Analyses of high mass resonances at ATLAS and CMS

L.R. Flores-Castillo University of Wisconsin-Madison

On behalf of the ATLAS and CMS collaborations

BSM LHC 09

Northeastern University

Boston, MA

June 4rd, 2009

Outline

- Introduction
- Detectors
- Dileptons: ee, $\mu\mu$, $\tau\tau$
- Lepton-neutrino
- Lepton(s) plus jet(s)
- Dijets
- Conclusion and outlook

Introduction

- Although extremely successful, there are indications that the Standard Model (SM) is not a complete theory
- Plausible SM extensions predict narrow states that can be reconstructed (completely or not) in ATLAS and CMS
 - Dileptons (e, μ , τ):
 - New heavy gauge bosons (Z'), KK resonances, gravitons
 - Diphotons (see H. Hadavand's talk)
 - Lepton + Missing Transverse Energy
 - New heavy W-like boson
 - Leptons plus Jets
 - Leptoquarks
 - Left-Right Symmetric Models
 - Dijets (see K. Terashi's talk)
- Results shown correspond to a center of mass energy of 14TeV
 - At 10 TeV, cross sections ~ 50%-75% smaller in 100GeV to 1TeV

LHC

- Operating parameters
 - − $E_{beam} = 7 \text{ TeV} \rightarrow 5 \text{ TeV}$
 - $L = 10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 10^{30}\text{-}10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - Bunch Spacing = 25 ns (40 MHz)
 - Pile-Up = 2-20 collisions/crossing
 - Duration of collisions \approx 10-24 h
 - Down Time \approx 1.5 h

Example Decay Channel	LEP	Tevatron	LHC	LHC
	(all)	(all)	100 pb ⁻¹	1 fb ⁻¹
$W \to \mu \nu$	~104	~10 ⁶	~10 ⁶	~107
$Z \to \mu \mu$	~10 ⁶	~10 ⁵	~10 ⁵	~10 ⁶
$tt \rightarrow WbWb \rightarrow \mu\nu + X$		~104	~104	~10 ⁵
QCD jets (p _T > 1 TeV)			~10 ³	~104
Z'(1 TeV) $\rightarrow \mu\mu$			~20	~10 ²

Detectors

ATLAS	CMS
7000 tons	12,500 tons
22m	15m
46m	22 m
2T solenoid	4T solenoid
3.9T (peak) BA toroid	
4.1T (peak) EC toroids	
	ATLAS 7000 tons 22m 22m 46m 2T solenoid 3.9T (peak) BA toroid 4.1T (peak) EC toroids

Bending power

Rather than the peak values of the magnetic field, tracking capabilities depend on the *bending power* of the field configuration

$$\int d\alpha = \int \frac{ds}{R} = \int \left| \frac{d^2 r}{ds^2} \right| ds = \frac{q}{p} \int \left| \frac{dr}{ds} \times \boldsymbol{B}(r) \right| ds$$

R: radius of curvature*s*: distance along the trajectory*r*: position vector

L R Flores Castillo

BSM-LHC09

Performance

	ATLAS	CMS
Tracker	Si pixels, strips + TRT (pid) $\sigma/p_T \approx 5 \times 10^{-4} p_T \oplus 0.01$	Si pixels, strips $\sigma/p_T \approx 1.5 \times 10^{-4} p_T \oplus 0.005$
EM calorimeter	Pb + LAr σ/E ≈ 10%/ $√$ E ⊕ 0.007	PbWO ₄ crystals $\sigma/E \approx 2-5\%/\sqrt{E \oplus 0.005}$
Hadronic calorimeter	Fe+scintillator / Cu + Lar $\sigma/E \approx 50\%/\sqrt{E \oplus 0.03}$	Cu+scintillator $\sigma/E \approx 100\%/\sqrt{E \oplus 0.05}$
Combined Muons (ID+MS)	2%@50GeV to 10%@1TeV	1%@50GeV to <mark>5%@1TeV</mark>

- Powerful id:
 - Photons: Jet rejection ~ few 10^3 for ~80% photon efficiency
 - Electrons: Jet rejection ~ 10^5 for ~60% electron efficiency
 - B-jets: Light flavor jet rejection ~ 100 for ~60% efficiency
 - $\tau \rightarrow$ hadrons: Jet rejection ~ few hundreds for ~50% efficiency
- Missing transverse momentum and jet reconstruction

DILEPTONS e, μ

Signature, selection

- Relatively clean signatures
- Good mass resolution
- Easy to trigger on
- Backgrounds
 - Main background: SM Drell-Yan
 - tt, dijets, W+jets, gamma+jets
- Selection
 - 2 well reconstructed, isolated leptons
 - letal<2.5 (except muons in CMS, 2.4)
 - pT>30 or 50 GeV
 - Opening angle: not needed for discovery, but useful to help distinguish models

Backgrounds

- Drell-Yan
- Processes where jets or photons fake electrons
- Electron and muons from Z and W

Generator-level estimation after applying current values of jet and photon rejection (10⁴ and 10, respectively)

L R Flores Castillo

Background estimation

- Detector effects and theoretical uncertainties can affect the background estimation
- Control sample strategies can help constrain some of these backgrounds

Electrons at high pT

- Reconstruction and identification optimized for high energy electrons
 - Robust criteria based on shower shape, track matching, isolation
 - Efficiency ~ 80%
 - Jet rejection $\sim 4 \times 10^{-5}$

- ECAL saturation (CMS)
 - Large energy deposit in one crystal (1.7, 3 TeV for barrel, endcap)
 - Can be recovered using surrounding crystals

Muon system alignment

- Both experiments have evaluated the effect of possible scenarios
- Strong effect on physics potential
 - Roughly twice as much luminosity needed for discovery

Discovery potential

• Factorization of the PDF

Four parameters
$$(\Gamma_Z, A_{\text{peak}}, A_{\text{interf}}, M_{Z'})$$

$$\frac{d\sigma}{dm}\Big|_{\text{Signal}}(m) = \frac{1}{m^2} \times G_{PDF}(m)$$

$$+ \mathscr{A}_{\text{peak}} \times \frac{\Gamma_{Z'}^2}{m_{Z'}^2} \frac{m^2}{(m^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \times G_{PDF}(m)$$

$$+ \mathscr{A}_{\text{interf}} \times \frac{\Gamma_{Z'}^2}{m_{Z'}^2} \frac{m^2 - m_{Z'}^2}{(m^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \times G_{PDF}(m)$$

Resolution (from full simulation)
 × acceptance (depends on the model)
 × efficiency of cuts

- Statistical analysis:
 - Log-likelihood ratio estimator (LLR)
 - Signal+Background and Background-Only LLR distributions used to compute CL_s
 - No need for an optimized mass window

"Look-elsewhere"

- "Trials factor", "greedy bump bias", ...
- Background fluctuations anywhere in the full mass range under study increase the probability of a fake discovery
- Studied with toy MC using a (max Likelihood) fit-based approach; floating vs fixed mass fits

• Degradation of the significance of ~15%

Sensitivity, reach

- Comparable reach for both experiments
- If slightly above the current Tevatron limit (1TeV), as low as 100pb⁻¹ of physics data could yield a 5σ discovery

From 14 to 10 TeV

- Both experiments have assessed the effect of the lowered centerof-mass energy
- Production cross sections are reduced by factors ~ 2 or 3 (for masses of the Z' between 1 and 2 TeV)
- Accordingly, the luminosity needed for a 5σ discovery ~ doubles

Gravitons

• Randall-Sundrum models

- Treatment: mass floating in the full mass range, width fixed to detector resolution
- For some values of k/M_{pl}, possible discovery with O(100pb⁻¹)

Technicolor

- Lowest mass states: π_T , ρ_T , ω_T
- $\rho_{\tau}, \omega_{\tau}$ can decay into fermion-antifermion pairs
- "Technicolor Strawman Model"; ρ_{τ} , ω_{τ} nearly degenerate
- Dimuon model:

Including estimated early alignment: +50% luminosity needed

DILEPTONS ττ

- Tau leptons can decay hadronically or leptonically
- All modes (hh, lh, ll) have been studied and combined in the search
- Selection: Missing energy, upper bound on transverse mass and p_T^{TOT}, b-jet veto.
- Tevatron limits: 400 GeV
- Neutrinos are always present

Still, the *collinear approximation* allows the reconstruction of the invariant mass

• In the collinear approximation, the not-back-to-back requirement, plus cuts on solutions that are physical, reduce both signal and backgrounds

Sensitivity

 Z'_{SSM} with a mass up to 1.2 TeV could yield a 5 sigma significance with ~1fb⁻¹ of data

LEPTON - NEUTRINO

Signature, selection

- Several BSM scenarios include heavy, narrow, charged gauge bosons able to decay into I+v
- As with SM W, the *transverse mass* helps extract them
- Rejecting events with high jet activity, the main remaining background is the high tail of the SM W boson.
- Mis-reconstructed leptons (low Pt reconstructed as high Pt) are a concern for early data

$$\overline{q}'$$

$$m_T = \sqrt{2p_T \not\!\!\!E_T (1 - \cos\Delta\phi_{\ell, \not\!\!\!E_T})}$$

Selection

- One high- p_T lepton
- Missing energy
- Lepton fraction (ATLAS), E_T/MET (CMS)
- Jet Veto

Electron, muon channels

- Electron, muon channels studied
- Worse muon resolution at high p_T
- Possible discovery above TeV limits (1TeV) with O(10pb⁻¹)

Discovery potential

- With O(200pb⁻¹), masses up to ~2.5TeV can be probed
- Limits up to ~ 3TeV

LEPTONS + JETS

Leptons+jets?

- Leptoquarks
 - Bosons carrying quark and lepton number
 - Experimental constraints favor three generations, each coupling to a SM generation
 - mLQ1 > 256 GeV (D \emptyset)
 - mLQ2 > 251 GeV (D \emptyset)
- Left-Right Symmetric Models (LRSM)
 - Address non-zero neutrino mass and baryogenesis
 - Three heavy right-handed Majorana neutrinos (N_e , N_μ , N_τ)
 - Some LRSMs introduce W_R and Z'

LQ

000

W

N,

Leptoquarks

- 2 leptons (opp charge, same flavor)
- At least 2 jets
- Background rejection:
 - Leptons transverse momenta

$$S_T = \sum |\vec{p}_T|_{jet} + \sum |\vec{p}_T|_{lep}$$

- Dilepton invariant mass
- Lepton-jet invariant mass

LRSM

BSM-LHC09

Sensitivity

Both types of models could yield a 5sigma signal with O(100pb-1)

CONCLUSIONS

- Several plausible extensions of the SM predict narrow resonances
- Background estimation procedures, fit-based strategies, statistical tools have been developed
- 14TeV studies have shown that they could be established at the 5 sigma level even with O(100/pb) of integrated luminosity
- The lowered center-of-mass energy, at 10TeV, degrades the sensitivity, but the initial run (O(200/pb)) should still be enough to go beyond Tevatron limits in most of these models
- Looking forward to the start of collision data!

References

- CERN-OPEN-2008-020 (ATLAS, arXiv:0901.0512)
- CERN-LHCC-2006-021 (CMS, J.Phys.G: Nucl.Part.Phys.34 995-1579)
- https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

BACKUP

Electrons

- The QCD cross sections at LHC are 10 to 100 times
- higher than at the Tevatron :
- @ Pt = 40 GeV/c : electron to jet ratio is ~ 10-5

Muons

Tau leptons

- With 100 pb-1, clear signals for W and Z in τ channels
- Z→ττ can then be used to set the ET miss scale to a few %
- τ reconstruction is tricky and relies (not for very first data but soon after) on multivariate techniques.

