quite well understood in the fram ew ork of heterotic [3, 4,5, 6]and T ype-II com pact-
i cations [7,8,9,10,11,12, 13], but m any open questions rem ain, especially in the
fram ew ork of T ype-TIA orientifolds, w here the rich available structure of geom etrical

uxes allow s for interesting phenom ena such as stable supersym m etric AdS, vacua
(as found, for example, n some N = 1 orbifods [11, 14, 15, 16]), and, perhaps,
Iocally stable vacua with spontaneously broken N = 4,d = 4 supersymm etry and
positive vacuum energy, even if no exam ple was produced so far.

T he structure of our paper and itsm ain results are described below . Th Section 2
we establish, In a quite general fram ew ork, the precise corregpondence between T ype-
IT1A ux com pacti cations preserving an exact or soontaneously broken N = 4 super—
sym m etry and gaugings of their e ective supergravities. W e focus on constructions
w ith ordentifold 6planes (0 6), in the presence of D 6-branes parallel to the O 6planes
and ofgeneralNSN S,RR and m etric uxes. For sim plicity, we neglect non-geom etric

uxes and we consistently set to zero all brane-localized excitations, leaving these
generalizations to future work. W e begin by recalling (follow ing [14,17]) som e well-
known properties of the chosen scheam e for dim ensional reduction: the eld content
of the e ective theory, the allowed uxes and the bulk and localized Bianchi Identi-
ties (BI).W e then recall the general structure of gauged N = 4,d = 4 supergravity
coupled to n vectorm ultiplets [18, 19], specializing to the case n = 6 relevant for our
discussion. In particular, we recall the structure of the covariant derivatives acting
on the scalar elds, the quadratic constraints on the gauging param eters, which play
the role of generalized Jacobi dentities, and the relation between the scalar poten—
tialand the supersym m etry variations of the farm ionic elds. W e then spell out the
precise correspondence between uxes and B I of the com pacti ed ten-din ensional
theory on one side, generalized structure constants and Jacobi dentities of the ef-
fective four-dim ensional theory on the other side. W e con m that, as in plicitly
Introduced in [20] and explicitly discussed in [11], non—rivial duality phases (also
known as de Roo{W agem ans phases) [18] are generated. W e com plete this section
by discussing the role of a dilaton ux to generate non-vanishing Schon{W eidner
param eters [19] (in N = 4 supergravity, these param eters play a role analogous to
Fayet{Iliopoulosterm s In N = 1).

Tn Section 3 we apply our results and discuss the N = 4 uplift of the fam ily of
N = 1AdS; supersym m etric vacua found in [14], performm ed by rem oving the Z, 7,
orbifold profction used to reduce the am ount of supersym m etry. A sa result,we nd

!B ecause of the chiralnature of w eak interactionsand of the direct and indirect evidence against
m irror ferm ions.
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a fam ity of TypeTIA A dS,; vacua w ith spontaneous breaking of N = 4 toN = 1 and
a num ber ofad justable free param eters. T hese vacua [21,22]can be obtained w ithout
source tem s, ie. w ith a vanishing net num ber of parallel D 6-branes and O 6-planes,
guaranteeing that the ten-din ensional equations ofm otion are solved exactly. In the
case of non-vanishing D 6-brane source temm s the solution is still valid in the lim it of
an eared sources. W e comm ent on the associated geom etry, on the uplift to N = 8
obtained by rem oving the orientifold pro fction, and on the dualCF T 3 theories. W e
conclude, in Section 4, w ith a brief discussion on possible generalizations and further
applications of our results. In the body of the paper, we m ake an e ort to kesp the
technicalities to a m niInum . However, we nd that som e technical details on the
sym plectic em beddingsm ay be useful to the supergravity specialists, thus we present
them in the A ppendix.

2. O rientifold reduction and m atching to N = 4

In this section we describe the reduction of Type-IIA supergravity on tw isted tori
orientifolds, where the ordentifold involution acts non—xrivially on three out of the
six intemal coordinates. W e allow for the pressnce of D 6-branes paralkl to the
0O 6planes, com patlbly with N = 4 supersymm etry, and for general NSNS and RR

uxes 2. Since we arem ainly concemed w ith the closed string sector, we only look
at backgrounds w ith vanishing vacuum expectation values (vev) for the open string
excitations, which would correspond to extra N = 4 vectorm ultiplets localized on the
D 6-branes. T he reduced theory isthen a gauged N = 4,d = 4 supergravity w ith six
vector m ultiplets. O ur goal is to gpell out the precise correspondence between uxes
and Bianchi Identities (BI) of the com pacti ed ten-din ensional theory on one side,
generalized structure constants and Jacobi dentities of the e ective fourdin ensional
theory on the other side.

Here and in the follow ing, we stick to the conventions of [23, 14 Junless otherw ise
stated. We willuse and i for the curved spacetim e indices corresponding to
the four non-com pact and the three com pact din ensions parallel to the O 6-planes
worlkd-volum e, respectively, and a for the three com pact dim ensions orthogonal to
the O 6planes.

2.1 Ten-din ensional elds, uxes and constraints

The bosonic NSNS sector of D = 10 TypeTIA supergravity consists of the (string-
fram e) m etric g, the 2-form potentialB and thedilaton . The intrinsic O 6-parities
are+1 forgand , 1 forB . A fter the O 6 orientifold progction, the independent
bosonic degrees of freedom in the N SN S sector of the reduced theory are the dilaton

°W edo not consider non-geom etric uxes in thiswork,butwe com m ent on som e of the properties
associated to tuming on such deform ations in section 2.3 2.
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and the follow ing com ponents of the m etric and the B — eld:

ds=g dx dx + gy * "+ gy( '+ Vidx )( T+ vidx );
B =B, ® '; (21)

w here here and in the follow ing the wedge product is left in plicit in antisym m etric
orm s. The six ntemal 1-om s ( 2; ) satisfy the Hllow ing relations:

ab ’

dk:}!i'kij+}! kab,
2" (22)
|

which de ne the 9 (! 5°) + 9 (1) + 27 (! 3°) metric uxes. The NSNS 3-om
uxes allowed by the O 6 progction are (the num bers in brackets correspond to the
m ultiplicities) :

Hae (1); Hia (9): (2.3)

The bosonic RR sector contains in principle the pom potentials C ®) with
p= 1;3;5;7;9,whose intrinsic O 6paritiesare + 1 forp= 3;7and 1 forp= 1;5;9.
H ow ever, these degrees of freedom are not all independent, being related by Poincare
duality. Before discussing how to dentify the independent RR degrees of freedom
that lead to the standard form of the e ective N = 4 supergravity, we digplay the
eld com ponents that are invariant under the orientifold parity, organized in blocks
of dual potentials, w ith their m ultiplicities in brackets:

scalars: C a(ll) C l(j3k) C 1(:]; C 1(35a)bc vectors: | C (5ia)1bc C (i])o
1 1 1 1 1 1
(24)
dual tensors: | C (7)ijkbc C (5)abc C (5)jkc C (3)k dual vectors: C (3];( C (?.;kc
(3) (1) 9) (3) (3) (3)

Tn summ ary, the bosonic RR sector contains 16 independent real degrees of freedom
that can be described either by scalars or by 2-tensors, and 6 dual pairs of vectors.
Finally the candidate dualpairs of scalar and 4-tensor uxes in the RR sector are

—(0) —(2) —(4) —(6)
scalars: G Gy G ijap G ijkarc
1 1 1 1
—(10) —(8) —(6) —(4) (2.5)
dual tensors: | G ijkakc G jkbc G jkab G
(1) 9) 9) (1)
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Ourgoalis,asin [14], to keep the scalar elds and to ram ove the 2-tensor elds,
to keep the scalar uxes and t ram ove the 4+tensor uxes. A swe shall see, how ever,
the presence of RR vectors in thed = 4,N = 4 e ective theory introduces additional
com plications: the vector com binations that m ust be kept w illbe denti ed later.

Sum m arizing, thebosonic eld content of the reduced theory consists of 38 scalar
degrees of freedom (22 from the NSNS sector, 16 from the RR sector) and 12 inde-
pendent vector degrees of freedom (6 from the NSNS sector, 6 from the RR sector)
n a suitable dualbasis.

A sitiswellknown, there are buk and localized B I constraining the allowed sys—
tem sof eldsand uxes. The st constraints com e from the closure of the extemal
dertvative, dd = 0, which, applied to ej. (2.2), In plies the follow Ing constraints on
them etric uxes:

'l = "mn oy = 0: (26)

N otidce that there are no localized source term s com patibblewth N = 4 supersym m e—
try that can m odify the above equations®. T hese how ever are not the only constraints
that them etric uxesm ust satisfy. T he requirem ent that the com pact six-m anifold
has no boundary corresponds to the constraint

o= 0 ) e+ 1,.°= 0 2.7)

The general BT for H in the absence of N S5Jranes (which would break the N = 4
supersymm etry) is sin ply
dH = 0; (2.8)

whose solution can be written as
H=dB+ !B+H; (29)

where we sgparated the various contributions: the derivative of the 2-fom eld
B with respect to the extermal coordinates ( rst tem ), the torsion term from the
derivatives of the with respect to the intermal coordinates (second term ) and a
constant ux tem (H ), which m ust satisfy the integrability condition

'H=0: (2.10)
In the absence of ocalized sources, the BI for theRR el strengths G ®) read

dG®+HGP P=0; (211)

3TheKK 5-m onopolesdiscussed in [24]do preserve N = 4 supersym m etry, but it is not the sam e
N = 4 supersymm etry preserved by the O 6-planes. T herefore, the AdS, vacuum discussed in [11]
corresponds Indeed to a gauged N = 2 supergravity In the presence of the ordentifold pro fction,
and to a gauged N = 4 supergravity only in the absence of the orientifold pro fction.
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and, in analogy w ith the previous discussion for H , the general solution for G ® is
GP=dCc® P+ 1 c®PPVirHCP Iy Ge®)?; (212)

where G are constant uxes sub ct to the integrability conditions

=@ =P 2)

'G  +HG 0: (2.13)

The last term in the solution is understood as expanded and profcted Into a p-fom
wedge product. The solution is valid in general, even when still keeping dual pairs
of potentials, as long as there are no localized sources. In the N = 4 ordentifold case
under consideration, the only adm issible localized sources are parallel D 6-branes and
O 6-planes. T he integrability condition ©or G @ is then m odi ed to

1P+ 56 Y =20(4); (2.14)

where Q ( ¢) isthe sum ofallPoincare duals [ ¢]to the iIntermal 3—¢ycles w rapped by

the D 6-branes and O 6-planes. The presence of D 6/0 6 sources also in plies further

constraints that can be viewed as Integrability conditions from the BT of localized
elds. In particular they read

H[s]=0; ' [4]=0: (2.15)

The rstcorregponds to the Freed {W itten [25]anom aly cancellation condition, which
in our case is autom atically satis ed, while the second (which is actually connected
via dualities to the rst) corresponds to requiring that the volum e w rapped by the
orientifold plane has no boundaries [17, 26, 27]. Explicitly the condition reads

Ly =0; 1eS=0; (2.16)
w here the second equation follow s from the rstusing eg. (2.7).

2.2 E ective N = 4 gauged supergravity

T he general structure of gauged N = 4, d = 4 supergravity, w ith its gravitational
m ultiplet coupled to n vector multiplets, is known [28, 18, 19]. Tts bosonic content

in the fiilndam ental vector representation of SO (6;n) and carrying charge + 1 under

the SO (1;1) subgroup of SU (1,1); the corresponding dualpotentialsAM” ,which also

transform as a vector of SO (6;n), but carry charge 1 under SO (1,1);2+ 6n real
scalar elds, param eterizing the m anifold

SU (15;1) SO (6;n)

: (2.17)
U (1) SO (6) SO (n)

Since w e restrict ourselves to backgrounds w ith trivial open string vevs, from now on
it willbe su cient to consider only the case n = 6, neglecting the vector m ultiplets
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com ing from D 6-branes that act only as spectators. A ccording to [19], the com plete
Lagrangian is fully determ Ined by two realconstant tensors, £ yyp = £ myp; and
v ,under the globalon-shell sym m etry group SU (1,1) SO (6,6),where = +;
and M = 1;:::;12. The hdex M is Iowered and raised with constant metric y y
and its nverse MY , whose explicit form w ill be given later.
The SU (1,1)/U (1) scalar m anifold can be param eterized by the coset represen—
tatives

V = p=— ; ( =+ )i (2.18)

where isa complex scalar eld whose real and In agihary com ponents are often
called axion and dilaton, respectively. In the gauged theory *, the covariant derivative
of reads:

D =@ +2a* ., + a%"* ., 2 v A, 2 (2.19)

The SO (6,6)/[SO (6) SO (6)]scalarm anifold can be param eterized by the coset
representatives
V= v, V) ; (2.20)
whereM = 1;:::;12 isa vector Index of SO (6,6), I;J = 1;:::;4 are indices In the
fundam ental representation of SU (4) SO (6) and A = 1;:::;6 is a vector index of
SO (6). W e exploit the fact that an SO (6) vector can altematively be described by
an antisymm etric tensor VY = V! sub+ct to the pseudoreality constraint

1
V= VY = > Vel e (2.21)

T he coset representatives m ust obey the constraint

1
MN — 5 IJK LVD}IJVII\?L + Vl\% V? . (2.22)

T he consistency of N = 4 gaugings is enforced by a set of quadratic constraints

on the generalized structure constants and f,which in tum can be interpreted as

generalized Jacobi dentities. They read:

Yoy =05;(223)
?f PM N — 0;(2.24)

3fpunfro; +2 (mf meoy= 0;(225)

0;(2.26)

P
feunt+t w

funrfros “frmp on) MIvpor + pfomy; = 0:(227)

It is not restrictive to set all gauge coupling constants to one, by suitably rescaling the gener—
alized structure constants £ and
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A useful formula, against which we are going to  t the output of our generalized

din ensional reduction, is the one giving the non-Abelian eld strengthsH © in term s
oftheA™ and A potentials:

HY * =20 A " Py AT AT+ i (2.28)

w here the dots refer to contributions from tensors, which cancel in the *lectric’ ed
strength com binations discussed later, and

3
PMNP:fMNP M PN 5 N MP - (2.29)

To study the num ber of supersym m etries preserved by a given ground state, it
is convenient to have explicit expressions for the supersym m etry variations of the
ferm ions. In the conventions of [19], the variations of the gravitino, dilatini and
gauginiare given by

2 4
T—op ! gAiJ s¥:; I=§j_A§J s¥zzt; L= 2i@um )y T
(2.30)
respectively, w here °

AV = VIV VYN EVEIRE L ue (231)

IJ M N IK PJL 3 IJ M
A2 = Vv VKLV \ f M NP + 5 \Y4 VM ’ (2.32)

-~ I ?x7M N IK P 1 ? M I
(AZA ) g = \Y VA \ VJK f M NP Z \ VA J M . (233)

T hese expressions show that the y act in a very sim ilar way to Fayet{Iliopoulos
param eters in N = 1 supergravity. They do not appear in the m ass m atrix of the
gravitini, eg. (2.31), but provide a shift to the D tem s of ey. (2.32).

Finally, the scalar potential V. is xed in tem s of the squares of the ferm ion
variations by the follow Ing W ard identity of extended supergravity:

1 L — 1 1 _ 1
gA{K AlJK §A§K AZJK EAZAJK AZAIK = Z §V . (2.34)

2.3 D In ensional reduction from d= 10 to d= 4 with uxes

Since thed = 4 e ective supergravity is com pletely determm ined, at the tw o-derivative
Jevel, by the gauging,we jist need to focuson the e ective action for the vector elds,
from which we can read the couplings. F irst of all, we need to relate the zero m odes

5W e changed the convention HrA,, Ty and took the com plex conjigate w ith respect to [19], to
have allthree A m atrices to act on the sam e SU (4) vector gy .
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of the ten-dim ensional elds w ith the vectors A® . In our case the relations work
as follow s:

1 _ . _ k~ (3) _ k~ (5) _ k abcp (6) .
A =¥ i7 AT = YC K 7 A% = — YC aifk 7 A® = % ey i5kbe 7
Aj_+ i Vj_ . AT+ _ } abcC (GO A2t = } abcC 3) . A§+ =B

- ’ - 6 abci / - 2 bc 7 - ar
(2.35)

where the IndicesM = (i;{;a;a) In the fundam ental vector representation of SO (6,6)
are raised and lowered w ith the 12 12 constant m etric

0 1
015 0 O
2150 0 0

- MN _ =87 % 236

M N 2 3800013A ( )
0 0150

Out of the 12+ 12 vector elds above, only 12 are independent. In the ungauged
case, we are com pletely free to choose the *electric’ vectors, ie. the Independent
com binations of vectors that appear in the Lagrangian. W hen uxes are tumed on,
how ever, the requirem ent of having an action written only in term s of scalar elds
(w ithout tensors) determ ines the electric and them agnetic com binations of vectors °.
If am ong the electric vectors entering the gauging both types of vector elds (those
w ith positive and negative SO (1,1) charge) are present, the gauging is said to possess
non-trivial duality phases, also known as de Roo{W agem ans (dRW ) phases. The
nam e duality phases’ follow s from the fact that such a gauging corresponds to a
non-trivial sym plectic em bedding of the gauge group inside the full duality group
of sym m etries of the ungauged theory, ie. an em bedding providing an action of the
gauge group w here the vector el strengths and theirdualsgetm ixed (see [8,10,12]
for discussions of various N = 4 cases com ing from ux com pacti cations). Since
this is a technical point, we leave it for the A ppendix.

In the follow Ing subsections we will rst look at the covariant derivatives of the
scalar elds, to nd the %*lectric’ com binations and identify the uxes producing
non-trivial dRW phases. Then we will ook at the covariant eld strengths for the
vectors, to read out the m apping between the uxes and the structure constants of
the gauging, which will x the entired = 4 action.

2.3.1 Universal axion and SW param eters

In our sstup the universal axion (the one that, paired with a com bination of the
dilaton and of the O 6 volum e, reconstructs the com plex scalar param eterizing the

®For a discussion of the role of tensor elds in gauged supergravities com ing from  ux com pact-
i cations and the relation between the standard and dual form ulations see [29].
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SU (1,1)/U (1) m anifold) arises from the com ponent of the RR 3-form potential par—

allel to the O 6plane, viz.
1.
_ —oijka~ ),
Re ol Cij ® (2.37)
W e can read o its covariant derivative by looking at the reduction of the corre-
goonding RR 4-form on our background

(3)

pcll=ecl) o

Pl hy 1
i3k 5k [l C + Vil C

(3)
. (2.38)

k)
C om paring this expression w ith eg. (2.19), we see that the only com ponents of
that can be tumed on in the chosen class of com pacti cationsare , ;= !;t. However,
the constraint of &. (2.16) exactly forbids this possibility, thus it seam s that no
gaugings w ith non-rivial y can be obtained from these string com pacti cations.
Tn section 24 we will comment on extensions that go around this lim itation by
Introducing a dilaton  ux.

2.3.2 Electric and m agnetic vectors

The ‘“electric’ vectors can be denti ed by looking at the com binations of vectors
that appear in the covariant derivatives of the scalars. Tt is not di cult to see that
the chosen set of uxes does not produce gaugings Involving the vectors dual to the
m etric and to the B — eld, since In the NSNS sector all the scalars com e from the
dilaton, the metric and the B el itself. In the RR sector, instead, scalars com e
from both C® and its dual C ©, therefore in general we expect that non-trivial
com binations of the RR vectors and their duals can appear in the gauging. W e can
thus restrict our analysis to the subset of 6+ 6 RR vectors and jast ook at the RR
scalars.

As In the previous subsection, by looking at the reduction of the RR eld
strengths we can extract the relevant com binations:

3) (3) | (3) | dn 3 .
D Cop = @Ci+ lapC i+ 2,°C P+ i (239)
) (5) | ke~ () |k~ (5) - (3) T 3)
D Cabcij = @ Cabcij+ 'y C abck Tt ab C cijk HapeC ij 3Hij[aC jac]+ ey

w here the dots stand for contributions from NSNS vectors. Rewritten in term s of
d = 4 supergravity vectors, these contributions can be conveniently sum m arized as

Ai Aa+ A1+ AE

c® i 1 0o o0 (2.40)
(5) 5 5
Ciare | Hae Hige ! R

which shows the uxes that determ ine what vectors (colum ns) enter the covariant
dertvative of each scalar (rows). TheRR scalarsare 12 (9 from C @) and 3 from C @),
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thus in principle w e have 12 com binations of vectors in the covariant derivatives of the
scalars. However, it can be shown that no m ore than six independent com binations
of vectors are present. To do this, it is enough to take the 12 m agnetic com binations,
obtained by dualizing those in ej. (2.39), and to check that they are all orthogonal
to the electric ones in eg. (2.39). W e have checked that this is indeed the case once
the constraints of egs. (26), (210) and (2.16) are In posed.

A s it isobvious from egs. (2.31{2.34),gaugings w ith nontrivialdRW phases are
essential orm odulistabilization, since otherw ise the SU (1,1)/U (1) scalarwould enter
hom ogeneously the scalar potential. From (2.40), we can see that the com ponents
'b K and H .. aretheonly uxes that involve vectorsw ith negative SO (1,1) charge i
the corresponding gauging. T his is in agreem entw ith [11],which showed that exactly
the sam e uxes were responsible for producing a non-trivial dilaton dependence in
the potential.

T his result can be easily generalized to any N = 4 orientifold com pacti cation,
including those with non-geom etrical uxes (Q, T, R¥®) [30]. Notice that allRR

uxes generate the sam e dRW phase, which can be set to zero by a suitable conven—
tion. Then, ifwe denote by P > the generic NSNS uX Hpnp/ 'nn?/ On T RIS,
the rule-ofthum b reads:

The NSNS uxes lading to non-rivialdRW phases are those and only those w ith
Jower indices orthogonal to the O planes and upper indices paralkl to the O plnes.

For exam ple, in the TypeTIB /O 3 case,allH — uxesgive non-trivialdRW phases,
since the indices are all orthogonal to the O 3 planes, w hereas all Q — uxes give van—
ishing dRW phases. In the TypeTIIA /O 6 case, non-trivialdRW phases are generated
Y Haper 'anr Q2 , R, I the TypeTIB /0 9 case (and analogously i the heterotic
case), all com ponents of the R — uxes (and only those) give non—trivial phases, since
all intemal indices are parallel to the O 9plane.

A sin ilar reasoning applies to all the other cases, since by acting on an index
with a T-duality in the corresponding direction, the dualized index is lowered or
raised in the NSNS uxes, but at the sam e tim e the corresponding direction changes
from parallel to orthogonal to the O planes, and viceversa.

In principle, for every ux we could also dentify an S-dual ux [31]. T herefore,
there should be other non-perturbative uxes that generate non—+trivialdRW phases.
Tn this case the rule jast reverses, because by S-duality the SO (1,1) charge is inverted :
S-dualNSNS uxesalways lead to nontrivialdRW phases except for those and only
those with lower indices parallel to the O planes and upper indices orthogonal to
the O planes. A1l SdualRR uxes give now non-vanishing dRW phases. This is
in agreem ent w ith the results of [13] for the TypeIIB /O 3 case, where the authors
show that structure constants w ith a negative SO (1,1) charge can be identi ed w ith
non-trivial H — uxes and w ith the S-dual of the non-geom etric Q — uxes.
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2.3.3 G augings from eld-strength reduction

A fter having established that in the chosen com pacti cations it is always v =
v = 0,our strategy to detemm ine the ram aining param eters of the N = 4 gauging,
ie. the generalized structure constants £ y yp , 1S to perform the dim ensional reduc-
tion of the various eld strengths in the NSNS and RR sectors, and to com pare them
with eg. (2.28).
From the ten-dim ensional E instein tem , adapting the results of [1] to our con-—
ventions, we obtain:
vi=2@ vy fvivi: (2.41)

By reducing the NSNS 3-form  eld strength, the relevant term s read

la

H .=2@ B p+ 2V ! “Bey + VVIH g + 2135 (2.42)

where, as before, the dots refer to contributions from tensor elds that cancel ocut
when the ‘electric’ vector- eld com binations are considered. In the RR sector, we
have to consider the 4-form and 6-fom eld strengths, nam ely

3) —(0)

) ( i Kk~ (3) 3)
G ab: 2@[C Bb 2G B[ﬁB ]b+ 2\/[1 !ab ij].l+ !iacccj]b-l- 'bicccj]a
i
@) ()
+2B 1uG i + VIVIG i (243)
GV =20CcY +2 1.9By Y + 2Pemute,
—(2)
2G, BB pt+ 2Peamuty,
h
j k~ (5) k~ (5)
2\/[ !ij ij pre T ' C ik T 2 Perm uty. (244)
i
Hoc®  HLCc® +2p G B 2P
abc 15 ija ke + erm Utabc ijal jo + erm Utabc

Jis ki (0)
+V VG o T 2000

where the symbol \2 Perm ut,." stands for the two com binations obtained by cyclic
pem utation of the indices alc of the preceading temm . Identifying the vector elds
w ith the com binationshaving ade nite SO (1,1 ) charge,given previously in egs. (2.35),
we obtain:

Vi o= 2@ AT} fATATT; (2.45)

H .= 2@ A"+ 2IECA;TA*;+ Hi ATAT T+ oor; (2 46)
1 abe 4)  _ pa pte G aep At g }, kabe o dpt 3, o) cptapti
2 ab [ ] a b 2'ab ijk *ia [ ]
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4)  apen 4 in 4 1
fab ATAT T4+ iy (2.47)

5=(2) alcn + + 1 1
26 TR{GATF 6

1 — )
b~ (6) i + + + b~ () + ko + + 3
= 6 V= 2 AT 21 AT AT TR AT 21 A AT

1 k abc + 3 o abc Jp + k St +apnt ]
Stan o akBpA T PHae T g AT 2HaBy TA

1—)

—(4)
EG ijkabe

Gisap abCA?j:AJr]j abep tIpt kg oe. (2 .48)

W e can now read the relation between uxes and generalized structure constants by
com paring w ith eg. (2.28):

[ }H abe
ijk 6 abc ijk s
£ c _ }, k abc .
i 2'ab ijk s

f, j_jc = égij;b abe p (2.49)
Foigm 2B
j G ijkakc 7
f, j_jk = 'ijk ’
i i Eija ;
f, iab = iab :

Up to pem utations of the indices (so that when all indices are lowered with the
m etric (2.36) the structure constants are com pletely antisym m etric), all the other
com ponents vanish. N otice that the system of equations from which we derived the
generalized structure constants of eg. (2.49) was overconstrained: this provides a
non-trivial crosscheck of the consistency of our results.

T he above result com pletely de nes all possible e ective d = 4 N = 4 super-
gravities that can be obtained in the chosen class of TypeIIA O 6 com pacti cations
with uxes. For instance, the ferm ion variations and the scalar potential can be read
o directly from egs. (2.30){(234), by substituting (249) and v = 0.

A sin faranalysisand identi cation of structure constantswith d = 10 uxeswas
perform ed in [8,13], in thedualcontext of T ypeTIIB O 3 com pacti cations. Follow ing
the ruleofthum b of the previous section, also in the exam ples of [8, 13] structure
constants w ith di erent SO (1,1) charges appear whenever non-trivial H — uxes are
tumed on.
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2.3.4 Jacobi identities from B ianchi identities

H aving established w ith e. (2 .49) the precise correspondence between uxesand gen-—
eralized structure constants, we can now check that the generalized Jacobi dentities
of egs. (223){(227) are In oneto-one correspondence w ith the Bianchi dentities
discussed at the end of subsection 2.1.

Since In our class of com pacti cations y = 0,egs. (223){(227) reduce jast to
the two constraints

frunfrool =0; funrfro =0: (2.50)

By taking the non—trivial com ponents of the above constraints and substituting the
explicit expressions of e. (2.49), we get the follow Ing constraints on the uxes:

e HG =0;
ijc
cY+Ec"? =0;
ijkab
(! 1)y, "= 05 (2.51)
'H ijka 05
'H e = 0;
(1), =0:

Tn particular, the rst four constraints n (2.51) come from the rst constraint in
(250), and the Jast two from the second. These are exactly the integrability con—
ditions derived from the d = 10 BI in subsection 2.1. The only BI constraint that
is m issing is the one associated to the RR 2-form sourced by parallel D 6-branes
and O 6-planes: this was som ew hat expected, since these sources are the only ones
preserving N = 4 supersymm etry In four dim ensions, so that their num ber is not
constrained by the consistency of N = 4 supergravity (where the num ber of vector
m ultiplets is indeed a free param eter).

2.4 & 0 from the dilaton ux

W e elhborate here on the possibility of generating non-vanishing values for the
param eters in the presence of a dilaton ux’, associated with an SO (1,1) axionic
rescaling symm etry. It is known that an SO (1,1) tw ist produces a gauging [32]asso—
ciated w ith a nonvanishing param eter [19]. Exam ples of this sort w ere later studied
n [33]in heterotic supergravity, we now explore the case of TypeTIA supergravity.

The TypeIIA d = 10 supergravity action is invariant (at the two-derivative
Jevel) under the follow ing SO (1,1) rescaling symm etxry:

g! e?g; B! e™@B; Lo+, c @ B e, (2.52)
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This symm etry is a ram nant of the dilatonic symm etry arising from the circle com —
pacti cation ofd = 11 supergravity. Tt stillholds in the presence of Iocalized sources,
when the fll action contains also the D rac{Bom {Infed and Chem {Sin ons tem s,
as long as the world volum e and the localized elds transform appropriately.

W e can then use such a symm etry to perform a duality tw ist. Since the m etric
is not invardant, such a tw ist corresponds also to a non-trivial Scherk { Schw arz tw ist,
In particular to a volum e nonpreserving one,

r! & 0; (2.53)

since the volum e form is not invariant under dilatations. A fter a suitable eld redef-
Inition, however, we can go to a eld basis where only the dilaton transform s non—
trivially under the symm etry, and appears in the action only via derivative temm s.
In a such a el basis the axionic nature of this dilatonic sym m etry ism anifest.

In practice, however, we can stick to the standard eld basis and include an
additionalm odi cation to the external derivative that takes Into account the non-
trivialdilaton ux:

D=ds+!+Q +H ; (2.54)

where Q is the charge under SO (1,1) dilatations and  isde ned by:
d =d, + : (2.55)
U sing the generalized derivative D ,we can now write the BT as
D?’=0; DG = Qgg: (2.56)
T heir solutions read

H

1— —
dB+!B+§B+H;

G- gy e Bt e, gcea, ges TG s

and are sub gct to the follow Ing constraints:

d+'+Q +H)?=0

d+ ! +Q +H)G ®Y=0(,,)
) (2.58)

—(p+1) —(P+1) —=@P 1)
G + 226 +HG =Q(7p);

d+ ! +Q +H) 7 ,1=0

) JR—

Pl pl+ B2 1 7 51=0;  HI,p1=0:
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The above formulae can be easily generalized to account for localized elds and
localized uxes.

W e now specialize to the case of D 6/0 6 brane system s. Notice that the con-
straints In &. (2.58) actually in ply that, when 16 0, therem ust be also non—trivial

metric uxes, ! ;57 and ! 437, which in order to have tr | = 0 read
] 3— ] 3—
Lij = i Lag” = 7 i (2.59)
Ifwe now look at the covariant derivative of the universal axion we nd
1
(4) 3) 3) 3)
G ijk= @ Cijk ('l]lC]k + 2Pemlijk) 5( iCjk + 2Pennijk)
_ B, — A3 .
=@ Cip+ € 5+ Z2Pem iy ; (2.60)
from where we can read that , ;= _ican now be di erent from zero, and com pute

all the generalized structure constantsof theN = 4 gauging w ith a procedure sim ilar
to the one described in the previous subsections.

N otice, how ever, that the generalized BT of the RR sector autom atically rule out
the possibility of switching on  in them assive T ypeIIA theory: indeed, the BI for
G 9 receive only the contribution from the dilaton ux

i+ !'+0 +H)G @=0 ) GV =0; (2.61)
banning the possibility of having both these uxes tumed on at the same tine
(the only way out would be to work with D 8/0 8 system s, or perhaps to add non-
geom etrical/non-perturbative uxes). The condition above can also be denti ed
with an N = 4 Jacobi dentity, in particular w ith the . . ;** com ponent of

3fR[MNfPQ]R+2([Mf)NPQ]:O; (262)

—0©
since £3* = G ) ek and for this particular com ponent the rst contrbution i the

above equation vanishes w ith the uxes available n the Type-TIA theory.

T he reader should keep in m ind that the SO (1,1) symm etry used for the tw ist,
both in the heterotic [33]and In this case, is just an accidental sym m etry of the two—
derivative action, and does not survive as such the Introduction of higherderivative
term s corresponding to  © corrections ’. The di culties in nding explicit string
constructions w ith non-vanishing -param etersm ay be related to the analogous dif-

culties in generating non—vanishing FIterm s in N = 1 com pacti cations.

3.An N = 1 fam ily of vacua

Now that we have established the connection between TypeTIA O 6 ux com pacti-
cations and their consistent truncations to gauged d = 4,N = 4 supemgravity, we

"W e thank E.W itten fr bringing this point to our attention.
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can use the latter to study the vacuum structure of the form er. M any interesting
TypeTIA vacua found recently in N = 1 com pacti cations, such astheN = 1 AdS,
supersym m etric vacua in [14,15,16], and part of those In [34], are jast speci ¢ trun—
cations of the vacuum solutions of the N = 4 e ective potential described In the
previous section. M oreover, our description could be exploited for a m ore systam atic
search forde Sitter vacua and cosm ological solutions, along the lines of [35]. Ttm ight
also be useful for the construction of new A dS,; backgrounds dual to 3-dim ensional
conform al eld theories w ith extended supersym m etry. F inally, the extended duality
group would m ake the study of non-geom etric backgrounds m ore tractable.

As an exam pl, In the ollow hg we construct and discuss the embedding in
N = 4 supermgravity of the AdS, fam ily of vacua found in [14]and further studied
n [16, 36]. From the ten-dimn ensional point of view , it corresponds to rem oving
the 7, 7, orbifold progction in the com pacti cation. W e also discuss possible
deform ations of the solution and som e properties of the dualCFT ;.

31 N = 4 em bedding of a fam ily of A dS,; vacua

The fam ily of N = 1 AdS,; vacua found in [14] corresponds to com pacti cations of
the TypeIIA theory with O 6 orentifold over T°=Z, %, with D 6-branes and in
the presence of a particular com bination of RR , NSNS and geom etric uxes. The
orbifold pro fction In plies a factorization of the 6-torus into a product of three 2-tord,
T® = T? T> T?. For the sam e reason, the scalar m anifold for the closed string
sector on this space reduces to a K ahler m anifod,

3 7

SU (1;1) SO (6;6) Z, Zp SU(1;1) SO (2;2) . Su(L;1)
U (1) SO (6) SO (6) U (1) SO (2) SO (2) U (1) ’

(3.1)
param eterized by seven complex moduliS,U and T ( = 1;2;3).

For the sake of sin plicity, we willnow consider uxes respecting the plne in-
terchange symm etry determ ined by arbitrary perm utations am ong the T? factors,
though we w ill com e back to them ore general case Jater on. If we indicate the uxes
and the vevs of the scalar elds as

| _ i | k ljl | _ i | k abl | _ i | c ibd
1 31-13 ks 2—3|-ab ks -3_3|1b dc s
_ 1 — 1—
Ho=§lHabcabci H1=§|Hijaljar
—0) =0 =@  l=@ 4
G = ; G = gGal ; (32)
—(4) 1—@ 4w —(6) 11— Db ok
G = ?IG abij Py G = §1G ijkake S
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then the values of the uxes giving the fam ity of AdS, vacua read

1— — u s u
_G(6)= ﬁG(2)=tO 0!1= oto!zzto 0!3;
9 o 2 o
to 5 G
_ _ SH— Un—
_G(4)__G(O): _OHO: _OH1,
3 5 2 2

which determ ne a vefparam eter fam ily of AdS, vacua (3 scalar vevs plus 2 ux

param eters). The BT associated to NSNS elds are autom atically satis ed, while

those ofthe RR sector can be satis ed by changing the num ber of D 6-Jbranes. N otice

that solutions can be found for arbitrary values of the scalar elds (up to quantization

conditions com ing from uxes), so that arbitrary large com pact volum e (thus an all
% corrections) and am all string coupling can be easily realized.

To embed this fam ily of vacua in a gauged N = 4 supergravity, we m ust be sure
that, if D 6-branes are present, they lie in directions parallel to the N = 4 O 6-planes.
T his requirem ent isequivalent to satisfying the BI fortheRR 2-form w ithout sources,
nam ely

SWlH. = 35212 (34)

T his constraint reduces by one the num ber of free param eters of the vacua so that,
once the values of the scalar vevs are chosen, only an overall constant on the uxes
rem ains free. A ccidentally, for this symm etric con guration, this condition also Im -
plies that the RR BT along the O 6planes is autom atically satis ed, indicating that
this fam ily of solutions enpysan N = 8 embedding. In other words, the above st
of uxesand elds isalso a solution ofm assive TypeTIA supergravity com pacti ed
on the sam e background w ithout any sources. W e w ill com e back to the im portance
of this observation later on.

Tnspection of the supersym m etry variations of the ferm ions, eg. (2.30), provides
a sin ple way to prove that the choice of uxes of eg. (3.3), together w ith the condi-
tion (3.4), yields supersym m etric AdS,; solutions of the N = 4 supergravity theory
constructed in the previous section. This analysis also show s that, on the same
vacua, supersymm etry is spontaneously broken to N = 1. W e are looking for vacua
where all the elds are set to vanish, with the exception of the m etric and of the
scalar elds in the last line of eg. (3.2),which take constant values: then solving the
conditions for unbroken supersymm etry also in plies that the equations of m otion
are satis ed. This in tum in plies that the vevs of the scalar elds m inin ize the
potentialV in (2.34). Supersym m etric vacua are characterized by an SU (4)z direc-
tion ' and a set of scalar el vevs and uxes (or gauge structure constants) such
that g* is a null eigenvalue of the m atrices Al and (A, )y, de ned in (232) and
(2.33) respectively. The gravitino massm atrix A7’ (profcted on the same SU (4)x
direction) then tells us w hether the vacuum isM inkow skior AdS. If the spjn—é ed
variations vanish in m ore SU (4 )y independent directions, then the vacuum preserves
m ore supersym m etries.
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Since we have already worked out the relation between uxes and gauge struc-
ture constants, we just need to dentify the connection between the N = 1 m oduli
S,U ,T (and their vevs) and the N = 4 scalar edsV , V], VY . The coset
representatives V. obviously contain m ore scalars, which, however, were set to zero
In our analysis of the supersym m etry conditions. W e checked that such a choice is
consistent w ith the solution. For the SU (1,1) sector of the scalarm anifold (2.17) the
denti cation is easy,

1 1 is
T 1 ReS 1

For the SO (6,6) sector the denti cation ism ore involred. A fter som e calculations
we nd forvi ¥

IJ M M
V =

; (3.6)

w here and are six fourby-four m atrices that m ap SU (4) indices into SO (6),

1=§lz 1 . 512 3, 3=_;12 2, (3.7)
- %1 i a- %2 L 3=%3 ‘i (38)
and
0 1 0 1
x! + im! 1
B2y ig? rTEUTS _ _
Ex3+ix3g: Y_EJ_U g, with Y = (T + T )U + U ) (3.9)
x* + ig? iT

Analgously, forw " 7 = v} 0* ™, where Q* = £ ; g,wecan nd a sinibar
expression to the one in (3.6), but with di erent scalar functions (y instead ofx ):

0 1 0 1
yl+igl 1
Bys+iglé 2B uT &
EY TF L N (3.10)
@y + ig’ A Y @ iU A
y4+ig4 iT

which corresponds to the exchange of T with T (orU with U if the com plex
conjigate is taken) In the expressions for the x . It is easy to check that, with
this choice of param eterization, the constraints (2.21) and (2.22) are satis ed and
the known N = 1 results in the truncated lim it can be recovered. This last check
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can be perform ed by looking at the gravitino m ass m atrix. In the basis for the
( ; ) matrices of &gs. (3.7){(3.8), the gravitino m ass m atrix is diagonal, w ith
three degenerate eigenvalues (due to the plane interchange sym m etry of the uxes).
The fourth elgenvalue is the one surviving the orbifold projction and after using
eJ. (249) reads

=2

A/ GO+ GUNT + T+ T3) GONTiT,+ T,Ty+ T3Ty) B9T,T,T,
iHos jH]_(U1+ U, + U3)+ !1(T1U1+ T,U, + T3U3) '28 (T1+ T, + T3)
!3(T1U2+ T:Usz+ T,U01 + ToU53 + T3Uq + T3U2)]; (3.11)

which nicely m atches the expression of the N = 1 superpotential found in [11,14].
U sing the sam e conventions, the SU (4); direction corresponding to preserved

supersymm etry is thus
G= 1 (312)

ie. the one preserved by the orbifold projction. It is rather easy now to check
explicitly that the ferm ion supersym m etry variations pro gcted along this direction
vanish precisely when the AdS, constraints (33){(34) on the uxes and the el
vevs are satis ed. One way to do so without doing any com putation is to notice
that, once the A ;) m atxrices entering the spjn—é supersym m etry transform ations are
contracted with the SU (4)z vector ¢;, they reconstruct the N = 1 Ftem s. The
vanishing of the latter then ensures the vanishing of the N = 4 ferm ion variation.
N otice that, because of the particular form of the K ahler m anifold (3.1) and of the
ux superpotential (3.11),theN = 1 F-term s read:

Fo = 720 s 5 (3.13)
Fy = €70, & (3.14)
Fr = & 72w - (3.15)

T hese conditions exactly m atch the relation between the N = 4 ferm ion variation
A 2y and the gravitino mass A () : the dilatino variation A (;);” has indeed the sam e
expression ofA (1) w ith the substitution ofV with V which corresponds to eg. (3.13),
while the com ponents ¢ LA )" ¥ 17 and A (,)"*;7 correspond to substitute in A
one V" Y with W ¥ 9, thus exactly to the substitutions in egs. (3.14) and (3.15).

W e can also check that the direction ' = ; is Indeed the only one that annihi-
lates the ferm jon variation. This m eans that even when the orbifold is ram oved we
have N = 1 AdS,; vacua, this tin e arising via spontaneous sym m etry breaking from
N = 4.

A s we have discussed at length in the previous section, the reduction from 10
to 4 dim ensions with uxes leads to an N = 4 gauged supergravity. This im plies
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that the choice of uxes (3.3), leading to the fam ily of AdS, vacua presented in [14],
corresoonds to a non—rivial gauge group, speci ed by (2.49). M ore details on the
general structure of the gauge group and its sym plectic em bedding can be found in
the A ppendix. It is interesting, however, to point out that the general gauge group
reduces to the san direct product o£SU (2) w ith the group N 45 associated to a 3-step
nilpotent algebra:

G =SU(2)o Ngg: (3.106)

M ore in detail, we can summ arize the gauge algebra speci ed by the choices (3.3)
and (34) as
XX 5)= mXi  KiAjl= mByg (317)

BIAI= mdii BIATIS gl (3.18)

Here X ; are the SU (2) generatorsand A} 2 ngs,orI = 1;2;3. AttheN = 1 critical
point the 9 vectors gauging the nilbotent group arem assive and the surviving gauge
group is

Gyac = SU (2): (319)

W e point out that this gauge group, however, does not m atch the full symm etry
group of the corresponding type ITA solution. W e will see In the next section that
thed = 10 background has an SU (2)® isom etry group and that the Scherk {Schwarz
reduction sees only its truncation to G, = SU (2). Aswe already explained, all
BT are satis ed w ithout source term s. H ow ever, the presence of O 6planes from the
orientifold pro fction requires the fiirther presence 0of 16 D 6-branes (and their in ages)
to cancel the corresponding charge: we can do this by placing the D 6-Joranes on top
of the O 6planes s0 that their charge and tension cancel locally. This con guration
allow s to solve the d = 10 eguations of m otion and B I exactly, w ithout the need of
an earing the sources. T his In plies that at the N = 1 vacuum there are also m atter
elds associated to the uctuations of the D 6-branes, which we put to zero to nd
the vacuum solution. In particular there are 8 O 6-planes and 2 D 6-branes on top of
each O plane to cancel their charge and tension. This con guration adds an extra
SO (4)® gauge factor to the d = 4 e ective action. If we are interested in recovering
the fullN = 4 e ective theory around this vacuum , we should in principle consider
also these elds, which enlarge both the scalar m anifold and the gauge group. W e
can anticipate that m any of the extra scalar eldswillget m ass from uxes.

Since the D 6 and O 6 charges cancel w ithout the need of a net ux contribution,
the solution w ill survive also In the absence of the ordentifold profction. T he fam ily
of AdS,; solutions described above is then also a solution of the m assive ordented
TypeTIIA equations of m otion. The cancellation of the D 6-brane charge is also a
signal that the truncated d = 4 theory without the orientifold profction can be
embedded in a gauged N = 8 supergravity. Indeed, as shown in the A ppendix,
the gauge algebra can be enbedded In g;7y. In this context we can discuss agan
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the structure of the e ective theory and the m oduli stabilization process. W hile
Jeaving all the technical details for the A ppendix, we can summ arize here a couple
of Interesting results of this analysis.

T he gauge group of the resulting N = 8 truncation is also a sem direct product
of a com pact group, in this case SU (2) U (1), with a nilotent group, now of
din ension 24. O n the vacuum , all the vector elds associated to the nilpotent group
becom e m assive as they should. The com pact part has an interesting structure,
because the U (1) group is com patible with the R-symm etry group of a residual
N = 2 supersymm etric theory.

G auged m axin al supergravities in d = 4 have a natural link with M -theory
reductions. W hile m ost of the m assive TTA uxes are perturbative also from theM —
theory point of view , being either 4—and 6form uxesorm etric uxes, the G_(O) ux
has clearly a non-perturbative origin. T his can be explicitly seen from the em bedding
of our reduced model In N = 8 supergravity and the attem pt at interpreting this
theory as a Scherk {Schwarz reduction ofM -theory. The 5(0) ux induces a gauging
that involves the vector eld com ing from the dualm etric along the M —theory/IIA
circle, therefore it cannot be obtained in a usualcom pacti cation schem e. A ccording
to ref. [37], them assive TTA theory would arise from M -theory by com pactifying on
a collapsing tw isted 3-torus (in other words, by taking a suitable zero—size 1im it of a
com pacti cation on T3 with metric ux !,,°). This picture nicely agrees w ith our
analysis of the N = 8,d = 4 gauged supergravity: 5(0) induces a gauging involving
the vector elds C (;)nqrst, B , and B : (where the ndex m is along the tw isted
3-torus, while t is not). A fter the M -theory uplift these vectors are m apped Into
A (6p)qrst,\/m and A (3,2)3 ,which are indeed gauged by them etric ux on the 3-torus (see
also (A 18){(A 21) in the Appendix).

In view of our analysis, this correspondence can be pushed further, extending it
from uxes to sources. A s already stated, G_(O) gauges the vector of the dualm etric,
which couples electrically to KK 6-m onopoles. This suggests that M -theory KK 6-
m onopoles are related to D 8-Jranes, ie. the sources of the TTIA m ass param eter. T he

above connection can be described by the follow ing chain of dualities:

RNr\ B A M
_ T _ T _ st
(0) m (1) n (2) P
G ! ‘.Qv ! rgn ! m!np . (320)
T, T, S5
[ s U Al ' dlmn D d I nF

In the above scheme, T, and T, denote T-dualities along the m and n direc—
tions m & n), S; the M —theory uplift. Sinilarly, [ 5], [ 7], [ ¢]1and [ ¢] denote
the Poincare duals of the D 8-, D 7—, D 6-brane world-volum es and of the M -theory
K K 6-m onopole, respectively. T hus D 8Jranes would correspond to M -theory KK 6-
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m onopoles localized on the tw isted 3-torus, w ith the bresofthe KK 6-m onopole and
of the tw isted 3-torus denti «d.

3.2 The geom etry of the m assive ITA vacuum

W enow discuss the geom etry of thed = 10 solution. In [36]itwas shown that, in the
cael = = t,theN = 1AdS, vacua of &g. (3.3) correspond to com pacti cations
on AdS, X, with the ntemalm anifold X ¢ having the topology of (S;  S3)=Z3,
w here the S; were produced by the geom etric  uxes and the Zg progction was due
totheZ, 7, orbifod plustheO 6 ordentifold involution. W e now show that, even in
the generic case, the solution of our N = 4 gauged supergravity theory corresponds
to a com pacti cation on a Ss S manifold with RR and NSNS uxes tumed on
and an O 6 orientifold nvolution that exchanges the two 3-spheres. W e discuss the
geom etric structure of the intemalm anifold, show ing explicitly that it solves the filll
m assive TTA equations even for generic uxes not satisfying the plane-interchange
symm etry of (32) and (33). This analysis, which follow s the lines of the analogous
discussion in [36],w illalso Jead us to the correct denti cation ofthe ux quantization
conditions as well as of the possible deform ations of our background.

A Scherk {Schwarz reduction is equivalent to a com pacti cation on a localgroup
m anifold, which goes under the nam e of tw isted torus. In our case, the m etric on
the intermal 6-m anifold Y, can be w ritten as

2 t 2 2
dsy, = ;( Y+ th (e ); (3.21)
-1
In term s of two sets of three globally de ned tw istedtorus 1form s ( ;e )= ( i, )
that satisfy the conditions
da =1, +!l,ee;
(3.22)
de = !3 e + !3 e I
where ( ; ; )= (1;2;3) and cyclic pem utations. W e recall here that t ReT

are the volum e m oduli of the three T?’s before twisting and that b are related to
the N = 1 subsector (3.1) of them oduli space (2.17) by

S

t tttb b
bR% . pay - BRERD (323)
b, byl b

r

ReS = e

On ageneric N = 1 vacuum , these m oduli satisfy

3 b, bt !,
bb !, b1, to 1,

where it isnow clear that we did not In pose the plane interchange sym m etry leading
to (33). We can now show that the space resulting from im posing (3.24) is the
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product of two 3-spheres. To do 0, it is usefiil to change basis and use another set
of viebeins, ( ;€ ),de ned as

qd— b
'1 '1 + p_ge ’
(325)
e L1 > .
3
T hese new vielbeins satisfy the sim ple conditions
d = ;
(320)
de = € ¢ ;

corresponding to a realization of an SU (2) SU (2) group m anifold, nam ely the
product of two 3-gpoheres. It should be noted that just lke the ( ;e ) vielbeins of
the original basis, also the ( ;€ ) viebeins are globally de ned, because S° is a
parallelizable m anifod.

Tn this new basis the m etric takes the sim ple form

ds;, = > ( P+ )y & (327)
w ith the overall radius given by

ERTAT
(111212Y 1 hobs

(3.28)

The m etric is actually that of two S at angle. Since the angle reduces the SO (4)?
isom etry of the two spheres to SU (2)°, the intermalm anifold corresponds to the coset
SU (2) SU (2) SU (2)

Y = : 3.29
6 SU ) ( )

Once more we can see that the full symm etry group of this background, nam ely
SU (2)°, is larger than the one we see at the vacuum ofourd = 4 gauged supergravity
m odel, which is just SU (2). T he reason for this lies In the fact that the gauged super-
gravity m odel of the previous section is obtained by perform ing a Scherk {Schwarz
reduction on the two S at angle. Each S° has a metric that is invariant under
SU (2), SU (2} ,where the L ;R subscript refers to left or right m ultiplication by
the SU (2) group. Because of the angle, the m etric (3.27) is nvardiant only under
SU 24 SU (24 SU (2) g , where the subscripts 1;2 refer to the two spheres
and SU (2)p g is the diagonalright action. T he Scherk {Schwarz reduction, how ever,
kesps only m odes that are singlets under the action from the left of the isom etry
group of the Intemal local group m anifold. This m eans that only left nvariant
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K illing vectors w ill survive and hence only the SU (2), g isom etry group can be seen
n the reduced theory.

N ote that, out of the various param eters that control the vacua, only the com —
bination corresponding to the total volum e enters the m etric. W e can actually show
that this is also related to the ratio of two quantized param eters, which control all
the other quantities characterizing our solution. U sing the relation between uxes
and m oduliofeg. (3.24),we can rew rite the AdS, solution in the basisasa function
of two integers: gy and gg. Them etrdc, the dilhton and the uxes then read

- 1=3
ds?, =dsi .+ * ( P+ (&) e 2—i6 % ;
TIA A dS 4 7 = s % ;
2823 _
e’ = o 9% )=
GO = g ;
(9 9)"
@) 0 lel |, 2e2, 3&3 .
¢ > 5 e j (3:30)
2 1=3
G @ 9(90 %) 2e2 363, 33 lel | lel 2e?
210=3 283
3
G ® 3 14 2@ e,
59 ;
1 1=3
g-_ - % e 23 1@eé, @31 28d, 812 3de
25=3 153 Y%

It should be noted that G “) and H are trivial in cohom ology on the spheres. This
m eans that to generate the background above we really need to switch on only two
non-trivial uxes °:

—(0) —(6)
G =g; G =g &%, (331)
A llthe other uxes are trivial,becauseH = dB,G ¥ = BGP? andG™® = dc ® +
sBBG ), with
1 g
B=— = leb, 2@, 3 (332)
2 5 Jo
4 1=3
3) _ 2 el 23, 13, 231, 2a8al, 1 2, 3de
c = a5 255 909 + + + + +

8N otice that ux quantization has to be in posed on the com binations (G €8 )™, which are closed
because of the BT (see eg. (2.11)). In our conventions this in plies that the quantized uxes are the

G ™ instead of the G ™),
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Since this solution pressrves N = 1 supersymm etry, we can see that the uxes
and the geom etry satisfy the SU (3) group-structure constraints derived In [22]. W e
recall that in the case ofa Scherk { Schw arz reduction, the Intermalm anifold alwaysde-

nes a trivial group structure. Each supersym m etry w ill especially de ne a com plex
structure, w ith its associated 2-fom J, and a holom orphic 3-form . G ven these
fom s, the uxes w ill obey the supersym m etry constraints derived in [22], which, in
the string fram e and w ith the warp factor set to 1, read

4
dd=2mRe ; d =1 W, J 5reJ2; H = 2mRe;
0) ) 1 @ _ 3 2 6) 1 3
G/ =5me ; eG“Y= W2+5IEEJ,’ G =5me J; GV = Emae J:
(3.33)
T he solution is given by the SU (3) structure de ned by
31:2 156 1=3
J= —— % tely 2e, 3& (334)
25=3 Jo
and the (3,0)-fom
51:41:_
_ 9 a g =31 &€ 232 8 233 . (335)
23 Yo
T he other param eters are
p— 1 Jo 1=6
W2 = 0,’ '’ = 15m = m % : (3.36)

This show s that the m etric of Y4, leading to our N = 4 supergravity vacuum , is
actually nearlyK ahler. Tt therefore coincides w ith one of the special m assive TTA
A dS,; solutions found in [211].

Asnoted in [36], we could still solve the supersym m etry conditions by adding
an eared D 6-branes that m odify the 2-form B I and hence relax the relation between
the param etersm and re . Forme? > 15m 2 one can obtain new solutions by adding
D 6-branes, because the 2-form B I reduces to

2
dc @+ nG® = e e’ 15m? Re = Q( ¢): (337)

From the ux point of view , thism eans that we can Introduce a further param eter
corresgponding to the D 6-brane density, which allow s to interpolate between the cases

with G ) = 0,G " 6 0 of 38], the one with both G ' 6 0 and G~ 6 0 and
e? = 15m 2 of 211, its generalizations with G ' 6 0and G 6 Oande?6 15m?),
and nally the case G_(O) & 0,5(6) = 0. T he latter case corresponds to sw itching o

them etric uxesand the geom etry becom es T °=7 , , corresponding to the unorbibded
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T®=7, N = 4;8 go= 0

[14,15,16] [21,14,16] [38,14,16]
re ° re 2 re ?
P: O P: 15 P: 1

Figure 1: The fam ily of AdS,; solutions discussed in the text. W hen e = 0 there are no
metric uxes, the geom etry collapses to T °=Z, 06 orientifold. As i—i & 0 metric uxes
deform the torus into S S°3, when f—i = 15 the net D 6-brane charges cancel and the
solution allow s a description In term s of N = 4 (or N = 8 in the absence of O 6-planes)
gauged supergravity. In the lim itm ? = 0 the m assive param eter vanishes and the solution
adm it a geom etrical M —theory uplift.

version of the solutions of [14, 15, 39]. The case where the m assive param eter is
vanishing is egpecially interesting, because it allow s for a lift to M —theory, where the
resulting space should have G , hobnomy. The S® S manibld can actually be used
as the base of a non-com pact G ,-holonom y m anifold built from its cone [40], and the
relation between this cone and the TIA solution has been discussed in [38].

3.3 Scales

A s discussed above, iIn the absence of a net D 6-brane charge, the solutions can be
param eterized by two integer num bers: gg and gy . N eglecting for the m om ent order
one coe cients, the scaling of the volum e and the dilaton with respect to those
param eters reads

1=3
2 Je 2 1 1
= ;e S : (3.38)
@ Ta %

Tt is easy to see that for g gp both the volum e and the inverse string coupling
can be m ade arbitrary large, so as to justify the classical supergravity calculation.
W e nead now to check whether the AdS,; scale (which gives the scale of the
m assive m odes) can bem ade param etrically sm aller than the KK scale, to pem it a
4d e ective el theory description. The KK scale is set by the radius of the spheres
,while the AdS, length can be extracted by the 4d H ubble param eter

p_
\% % 9
1 2 _ 0 0 2.,
s 7 gz Pg ; (339)

where Vj is the vev of thed = 4 potentialand M, isthed = 4 Planck mass. W e
can see that independently of the value of the param eters in this case the AdS scale
is always of the sam e order of the KK scale. This is a comm on feature of this type
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of com pacti cations (as in AdSs &°,AdS, ', etc.), where the positive energy
contributions from the RR and NSNS uxes to the e ective potential are com pen—
sated by the negative contribution from the geom etric uxes, ie.the curvature of the
Intermalm anifold; therefore the net contribbution to the d = 4 curvature is basically
given by the intemal curvature itself, giving the relation between the KK scale and
the AdS length.

T he relation between the AdS length and the KK scale also in plies that, for
this class of solutions, gauged supergravity around the vacuum does not coincide
with the fulld = 4 e ective el theory. Rather it represents just a particular
truncation, describing a subset of the higherdim ensional spectrum in temm s of a
d = 4 gauged supergravity. The latter can thus be seen as a tool for generating
solutions. Thisexplainswhy for exam ple thed = 4 gauged supergravity seesonly an
SU (2) gauged group instead of the expected SU (2)° associated to the fi1ll isom etry
of the solution. The Scherk{Schwarz reduction procedure truncated away part of
the m assless spectrum and kept part of the KK modes in order to reconstruct a
Lagrangian consistent with the N = 4 and N = 8 gauged supergravity constraints.

T he constraint linking the AdS,; length and the KK scale can be relaxed only
In the special case wherere = 0. In this case both the contrlbutions from gg and
the curvature are switched o and the dom inant contributions becom e those from
go and the D 6-brane sources, which m ust be negative to satisfy the B I constraints
(see . (337)). In particular the role of giving negative energy contributions to the
potential, essential for stabilization, is now played by O 6-planes rather then by the
curvature of the intermalm anifold. T he fact that such contrlbution scales di erently
w ith the volum e and the dilaton allow s to disentangle the KK scale from the AdS,,

indeed now P
AdS M g e 2 I §_ gg 6 ! 4

where Q ¢ is the net O 6-plane charge contribution. In this case we have a hierarchy
between the AdS,; and the KK scale, which allows fora d = 4 e ective eld theory
description exactly when the supergravity approxim ation holds, ie. for large volum e
1. CalbiYau and orbifold lim it of such solution have already been discussed
in [14, 15,391
F inally, notice that, unless Q¢ 0, ux quantization bounds the dilaton to
be such thate . 1, forbidding the possbility of a perturbative M -theory uplift.
T his feature m ight be connected to the fact that, when the m assive param eter be-
com es in portant, Type-IIA does not allow a perturbative/geom etric M -theory lim it
anym ore, so that the M -theory description is doom ed to be non-geom etric In this
case.

34 Comm ents on thedualCFT3

An Interesting question we can ask is: what is the 3-dim ensional conform al eld
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theory (CFT ) dualto this fam ity of AdS,; vacua? W e w ill not give the explicit CF'T
butwew illcom m ent on som e interesting features that can be extracted directly from
the properties of the supergravity solution.

W e start with the specialcasem = 0, where the IIA m assive deform ation van—
ishes. In the absence of gy, the two relevant param eters are then gg and Q ¢, the num —
ber of D 6-branes. Notice that Q4 also determ ines G ?) through the BIdG ) = Qg,
so that we can trade Q¢ with the ux of G ¥ (g,). As in [41], we can be tem pted
to associate gg and g, with the CFT param eters N and k, which correspond to the
rank of the gauge group and the Chem-Sinons (CS) level respectively. Indeed, as
n [41], also in this case the num ber of colors and the 't H ooft coupling would scale
w ith respect to the volum e ( 6)andthestrjngooupljng (e )as

5 N % ,

N e — — : (341)
e k ep)

If we switch on the ITA m ass param eter, we expect to gplit the CS Jevels by an
am ount proportional to gy, analogously to [42]. W henre? = 15m 2, the net D 6-brane
charge vanishes and the solution becom es exact, w ithout the nead of am earing the
sources. Notice also that in this case, as long as 1,9 g, , S0 that the splitting
of the CS levels is still expected to be a am all deform ation of the CFT .

In the solution without branes, the isom etry group is SU (2)°, which corre-
goonds to the global avor symm etry of the CFT . A s already noted before, adding
D 6/0 6-brane systam s corresponds to perform ing a 7, truncation of the spectrum
and to adding an SO (4)® gauge group. Analogously, the CFT is expected to be
som e suitable deform ation of the starting CFT w ith global sym m etries enhanced to
SU (2)° SO (4.

A di erence with respect to the CFT discussed In [41, 42] is the presence of
3—<ycles In the supergravity solution. The presence of such cycles (one for each
S3) is associated to at axionic directions in m oduli space arising from the intemal
com ponents of the RR 3-form . C onsider for exam ple

CB® =gt 23, daey, (342)

which is the com ponent that survives also in the O 6 case. This eld corresponds
to a m argihal din ension-3 operator In the gauge dual, which is a descendant of
a long multiplet containing also the inverse gauge coupling eld in the e ective
d = 4 supergravity. Because of this we m ay expect the axion to get a m ass from

non-perturbative e ects. Indeed Euclidean D 2-brane Instantons w rapping the two
3—spheres exactly do the b, producing corrections of the type

vol(S3)

Ae Jo.le Re +ic ) Ae as +ia; (3.43)

w here the prefactor A can be in principle eld-dependent. The anom alous din en—
sion of the din ension—3 operators associated to the axion would then get a non-
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perturbative correction ofthe type (343). Ifthe denti cation oftheCF T param eters
(3.41) is correct such correction would scale as

e constpm ; (3.44)

thus it would be non-perturbative both in the "t H ooft coupling and in the largeN
expansion .

4. D iscussion

To summ arize, we studied com pacti cations of TypeTIA string theory on (tw isted)
tordi with uxes that adm it a d = 4 description In term s of N = 4 supergravity.
Since n N = 4 supergravity the only deform ations com patible w ith supersym m etry
are gaugings, each particular com pacti cation w ill correspond to a di erent gauging,
and each com ponent of the possible RR ,NSN S and m etric uxes that can be tumed
on m aps Into a di erent gauge structure constant and a di erent em bedding into the
duality group. W e thus ddenti ed the m apping between thed = 10 uxesand d= 4
gauge structure constants. For the considered class of com pacti cations, this allow s
us to reform ulate the problem of nding the solutions of the d = 10 egquation of
m otions to the one of nding extrem a of the d = 4 scalar potential of the associated
N = 4 gauged supergravity.

T his correspondence is particularly useful since there is a large num ber of com —
pacti cationsw ith less supersym m etry (such as toroidalorbifolds),whose (untw isted)
closed string sector is constrained by the underlying extended supersymm etries to
be just a truncation of the N = 4 supergravity one. It would be interesting to study
system atically the corresponding scalar potential because it would allow us to de-
duce general properties vald for a large set of com pacti cations: for exam ple, the
(In)possibbility to have fullm oduli stabilization in M inkow ski or de Sitter space.

Tt isknown [19]that the gaugings of N = 4 supergravity include not only \nor—
m al" electric gaugings (associated to the structure constant £,y yr ), but also the
socalled de Roo{W agem ans phases (associated to m agnetic gaugings w ith struc-
ture constants £ y yr ) and the Schon{W eidner parameters ( u ). The de Roo{
W agem ans phases are essential for a com plete m oduli stabilization. W e denti ed
which ux com ponentsallow us to tum on such gaugings and form ulated the general
rule vald also for other string com pacti cations. T he Schon{W eidner param eters,
on the other hand, enter the scalar potential in a di erent way, with an ntriguing
sim ilarity to Fayet{Tliopoulos term s in N = 1 supergravity. W e denti ed a d = 10
supergravity origin for such tem s, which however does not seem com patible w ith a
superstring uplift, for it relies on an accidental global sym m etry of the tw o-derivative
supergravity lim it. Analogously to Fayet{Tliopoulos term s in N = 1 supergravity,
there are no known exam ples yet of consistent string com pacti cations producing
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non-trivial Schon {W eidner param eters in four din ensions. It would be interesting to
study this possibility further, because it m ight play an im portant role in the search
of de Sitter vacua in string com pacti cations and extended supergravities.

Another interesting direction would be the extension of our results to the in-—
clusion of non-geom etric uxes, which would enrich the set of generated N = 4
gaugings. It has recently been shown that non-geom etric uxes can produce super-
symm etric M inkow ski solutionsw ith allm odulistabilized. T he extension to gaugings
com ing from non-geom etric uxesm ight in principle lead to the denti cation of such
vacua also in the context of N = 4 supergravity, a result that is still lacking in the
Jiterature.

A s an application of our results, we studied the N = 4 uplift of the fam ily of
supersymm etric AdS solutions found in [14, 16, 36, 21, 22]. W e found that for a
particular choice of param eters these solutions adm it a description in term sofd = 4,
N = 4 gauged supergravity with gpontaneous supersymm etry breaking to N = 1.
W e showed that in thiscase also a description in term sof N = 8 gauged supergravity
is possible, but that there is no separation between the K aluza{K lein and the AdS,
scale, so that the gauged supergravity theory does not represent the e ective d = 4
action,butonly a consistent truncation ofthed = 10 spectrum . W e also showed that
such solution, which corresponds to a particular Ads, & S com pacti cation
with uxes, satis es the d = 10 supersymm etry equations, which continue to be
satis ed also away from the N = 4 point, when the solution is deform ed via the
Introduction of sources for the D 6-brane charge. T he extra param eter that control
the net D 6-brane charge allow s to interpolate am ong otherknown ITA solutions, such
as those discusssd In [38].

Finally, by AdS/CFT correspondence we expect new CFT3 to exist: we com —
m ented on som e of their peculiar properties, which m ay give a hint on how to con—
struct them .
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A . Sym plectic em beddings

The d = 4 theory we obtained from the Scherk{Schwarz reduction of m assive TIA
supergravity is an N = 4 gauged supergravity m odel. Four-din ensional gauged
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supergravities are gpeci ed by their gauge group G and its sym plectic em bedding,
ie. the em bedding of the gauge group In the electric-m agnetic duality group: G
Sp(2ny ),where ny is the totalnum ber of vector elds. In this A ppendix we provide
the sym plectic em bedding specifying ourm odeland comm enton theN = 8 extension
and on other Interesting group-theoretical properties thatm ay help to clarify the role
and the origin of certain structures of the e ective theory.

T he starting point is the gauge group G of the e ective theory and its associated
algebra. For each of the vector eldsA AM wecan introduce a gauge generator
Ty Ty . These generators ful 1la gauge algebra follow ing from the com m utators

Ty ;Tn 1= XMNPTP= X[MN]PTP: (A d)

W e have com puted in section 2.3.3, e3. (2.49), the structure constants £  y © of the
gauge algebra realized by our m odel. Follow ing [19], the structure constants above
aredetermm Ined In tetm s of £ y yp and y as

1 . A 2)

For our m odel, the structure constants were derived in section 2.3.3 and the corre—
soonding gauge algebra reads:

1—q@)

— —(6)
[T+i;T+j]: !ijkT+k Hija a T+a+ G ijk kkTJrk EGijab abcT+C; (A -3)
—(2) 1—@ :
[T.1;Tya]= aa i Tic Gy, abcT+c+ EGijbc e Jlpr] ’ (A 4)
R S e P @ 5)
[TiTeal= Hia MTo(+ 10Ty @ 6)
1 1 .
[T+i;T a]z aa 5 !jba bbT b+ Z ijk abc|bck j‘TJr\ ’ (A 7)
—(0) —(2) i
TeaiTipl= aaw G FTic Gy M (A 8)
1 1 1 —
T, ;T 41= 7 Lapt T, o+ 2 !ijkT Kt z FCH e 5k T,
1— aa
EHlja T a7 (A'9)
T, ;T (1= !j_jk & j‘T+|7 (A 10)
1 1
T:a;T 11= aa E!ica CT . 7 A (A 11)
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T his generic algebra is realized for any con guration of D 6-branes and O 6planes
consistent w ith theN = 4 supersym m etry constraints. H ow ever, w hen the num ber of
D 6-branesand O 6-planesgives a zero net charge, them odel constructed in this paper
becom es a truncation ofan N = 8 supergravity m odel. M oreover, w hen E(O) = 0 the
m odel can also be obtained as an M -theory reduction w ith perturbative uxes only.
For these reasons, it m ust be possible to embed the gauge algebra presented above
into the larger ¢;(7) algebra, which is the algebra generating the U -duality group of
N = 8 supergravity. W e now provide this em bedding explicitly.

A Ithough the approach we use is rather indirect, it will help us clarify som e
Interesting issues about the origin of and the constraints on the gauge group. O ur
starting point is the e, algebra. Follow ing [43], we can construct the 133 g
generators in the fundam ental 56 representation asm atrices

1
B Q]
W tors
M = TERS
T=20 . A, @ 12)
.B/JNTU [EtQ_]U_]
whereM ;N ;:::= 1;"';8,4@4_1“— are the 63 SU (8) antithem itian and traceless gener—
ators and 1
tMNPQ = Zl M NPQRSTU tRSTU (A 13)

are the rem aining 70 non-com pact generators. W e then rew rite the generatorsand the
corresponding algebra using a gl(7;R ) decom position, which is also appropriate for
M —theory em beddings. In thisbasiswe can splitM = (m ;8) and the 133 generators
are (4, " ;€ "% it ;% ), as ollows from the branching rule 133 ! 48, + 1y +

35,5+ 35 o+ T 4+ 7+4. T he com m utators de ning the algebra then read

(- S E NS I I

i H;Jéi'lpzp:i 1= 3 Igpl Jé>2p3]ﬂ + E

n 1P2pP3
7™ € !

3
" it]l= ot oo i

[frinens ,.tplpzm 1= 11111211313'113'293qJCq ;

5
[t’ﬂn’.tplpzpa 1= 3 nl tp2p31“ ; 2 tp1p2p3 ’

3
G "€ 1= g - i (A 14)
[thinans 7 Goupops 1= ninsnspipepsa £ 5

1
it 1= " + 5 n ti
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£ e )=

mninzn3pip2p3 tp .
1P2p3 7

-631 b2p3 ;

[tﬁn ;tn1r12n3 1=

mninznipip2p3

Nl ok

o min €= 18 00 g e 2 e
where t £™ . W e realized this gplitting because whenever E(O) = 0 the gauge
algebra (A 3){(A 11) reduces to the one obtained from M —theory com pacti cations
w ith geom etric  uxes, 4fom  uxesG ;g and a 7-om  ux G ), and although this
uplift can be done only when the TTA m ass param eter is switched o , the N = 8
em bedding can still be perform ed in the presence ofnon—trjyjala(m .

In the M -theory fram ework, the 56 vector elds and their corresponding gen—
erators also splitas 56 ! 7 5+ 21 1+ 21,1+ 7,5. W e can actually label them
as the ones com ing from the reduction of themetric elds (V" ) Z, , the ones as—
sociated to the 3-form  elds (A (3m)n ) W ™%, the dual ones com ing from the 6-form
@A (i)qrst) W nn and the dualm etric generators (¥ , ) Z™ . These generators can now
be enbedded In the g7, ones by recognizing the uxes as intertw ners between the
representations of the generators and those of the g;(7) generators. T he denti cation
of the M -theory perturbative uxes In tem s of our TTA uxes is straightforward.
T he 4-form , the geom etric  uxes and the 6formm ux proportional to the volum e of
the intermal space lift to ob Fcts of the sam e type (where the volum e of the intemal

Space isnow 7-din ensional):

= @) k b k (7) —(6)
Giani ‘157 'ai ltaws G =G @ 15)

The other elds can also be denti ed easily as

11
!ia =G

(2) —_—
ws Gi1i5a= Hijas Griae= Hawe: (A 16)

W e are left with a sihgle non-perturbative ux G_(O), which, however, can also be
easily denti ed by looking at the structure of the com m utators of the gauge algebra
asa component ofa ux in the 28,1 (see for instance section 4 of [44]):

=©) n n

mnzG 7 7: (A.17)

At this stage we can propose the em bedding of the M -theory generators in the g7,

ones as
Zm = @ lnn % +* @Grnpg T+ asgeth 7 (A 18)
WM = 2 P L, MOPEVG b+ 2k P @A 19)
Wnn=Clan" %J (A 20)
z" = d "t (A 21)

{34 {



leading to the em bedding tensors

— . — . n _ n .,
m;np_ al!mnpr m npq — aZGmnpqr m; a3g6m/
mn;p: Cllmnp; 9
(A 22)
mn; _ m nl, mn; _ m nl, mn;p _ m npgrsu .
pq_ 2b3q P par — Zbll[pq r]’ P = bz b qusu/

m;n_dlmn.

For the gauging to be well de ned, these tensors m ust satisfy som e quadratic
constraints:

m m n m ; mng _ .
m;p ;q+ pmn;q pm;q+ mn;p "= OI (A-23)
m o p mny — .
m;qrs'l' mn; qrs — Or (A -24)
m ; r mnj; r _ .
® m q + mn;p q - 0: (A -25)

Tt is straightforward to show that (A 25) is dentically satis ed, whilke (A 23) corre-
sponds to the 3form BT, and (A 24) gives the 4—form BT and the torsion constraints
! ' = 0.

Hence we can nally derive the structure of the gauge algebra de ned by the
generators (A 18){ (@A 21):

ZniZnl= 'an"Zp+ GunppgW P+ GW iy 5 (A 26)
2o W "P1= 2 I, "W PH4 n npm@@adg o oW ge + 2 g5 D28 @ 27)
Zm iWnpl= oW ohgs (A 28)

L A T c I A (@ 29)
W "W )= 2 1" 2 (& 30)

w ith all the other comm utators vanishing dentically. Closure In g, through the
de nitions (A 18){(A 21) =xes the various coe cients to

3ay as " axly
=-—i =—; =1 "= —
2b < <
2
=ﬁ; =1; = ﬁ; = _ﬁ; @ 31)
2 2 3as
_ @b 1
4c; ' 2’
and
a 2 C
b= = b= g - 298, @ 32)
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O bviously we cannot have 56 iIndependent generators and a sin ple inspection of
(A 18){ (A 21) Inm ediately con m s this, leading to the follow Ing constraints:

| g _ 3 q.
3-[mn quj)]— EEGmnqu ’ (A.33)
a2b_|_ as 2b.|.
Vgt W P = —— mmnensnaishieg W + —z2"  ——= "z (A 34)
ra 2C1 ninznisng NsNeg Cl 3a2 n

At this stage, follow ing [12], we can deduce how the action of the N = 4 gauge
generators can be enbedded In g7y In the case without net D 6-brane charge, ac—
cording to the branching of the representations of e;;, with respect to o(1;1)°
s1(3) sli(3). In particular, from the branching of the 56 we get that the surviving
24 vectors transform as

(3;1) + (371 + (153) 0 + (1;3) o4
+ B1)ees + (351) oo+ (153)50+ + (153)0 5 (A 35)

which is the representation content of our vector elds

v oC i57 B ai Capi ¥i; Caii B ijani C ijka s (A 36)
and of the corresponding generators

Tia; T s; Tead Teas T Ty ¢ T .7 T .- @& 37)

W e can then proceed to embed the gauge generators in the ones of g7, using the
uxes as Intertw ineres and splitting the indicesasm = (i;a;11). The result is

- —(2) 1@ . — - —(6)
Toi W7+ 1P+ Gt + oG U Hipt™ G h; (A 38)

50 ijab
Tia R 2 H Lyt (A 39)
1 i

Ty {iz ! jk]tl; (A 40)

T.. . AT Gl SRR R TE @ 41)
1 jikab 1 abcry

T 3 = ik lab £+ = H (A 42)
2 9

1
T a 5 aa abc!bcki—k: (A43)

A s we have seen before, not all gauge vectors w ill be independent, therefore the
corresponding gauge generators w ill be constrained. For the case at hand, in the
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absence of net D 6-brane charge, the constraints follow from the above em bedding in
SIOK
!abk ijk j|T+|+ !i[ac bld ddT 4= O; (A .44)

. 1 _ R
P PR 4 L T, o+ 3 H e T, TFH ¥T .=0: (@45

T his fact has an interesting application in the context of understanding the process
by which we have denti ed the electric vector elds and integrated out them agnetic
ones. Indeed, the above constraints are in one-to-one correspondence w ith the linear
com binations of the BT that have to be solved to obtain the physical vector elds,
w ithout Introducing two-formm tensor elds in the d = 4 e ective theory. For this
purpose we can take as a starting point the massive TIA action where both the
standard and the dual eld-strengths appear. W e then solve the BT resulting from
the integration of the potentials we do not want in the e ective action. These BI
read

dE®G)= 0: (A 46)

T he standard form ulation of the e ective theory can be obtained by integrating out
c®,c™ and ¢ ®), but by doing so, we get an e ective N = 4 supergravity m odel
w ith tensor elds: C and C ;. Ifwedonotwanttensor eldsin thee ectived = 4
theory, we have to integrate out C ©?, C "7, and som e com ponents of C ©) together
with som e com ponents of C ©). This m eans that we have to solve the BI for the
4—form and 6-form only partially. W e therefore need to dentify which com binations
of the BT have to be selected. T his can be done in the follow Ing way. Start by taking
the BI com ing from integrating out the C ® 1) potentials and de ne

dc (P)+ !G(P)+ H G(p 2) F(p+1); (A 47)
whereH = dB + !B + H . Trivial consistency conditions are
dE®* Yy HEF® Ve Bar® Y= 0: (A 48)

T he param eterizations of the curvatures are obtained by rst integrating outC © and
C™,ladingto F ¥ = 0 and F ® = 0. This results in the de nition of the G | ux
and of the curvature twoorm G @ = ac @+ 1c W12 BG”. However, when we
proceed to the integration of the 5-form ,we solve the B ianchi dentities corresponding
only to som e of the com ponents of C ®), These are C arC  2,C aeandC L,
w hich correspond to all the form s of rank greater than one. T hese should not appear
in the e ective theory. O n the other hand we do not want to integrate out the scalar

elds C ,nei5 and we have to decde which com ponents of the vector elds C s and
C ika have to survive. Their m inin al set is now easily detem Ined by in posing
the consistency conditions (A 48). Ifwe want to solve F i, = 0, F 5% = 0 and
F i = 0 (corresponding to the 5form tensor eldswith rank > 1), we also need
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to sole at least som e of the Bianchi dentities related to the 5-formm vector elds
because of the consistency conditions

dr®) = 0; (dF ®) = 0: (A 49)
Uponusing ' 5 = 0Oand F 4, = 0, these consistency conditions read
3!y’ F  xp= 0; A 50)
which is Hentically vanishing when !;;7 = 0, and
' a+ 213.°F L= 0: (A 51)

These equations are selecting the linear com binations related to the tensor elds
we have integrated out. M oreover they are In oneto-one correspondence w ith the
constraints (A 44) on the corresponding gauge generators. It is easy to check that
the com binations appearing in (A 51) do not contain any tensor elds and hence we
can solve G ;5and G ., In term s of vector elds only.

Atthispoint we can m ove to the integration of the 3-form degrees of freedom we
do not want to see In the e ective action. Thism eans the spacetin e 3-form C ,
the three 2-form s C  ; and consequently the (up to 3) vector elds selected by the
sam e m echanisn as the one described above. T he integration of the 3 tensor elds
C jmpliesthatF = 0.However, the consistency condition now reads

dF "+ 1 r D+ g FS = 0; (A 52)

because we did not solve all the equations from F ©) = 0, but only som e of them .
Looking at the 3 directions labeled by ijalkc we get that

'SF et 3w F gt 6l peF meppt
(A 53)

+ (H ake T 3! [ablB c]l)F ij + 3([‘1 ijla !j_le l[a]+ 2! a][j_]cB j}c)F bc] = 0:

W e can see once m ore that only som e parts of the vector eld B ianchi dentities par-
ticipate in the above conditions and oncem ore they are in one-+o-one correspondence
w ith the constraints (& 45).
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