Analyses of high mass resonances at ATLAS and CMS

L.R. Flores-CastilloUniversity of Wisconsin-Madison

On behalf of the ATLAS and CMS collaborations

BSM LHC 09 Northeastern University Boston, MA June 4rd, 2009

Outline

- Introduction
- \bullet Detectors
- \bullet Dileptons: ee, µµ, ττ
- \bullet Lepton-neutrino
- \bullet Lepton(s) plus jet(s)
- \bullet Dijets
- Conclusion and outlook

Introduction

- \bullet Although extremely successful, there are indications that the Standard Model (SM) is not a complete theory
- \bullet Plausible SM extensions predict narrow states that can be reconstructed (completely or not) in ATLAS and CMS
	- Dileptons (e, µ, ^τ):
		- New heavy gauge bosons (Z'), KK resonances, gravitons
	- Diphotons (see H. Hadavand's talk)
	- Lepton + Missing Transverse Energy
		- New heavy W-like boson
	- Leptons plus Jets
		- Leptoquarks
		- Left-Right Symmetric Models
	- Dijets (see K. Terashi's talk)
- \bullet Results shown correspond to a center of mass energy of 14TeV
	- $-$ At 10 TeV, cross sections \sim 50%-75% smaller in 100GeV to 1TeV

LHC

- • Operating parameters
	- $-$ E_{beam} = 7 TeV → **5 TeV**
	- $-$ L = 10^{34} cm⁻²s⁻¹ \rightarrow 10^{30} - 10^{32} cm⁻²s⁻¹
	- Bunch Spacing = 25 ns (40 MHz)
	- Pile-Up = 2-20 collisions/crossing
	- Duration of collisions ≈ 10-24 h
	- $-$ Down Time ≈ 1.5 h

 $9 \overline{4}$

Detectors

Bending power

Rather than the peak values of the magnetic field, tracking capabilities depend on the *bending power* of the field configuration

$$
\int d\alpha = \int \frac{ds}{R} = \int \left| \frac{d^2r}{ds^2} \right| ds = \frac{q}{p} \int \left| \frac{dr}{ds} \times B(r) \right| ds
$$

R: radius of curvature*s*: distance along the trajectory*r*: position vector

 $\overline{9}$ 6

Performance

- \bullet Powerful id:
	- –Photons: Jet rejection \sim few 10³ for \sim 80% photon efficiency
	- Electrons: Jet rejection \sim 10⁵ for ~60% electron efficiency
	- B-jets: Light flavor jet rejection \sim 100 for ~60% efficiency
	- τ \rightarrow hadrons: Jet rejection \sim few hundreds for \sim 50% efficiency
- •Missing transverse momentum and jet reconstruction

DILEPTONSe, µ

Signature, selection

- •Relatively clean signatures
- •Good mass resolution
- •Easy to trigger on
- • Backgrounds
	- Main background: SM Drell-Yan
	- tt, dijets, W+jets, gamma+jets
- • Selection
	- 2 well reconstructed, isolated leptons
	- –|eta|<2.5 (except muons in CMS, 2.4)
	- pT>30 or 50 GeV
	- Opening angle: not needed for discovery, but useful to help distinguish models

Backgrounds

- •Drell-Yan
- •Processes where jets or photons fake electrons
- •Electron and muons from Z and W

current values of jet and photon rejection (10⁴ and 10, respectively)

L R Flores Castillo BSM-LHC09

Background estimation

- • Detector effects and theoretical uncertainties can affect the background estimation
- • Control sample strategies can help constrain some of these backgrounds

Electrons at high pT

- • Reconstruction and identification optimized for high energy electrons
	- Robust criteria based on shower shape, track matching, isolation
	- Efficiency ~ 80%
	- $-$ Jet rejection $\sim 4 \times 10^{-5}$

- • ECAL saturation (CMS)
	- Large energy deposit in one crystal (1.7, 3 TeV for barrel, endcap)
	- Can be recovered using surrounding crystals

Muon system alignment

- \bullet Both experiments have evaluated the effect of possible scenarios
- \bullet Strong effect on physics potential
	- Roughly twice as much luminosity needed for discovery

Discovery potential

\bullet Factorization of the PDF

Four parameters
$$
(\Gamma_z, A_{peak}, A_{interf}, M_z)
$$

\n
$$
\frac{d\sigma}{dm}\Big|_{\text{Signal}}(m) = \frac{1}{m^2} \times G_{PDF}(m) + \mathcal{A}_{peak} \times \frac{\Gamma_{Z'}^2}{m_{Z'}^2} \frac{m^2}{(m^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \times G_{PDF}(m) + \mathcal{A}_{interf} \times \frac{\Gamma_{Z'}^2}{m_{Z'}^2} \frac{m^2 - m_{Z'}^2}{(m^2 - m_{Z'}^2)^2 + m_{Z'}^2 \Gamma_{Z'}^2} \times G_{PDF}(m)
$$

⊗ **Resolution** (from full simulation) × **acceptance** (depends on the model) × **efficiency of cuts**

- • Statistical analysis:
	- –Log-likelihood ratio estimator (LLR)
	- Signal+Background and Background-Only LLR distributions used to compute CL_s
	- No need for an optimized mass window

"Look-elsewhere"

- •"Trials factor", "greedy bump bias", …
- Background fluctuations anywhere in the full mass range under study •increase the probability of a fake discovery
- • Studied with toy MC using a (max Likelihood) fit-based approach; floating vs fixed mass fits

•Degradation of the significance of ~15%

Sensitivity, reach

- •Comparable reach for both experiments
- • If slightly above the current Tevatron limit (1TeV), as low as 100pb-1 of physics data could yield a 5 σ discovery

From 14 to 10 TeV

- • Both experiments have assessed the effect of the lowered centerof-mass energy
- •Production cross sections are reduced by factors \sim 2 or 3 (for masses of the Z' between 1 and 2 TeV)
- \bullet • Accordingly, the luminosity needed for a 5 σ discovery \sim doubles

Gravitons

•Randall-Sundrum models

- \bullet Treatment: mass floating in the full mass range, width fixed to detector resolution
- •For some values of k/M_{pl} , possible discovery with O(100pb⁻¹)

Technicolor

- •• Lowest mass states: $\pi_{\scriptscriptstyle \rm T}$, $\rho_{\scriptscriptstyle \rm T}$, $\omega_{\scriptscriptstyle \rm T}$
- • $\bullet\quad$ ρ _{$_{\rm T}$} ω _T can decay into fermion-antifermion pairs
- •• "Technicolor Strawman Model"; $\rho_{\,\,\tau}$ $\omega_{\,\,\tau}$ nearly degenerate
- •Dimuon model:

•Including estimated early alignment: +50% luminosity needed

L R Flores Castillo **BSM-LHC09**

DILEPTONSττ

- •Tau leptons can decay hadronically or leptonically
- •All modes (hh, lh, ll) have been studied and combined in the search
- •Selection: Missing energy, upper bound on transverse mass and p_T^{TOT} , b-jet veto.
- •Tevatron limits: 400 GeV
- •Neutrinos are always present

Still, the *collinear approximation* allows the reconstruction of the invariant mass

•In the collinear approximation, the not-back-to-back requirement, plus cuts on solutions that are physical, reduce both signal and backgrounds

Sensitivity

• Z'_{SSM} with a mass up to 1.2 TeV could viald a F 1.2 TeV could yield a 5 sigma significance with $\mathsf{\char'1fb^{\text{-}1}}$ of data

LEPTON - NEUTRINO

Signature, selection

- • Several BSM scenarios include heavy, narrow, charged gauge bosons able to decay into l+ν
- • As with SM W, the *transverse mass* helps extract them
- • Rejecting events with high jet activity, the main remaining background is the high tail of the SM W boson.
- \bullet Mis-reconstructed leptons (low Pt reconstructed as high Pt) are a concern for early data

$$
\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}\right)^{q}
$$

$$
m_T = \sqrt{2p_T \cancel{E_T}(1 - \cos \Delta \phi_{\ell, \cancel{E_T}})}
$$

Selection

- • \bullet One high-p $_{\mathsf{T}}$ lepton
- •Missing energy
- •Lepton fraction (ATLAS), E_T/MET (CMS)
- •Jet Veto

Electron, muon channels

- •Electron, muon channels studied
- • \bullet Worse muon resolution at high p_T
- • Possible discovery above TeV limits (1TeV) with O(10pb⁻¹)

Discovery potential

- \bullet With $O(200pb^{-1})$, masses up to \sim 2.5TeV can be probed
- \bullet Limits up to \sim 3TeV

LEPTONS + JETS

Leptons+jets?

- • Leptoquarks
	- Bosons carrying quark and lepton number
	- Experimental constraints favor three generations, each coupling to a SM generation
	- $-$ mLQ1 > 256 GeV (D \varnothing)
	- $-$ mLQ2 > 251 GeV (D \varnothing)
- \bullet Left-Right Symmetric Models (LRSM)
	- Address non-zero neutrino mass and baryogenesis
	- Three heavy right-handed Majorana neutrinos (N_e , N_u , N_τ)
	- $-$ Some LRSMs introduce W_{R} and Z'

Leptoquarks

- •2 leptons (opp charge, same flavor)
- •At least 2 jets
- • Background rejection:
	- Leptons transverse momenta

$$
\sum_{i} S_T = \sum |\vec{p}_T|_{jet} + \sum |\vec{p}_T|_{lep}
$$

- ––Dilepton invariant mass
- Lepton-jet invariant mass

LRSM

L R Flores Castillo **BSM-LHC09**

Sensitivity

• Both types of models could yield a 5sigma signal with O(100pb-1)

CONCLUSIONS

- • Several plausible extensions of the SM predict narrow resonances
- \bullet Background estimation procedures, fit-based strategies, statistical tools have been developed
- 14TeV studies have shown that they could be established at the 5 sigma level even with O(100/pb) of integrated luminosity
- \bullet The lowered center-of-mass energy, at 10TeV, degrades the sensitivity, but the initial run (O(200/pb)) should still be enough to go beyond Tevatron limits in most of these models
- \bullet Looking forward to the start of collision data!

References

- \bullet CERN-OPEN-2008-020 (ATLAS, arXiv:0901.0512)
- \bullet CERN-LHCC-2006-021 (CMS, J.Phys.G: Nucl.Part.Phys.34 995-1579)
- •https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

BACKUP

Electrons

- • The QCD cross sections at LHC are 10 to 100 times
- •higher than at the Tevatron :
- \bullet *@ Pt = 40 GeV/c : electron to jet ratio is ~ 10-5*

Muons

Tau leptons

- \bullet With 100 pb-1, clear signals for W and Z in τ channels
- $Z \rightarrow \tau \tau$ can then be used to set the ET miss scale to a few %
- τ reconstruction is tricky \bullet and relies (not for very first data but soon after) on multivariate techniques.

