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1.Introduction

Therelation between ux com pacti�cationsofhigher-dim ensionalsupergravitiesand

gaugingsoftheire�ectivefour-dim ensionaltheorieshasquitea longhistory [1],with

an extensive literature in the fram ework ofsuperstring/M -theory com pacti�cations

(fora recentreview and referencesto theoriginalliterature,seee.g.[2]).W hen ux

com pacti�cations preserve an exact or spontaneously broken extended supersym -

m etry in fourdim ensions and there isa gap between the supersym m etry breaking

scaleand thecom pacti�cation scale,theresulting gaugingsarenotonly su�cientto

fully determ inethetwo-derivativelow-energy e�ectiveLagrangian,butalso theonly

way in which a potentialcan be generated and som e orallsupersym m etries spon-

taneously broken. W hile realistic four-dim ensionale�ective theories have at m ost
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N = 1 spontaneously broken supersym m etry 1,in orientifold,orbifold and other

string constructionsa largeam ountofinform ation can beextracted by thestudy of

som eunderlying theory with N > 1.

In thepresentpaperweconcentrateon uxcom pacti�cationswith exactorspon-

taneously broken N = 4 localsupersym m etry in fourdim ensions.They arealready

quitewellunderstood in thefram ework ofheterotic[3,4,5,6]and Type-IIcom pact-

i�cations[7,8,9,10,11,12,13],butm any open questionsrem ain,especially in the

fram ework ofType-IIA orientifolds,wheretherich availablestructureofgeom etrical

uxesallowsforinteresting phenom ena such asstable supersym m etric AdS4 vacua

(as found,for exam ple,in som e N = 1 orbifolds [11,14,15,16]),and,perhaps,

locally stable vacua with spontaneously broken N = 4,d = 4 supersym m etry and

positivevacuum energy,even ifno exam plewasproduced so far.

Thestructureofourpaperand itsm ain resultsaredescribed below.In Section 2

weestablish,in aquitegeneralfram ework,theprecisecorrespondencebetween Type-

IIA uxcom pacti�cationspreservingan exactorspontaneously broken N = 4super-

sym m etry and gaugingsoftheire�ective supergravities. W e focuson constructions

with orientifold 6-planes(O6),in thepresenceofD6-branesparalleltotheO6-planes

and ofgeneralNSNS,RR and m etricuxes.Forsim plicity,weneglectnon-geom etric

uxes and we consistently set to zero allbrane-localized excitations,leaving these

generalizationsto futurework.W ebegin by recalling (following [14,17])som ewell-

known propertiesofthe chosen schem e fordim ensionalreduction:the �eld content

ofthee�ectivetheory,theallowed uxesand thebulk and localized BianchiIdenti-

ties(BI).W ethen recallthegeneralstructureofgauged N = 4,d = 4 supergravity

coupled ton vectorm ultiplets[18,19],specializing tothecasen = 6relevantforour

discussion. In particular,we recallthe structure ofthe covariantderivativesacting

on thescalar�elds,thequadraticconstraintson thegaugingparam eters,which play

the role ofgeneralized Jacobiidentities,and the relation between the scalarpoten-

tialand thesupersym m etry variationsoftheferm ionic�elds.W ethen spelloutthe

precise correspondence between uxes and BIofthe com pacti�ed ten-dim ensional

theory on one side,generalized structure constants and Jacobiidentities ofthe ef-

fective four-dim ensionaltheory on the other side. W e con�rm that,as im plicitly

introduced in [20]and explicitly discussed in [11],non-trivialduality phases (also

known asde Roo{W agem ansphases)[18]are generated. W e com plete thissection

by discussing the role ofa dilaton ux to generate non-vanishing Sch�on{W eidner

param eters� [19](in N = 4 supergravity,theseparam etersplay a roleanalogousto

Fayet{Iliopoulosterm sin N = 1).

In Section 3 we apply ourresultsand discussthe N = 4 upliftofthe fam ily of

N = 1AdS4 supersym m etricvacuafound in [14],perform ed by rem ovingtheZ2� Z2

orbifold projection used toreducetheam ountofsupersym m etry.Asaresult,we�nd

1Becauseofthechiralnatureofweak interactionsand ofthedirectand indirectevidenceagainst

m irrorferm ions.
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afam ily ofType-IIA AdS4 vacua with spontaneousbreaking ofN = 4toN = 1and

anum berofadjustablefreeparam eters.Thesevacua[21,22]canbeobtained without

sourceterm s,i.e.with a vanishing netnum berofparallelD6-branesand O6-planes,

guaranteeing thattheten-dim ensionalequationsofm otion aresolved exactly.In the

caseofnon-vanishing D6-branesourceterm sthesolution isstillvalid in thelim itof

sm eared sources. W e com m enton the associated geom etry,on the upliftto N = 8

obtained by rem oving theorientifold projection,and on thedualCFT3 theories.W e

conclude,in Section 4,with abriefdiscussion on possiblegeneralizationsand further

applicationsofourresults.In thebody ofthepaper,wem ake an e�ortto keep the

technicalities to a m inim um . However,we �nd that som e technicaldetails on the

sym plecticem beddingsm ay beusefultothesupergravity specialists,thuswepresent

them in theAppendix.

2.O rientifold reduction and m atching to N = 4

In this section we describe the reduction ofType-IIA supergravity on twisted tori

orientifolds,where the orientifold involution acts non-trivially on three out ofthe

six internalcoordinates. W e allow for the presence ofD6-branes parallelto the

O6-planes,com patibly with N = 4 supersym m etry,and forgeneralNSNS and RR

uxes 2. Since we are m ainly concerned with the closed string sector,we only look

atbackgroundswith vanishing vacuum expectation values(vev)fortheopen string

excitations,which wouldcorrespond toextraN = 4vectorm ultipletslocalizedonthe

D6-branes.Thereduced theory isthen a gauged N = 4,d = 4 supergravity with six

vectorm ultiplets.Ourgoalisto spellouttheprecisecorrespondencebetween uxes

and BianchiIdentities(BI)ofthe com pacti�ed ten-dim ensionaltheory on one side,

generalized structureconstantsand Jacobiidentitiesofthee�ectivefour-dim ensional

theory on theotherside.

Hereand in thefollowing,westick totheconventionsof[23,14]unlessotherwise

stated. W e willuse � and i for the curved space-tim e indices corresponding to

the fournon-com pactand the three com pactdim ensions parallelto the O6-planes

world-volum e,respectively,and a for the three com pact dim ensions orthogonalto

theO6-planes.

2.1 Ten-dim ensional�elds,uxes and constraints

The bosonic NSNS sectorofD = 10 Type-IIA supergravity consistsofthe (string-

fram e)m etricg,the2-form potentialB and thedilaton �.TheintrinsicO6-parities

are+1 forg and �,� 1 forB .AftertheO6 orientifold projection,theindependent

bosonicdegreesoffreedom in theNSNS sectorofthereduced theory arethedilaton

2W edonotconsidernon-geom etricuxesin thiswork,butwecom m enton som eoftheproperties

associated to turning on such deform ationsin section 2.3.2.
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� and thefollowing com ponentsofthem etricand theB -�eld:

ds
2 = g�� dx

�
dx

� + gab�
a
�
b+ gij(�

i+ V
i
�dx

�)(�j + V
j
� dx

�);

B = B ai�
a
�
i
; (2.1)

where here and in the following the wedge productisleftim plicitin antisym m etric

form s.Thesix internal1-form s(�a;�i)satisfy thefollowing relations:

d�k =
1

2
!ij

k
�
i
�
j +

1

2
!ab

k
�
a
�
b
;

d�c = !ib
c�i�b;

(2.2)

which de�ne the 9 (!ij
k) + 9 (!ab

k) + 27 (!ib
c) m etric uxes. The NSNS 3-form

uxesallowed by theO6 projection are(the num bersin bracketscorrespond to the

m ultiplicities):

H abc (1); H ija (9): (2.3)

The bosonic RR sector contains in principle the p-form potentials C (p) with

p= 1;3;5;7;9,whoseintrinsicO6-paritiesare+1 forp= 3;7 and � 1 forp= 1;5;9.

However,thesedegreesoffreedom arenotallindependent,beingrelated by Poincar�e

duality. Before discussing how to identify the independent RR degrees offreedom

thatlead to the standard form ofthe e�ective N = 4 supergravity,we display the

�eld com ponentsthatareinvariantundertheorientifold parity,organized in blocks

ofdualpotentials,with theirm ultiplicitiesin brackets:

scalars: C
(1)
a C

(3)

ijk
C
(3)

iab
C
(5)

ijabc
vectors: C

(5)

�iabc
C
(3)

�ab

l l l l l l

dual tensors: C
(7)

��ijkbc
C
(5)

��abc
C
(5)

��jkc
C
(3)

��k
dual vectors: C

(3)

�jk
C
(5)

�ijkc

(3) (1) (9) (3) (3) (3)

(2.4)

In sum m ary,thebosonicRR sectorcontains16 independentrealdegreesoffreedom

thatcan be described eitherby scalarsorby 2-tensors,and 6 dualpairsofvectors.

Finally thecandidatedualpairsofscalarand 4-tensoruxesin theRR sectorare

scalars: G
(0)

G
(2)

ia G
(4)

ijab G
(6)

ijkabc

l l l l

dual tensors: G
(10)

����ijkabc G
(8)

����jkbc G
(6)

����jkab G
(4)

����

(1) (9) (9) (1)

(2.5)
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Ourgoalis,asin [14],to keep thescalar�eldsand to rem ovethe2-tensor�elds,

to keep thescalaruxesand to rem ovethe4-tensoruxes.Asweshallsee,however,

thepresenceofRR vectorsin thed = 4,N = 4e�ectivetheory introducesadditional

com plications:thevectorcom binationsthatm ustbekeptwillbeidenti�ed later.

Sum m arizing,thebosonic�eld contentofthereduced theoryconsistsof38scalar

degreesoffreedom (22 from the NSNS sector,16 from the RR sector)and 12 inde-

pendentvectordegreesoffreedom (6 from the NSNS sector,6 from the RR sector)

in a suitabledualbasis.

Asitiswellknown,therearebulk and localized BIconstrainingtheallowed sys-

tem sof�eldsand uxes.The�rstconstraintscom efrom theclosureoftheexternal

derivative,dd = 0,which,applied to eq.(2.2),im pliesthe following constraintson

them etricuxes:

! ! = � ![m n
q
!p]q

r = 0: (2.6)

Noticethattherearenolocalized sourceterm scom patiblewith N = 4supersym m e-

trythatcanm odifytheaboveequations3.Thesehoweverarenottheonlyconstraints

thatthem etricuxesm ustsatisfy.Therequirem entthatthecom pactsix-m anifold

hasno boundary correspondsto theconstraint

!m n
n = 0 ) !ik

k + !ic
c = 0: (2.7)

The generalBIforH in the absence ofNS5-branes(which would break the N = 4

supersym m etry)issim ply

dH = 0; (2.8)

whosesolution can bewritten as

H = d4B + !B + H ; (2.9)

where we separated the various contributions: the derivative ofthe 2-form �eld

B with respect to the externalcoordinates (�rst term ),the torsion term from the

derivatives ofthe � with respect to the internalcoordinates (second term ) and a

constantux term (H ),which m ustsatisfy theintegrability condition

! H = 0: (2.10)

In theabsence oflocalized sources,theBIfortheRR �eld strengthsG (p) read

dG
(p)+ H G

(p� 2) = 0; (2.11)

3TheK K 5-m onopolesdiscussed in [24]do preserveN = 4 supersym m etry,butitisnotthesam e

N = 4 supersym m etry preserved by the O 6-planes.Therefore,the AdS4 vacuum discussed in [11]

correspondsindeed to a gauged N = 2 supergravity in the presence ofthe orientifold projection,

and to a gauged N = 4 supergravity only in theabsenceofthe orientifold projection.
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and,in analogy with thepreviousdiscussion forH ,thegeneralsolution forG (p) is

G
(p) = d4C

(p� 1)+ ! C
(p� 1)+ H C

(p� 3)+ (G e
� B )(p); (2.12)

whereG areconstantuxessubjectto theintegrability conditions

! G
(p)
+ H G

(p� 2)
= 0: (2.13)

Thelastterm in thesolution isunderstood asexpanded and projected into a p-form

wedge product. The solution isvalid in general,even when stillkeeping dualpairs

ofpotentials,aslong asthereareno localized sources.In theN = 4 orientifold case

underconsideration,theonly adm issiblelocalized sourcesareparallelD6-branesand

O6-planes.Theintegrability condition forG (2) isthen m odi�ed to

! G
(2)

+ H G
(0)

= Q(�6); (2.14)

whereQ(�6)isthesum ofallPoincar�eduals[�6]totheinternal3-cycleswrapped by

the D6-branesand O6-planes. The presence ofD6/O6 sourcesalso im pliesfurther

constraints that can be viewed as integrability conditions from the BIoflocalized

�elds.In particularthey read

H [�6]= 0; ! [�6]= 0: (2.15)

The�rstcorrespondstotheFreed{W itten [25]anom alycancellation condition,which

in ourcase isautom atically satis�ed,while thesecond (which isactually connected

via dualitiesto the �rst)correspondsto requiring thatthe volum e wrapped by the

orientifold planehasno boundaries[17,26,27].Explicitly thecondition reads

!ik
k = 0; !ic

c = 0; (2.16)

wherethesecond equation followsfrom the�rstusing eq.(2.7).

2.2 E�ective N = 4 gauged supergravity

The generalstructure ofgauged N = 4,d = 4 supergravity,with itsgravitational

m ultipletcoupled to n vectorm ultiplets,isknown [28,18,19]. Itsbosonic content

consistsof:them etric;6+ n vectorpotentialsA M +
� (M = 1;:::;6+ n),transform ing

in thefundam entalvectorrepresentation ofSO(6;n)and carrying charge +1 under

theSO(1;1)subgroup ofSU(1,1);thecorrespondingdualpotentialsA M �
� ,which also

transform asa vectorofSO(6;n),butcarry charge � 1 underSO(1,1);2+ 6n real

scalar�elds,param eterizing them anifold

SU(1;1)

U(1)
�

SO(6;n)

SO(6)� SO(n)
: (2.17)

Sincewerestrictourselvestobackgroundswith trivialopen stringvevs,from now on

itwillbesu�cientto consideronly thecasen = 6,neglecting thevectorm ultiplets
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com ing from D6-branesthatactonly asspectators.According to [19],thecom plete

Lagrangian isfully determ ined by two realconstanttensors,f� M N P = f� [M N P ] and

�� M ,undertheglobalon-shellsym m etry group SU(1,1)� SO(6,6),where� = +;�

and M = 1;:::;12. The index M islowered and raised with constantm etric �M N

and itsinverse �M N ,whoseexplicitform willbegiven later.

The SU(1,1)/U(1)scalarm anifold can be param eterized by the cosetrepresen-

tatives

V� =
1

p
Im �

�
�

1

�

; (� = +;� ); (2.18)

where � is a com plex scalar �eld whose realand im aginary com ponents are often

called axion anddilaton,respectively.Inthegaugedtheory 4,thecovariantderivative

of� reads:

D �� = @�� + A
M �
� �+ M +

�
A
M +

� �+ M � A
M �
� �� M

�
� � A

M +

� �� M �
2
: (2.19)

TheSO(6,6)/[SO(6)� SO(6)]scalarm anifold can beparam eterized by thecoset

representatives

V =
�
VIJ
M ;VA

M

�
; (2.20)

where M = 1;:::;12 isa vectorindex ofSO(6,6),I;J = 1;:::;4 are indicesin the

fundam entalrepresentation ofSU(4)� SO(6)and A = 1;:::;6 isa vectorindex of

SO(6). W e exploitthe factthatan SO(6)vectorcan alternatively be described by

an antisym m etric tensorVIJ = V[IJ],subjectto thepseudo-reality constraint

VIJ =
�
VIJ

��
=
1

2
�IJK LV

K L
: (2.21)

Thecosetrepresentativesm ustobey theconstraint

�M N = �
1

2
�IJK LV

IJ
M VK L

N + VA
M V

A
N : (2.22)

Theconsistency ofN = 4 gaugingsisenforced by a setofquadraticconstraints

on thegeneralized structure constants� and f,which in turn can beinterpreted as

generalized Jacobiidentities.They read:

�
M
� ��M = 0;(2.23)

�
P
(�f�)P M N = 0;(2.24)

3f�R [M N f�P Q ]
R
+ 2�(�[M f�)N P Q ]= 0;(2.25)

�
��
�
�
P
� f�P M N + ��M ��N

�
= 0;(2.26)

�
��
�
f�M N R f�P Q

R
� �

R
� f�R [M [P �Q ]N ]� ��[M fN ][P Q ]� + ��[P fQ ][M N ]�

�
= 0:(2.27)

4Itisnotrestrictiveto setallgaugecoupling constantsto one,by suitably rescaling the gener-

alized structureconstantsf and �.
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A usefulform ula,againstwhich wearegoing to �ttheoutputofourgeneralized

dim ensionalreduction,istheonegiving thenon-Abelian �eld strengthsH + in term s

oftheA + and A � potentials:

H M +

�� = 2@[�A �]
M + � bf

M
�N P A

N �
[� A

P +

�]
+ :::; (2.28)

wherethedotsreferto contributionsfrom tensors,which cancelin the‘electric’�eld

strength com binationsdiscussed later,and

bf�M N P = f�M N P � ��[M �P ]N �
3

2
��N �M P : (2.29)

To study the num berofsupersym m etriespreserved by a given ground state,it

is convenient to have explicit expressions for the supersym m etry variations ofthe

ferm ions. In the conventions of[19],the variations ofthe gravitino,dilatiniand

gauginiaregiven by

� 
I
� = 2D ��

I�
2

3
A
IJ
1 ���J+:::; ��

I =
4

3
iA

IJ
2 �J+:::; ��

I
A = 2i(A 2A)J

I
�
J+:::;

(2.30)

respectively,where 5

A
IJ
1
= �

�� V?
� V

M
K LV

N IK VP JL
f� M N P ; (2.31)

A
IJ
2 = �

��V�V
M
K LV

N IK VP JL
f� M N P +

3

2
�
�� V� V

IJ
M �

M
� ; (2.32)

(A 2A)
I

J
= � �

��V?
�V

M
A VN IK VP

JK f� M N P �
1

4
�
�� V?

� V
M
A �

I
J ��M : (2.33)

These expressions show thatthe ��M actin a very sim ilarway to Fayet{Iliopoulos

param etersin N = 1 supergravity. They do notappearin the m assm atrix ofthe

gravitini,eq.(2.31),butprovidea shiftto theD-term sofeq.(2.32).

Finally,the scalar potentialV is �xed in term s ofthe squares ofthe ferm ion

variationsby thefollowing W ard identity ofextended supergravity:

1

3
A
IK
1

A 1JK �
1

9
A
IK
2

A 2JK �
1

2
A 2A J

K
A 2A

I
K = �

1

4
�
I
J V : (2.34)

2.3 D im ensionalreduction from d = 10 to d = 4 w ith uxes

Sincethed = 4e�ectivesupergravity iscom pletely determ ined,atthetwo-derivative

level,bythegauging,wejustneed tofocuson thee�ectiveaction forthevector�elds,

from which wecan read thecouplings.Firstofall,weneed to relatethezero m odes

5W echanged theconvention forA 2A
I
J and took thecom plex conjugatewith respectto [19],to

haveallthree A m atricesto acton the sam eSU(4)vectorqI.
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ofthe ten-dim ensional�eldswith the vectorsA M �
� . In ourcase the relationswork

asfollows:

A {�
� = eV� i; A

i�
� = �

ijk
C
(3)

�jk
; A

a�
� =

1

6
�
ijk
C
(5)

�aijk
; A

a�
� =

1

6
�
ijk
�
abc
B
(6)

�ijkbc
;

A i+
� = V i

� ; A
{+
� =

1

6
�
abc
C
(5)

�abci
; A

a+
� =

1

2
�
abc
C
(3)

�bc
; A a+

� = B �a ;

(2.35)

wheretheindicesM = (i;{;a;a)in thefundam entalvectorrepresentation ofSO(6,6)

areraised and lowered with the12� 12 constantm etric

�M N = �
M N = 12 
 �

1 
 13 =

0

B
B
B
@

0 13 0 0

13 0 0 0

0 0 0 13

0 0 13 0

1

C
C
C
A

: (2.36)

Out ofthe 12+12 vector �elds above,only 12 are independent. In the ungauged

case,we are com pletely free to choose the ‘electric’vectors,i.e.the independent

com binationsofvectorsthatappearin theLagrangian.W hen uxesareturned on,

however,the requirem entofhaving an action written only in term sofscalar�elds

(withouttensors)determ inestheelectricand them agneticcom binationsofvectors6.

Ifam ong theelectric vectorsentering thegauging both typesofvector�elds(those

with positiveand negativeSO(1,1)charge)arepresent,thegaugingissaid topossess

non-trivialduality phases,also known as de Roo{W agem ans (dRW ) phases. The

nam e ‘duality phases’follows from the fact that such a gauging corresponds to a

non-trivialsym plectic em bedding ofthe gauge group inside the fullduality group

ofsym m etriesoftheungauged theory,i.e.an em bedding providing an action ofthe

gaugegroup wherethevector�eld strengthsand theirdualsgetm ixed (see[8,10,12]

fordiscussions ofvariousN = 4 cases com ing from ux com pacti�cations). Since

thisisa technicalpoint,weleaveitfortheAppendix.

In thefollowing subsectionswewill�rstlook atthecovariantderivativesofthe

scalar �elds,to �nd the ‘electric’com binations and identify the uxes producing

non-trivialdRW phases. Then we willlook atthe covariant�eld strengthsforthe

vectors,to read outthe m apping between the uxesand the structure constantsof

thegauging,which will�x theentired = 4 action.

2.3.1 U niversalaxion and SW param eters

In our setup the universalaxion (the one that,paired with a com bination ofthe

dilaton and ofthe O6 volum e,reconstructs the com plex scalarparam eterizing the

6Fora discussion oftheroleoftensor�eldsin gauged supergravitiescom ing from ux com pact-

i�cationsand the relation between the standard and dualform ulationssee[29].
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SU(1,1)/U(1)m anifold)arisesfrom thecom ponentoftheRR 3-form potentialpar-

allelto theO6-plane,viz.

Re� =
1

6
�
ijk
C
(3)

ijk
: (2.37)

W e can read o� its covariant derivative by looking at the reduction ofthe corre-

sponding RR 4-form on ourbackground

D �C
(3)

ijk
= @�C

(3)

ijk
� ![il

l
C
(3)

�jk]
+ V

h
� !hl

l
C
(3)

ijk
: (2.38)

Com paring thisexpression with eq.(2.19),wesee thattheonly com ponentsof��M

thatcanbeturnedoninthechosenclassofcom pacti�cationsare�+ i= !il
l.However,

the constraint ofeq.(2.16) exactly forbids this possibility,thus it seem s that no

gaugingswith non-trivial��M can be obtained from these string com pacti�cations.

In section 2.4 we willcom m ent on extensions that go around this lim itation by

introducing a dilaton ux.

2.3.2 Electric and m agnetic vectors

The ‘electric’vectors can be identi�ed by looking at the com binations ofvectors

thatappearin the covariantderivativesofthe scalars.Itisnotdi�cultto see that

thechosen setofuxesdoesnotproducegaugingsinvolving thevectorsdualto the

m etric and to the B -�eld,since in the NSNS sector allthe scalars com e from the

dilaton,the m etric and the B �eld itself. In the RR sector,instead,scalars com e

from both C (3) and its dualC (5),therefore in generalwe expect that non-trivial

com binationsoftheRR vectorsand theirdualscan appearin thegauging.W ecan

thusrestrictouranalysisto the subsetof6+6 RR vectorsand justlook atthe RR

scalars.

As in the previous subsection, by looking at the reduction of the RR �eld

strengthswecan extracttherelevantcom binations:

D �C
(3)

abk
= @�C

(3)

abk
+ !ab

l
C
(3)

�kl
+ 2!k[a

d
C
(3)

�jb]d
+ :::; (2.39)

D �C
(5)

abcij
= @�C

(5)

abcij
+ !ij

k
C
(5)

�abck
+ !ab

k
C
(5)

�cijk
� HabcC

(3)

�ij � 3Hij[aC
(3)

�jbc]
+ :::;

where the dotsstand forcontributions from NSNS vectors. Rewritten in term s of

d = 4 supergravity vectors,thesecontributionscan beconveniently sum m arized as

A i�
� A a+

� A i+
� A a�

�

C
(3)

iab !ab
k !ia

b 0 0

C
(5)

ijabc
H abc H ijc !ij

k !ab
k

; (2.40)

which shows the uxes thatdeterm ine whatvectors (colum ns) enter the covariant

derivativeofeach scalar(rows).TheRR scalarsare12(9from C (3) and 3from C (5)),
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thusin principlewehave12com binationsofvectorsin thecovariantderivativesofthe

scalars.However,itcan beshown thatno m orethan six independentcom binations

ofvectorsarepresent.Todothis,itisenough totakethe12m agneticcom binations,

obtained by dualizing those in eq.(2.39),and to check thatthey areallorthogonal

to theelectric onesin eq.(2.39).W ehave checked thatthisisindeed thecaseonce

theconstraintsofeqs.(2.6),(2.10)and (2.16)areim posed.

Asitisobviousfrom eqs.(2.31{2.34),gaugingswith non-trivialdRW phasesare

essentialform odulistabilization,sinceotherwisetheSU(1,1)/U(1)scalarwouldenter

hom ogeneously the scalarpotential. From (2.40),we can see thatthe com ponents

! k
ab andH abc aretheonlyuxesthatinvolvevectorswith negativeSO(1,1)chargein

thecorrespondinggauging.Thisisin agreem entwith [11],which showed thatexactly

the sam e uxeswere responsible forproducing a non-trivialdilaton dependence in

thepotential.

Thisresultcan beeasily generalized to any N = 4 orientifold com pacti�cation,

including those with non-geom etricaluxes (Q m
qr,R qrs) [30]. Notice that allRR

uxesgeneratethesam edRW phase,which can besetto zero by a suitableconven-

tion.Then,ifwedenoteby P qrs:::
m np:::thegenericNSNS ux (H m np,!m n

q,Q m
qr,R qrs),

therule-of-thum b reads:

TheNSNS uxesleadingto non-trivialdRW phasesarethoseandonlythosewith

lowerindicesorthogonalto the O-planesand upperindicesparallelto the O-planes.

Forexam ple,in theType-IIB/O3case,allH -uxesgivenon-trivialdRW phases,

since theindicesareallorthogonalto theO3 planes,whereasallQ-uxesgive van-

ishing dRW phases.In theType-IIA/O6case,non-trivialdRW phasesaregenerated

by H abc,!ab
i,Q a

ik,R ijk.In theType-IIB/O9 case(and analogously in theheterotic

case),allcom ponentsoftheR-uxes(and only those)givenon-trivialphases,since

allinternalindicesareparallelto theO9-plane.

A sim ilar reasoning applies to allthe othercases,since by acting on an index

with a T-duality in the corresponding direction,the dualized index is lowered or

raised in theNSNS uxes,butatthesam etim ethecorresponding direction changes

from parallelto orthogonalto theO-planes,and viceversa.

In principle,forevery ux wecould also identify an S-dualux [31].Therefore,

thereshould beothernon-perturbativeuxesthatgeneratenon-trivialdRW phases.

In thiscasetherulejustreverses,becausebyS-dualitytheSO(1,1)chargeisinverted:

S-dualNSNS uxesalwayslead to non-trivialdRW phasesexceptforthoseand only

those with lower indices parallelto the O-planes and upper indices orthogonalto

the O-planes. AllS-dualRR uxes give now non-vanishing dRW phases. This is

in agreem entwith the results of[13]forthe Type-IIB/O3 case,where the authors

show thatstructureconstantswith a negativeSO(1,1)chargecan beidenti�ed with

non-trivialH -uxesand with theS-dualofthenon-geom etricQ-uxes.
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2.3.3 G augings from �eld-strength reduction

After having established that in the chosen com pacti�cations it is always �+ M =

�� M = 0,ourstrategy todeterm inetherem aining param etersoftheN = 4gauging,

i.e.thegeneralized structureconstantsf� M N P ,isto perform thedim ensionalreduc-

tion ofthevarious�eld strengthsin theNSNS and RR sectors,and tocom parethem

with eq.(2.28).

From the ten-dim ensionalEinstein term ,adapting the resultsof[1]to ourcon-

ventions,weobtain:

V
i
�� = 2@[�V

i
�]� !

k
ij V

i
� V

j
� : (2.41)

By reducing theNSNS 3-form �eld strength,therelevantterm sread

H ��a = 2@[�B �]a + 2V i
[�!

c
ia B cj�]+ V

i
�V

j
� H ija + :::; (2.42)

where,as before,the dotsrefer to contributions from tensor �elds thatcancelout

when the ‘electric’vector-�eld com binations are considered. In the RR sector,we

haveto considerthe4-form and 6-form �eld strengths,nam ely

G
(4)

��ab
= 2@[�C

(3)

�]ab
� 2G

(0)

B [�jaB �]b+ 2V i
[�

h

!
k

ab C
(3)

kj�]i
+ !

c
ia C

(3)

cj�]b
+ !

c
bi C

(3)

cj�]a

+2B �][aG
(2)

ijb]

i

+ V
i
�V

j
� G

(4)

ijab+ :::; (2.43)

G
(6)

��iabc
= 2@[�C

(5)

�]iabc
+ 2

�

!
d

ia B d[�C
(3)

�]bc
+ 2 Perm utabc

�

� 2

�

G
(2)

ia B [�jbB �]c+ 2 Perm utabc

�

� 2V
j

[�

h

!
k

ij C
(5)

kj�]abc
+

�

!
k

ab C
(5)

�]cijk
+ 2 Perm utabc

�

(2.44)

� HabcC
(3)

�]ij
�

�

H ijaC
(3)

�]bc
+ 2 Perm utabc

�

�

�

G
(4)

ijabB �]c + 2 Perm utabc

�i

+V j
� V

k
� G

(6)

ijkabc+ ::::

wherethesym bol\2 Perm utabc" standsforthetwo com binationsobtained by cyclic

perm utation ofthe indicesabc ofthe preceeding term . Identifying the vector�elds

withthecom binationshavingade�niteSO(1,1)charge,givenpreviouslyineqs.(2.35),

weobtain:

V
i
�� = 2@[�A

+ i

�]
� !

k
ij A

+ i
� A

+ j
� ; (2.45)

H ��a = 2@[�A
+

�]a
+ 2! c

ia A
+

[�jc
A
+ i

�]
+ H ijaA

+ i
� A

+ j
� + :::; (2.46)

1

2
�
abc
G
(4)

��ab
= 2@[�A

+ c

�]
� G

(0)

�
abc
A
+

�aA
+

�b
+
1

2
!

k
ab �

abc
�ijkA

� i
� A

+ j
� + 2! c

ia A
+ a

[�
A
+ i

�]
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� 2G
(2)

ia �
abc
A
+

[�jb
A
+ i

�]
+
1

2
G
(4)

ijab�
abc
A
+ i
� A

+ j
� + :::; (2.47)

1

6
�
abc
G
(6)

��abci
= 2@[�A

+

�]i
+ 2! c

ia A
+

[�jc
A
+ a

�]
+ �

abc
G
(2)

ia A
+

� b
A
+

� c+ 2! k
ij A

+

[�jk
A
+ j

�]

�
1

2
!

k
ab �

abc
�ijkA

�

[�jc
A
+ j

�]
+
1

6
H abc�

abc
�ijkA

� j

[�
A
+ k

�]
� 2HijaA

+ a

[�
A
+ j

�]

� G
(4)

ijab�
abc
A
+

[�jc
A
+ j

�]
�
1

6
G
(6)

ijkabc�
abc
A
+ j
� A

+ k
� + :::: (2.48)

W ecan now read therelation between uxesand generalized structureconstantsby

com paring with eq.(2.28):

f� ijk = �
1

6
H abc�

abc
�ijk ;

f
c

� ij = �
1

2
!

k
ab �

abc
�ijk ;

f
abc

+
= G

(0)

�
abc
;

f
bc

+ i = � G
(2)

ia �
abc

;

f
c

+ ij = �
1

2
G
(4)

ijab�
abc
; (2.49)

f+ ijk =
1

6
G
(6)

ijkabc�
abc

;

f
k

+ ij = !
k

ij ;

f+ ija = � Hija;

f
b

+ ia = !
b

ia :

Up to perm utations ofthe indices (so that when allindices are lowered with the

m etric (2.36) the structure constants are com pletely antisym m etric),allthe other

com ponentsvanish.Noticethatthesystem ofequationsfrom which we derived the

generalized structure constants ofeq.(2.49) was overconstrained: this provides a

non-trivialcross-check oftheconsistency ofourresults.

The above result com pletely de�nes allpossible e�ective d = 4 N = 4 super-

gravitiesthatcan beobtained in thechosen classofType-IIA O6 com pacti�cations

with uxes.Forinstance,theferm ion variationsand thescalarpotentialcan beread

o� directly from eqs.(2.30){(2.34),by substituting (2.49)and ��M = 0.

A sim ilaranalysisand identi�cation ofstructureconstantswith d = 10uxeswas

perform ed in [8,13],in thedualcontextofType-IIB O3com pacti�cations.Following

the rule-of-thum b ofthe previous section,also in the exam ples of[8,13]structure

constants with di�erent SO(1,1)charges appear whenever non-trivialH -uxes are

turned on.
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2.3.4 Jacobiidentities from B ianchiidentities

Havingestablished witheq.(2.49)theprecisecorrespondencebetween uxesandgen-

eralized structureconstants,wecan now check thatthegeneralized Jacobiidentities

ofeqs.(2.23){(2.27) are in one-to-one correspondence with the Bianchiidentities

discussed attheend ofsubsection 2.1.

Sincein ourclassofcom pacti�cations��M = 0,eqs.(2.23){(2.27)reducejustto

thetwo constraints

f�R [M N f�P Q ]
R
= 0; �

��
f�M N R f�P Q

R
= 0: (2.50)

By taking thenon-trivialcom ponentsoftheabove constraintsand substituting the

explicitexpressionsofeq.(2.49),wegetthefollowing constraintson theuxes:

�

!G
(2)

+ H G
(0)
�

ijc

= 0;

�

!G
(4)

+ H G
(2)
�

ijkab

= 0;

(!!)
ija

b = 0; (2.51)

�
!H

�

ijka
= 0;

�
!H

�

iabc
= 0;

(!!)
abi

k = 0:

In particular,the �rst four constraints in (2.51) com e from the �rst constraint in

(2.50),and the last two from the second. These are exactly the integrability con-

ditionsderived from the d = 10 BIin subsection 2.1. The only BIconstraintthat

is m issing is the one associated to the RR 2-form sourced by parallelD6-branes

and O6-planes: thiswassom ewhatexpected,since these sourcesare the only ones

preserving N = 4 supersym m etry in four dim ensions,so that their num ber is not

constrained by the consistency ofN = 4 supergravity (where the num berofvector

m ultipletsisindeed a freeparam eter).

2.4 � 6= 0 from the dilaton ux

W e elaboratehere on thepossibility ofgenerating non-vanishing valuesforthe��M

param eters in the presence ofa ‘dilaton ux’,associated with an SO(1,1) axionic

rescaling sym m etry.Itisknown thatan SO(1,1)twistproducesa gauging [32]asso-

ciated with anon-vanishing� param eter[19].Exam plesofthissortwerelaterstudied

in [33]in heteroticsupergravity,wenow explorethecaseofType-IIA supergravity.

The Type-IIA d = 10 supergravity action is invariant (at the two-derivative

level)underthefollowing SO(1,1)rescaling sym m etry:

g ! e
�=2

g; B ! e
�=2

B ; �! �+ � ; C
(p) ! e(

p

4
� 1)� C (p)

: (2.52)
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Thissym m etry isa rem nantofthedilatonicsym m etry arising from thecircle com -

pacti�cation ofd = 11supergravity.Itstillholdsin thepresenceoflocalized sources,

when the fullaction containsalso the Dirac{Born{Infeld and Chern{Sim onsterm s,

aslong astheworld volum eand thelocalized �eldstransform appropriately.

W e can then use such a sym m etry to perform a duality twist.Since the m etric

isnotinvariant,such a twistcorrespondsalso to a non-trivialScherk{Schwarztwist,

in particularto a volum enon-preserving one,

tr! 6= 0; (2.53)

sincethevolum eform isnotinvariantunderdilatations.Aftera suitable�eld redef-

inition,however,we can go to a �eld basiswhere only the dilaton transform snon-

trivially underthe sym m etry,and appearsin the action only via derivative term s.

In a such a �eld basistheaxionicnatureofthisdilatonicsym m etry ism anifest.

In practice,however,we can stick to the standard �eld basis and include an

additionalm odi�cation to the externalderivative thattakesinto accountthe non-

trivialdilaton ux:

D = d4 + ! + Q� + H ; (2.54)

whereQ isthechargeunderSO(1,1)dilatationsand � isde�ned by:

d�= d 4�+ �: (2.55)

Using thegeneralized derivativeD ,wecan now writetheBIas

D 2 = 0; D G = Q R R : (2.56)

Theirsolutionsread

H = dB + !B +
1

2
�B + H ;

G
(p+ 1) = dC

(p)+ !C
(p)+

p� 4

4
�C (p)+ H C

(p� 2)+
�
G e

� B
�(p+ 1)

; (2.57)

and aresubjectto thefollowing constraints:

(d+ ! + Q�+ H )2 = 0

)

!! = 0; !�= 0; !H + 1

2
�H = 0;

(d+ ! + Q�+ H )G (p+ 1) = Q(�7� p)

)

!G
(p+ 1)

+
p� 4

4
�G

(p+ 1)
+ H G

(p� 1)
= Q(�7� p);

(d+ ! + Q�+ H )[� 7� p]= 0

)

![�7� p]+
p� 4

4
�[� 7� p]= 0; H [�7� p]= 0:

(2.58)
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The above form ulae can be easily generalized to account for localized �elds and

localized uxes.

W e now specialize to the case ofD6/O6 brane system s. Notice that the con-

straintsin eq.(2.58)actually im ply that,when � i6= 0,therem ustbealsonon-trivial

m etricuxes,!ij
j and !aj

j,which in orderto havetr! = 0 read

!ij
j =

3

4
� i; !aj

j = �
3

4
� i: (2.59)

Ifwenow look atthecovariantderivative oftheuniversalaxion we�nd

G
(4)

�ijk
= @�C

(3)

ijk
� (!ij

l
C
(3)

lk�
+ 2Perm ijk)�

1

2
(� iC

(3)

jk�
+ 2Perm ijk)

= @�C
(3)

ijk
+ � iC

(3)

�jk
+ 2Perm ijk ; (2.60)

from wherewecan read that�+ i= � i can now bedi�erentfrom zero,and com pute

allthegeneralized structureconstantsoftheN = 4gaugingwith aproceduresim ilar

to theonedescribed in theprevioussubsections.

Notice,however,thatthegeneralized BIoftheRR sectorautom atically ruleout

thepossibility ofswitching on � in them assive Type-IIA theory:indeed,theBIfor

G (0) receive only thecontribution from thedilaton ux

(d4 + ! + Q�+ H )G (0) = 0 ) � iG
(0)

= 0; (2.61)

banning the possibility of having both these uxes turned on at the sam e tim e

(the only way outwould be to work with D8/O8 system s,orperhapsto add non-

geom etrical/non-perturbative uxes). The condition above can also be identi�ed

with an N = 4 Jacobiidentity,in particularwith the + + i
abc com ponentof

3f�R [M N f�P Q ]
R + 2�(�[M f�)N P Q ]= 0; (2.62)

since fabc
+

= G
(0)
�abc and forthisparticularcom ponentthe �rstcontribution in the

aboveequation vanisheswith theuxesavailablein theType-IIA theory.

The readershould keep in m ind thatthe SO(1,1)sym m etry used forthe twist,

both in theheterotic[33]and in thiscase,isjustan accidentalsym m etry ofthetwo-

derivativeaction,and doesnotsurviveassuch theintroduction ofhigher-derivative

term s corresponding to �0 corrections 7. The di�culties in �nding explicit string

constructionswith non-vanishing �-param etersm ay berelated to theanalogousdif-

�cultiesin generating non-vanishing FIterm sin N = 1 com pacti�cations.

3.A n N = 1 fam ily ofvacua

Now thatwe have established the connection between Type-IIA O6 ux com pacti-

�cationsand theirconsistenttruncationsto gauged d = 4,N = 4 supergravity,we

7W e thank E.W itten forbringing thispointto ourattention.
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can use the latter to study the vacuum structure ofthe form er. M any interesting

Type-IIA vacua found recently in N = 1 com pacti�cations,such astheN = 1 AdS4

supersym m etricvacua in [14,15,16],and partofthosein [34],arejustspeci�ctrun-

cations ofthe vacuum solutions ofthe N = 4 e�ective potentialdescribed in the

previoussection.M oreover,ourdescription could beexploited foram oresystem atic

search fordeSittervacuaand cosm ologicalsolutions,alongthelinesof[35].Itm ight

also be usefulforthe construction ofnew AdS4 backgroundsdualto 3-dim ensional

conform al�eld theorieswith extended supersym m etry.Finally,theextended duality

group would m akethestudy ofnon-geom etricbackgroundsm oretractable.

As an exam ple, in the following we construct and discuss the em bedding in

N = 4 supergravity ofthe AdS4 fam ily ofvacua found in [14]and furtherstudied

in [16,36]. From the ten-dim ensionalpoint ofview,it corresponds to rem oving

the Z2 � Z2 orbifold projection in the com pacti�cation. W e also discuss possible

deform ationsofthesolution and som epropertiesofthedualCFT3.

3.1 N = 4 em bedding ofa fam ily ofA dS4 vacua

The fam ily ofN = 1 AdS4 vacua found in [14]correspondsto com pacti�cationsof

the Type-IIA theory with O6 orientifold over T6=Z2 � Z2,with D6-branes and in

the presence ofa particular com bination ofRR,NSNS and geom etric uxes. The

orbifold projection im pliesafactorization ofthe6-torusintoaproductofthree2-tori,

T
6 = T

2 � T
2 � T

2. Forthe sam e reason,the scalarm anifold forthe closed string

sectoron thisspacereducesto a K�ahlerm anifold,

SU(1;1)

U(1)
�

SO(6;6)

SO(6)� SO(6)

Z2 � Z2
�� � � � � �!

SU(1;1)

U(1)
�

�
SO(2;2)

SO(2)� SO(2)

�3

=

�
SU(1;1)

U(1)

�7

;

(3.1)

param eterized by seven com plex m oduliS,U� and T� (�= 1;2;3).

Forthe sake ofsim plicity,we willnow consideruxes respecting the plane in-

terchange sym m etry determ ined by arbitrary perm utations am ong the T2 factors,

though wewillcom eback to them oregeneralcaselateron.Ifweindicatetheuxes

and thevevsofthescalar�eldsas

!1 =
1

3!
!ij

k
�
ijl
�lk ; !2 =

1

3!
!ab

k
�
abl
�lk ; !3 =

1

3!
!ib

c
�
ibd
�dc;

H 0 =
1

3!
H abc�

abc
; H 1 =

1

3!
H ija�

ija
;

G
(0)

= G
(0)

; G
(2)

=
1

3
G
(2)

ai�
ai
; (3.2)

G
(4)

= �
1

3!
G
(4)

abij�
ai
�
bj
; G

(6)

=
1

3!
G
(6)

ijkabc�
ai
�
bj
�
ck
;

s0 = hSi; u0 = hU�i; t0 = hT�i;
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then thevaluesoftheuxesgiving thefam ily ofAdS4 vacua read

1

9
G
(6)

= � t
2

0
G
(2)

=
t0u0

6
!1 =

s0t0

2
!2 =

t0u0

6
!3;

t0

3
G
(4)

=
t3
0

5
G
(0)

= �
s0

2
H 0 =

u0

2
H 1;

(3.3)

which determ ine a �ve-param eter fam ily ofAdS4 vacua (3 scalar vevs plus 2 ux

param eters). The BI associated to NSNS �elds are autom atically satis�ed,while

thoseoftheRR sectorcan besatis�ed by changingthenum berofD6-branes.Notice

thatsolutionscan befound forarbitraryvaluesofthescalar�elds(up toquantization

conditionscom ing from uxes),so thatarbitrary largecom pactvolum e (thussm all

�0corrections)and sm allstring coupling can beeasily realized.

To em bed thisfam ily ofvacua in a gauged N = 4 supergravity,wem ustbesure

that,ifD6-branesarepresent,they liein directionsparalleltotheN = 4O6-planes.

Thisrequirem entisequivalenttosatisfyingtheBIfortheRR 2-form withoutsources,

nam ely

5u20H
2

1 = 3s20t
2

0!
2

2 : (3.4)

Thisconstraintreducesby onethe num beroffreeparam etersofthe vacua so that,

once thevaluesofthescalarvevsarechosen,only an overallconstanton theuxes

rem ainsfree.Accidentally,forthissym m etric con�guration,thiscondition also im -

pliesthatthe RR BIalong the O6-planesisautom atically satis�ed,indicating that

thisfam ily ofsolutionsenjoysan N = 8 em bedding. In otherwords,the above set

ofuxesand �eldsisalso a solution ofm assive Type-IIA supergravity com pacti�ed

on thesam ebackground withoutany sources.W ewillcom eback to theim portance

ofthisobservation lateron.

Inspection ofthesupersym m etry variationsoftheferm ions,eq.(2.30),provides

a sim pleway to provethatthechoiceofuxesofeq.(3.3),togetherwith thecondi-

tion (3.4),yieldssupersym m etric AdS4 solutionsofthe N = 4 supergravity theory

constructed in the previous section. This analysis also shows that,on the sam e

vacua,supersym m etry isspontaneously broken to N = 1.W earelooking forvacua

where allthe �elds are set to vanish,with the exception ofthe m etric and ofthe

scalar�eldsin thelastlineofeq.(3.2),which takeconstantvalues:then solving the

conditions for unbroken supersym m etry also im plies that the equations ofm otion

are satis�ed. This in turn im plies that the vevs ofthe scalar �elds m inim ize the

potentialV in (2.34).Supersym m etric vacua arecharacterized by an SU(4)R direc-

tion qI and a setofscalar�eld vevsand uxes(orgauge structure constants)such

thatqI isa nulleigenvalue ofthe m atricesA IJ
2

and (A 2A)
I
J,de�ned in (2.32)and

(2.33)respectively. The gravitino m assm atrix A IJ
1 (projected on the sam e SU(4)R

direction)then tellsuswhetherthevacuum isM inkowskiorAdS.Ifthespin-1
2
�eld

variationsvanish in m oreSU(4)R independentdirections,then thevacuum preserves

m oresupersym m etries.
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Since we have already worked outthe relation between uxesand gauge struc-

ture constants,we justneed to identify the connection between the N = 1 m oduli

S,U�,T� (and their vevs) and the N = 4 scalar �elds V�,V
M
IJ,V

M
A . The coset

representatives V obviously contain m ore scalars,which,however,were setto zero

in ouranalysisofthe supersym m etry conditions. W e checked thatsuch a choice is

consistentwith thesolution.FortheSU(1,1)sectorofthescalarm anifold (2.17)the

identi�cation iseasy,

V� =
1

p
Im �

�
�

1

�

=
1

p
ReS

�
� iS

1

�

: (3.5)

Forthe SO(6,6)sectorthe identi�cation ism ore involved. Aftersom e calculations

we�nd forV IJ M

VIJ M =

h

�
M
�
(x1

�
�� + ex

1

�
��)

IJ
; �

M � 3

�
(x2

�
�� + ex

2

�
��)

IJ
; (3.6)

�
M � 6

�
(x3��� + ex

3

���)
IJ
; �

M � 9

�
(x4��� + ex

4

���)
IJ

i

;

where�� and �� aresix four-by-fourm atricesthatm ap SU(4)indicesinto SO(6),

�1 =
i

2
�
2 
 �

1
; �2 = �

i

2
�
2 
 �

3
; �3 =

i

2
12 
 �

2
; (3.7)

�1 = �
1

2
�
1 
 �

2
; �2 = �

1

2
�
2 
 12; �3 =

1

2
�
3 
 �

2
; (3.8)

and

0

B
B
B
@

x1
�
+ iex1

�

x2
�
+ iex2

�

x3
�
+ iex3

�

x4
�
+ iex4

�

1

C
C
C
A
=

r
2

Y�

0

B
B
B
@

1

U�T�

iU�

iT�

1

C
C
C
A

; with Y� = (T� + T�)(U� + U �): (3.9)

Analogously,for W M IJ = VM
A Q A IJ,where Q A = f��;��g,we can �nd a sim ilar

expression to theonein (3.6),butwith di�erentscalarfunctions(y� instead ofx�):

0

B
B
B
@

y1
�
+ iey1

�

y2
�
+ iey2

�

y3
�
+ iey3

�

y4
�
+ iey4

�

1

C
C
C
A
=

r
2

Y�

0

B
B
B
@

1

� U�T�

iU�

� iT�

1

C
C
C
A

; (3.10)

which correspondsto theexchangeofT� with � T� (orU� with � U� ifthecom plex

conjugate is taken) in the expressions for the x�. It is easy to check that,with

this choice ofparam eterization,the constraints (2.21) and (2.22) are satis�ed and

the known N = 1 resultsin the truncated lim itcan be recovered. Thislastcheck
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can be perform ed by looking at the gravitino m ass m atrix. In the basis for the

(��;��) m atrices ofeqs.(3.7){(3.8),the gravitino m ass m atrix is diagonal,with

threedegenerateeigenvalues(dueto theplaneinterchangesym m etry oftheuxes).

The fourth eigenvalue is the one surviving the orbifold projection and after using

eq.(2.49)reads

A
44

1
/

eK =2

2

�
G
(6)+ iG

(4)(T1 + T2 + T3)� G
(2)(T1T2 + T2T3 + T3T1)� iG

(0)
T1T2T3

iH 0S � iH1(U1 + U2 + U3)+ !1(T1U1 + T2U2 + T3U3)� !2S(T1 + T2 + T3)

� !3(T1U2 + T1U3 + T2U1 + T2U3 + T3U1 + T3U2)]; (3.11)

which nicely m atchestheexpression oftheN = 1 superpotentialfound in [11,14].

Using the sam e conventions,the SU(4)R direction corresponding to preserved

supersym m etry isthus

qI = �
4

I ; (3.12)

i.e.the one preserved by the orbifold projection. It is rather easy now to check

explicitly thatthe ferm ion supersym m etry variationsprojected along thisdirection

vanish precisely when the AdS4 constraints (3.3){(3.4) on the uxes and the �eld

vevs are satis�ed. One way to do so without doing any com putation is to notice

that,oncetheA (2) m atricesentering thespin-
1

2
supersym m etry transform ationsare

contracted with the SU(4)R vector qI,they reconstruct the N = 1 F-term s. The

vanishing ofthe latterthen ensures the vanishing ofthe N = 4 ferm ion variation.

Notice that,because ofthe particularform ofthe K�ahlerm anifold (3.1)and ofthe

ux superpotential(3.11),theN = 1 F-term sread:

FS = e
K =2

W
�
�
S! � S

; (3.13)

FU�
= e

K =2
W
�
�
U� ! � U �

; (3.14)

FT� = e
K =2

W
�
�
T� ! � T �

: (3.15)

These conditionsexactly m atch the relation between the N = 4 ferm ion variation

A (2) and the gravitino m assA (1):the dilatino variation A (2)I
J hasindeed the sam e

expression ofA (1)with thesubstitution ofV� with V
�
� which correspondstoeq.(3.13),

while the com ponents�H K LA (2)
H K

I
J and A (2)

L4
I
J correspond to substitute in A (1)

oneVM IJ with W M IJ,thusexactly to thesubstitutionsin eqs.(3.14)and (3.15).

W ecan also check thatthedirection qI = �I
4
isindeed theonly onethatannihi-

latesthe ferm ion variation. Thism eansthateven when the orbifold isrem oved we

haveN = 1 AdS4 vacua,thistim earising via spontaneoussym m etry breaking from

N = 4.

As we have discussed atlength in the previous section,the reduction from 10

to 4 dim ensions with uxes leads to an N = 4 gauged supergravity. This im plies
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thatthechoiceofuxes(3.3),leading to thefam ily ofAdS4 vacua presented in [14],

corresponds to a non-trivialgauge group,speci�ed by (2.49). M ore details on the

generalstructure ofthe gaugegroup and itssym plectic em bedding can be found in

the Appendix.Itisinteresting,however,to pointoutthatthe generalgaugegroup

reducestothesem idirectproductofSU(2)with thegroup N 9;3 associated toa3-step

nilpotentalgebra:

G = SU(2)o N 9;3: (3.16)

M ore in detail,we can sum m arize the gauge algebra speci�ed by the choices (3.3)

and (3.4)as

[X i;X j]= �ijkX k; [X i;A
I
j]= �ijkA

I
k; (3.17)

[A 1

i;A
1

j]= �ijkA
2

k; [A 1

i;A
2

j]= �ijkA
3

k: (3.18)

HereX iaretheSU(2)generatorsand A
I
i 2 n9;3,forI = 1;2;3.AttheN = 1critical

pointthe9 vectorsgauging thenilpotentgroup arem assiveand thesurviving gauge

group is

G vac = SU(2): (3.19)

W e point out that this gauge group,however,does not m atch the fullsym m etry

group ofthe corresponding type IIA solution. W e willsee in the nextsection that

thed = 10 background hasan SU(2)3 isom etry group and thattheScherk{Schwarz

reduction sees only its truncation to G vac = SU(2). As we already explained,all

BIaresatis�ed withoutsource term s.However,thepresence ofO6-planesfrom the

orientifold projection requiresthefurtherpresenceof16D6-branes(andtheirim ages)

to cancelthecorresponding charge:wecan do thisby placing theD6-braneson top

ofthe O6-planesso thattheircharge and tension cancellocally.Thiscon�guration

allowsto solve the d = 10 equationsofm otion and BIexactly,withoutthe need of

sm earing thesources.Thisim pliesthatattheN = 1 vacuum therearealso m atter

�eldsassociated to the uctuationsofthe D6-branes,which we putto zero to �nd

thevacuum solution.In particularthereare8 O6-planesand 2 D6-braneson top of

each O-plane to canceltheircharge and tension. Thiscon�guration addsan extra

SO(4)8 gaugefactorto the d = 4 e�ective action.Ifwe are interested in recovering

the fullN = 4 e�ective theory around thisvacuum ,we should in principle consider

also these �elds,which enlarge both the scalarm anifold and the gauge group. W e

can anticipatethatm any oftheextra scalar�eldswillgetm assfrom uxes.

SincetheD6 and O6 chargescancelwithouttheneed ofa netux contribution,

thesolution willsurvivealso in theabsenceoftheorientifold projection.Thefam ily

ofAdS4 solutions described above is then also a solution ofthe m assive oriented

Type-IIA equations ofm otion. The cancellation ofthe D6-brane charge is also a

signalthat the truncated d = 4 theory without the orientifold projection can be

em bedded in a gauged N = 8 supergravity. Indeed,as shown in the Appendix,

the gauge algebra can be em bedded in e7(7). In this context we can discuss again
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the structure ofthe e�ective theory and the m odulistabilization process. W hile

leaving allthe technicaldetailsforthe Appendix,we can sum m arize here a couple

ofinteresting resultsofthisanalysis.

Thegaugegroup oftheresulting N = 8 truncation isalso a sem idirectproduct

ofa com pact group,in this case SU(2) � U(1),with a nilpotent group,now of

dim ension 24.On thevacuum ,allthevector�eldsassociated to thenilpotentgroup

becom e m assive as they should. The com pact part has an interesting structure,

because the U(1) group is com patible with the R-sym m etry group of a residual

N = 2 supersym m etric theory.

Gauged m axim alsupergravities in d = 4 have a naturallink with M -theory

reductions.W hilem ostofthem assive IIA uxesareperturbative also from theM -

theory pointofview,being either4-and 6-form uxesorm etricuxes,theG
(0)

ux

hasclearlyanon-perturbativeorigin.Thiscan beexplicitly seen from theem bedding

ofourreduced m odelin N = 8 supergravity and the attem ptat interpreting this

theory asa Scherk{Schwarz reduction ofM -theory.TheG
(0)

ux inducesa gauging

thatinvolvesthe vector�eld com ing from the dualm etric along the M -theory/IIA

circle,thereforeitcannotbeobtained in ausualcom pacti�cation schem e.According

to ref.[37],them assive IIA theory would arisefrom M -theory by com pactifying on

a collapsing twisted 3-torus(in otherwords,by taking a suitablezero-sizelim itofa

com pacti�cation on T3 with m etric ux !m n
p). Thispicture nicely agreeswith our

analysisoftheN = 8,d = 4 gauged supergravity:G
(0)

inducesa gauging involving

the vector �elds C
(7)

�m nqrst,B �m and B �t (where the index m is along the twisted

3-torus,while tis not). After the M -theory uplift these vectors are m apped into

A
(6)

�pqrst,V
m
� and A

(3)

�tp,which areindeed gauged by them etricux on the3-torus(see

also (A.18){(A.21)in theAppendix).

In view ofouranalysis,thiscorrespondencecan bepushed further,extending it

from uxesto sources.Asalready stated,G
(0)

gaugesthevectorofthedualm etric,

which couples electrically to KK6-m onopoles. This suggests that M -theory KK6-

m onopolesarerelated to D8-branes,i.e.thesourcesoftheIIA m assparam eter.The

aboveconnection can bedescribed by thefollowing chain ofdualities:

IIA IIB IIA M

G
(0) Tm

�� � �! G
(1)

m

Tn
�� � �! G

(2)

m n

S
1

p
�� � �! !m n

p

[�8]q
Tm
�� � �! [�7]qm

Tn
�� � �! [�6]qm n

S
1

p
�� � �! [�6]qm n

p

: (3.20)

In the above schem e, Tm and Tn denote T-dualities along the m and n direc-

tions (m 6= n),S1
p the M -theory uplift. Sim ilarly,[�8],[�7],[�6]and [�6]denote

the Poincar�e duals ofthe D8-,D7-,D6-brane world-volum es and ofthe M -theory

KK6-m onopole,respectively. ThusD8-braneswould correspond to M -theory KK6-
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m onopoleslocalized on thetwisted 3-torus,with the�bresoftheKK6-m onopoleand

ofthetwisted 3-torusidenti�ed.

3.2 T he geom etry ofthe m assive IIA vacuum

W enow discussthegeom etry ofthed = 10solution.In [36]itwasshown that,in the

caset1 = t2 = t3,theN = 1 AdS4 vacua ofeq.(3.3)correspond to com pacti�cations

on AdS4 � X6,with the internalm anifold X 6 having the topology of(S3 � S3)=Z
3
2
,

where theS3 were produced by thegeom etric uxesand theZ
3
2 projection wasdue

totheZ2� Z2 orbifold plustheO6orientifold involution.W enow show that,even in

thegenericcase,thesolution ofourN = 4 gauged supergravity theory corresponds

to a com pacti�cation on a S3 � S3 m anifold with RR and NSNS uxes turned on

and an O6 orientifold involution thatexchangesthe two 3-spheres. W e discussthe

geom etricstructureoftheinternalm anifold,showing explicitly thatitsolvesthefull

m assive IIA equations even for generic uxes not satisfying the plane-interchange

sym m etry of(3.2)and (3.3).Thisanalysis,which followsthelinesoftheanalogous

discussion in [36],willalsolead ustothecorrectidenti�cation oftheuxquantization

conditionsaswellasofthepossibledeform ationsofourbackground.

A Scherk{Schwarzreduction isequivalentto a com pacti�cation on a localgroup

m anifold,which goesunderthe nam e oftwisted torus. In ourcase,the m etric on

theinternal6-m anifold Y6 can bewritten as

ds
2

Y6
=

3X

�= 1

t�

bu�
(��)2 + t�bu�(e�

�)2; (3.21)

in term softwosetsofthreeglobally de�ned twisted-torus1-form s(��;e��)= (�i;�a)

thatsatisfy theconditions

d�� = !�
1
���� + !�

2
e�� e�� ;

de�� = !3�� �
� e�� + !3�� e���� ;

(3.22)

where (�;�;�)= (1;2;3)and cyclic perm utations. W e recallhere thatt � � ReT�

are the volum e m oduliofthe three T2’sbefore twisting and that bu� are related to

theN = 1 subsector(3.1)ofthem odulispace(2.17)by

ReS = e
� �

r
t1t2t3

bu1bu2bu3
; ReU� = e

� �

s

t1t2t3bu�bu�

bu�
: (3.23)

On a genericN = 1 vacuum ,thesem odulisatisfy

3

bu� bu�
=
!�
1

!�
2

;
bu�

bu�
=

!�
1

!3��
;

bu�t�

t�bu�
=
!�
1

!�
1

; (3.24)

whereitisnow clearthatwedid notim posetheplaneinterchangesym m etry leading

to (3.3). W e can now show that the space resulting from im posing (3.24) is the

{ 23 {



productoftwo 3-spheres.To do so,itisusefulto change basisand use anotherset

ofvielbeins,(��;e��),de�ned as

�� �

q

!�
1
!�
1

�

�
� +

bu�
p
3
e�
�

�

;

e�� �

q

!�
1 !

�
1

�

�
� �

bu�
p
3
e�
�

�

:

(3.25)

These new vielbeinssatisfy thesim pleconditions

d�� = ���� ;

de�� = e�� e�� ;

(3.26)

corresponding to a realization ofan SU(2) � SU(2) group m anifold,nam ely the

productoftwo 3-spheres. Itshould be noted thatjustlike the (��;e��)vielbeinsof

the originalbasis,also the (��;e��) vielbeins are globally de�ned,because S3 is a

parallelizablem anifold.

In thisnew basisthem etrictakesthesim pleform

ds
2

Y6
= �

2

�

(��)2 + (e��)2 � �
� e�

�

�

; (3.27)

with theoverallradiusgiven by

� �

�
t1t2t3

(!1
1!

2
1!

3
1)

2
bu1bu2bu3

� 1=6

: (3.28)

The m etric isactually thatoftwo S3 atangle. Since the angle reducesthe SO(4)2

isom etry ofthetwospherestoSU(2)3,theinternalm anifold correspondstothecoset

Y6 =
SU(2)� SU(2)� SU(2)

SU(2)
: (3.29)

Once m ore we can see that the fullsym m etry group ofthis background,nam ely

SU(2)3,islargerthan theoneweseeatthevacuum ofourd = 4gauged supergravity

m odel,which isjustSU(2).Thereason forthisliesin thefactthatthegauged super-

gravity m odelofthe previous section isobtained by perform ing a Scherk{Schwarz

reduction on the two S3 at angle. Each S3 has a m etric that is invariant under

SU(2)L� SU(2)R ,where the L;R subscript refersto leftorrightm ultiplication by

the SU(2) group. Because ofthe angle,the m etric (3.27) is invariant only under

SU(2)1;L� SU(2)2;L� SU(2)D ;R,where the subscripts 1;2 refer to the two spheres

and SU(2)D ;R isthediagonalrightaction.TheScherk{Schwarz reduction,however,

keeps only m odes that are singlets under the action from the left ofthe isom etry

group ofthe internallocalgroup m anifold. This m eans that only left invariant
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Killing vectorswillsurviveand henceonly theSU(2)D ;R isom etry group can beseen

in thereduced theory.

Note that,outofthe variousparam etersthatcontrolthe vacua,only the com -

bination corresponding to thetotalvolum eentersthem etric.W ecan actually show

thatthisisalso related to the ratio oftwo quantized param eters,which controlall

the otherquantities characterizing oursolution. Using the relation between uxes

and m oduliofeq.(3.24),wecan rewritetheAdS4 solution in the� basisasafunction

oftwo integers:g0 and g6.Them etric,thedilaton and theuxesthen read

ds
2

IIA = ds
2

A dS4
+ �

2

�

(��)2 + (e��)2 � �
� e�

�

�

; �
2 =

51=6

22=3

�
g6

g0

� 1=3

;

e
� 2� =

24=3 � 3

55=6
(g50 g6)

1=3
;

G
(0) = g0;

G
(2) = �

(g2
0
g6)

1=3

25=3 � 51=3

�

�
1e�

1 + �
2e�

2 + �
3e�

3

�

; (3.30)

G
(4) =

9(g0g
2
6
)1=3

210=3 � 52=3

�

�
2e�

2
�
3e�

3 + �
3e�

3
�
1e�

1 + �
1e�

1
�
2e�

2

�

;

G
(6) =

33

25
g6�

1e�
1
�
2e�

2
�
3e�

3
;

H =
1

25=3 � 51=3

�
g6

g0

� 1=3 �
e�
1
�
2
�
3 � �

1e�
2e�

3 + e�
2
�
3
�
1 � �

2e�
3e�

1 + e�
3
�
1
�
2 � �

3e�
1e�

2

�

:

Itshould be noted thatG (4) and H are trivialin cohom ology on the spheres. This

m eansthatto generate thebackground abovewe really need to switch on only two

non-trivialuxes 8:

G
(0)

= g0; G
(6)

= g6�
1e�

1
�
2e�

2
�
3e�

3
: (3.31)

Alltheotheruxesaretrivial,becauseH = dB ,G (2) = � B G(0) and G (4) = dC (3)+
1

2
B B G (0),with

B =
1

25=3 � 51=3

�
g6

g0

� 1=3 �

�
1e�

1 + �
2e�

2 + �
3e�

3

�

; (3.32)

C
(3) = �

4

24=3 � 52=3

�
g0g

2

6

�1=3
�
e�
1
�
2
�
3 + �

1e�
2e�

3 + e�
2
�
3
�
1 + �

2e�
3e�

1 + e�
3
�
1
�
2 + �

3e�
1e�

2

�

:

8Noticethatux quantization hastobeim posed on thecom binations(G eB )(n),which areclosed

becauseoftheBI(seeeq.(2.11)).In ourconventionsthisim pliesthatthequantized uxesarethe

G
(n)

instead ofthe G (n).
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Since thissolution preservesN = 1 supersym m etry,we can see thatthe uxes

and the geom etry satisfy the SU(3)group-structure constraintsderived in [22].W e

recallthatinthecaseofaScherk{Schwarzreduction,theinternalm anifold alwaysde-

�nesa trivialgroup structure.Each supersym m etry willespecially de�nea com plex

structure,with itsassociated 2-form J,and a holom orphic 3-form 
. Given these

form s,theuxeswillobey thesupersym m etry constraintsderived in [22],which,in

thestring fram eand with thewarp factorsetto 1,read

dJ = 2em Re
 ; d
= i

�

W
�
2
J �

4

3
em J

2

�

; H = � 2m Re
;

G
(0) = 5m e� � ; e�G (2) = � W

�
2 +

1

3
em J; G

(4) =
3

2
m e� �J2; G

(6) = �
1

2
em e� �J3:

(3.33)

Thesolution isgiven by theSU(3)structurede�ned by

J =
31=2 � 51=6

25=3

�
g6

g0

� 1=3 �

�
1 e�

1 + �
2 e�

2 + �
3 e�

3

�

(3.34)

and the(3,0)-form


=
51=4

23

r
g6

g0

�
e�
1 � e

2�i=3
�
1

� �
e�
2 � e

2�i=3
�
2

� �
e�
3 � e

2�i=3
�
3

�

: (3.35)

Theotherparam etersare

W
�
2
= 0; em = �

p
15m = �

1

22=3 � 51=12

�
g0

g6

� 1=6

: (3.36)

This shows that the m etric ofY6,leading to our N = 4 supergravity vacuum ,is

actually nearly-K�ahler. It therefore coincides with one ofthe specialm assive IIA

AdS4 solutionsfound in [21].

As noted in [36],we could stillsolve the supersym m etry conditions by adding

sm eared D6-branesthatm odify the2-form BIand hencerelax therelation between

the param etersm and em . For em 2 > 15m 2 one can obtain new solutionsby adding

D6-branes,becausethe2-form BIreducesto

dG
(2)+ H G

(0) =
2

3
e� �

�
em
2 � 15m2

�
Re
= Q(� 6): (3.37)

From the ux pointofview,thism eansthatwe can introduce a furtherparam eter

correspondingtotheD6-branedensity,which allowstointerpolatebetween thecases

with G
(0)

= 0,G
(6)

6= 0 of[38],the one with both G
(0)

6= 0 and G
(6)

6= 0 and

em 2 = 15m 2 of[21],itsgeneralizations(with G
(0)

6= 0 and G
(6)

6= 0 and em 2 6= 15m 2),

and �nally thecaseG
(0)

6= 0,G
(6)

= 0.Thelattercase correspondsto switching o�

them etricuxesandthegeom etrybecom esT6=Z2,correspondingtotheunorbifolded
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T6=Z2 N = 4;8 g0 = 0

[14,15,16] [21,14,16] [38,14,16]

em 2

m 2
= 0

em 2

m 2
= 15

em 2

m 2
= 1

Figure 1: The fam ily ofAdS4 solutionsdiscussed in the text. W hen em = 0 there are no

m etric uxes,the geom etry collapses to T 6=Z2 O 6 orientifold. As em 2

m 2 6= 0 m etric uxes

deform the torus into S3 � S3,when em 2

m 2 = 15 the net D6-brane charges canceland the

solution allows a description in term s ofN = 4 (or N = 8 in the absence ofO 6-planes)

gauged supergravity.In thelim itm 2 = 0 them assiveparam etervanishesand thesolution

adm ita geom etricalM -theory uplift.

version ofthe solutions of[14,15,39]. The case where the m assive param eter is

vanishing isespecially interesting,becauseitallowsfora liftto M -theory,wherethe

resultingspaceshould haveG 2 holonom y.TheS
3� S3 m anifold can actually beused

asthebaseofanon-com pactG 2-holonom y m anifold builtfrom itscone[40],and the

relation between thisconeand theIIA solution hasbeen discussed in [38].

3.3 Scales

Asdiscussed above,in the absence ofa netD6-brane charge,the solutionscan be

param eterized by two integernum bers:g6 and g0.Neglecting forthem om entorder

one coe�cients, the scaling ofthe volum e and the dilaton with respect to those

param etersreads

�
2 �

�
g6

g0

� 1=3

; e
2� �

1

g
5=3

0
g
1=3

6

�
1

g20�
2
: (3.38)

Itiseasy to see thatforg6 � g0 both the volum e and the inverse string coupling

can bem adearbitrary large,so asto justify theclassicalsupergravity calculation.

W e need now to check whether the AdS4 scale (which gives the scale ofthe

m assive m odes)can bem adeparam etrically sm allerthan theKK scale,to perm ita

4d e�ective�eld theory description.TheKK scaleissetby theradiusofthespheres

�,whiletheAdS4 length can beextracted by the4d Hubbleparam eter

‘
� 2

A dS
=

V0

M 2
P

�
g2
0

p
g

e� 2�
p
g
� �

� 2
; (3.39)

where V0 isthe vev ofthe d = 4 potentialand M P isthe d = 4 Planck m ass. W e

can seethatindependently ofthevalueoftheparam etersin thiscasetheAdS scale

isalwaysofthe sam e orderofthe KK scale. Thisisa com m on feature ofthistype
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ofcom pacti�cations(asin AdS5 � S5,AdS4 � S7,etc.),where the positive energy

contributionsfrom the RR and NSNS uxesto the e�ective potentialare com pen-

sated by thenegativecontribution from thegeom etricuxes,i.e.thecurvatureofthe

internalm anifold;therefore the netcontribution to the d = 4 curvature isbasically

given by the internalcurvatureitself,giving therelation between theKK scale and

theAdS length.

The relation between the AdS length and the KK scale also im plies that,for

this class ofsolutions,gauged supergravity around the vacuum does not coincide

with the fulld = 4 e�ective �eld theory. Rather it represents just a particular

truncation,describing a subset ofthe higher-dim ensionalspectrum in term s ofa

d = 4 gauged supergravity. The latter can thus be seen as a toolfor generating

solutions.Thisexplainswhy forexam plethed = 4 gauged supergravity seesonly an

SU(2)gauged group instead ofthe expected SU(2)3 associated to the fullisom etry

ofthe solution. The Scherk{Schwarz reduction procedure truncated away part of

the m assless spectrum and kept part ofthe KK m odes in order to reconstruct a

Lagrangian consistentwith theN = 4 and N = 8 gauged supergravity constraints.

The constraint linking the AdS4 length and the KK scale can be relaxed only

in the specialcase where em = 0. In this case both the contributions from g6 and

the curvature are switched o� and the dom inant contributions becom e those from

g0 and the D6-brane sources,which m ust be negative to satisfy the BIconstraints

(seeeq.(3.37)).In particulartheroleofgiving negativeenergy contributionsto the

potential,essentialforstabilization,isnow played by O6-planesratherthen by the

curvatureoftheinternalm anifold.Thefactthatsuch contribution scalesdi�erently

with thevolum eand thedilaton allowsto disentangle theKK scale from theAdS4,

indeed now

‘
� 2

A dS
=

V0

M 2
P

�
g20
p
g

e� 2�
p
g
�

Q 2
6

g2
0
�6
; (3.40)

where Q 6 isthe netO6-plane chargecontribution.In thiscase we have a hierarchy

between the AdS4 and the KK scale,which allowsfora d = 4 e�ective �eld theory

description exactly when thesupergravity approxim ation holds,i.e.forlargevolum e

� � 1. Calabi-Yau and orbifold lim itofsuch solution have already been discussed

in [14,15,39].

Finally,notice that,unless Q 6 � 0,ux quantization bounds the dilaton to

be such that e� . 1,forbidding the possibility ofa perturbative M -theory uplift.

Thisfeature m ightbe connected to the factthat,when the m assive param eterbe-

com esim portant,Type-IIA doesnotallow a perturbative/geom etricM -theory lim it

anym ore,so that the M -theory description is doom ed to be non-geom etric in this

case.

3.4 C om m ents on the dualC FT 3

An interesting question we can ask is: what is the 3-dim ensionalconform al�eld
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theory (CFT)dualto thisfam ily ofAdS4 vacua? W ewillnotgivetheexplicitCFT

butwewillcom m enton som einterestingfeaturesthatcan beextracted directly from

thepropertiesofthesupergravity solution.

W e startwith the specialcase m = 0,where the IIA m assive deform ation van-

ishes.In theabsenceofg0,thetworelevantparam etersarethen g6 and Q 6,thenum -

berofD6-branes. Notice thatQ 6 also determ inesG
(2) through the BIdG (2) = Q 6,

so thatwe can trade Q 6 with the ux ofG (2) (g2). Asin [41],we can be tem pted

to associate g6 and g2 with the CFT param etersN and k,which correspond to the

rank ofthe gauge group and the Chern-Sim ons (CS)levelrespectively. Indeed,as

in [41],also in thiscase the num berofcolorsand the’tHooftcoupling would scale

with respectto thevolum e(� �6)and thestring coupling (e�)as

N � g6 �
�5

e�
;

N

k
�
g6

g2
� �

4
: (3.41)

Ifwe switch on the IIA m ass param eter,we expect to split the CS levels by an

am ountproportionalto g0,analogously to [42].W hen em 2 = 15m 2,thenetD6-brane

charge vanishesand the solution becom es exact,withoutthe need ofsm earing the

sources.Noticealso thatin thiscase,aslongas� � 1,g0 � g2,sothatthesplitting

oftheCS levelsisstillexpected to bea sm alldeform ation oftheCFT.

In the solution without branes, the isom etry group is SU(2)3, which corre-

spondsto the globalavorsym m etry ofthe CFT.Asalready noted before,adding

D6/O6-brane system s corresponds to perform ing a Z2 truncation ofthe spectrum

and to adding an SO(4)8 gauge group. Analogously,the CFT is expected to be

som esuitabledeform ation ofthestarting CFT with globalsym m etriesenhanced to

SU(2)3� SO(4)8.

A di�erence with respect to the CFT discussed in [41,42]is the presence of

3-cycles in the supergravity solution. The presence ofsuch cycles (one for each

S3)isassociated to ataxionicdirectionsin m odulispace arising from theinternal

com ponentsoftheRR 3-form .Considerforexam ple

C
(3) = a(�1�2�3 + e�

1e�
2e�

3); (3.42)

which is the com ponent that survives also in the O6 case. This �eld corresponds

to a m arginaldim ension-3 operator in the gauge dual,which is a descendant of

a long m ultiplet containing also the inverse gauge coupling �eld in the e�ective

d = 4 supergravity. Because ofthis we m ay expect the axion to get a m ass from

non-perturbative e�ects. Indeed Euclidean D2-brane instantons wrapping the two

3-spheresexactly do thejob,producing correctionsofthetype

Ae
�

R

E 2
(e� � R e
+ iC (3)) � Ae

�
vol(S

3
)

gs
+ ia

; (3.43)

where the prefactorA can be in principle �eld-dependent. The anom alousdim en-

sion ofthe dim ension-3 operators associated to the axion would then get a non-
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perturbativecorrection ofthetype(3.43).Iftheidenti�cation oftheCFT param eters

(3.41)iscorrectsuch correction would scaleas

e
� const

p
kN

; (3.44)

thusitwould be non-perturbative both in the ’tHooftcoupling and in thelarge-N

expansion.

4.D iscussion

To sum m arize,we studied com pacti�cationsofType-IIA string theory on (twisted)

toriwith uxes that adm it a d = 4 description in term s ofN = 4 supergravity.

Sincein N = 4 supergravity theonly deform ationscom patiblewith supersym m etry

aregaugings,each particularcom pacti�cation willcorrespond toadi�erentgauging,

and each com ponentofthepossibleRR,NSNS and m etricuxesthatcan beturned

on m apsinto adi�erentgaugestructureconstantand adi�erentem bedding into the

duality group.W ethusidenti�ed them apping between thed = 10 uxesand d = 4

gaugestructureconstants.Fortheconsidered classofcom pacti�cations,thisallows

us to reform ulate the problem of�nding the solutions ofthe d = 10 equation of

m otionsto theoneof�nding extrem a ofthed = 4 scalarpotentialoftheassociated

N = 4 gauged supergravity.

Thiscorrespondence isparticularly usefulsince thereisa largenum berofcom -

pacti�cationswithlesssupersym m etry(suchastoroidalorbifolds),whose(untwisted)

closed string sector is constrained by the underlying extended supersym m etries to

bejusta truncation oftheN = 4 supergravity one.Itwould beinteresting to study

system atically the corresponding scalar potentialbecause it would allow us to de-

duce generalproperties valid fora large set ofcom pacti�cations: forexam ple,the

(in)possibility to havefullm odulistabilization in M inkowskiordeSitterspace.

Itisknown [19]thatthegaugingsofN = 4 supergravity includenotonly \nor-

m al" electric gaugings (associated to the structure constant f+ M N R ),but also the

so-called de Roo{W agem ans phases (associated to m agnetic gaugings with struc-

ture constants f� M N R ) and the Sch�on{W eidner param eters (�� M ). The de Roo{

W agem ans phases are essentialfor a com plete m odulistabilization. W e identi�ed

which ux com ponentsallow ustoturn on such gaugingsand form ulated thegeneral

rule valid also forotherstring com pacti�cations. The Sch�on{W eidner param eters,

on the otherhand,enterthe scalarpotentialin a di�erentway,with an intriguing

sim ilarity to Fayet{Iliopoulosterm sin N = 1 supergravity. W e identi�ed a d = 10

supergravity origin forsuch term s,which howeverdoesnotseem com patiblewith a

superstringuplift,foritrelieson an accidentalglobalsym m etry ofthetwo-derivative

supergravity lim it. Analogously to Fayet{Iliopoulos term s in N = 1 supergravity,

there are no known exam ples yet ofconsistent string com pacti�cations producing
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non-trivialSch�on{W eidnerparam etersin fourdim ensions.Itwould beinteresting to

study thispossibility further,because itm ightplay an im portantrolein thesearch

ofdeSittervacua in string com pacti�cationsand extended supergravities.

Another interesting direction would be the extension ofour results to the in-

clusion ofnon-geom etric uxes, which would enrich the set ofgenerated N = 4

gaugings.Ithasrecently been shown thatnon-geom etric uxescan produce super-

sym m etricM inkowskisolutionswith allm odulistabilized.Theextension togaugings

com ingfrom non-geom etricuxesm ightin principlelead totheidenti�cation ofsuch

vacua also in the contextofN = 4 supergravity,a resultthatisstilllacking in the

literature.

Asan application ofourresults,we studied the N = 4 upliftofthe fam ily of

supersym m etric AdS solutions found in [14,16,36,21,22]. W e found that for a

particularchoiceofparam etersthesesolutionsadm itadescription in term sofd = 4,

N = 4 gauged supergravity with spontaneous supersym m etry breaking to N = 1.

W eshowed thatin thiscasealsoadescription in term sofN = 8gauged supergravity

ispossible,butthatthereisno separation between theKaluza{Klein and theAdS4

scale,so thatthe gauged supergravity theory doesnotrepresentthe e�ective d = 4

action,butonlyaconsistenttruncation ofthed = 10spectrum .W ealsoshowed that

such solution,which corresponds to a particular AdS4 � S3 � S3 com pacti�cation

with uxes,satis�es the d = 10 supersym m etry equations,which continue to be

satis�ed also away from the N = 4 point,when the solution is deform ed via the

introduction ofsourcesforthe D6-brane charge. The extra param eterthatcontrol

thenetD6-branechargeallowstointerpolateam ongotherknown IIA solutions,such

asthosediscussed in [38].

Finally,by AdS/CFT correspondence we expect new CFT3 to exist: we com -

m ented on som e oftheirpeculiarproperties,which m ay give a hinton how to con-

structthem .
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A .Sym plectic em beddings

The d = 4 theory we obtained from the Scherk{Schwarz reduction ofm assive IIA

supergravity is an N = 4 gauged supergravity m odel. Four-dim ensionalgauged
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supergravities are speci�ed by theirgauge group G and itssym plectic em bedding,

i.e.the em bedding ofthe gauge group in the electric-m agnetic duality group: G �

Sp(2nV ),wherenV isthetotalnum berofvector�elds.In thisAppendix weprovide

thesym plecticem beddingspecifyingourm odelandcom m entontheN = 8extension

and on otherinterestinggroup-theoreticalpropertiesthatm ay help toclarifytherole

and theorigin ofcertain structuresofthee�ective theory.

Thestartingpointisthegaugegroup G ofthee�ectivetheory and itsassociated

algebra.Foreach ofthevector�eldsA M
� � A�M� wecan introduceagaugegenerator

TM � T�M .Thesegeneratorsful�lla gaugealgebra following from thecom m utators

[TM ;TN ]= � XM N
P
TP = � X[M N ]

P
TP : (A.1)

W ehavecom puted in section 2.3.3,eq.(2.49),thestructureconstantsf�M N
P ofthe

gauge algebra realized by ourm odel. Following [19],the structure constantsabove

aredeterm ined in term soff�M N P and ��M as

X M N
P = X �M �N

P =

� �


�
f�M N

P +
1

2

�
�
P
M �



�
��N � �

P
N �


���M � �



�
�M N �

P
� + ����

P
N ��M �

�
�
:

(A.2)

Forourm odel,the structure constantswere derived in section 2.3.3 and the corre-

sponding gaugealgebra reads:

[T+ i;T+ j]= !ij
k
T+ k � Hija �

a�a
T+ �a + G

(6)

�ijk �
k�k
T+ �k �

1

2
G
(4)

ijab�
abc

T+ c; (A.3)

[T+ i;T+ �a]= � ��aa

�

!ic
a
T+ c� G

(2)

ib �
abc
T+ c+

1

2
G
(4)

ijbc�
abc

�
j�|
T
+ �|

�

; (A.4)

[T+ �a;T+ b]= � !ib
a
�a�a �

i�{
T+�{; (A.5)

[T+ i;T+ a]= H ija �
i�{
T+�{+ !ia

b
T+ b; (A.6)

[T+ i;T� �a]= ��aa

�

�
1

2
!ib

a
�
b�b
T� �b+

1

4
�ijk�

abc
!bc

k
�
j�|
T+ �|

�

; (A.7)

[T+ �a;T+ �b]= ��aa��bb

�

G
(0)

�
abc
T+ c� G

(2)

ic �
abc
�
i�{
T+�{

�

; (A.8)

[T+ i;T� j]= �
1

4
�ijk !ab

k
�
abc
T+ c+

1

2
!ij

k
T� k +

1

6
�
abc

H abc�ijk �
k�k
T+ �k

�
1

2
H ija �

a�a
T� �a; (A.9)

[T+ i;T+�{]= � !ij
k
��{k �

j�|
T+ �|; (A.10)

[T+ �a;T� i]= ��aa

�
1

2
!ic

a
�
c�c
T� �c�

1

4
�ijk !bc

k
�
abc

�
j�|
T+ �|

�

: (A.11)
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This generic algebra is realized for any con�guration ofD6-branes and O6-planes

consistentwith theN = 4supersym m etry constraints.However,when thenum berof

D6-branesand O6-planesgivesazeronetcharge,them odelconstructed in thispaper

becom esatruncation ofan N = 8supergravity m odel.M oreover,when G
(0)

= 0the

m odelcan also beobtained asan M -theory reduction with perturbativeuxesonly.

Forthese reasons,itm ustbe possible to em bed the gauge algebra presented above

into the largere7(7) algebra,which isthe algebra generating the U-duality group of

N = 8 supergravity.W enow providethisem bedding explicitly.

Although the approach we use is rather indirect,it willhelp us clarify som e

interesting issuesaboutthe origin ofand the constraintson the gauge group. Our

starting point is the e7(7) algebra. Following [43],we can construct the 133 e7(7)

generatorsin thefundam ental56 representation asm atrices

T =

0

@
�
[P

[M
tN ]

Q ] tP Q R S

tM N TU � �
[T

[P
tQ ]

U ]

1

A ; (A.12)

whereM ;N ;:::= 1;:::;8,tM
N arethe63 SU(8)antiherm itian and tracelessgener-

atorsand

tM N P Q =
1

24
�M N P Q R STU t

R STU (A.13)

aretherem aining70non-com pactgenerators.W ethenrewritethegeneratorsandthe

corresponding algebra using a gl(7;R)decom position,which isalso appropriate for

M -theory em beddings.In thisbasiswecan splitM = (m ;8)and the133 generators

are (tm
n;tm np;tm np;t

m ;tm ),as follows from the branching rule 133 ! 480 + 10 +

35+ 2 + 35� 2 + 7� 4 + 7+ 4.Thecom m utatorsde�ning thealgebra then read

[tm
n
;tp

q]= �
n
p tm

q � �
q
m tp

n
;

[tm
n
;t

p1p2p3]= � 3�[p1m t
p2p3]n +

5

7
�
n
m t

p1p2p3 ;

[tm
n
;tp]= �

n
p tm +

3

7
�
n
m tp;

[tn1n2n3;tp1p2p3]= �
n1n2n3p1p2p3qtq;

[tm
n
;tp1p2p3]= 3�n

[p1
tp2p3]m �

5

7
�
n
m tp1p2p3 ;

[tm
n
;t

p]= � �
p
m t

n �
3

7
�
n
m t

p
; (A.14)

[tn1n2n3;tp1p2p3]= �n1n2n3p1p2p3qt
q
;

[tn;tm ]= tm
n +

1

7
�
n
m t;
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[tm ;tn1n2n3]= �
1

6
�
m n1n2n3p1p2p3 tp1p2p3 ;

[tm ;tn1n2n3]= �
1

6
�m n1n2n3p1p2p3 t

p1p2p3 ;

[tm 1m 2m 3
;t

n1n2n3]= 18�
[n1n2

[m 1m 2
tm 3]

n3]�
24

7
�
n1n2n3
m 1m 2m 3

t;

where t � tm
m . W e realized this splitting because whenever G

(0)

= 0 the gauge

algebra (A.3){(A.11)reducesto the one obtained from M -theory com pacti�cations

with geom etricuxes,4-form uxesG m npq and a 7-form ux G (7),and although this

uplift can be done only when the IIA m ass param eter is switched o�,the N = 8

em bedding can stillbeperform ed in thepresence ofnon-trivialG
(0)
.

In the M -theory fram ework,the 56 vector �elds and their corresponding gen-

erators also split as 56 ! 7� 3 + 21� 1 + 21+ 1 + 7+ 3. W e can actually labelthem

as the ones com ing from the reduction ofthe m etric �elds (V m
� ) Zm ,the ones as-

sociated to the 3-form �elds (A
(3)
�m n) W

m n,the dualones com ing from the 6-form

(A
(6)

�pqrst)W m n and thedualm etricgenerators(eV�m )Z
m .These generatorscan now

be em bedded in thee7(7) onesby recognizing theuxesasintertwinersbetween the

representationsofthegeneratorsand thoseofthee7(7) generators.Theidenti�cation

ofthe M -theory perturbative uxes in term s ofour IIA uxes is straightforward.

The 4-form ,the geom etric uxesand the 6-form ux proportionalto the volum e of

theinternalspaceliftto objectsofthesam etype(wherethevolum eoftheinternal

spaceisnow 7-dim ensional):

G
(4)

ijab; !ij
k
; !ia

b
; !ab

k
; G

(7) = G
(6)
: (A.15)

Theother�eldscan also beidenti�ed easily as

!ia
11 = G

(2)

ia ; G 11ija = H ija; G 11abc = H abc: (A.16)

W e are left with a single non-perturbative ux G
(0)

,which,however,can also be

easily identi�ed by looking atthestructureofthecom m utatorsofthegaugealgebra

asa com ponentofa ux in the28+ 1 (seeforinstancesection 4 of[44]):

�
m n = G

(0)

�
m
7 �

n
7: (A.17)

Atthisstagewecan proposethe em bedding oftheM -theory generatorsin thee7(7)

onesas

Zm = a1!m n
p
tp
n + a2G m npqt

npq + a3g6tm ; (A.18)

W
m n = 2b1!pq

[m
t
n]pq + b2�

m npqrsv
G pqrstv + 2b3�

p[m
tp
n]
; (A.19)

W m n = c1!m n
p
tp; (A.20)

Z
m = d1�

m n
tn; (A.21)
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leading to theem bedding tensors

�m ;n
p = a1!m n

p; �m ;npq = a2G m npq; �m ;
n = a3g6�

n
m ;

�m n;
p = c1!m n

p;

�m n;
p
q = 2b3�

q[m �
n]
p ; �m n;

pqr = 2b1![pq
[m �

n]

r]
; �m n;p = b2�

m npqrsuG qrsu;

�m ;n = d1�
m n:

(A.22)

For the gauging to be wellde�ned,these tensors m ust satisfy som e quadratic

constraints:

�m ;
p
�
m ;q + �

m n;p
�m n;

q � �
m ;p

�m ;
q + �m n;

p
�
m n;q = 0; (A.23)

�
m ;p

�m ;qrs + �m n;
p
�
m n;

qrs = 0; (A.24)

�
m ;p

�m ;q
r + �m n;

p
�
m n;

q
r = 0: (A.25)

Itisstraightforward to show that(A.25)isidentically satis�ed,while (A.23)corre-

spondsto the3-form BI,and (A.24)givesthe4-form BIand thetorsion constraints

! � ! = 0.

Hence we can �nally derive the structure ofthe gauge algebra de�ned by the

generators(A.18){(A.21):

[Zm ;Zn]= !m n
p
Zp + � Gm npqW

pq +  g6W m n; (A.26)

[Zm ;W
np]= 2� !m q

[n
W

p]q + "�
npq1q2q3q4q5G m q1q2q3W q4q5 + 2� g6�

[n
m Z

p]
;(A.27)

[Zm ;W np]= � !np
q
W m q; (A.28)

[W m n
;W

pq]= � 4� �[m [p
W

q]n]+ 2� �pqr1r2r3r4[m G r1r2r3r4Z
n]
; (A.29)

[W m n
;W pq]= 2� !pq

[m
Z
n]
; (A.30)

with allthe other com m utators vanishing identically. Closure in e7(7) through the

de�nitions(A.18){(A.21)�xesthevariouscoe�cientsto

� =
3

2

a2

b1
;  =

a3

c1
; � = 1; "= �

a2b1

c1
;

� =
a3

2c1
; � = 1; � = �

b21

2c1
; � = �

2

3

b1

a2
;

� = �
a2b1

4c1
; � = �

1

2
;

(A.31)

and

b3 =
b1

3a2
; b2 =

a2b1

2
; d1 =

2

3

c1b1

a2
: (A.32)
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Obviously wecannothave56 independentgeneratorsand a sim pleinspection of

(A.18){(A.21)im m ediately con�rm sthis,leading to thefollowing constraints:

3![m n
q
W jqjp]=

3

2

a2

b1
G m npqZ

q
; (A.33)

!pq
m
W

pq =
a2b1

2c1
�
m n1n2n3n4n5n6G n1n2n3n4W n5n6 +

a3

c1
Z
m �

2

3

b1

a2
�
m n
Zn: (A.34)

Atthisstage,following [12],we can deduce how theaction oftheN = 4 gauge

generators can be em bedded in e7(7) in the case without net D6-brane charge,ac-

cording to the branching ofthe representations ofe7(7) with respect to o(1;1)3 �

sl(3)� sl(3). In particular,from the branching ofthe 56 we getthatthe surviving

24 vectorstransform as

(�3;1)� � � + (�3;1)+ � � + (1;3)� 0� + (1;�3)� 0+

+ (3;1)+ + + + (3;1)� + + + (1;�3)+ 0+ + (1;3)+ 0� ; (A.35)

which istherepresentation contentofourvector�elds

V
i
�; C�ij; B �a; C�ab;

eV�i; C�abci;
eB �ijkab; C�ijka ; (A.36)

and ofthecorresponding generators

T+ i; T� i; T+ �a; T+ a; T��{; T+�{; T� a; T� �a: (A.37)

W e can then proceed to em bed the gauge generatorsin the onesofe7(7) using the

uxesasintertwineresand splitting theindicesasm = (i;a;11).Theresultis

T+ i � !ij
k
tk
j + !ia

b
tb
a + G

(2)

ia t11
a +

1

2
G
(4)

ijabt
jab� Hijat

ja11 � G
(6)

ti; (A.38)

T+ a � � �abc!id
b
t
cid +

1

2
�
ijk
H aijtk; (A.39)

T+�{ � � ��{i
1

2
�
ijk
!jk

l
tl; (A.40)

T+ �a � ��aa

�

!ic
a
t
11ic� G

(2)

ic t
aic +

1

4
�
ijk
�
abc
G
(4)

ijbctk � G
(0)

t11
a

�

; (A.41)

T� i � �
1

2
�ijk!ab

j
t
kab+

1

6
�
abc
H abcti; (A.42)

T� �a �
1

2
��aa�

abc
!bc

k
tk: (A.43)

Aswehaveseen before,notallgaugevectorswillbeindependent,thereforethe

corresponding gauge generators willbe constrained. For the case at hand,in the
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absenceofnetD6-branecharge,theconstraintsfollow from theaboveem bedding in

e7(7):

� !ab
k
�ijk�

j�|
T+ �|+ !i[a

c
�b]cd�

d�d
T� �d = 0; (A.44)

!ij
k
�
ijl
T� l+ !ab

k
�
abc

T+ c+
1

3
�
abc
H abc�

k�k
T+ �k � �

ijk
H ija�

a�a
T� �a = 0: (A.45)

Thisfacthasan interesting application in thecontextofunderstanding theprocess

by which wehaveidenti�ed theelectricvector�eldsand integrated outthem agnetic

ones.Indeed,theaboveconstraintsarein one-to-onecorrespondencewith thelinear

com binations ofthe BIthathave to be solved to obtain the physicalvector�elds,

without introducing two-form tensor �elds in the d = 4 e�ective theory. For this

purpose we can take as a starting point the m assive IIA action where both the

standard and the dual�eld-strengthsappear. W e then solve the BIresulting from

the integration ofthe potentials we do notwant in the e�ective action. These BI

read

d(eB G)= 0: (A.46)

Thestandard form ulation ofthee�ectivetheory can beobtained by integrating out

C (9),C (7) and C (5),butby doing so,we getan e�ective N = 4 supergravity m odel

with tensor�elds:C ��� and C��i.Ifwedonotwanttensor�eldsin thee�ectived = 4

theory,we have to integrate outC (9),C (7),and som e com ponents ofC (5) together

with som e com ponents ofC (3). This m eans that we have to solve the BI for the

4-form and 6-form only partially.W ethereforeneed to identify which com binations

oftheBIhavetobeselected.Thiscan bedonein thefollowing way.Startby taking

theBIcom ing from integrating outtheC (p� 1) potentialsand de�ne

dG
(p)+ !G

(p)+ H G
(p� 2) � F

(p+ 1)
; (A.47)

whereH = dB + !B + H .Trivialconsistency conditionsare

dF
(p+ 1)+ H F

(p� 1)+ B dF
(p� 1) = 0: (A.48)

Theparam eterizationsofthecurvaturesareobtained by�rstintegratingoutC (9)and

C (7),leading to F (1) = 0 and F (3) = 0.Thisresultsin thede�nition oftheG
(0)

ux

and ofthecurvaturetwo-form G (2) = dC (1)+ !C (1)+ G
(2)

� B G
(0)

.However,when we

proceed totheintegrationofthe5-form ,wesolvetheBianchiidentitiescorresponding

only to som eofthecom ponentsofC (5).TheseareC����a,C���ia,C��abc and C��aij,

which correspond toalltheform sofrank greaterthan one.Theseshould notappear

in thee�ectivetheory.On theotherhand wedonotwanttointegrateoutthescalar

�eldsC abcij and we have to decide which com ponentsofthevector�eldsC �abci and

C�ijka have to survive. Their m inim alset is now easily determ ined by im posing

the consistency conditions (A.48). Ifwe want to solve F�ijab = 0,F��ijk = 0 and

F��iab = 0 (corresponding to the 5-form tensor�eldswith rank > 1),we also need
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to solve at least som e ofthe Bianchiidentities related to the 5-form vector �elds

becauseoftheconsistency conditions

(dF (5))���ijk = 0; (dF (5))���iab= 0: (A.49)

Upon using F��ijk = 0 and F��iab = 0,theseconsistency conditionsread

3![ij
l
F���k]l= 0; (A.50)

which isidentically vanishing when !ij
j = 0,and

!ab
l
F���il+ 2!i[a

c
F���b]c= 0: (A.51)

These equations are selecting the linear com binations related to the tensor �elds

we have integrated out. M oreover they are in one-to-one correspondence with the

constraints (A.44)on the corresponding gauge generators. Itiseasy to check that

thecom binationsappearing in (A.51)do notcontain any tensor�eldsand hencewe

can solveG ��ij and G ��ab in term sofvector�eldsonly.

Atthispointwecan m ovetotheintegration ofthe3-form degreesoffreedom we

do notwantto see in the e�ective action. Thism eansthe space-tim e 3-form C ���,

the three 2-form sC��i and consequently the (up to 3)vector�eldsselected by the

sam e m echanism asthe one described above. The integration ofthe 3 tensor�elds

C��i im pliesthatF��ijabc = 0.However,theconsistency condition now reads

dF
(7)+ !F

(7)+ H F
(5) = 0; (A.52)

because we did notsolve allthe equations from F (5) = 0,butonly som e ofthem .

Looking atthe3 directionslabeled by ���ijabcwegetthat

!ij
lF���labc+ 3![ab

lF���jlijjc]+ 6![ij[a
dF���bc]j]d+

+(H abc+ 3![ab
lB c]l)F���ij+ 3(H ij[a � !ij

lB l[a]+ 2!a][i]
cB j]c)F���bc]= 0:

(A.53)

W ecan seeoncem orethatonly som epartsofthevector�eld Bianchiidentitiespar-

ticipatein theaboveconditionsand oncem oretheyarein one-to-onecorrespondence

with theconstraints(A.45).
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