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ABSTRACT

This is the text of a series of lectures given as part of the CERN
Academic Training Programme and primarily intended for young engineers and
technicians in preparation for the running-in of the 400 GeV Super Proton
Synchrotron (SPS). Following the definition of basic quantities, the problems
of betatron motion and the effect of momentum spread and orbital errors on
the transverse motion of the beam are reviewed. Consideration is then given
to multipole fields, chromaticity and non-linear resonances. After dealing
with basic relations governing longitudinal beam dynamics, the space-charge,
resistive-wall and other collective effects are treated, with reference to
precautions in the SPS to prevent their occurrence.
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INTRODUCTION

There are many books!) on accelerator theory which have served as standard texts for
machine specialists for years. Where they relate the theory to the hardware of the acceler-
ator they tend, for historical reasons, to use machines which are very different from the
Super Proton Synchrotron (SPS). In all but a few cases they omit the often illuminating
step of describing how the dynamical quantities which appear so frequently in the mathe-

matics are actually measured.

There is also a Design Reportz) which describes, in sufficient detail to satisfy the

expert, the design principles of the SPS.

As we approach the running in of the SPS it is important to bridge the gap between
these various works of reference, and it is exactly this that I have set out to do, as far

as I can, within the constraints of a short lecture series.

I make no apologies for building the theory from elementary definitions. These have
to be restated to give those not fortunate enough to have eaten and slept in phase space
a firm basic understanding. I hope that others who become impatient with the redefinition
of basic quantities will be eventually gratified by the later stages in the exposition of
the theory and the references I have given for further study.

In the first part of the course I shall discuss betatron motion. Figure 1, reproduced
from the SPS Design Report, shows the lattice functions which exactly define the behaviour
of the beam around an ideal SPS. After explaining how we come to describe what is es-
sentially a modified simple harmonic motion by means of these functions, I hope to go on
to say how we calculate them from the strengths and gradients of the magnets, how we check
experimentally the behaviour of the beam, and how imperfections can cause departures from

this ideal picture which must be corrected.

Later I shall move on to describe longitudinal motion and the effect of radio-frequency
accelerating fields, and finally discuss some of the simpler space charge and collective
phenomena which 1limit the intensity of the Linac-Proton Synchrotron Booster (PSB)-Proton
Synchrotron (PS)-Super Proton Synchrotron (SPS) chain of accelerators.
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Fig. 1  SPS lattice
a) Lattice functions in a period
b) Semi~-apertures in period with Op,max



BETATRON MOTION, MATRICES, LATTICES

2.1 Phase space and its conservation

In the dynamics of particles two quantities are of paramount importance. They are the
two variables of Hamiltonian mechanics, position q and momentum p.

We are interested in motion in the x- and y-directions perpendicular to the axis of
the beam: transverse motion. Let us take one of these directions, the horizontal plane,
in which the two variables are

mx

= S = mcyB
P 1‘V2/C2 Yx’
where, relativistically,

B. = x/c
1
y = [1 - X2y 22)/c2] v

m = rest mass.

A diagram of p versus q is called a phase-space diagram.

The transverse motion of a particle around an accelerator can be described by a tra-
jectory in phase space.

A group of particles, the beam, can be thought of as an area or closed curve which
includes the p and q coordinates of every particle. The shape and position of this area
changes as the motion proceeds and each particle follows its own trajectory. But the area

/[ pdq

is conserved. This is called Liouville's theorem (Fig. 2).

Area = / pdq = constant

Fig. 2 Liouville's theorem.
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Now in accelerator theory we use a less rigorous definition of phase space. Instead
of p we plot the small angle the particle makes with the beam axis, the divergence:

! dx I = 512:

divergence =x' = T oY Y Is

displacement = x or y .

Now

=
e e
o

where B is the total v/c.
Liouville's theorem becomes
/P dq = constant =mc [ yB dx = mcBy [ x! dx .
So at any given energy or momentum,

/ x! dx = constant = emittance = em .

As acceleration proceeds, Bye = €*, the normalized emittance is conserved; Ry is just

>

proportional to the momentum or, above a few GeV, to the energy of the proton (Fig. 3).

The emittance of the beam therefore shrinks during accelerati?n as 1/(By) or
1/ (momentum), and the displacement and divergence with (momentum) ‘2. This phenomenon is
referred to as adiabatic shrinkage. As a rule, accelerators need their full aperture at
injection and it is then that their design is most critical. It is for this reason, too,
that multistage accelerators such as the Linac-PSB-PS complex are used, since by inserting
the PSB the energy of the Linac beam is increased, thus allowing a beam of larger normalized

emittance (¢*) and containing more protons to be injected into the PS.

-1/2

p

/
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Fig. 3  Adiabatic shrinking

2.2 Trajectories in phase space

We shall convince ourselves later that the motion of a proton around an accelerator
is a sort of modified simple harmonic motion -- modified in the sense that the amplitude

depends on where one is on the circumference.
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But first let us look at simple harmonic motion since it illustrates some general
concepts. We can write:

x = ¥ Be sin (wt+2A) , @
where

Y Be 1is just another way of writing the amplitude of the motion. At this stage B and €
are just free constants to be defined later (do not confuse this B with v/c);

wt can be written y(s), the phase of the oscillation as it proceeds around the circum-
ference;

A is an arbitrary starting phase which is different for all particles in the beam.
Then the phase-space trajectory is just

x = /Be sin [y(s) + 1A],

and differentiating:

x' =y' /Be cos [¥(s) + A] .

In simple harmonic motion the phase advances linearly with time and with distance s
around the ring; Y’ is therefore a constant which we are free to equate:

¢! =1/8 or = [ds/B .

We have used up one of the two constants which define the amplitude, but there is
still € left as a constant to match the initial conditions:

X =V Be sin Y+ 1)
x! =v/e/B cos (W+A) .
This is just an ellipse with semi-axis in the x-direction v'Be, and in the x’ direc-
tion Ve/B (Fig. 4).

Its area is me, and we see that we were unwittingly consistent in using this symbol
for the constant in Eq. (1); € is the emittance we spoke of earlier.

"
VETp Area = tVeR.Ve/B = me
x
Vep

Fig. 4 Phase-space ellipse
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There are, in fact, older accelerators, constant gradient (CG) machines like Nimrod,
where simple harmonic motion is a very close approximation to the truth. The particles obey
the differential equation

d2x

@—+kx=0,

where k, the restoring force per unit displacement, is just related to the gradient of the
field which is constant around the circumference, apart from a few gaps between magnets.
We can calculate 8 for a CG machine directly from k

boed (),

Now suppose in such a machine that a proton, the one with the largest amplitude in
the beam, v Be, starts off with phase A. After one turn its phase has increased by
ds _ 2mR

We¥E B

It has been round the ellipse AY/2m times. This quantity, the number of betatron
oscillations per turn, we define as Q. We see for a CG machine

Q=773
or
B = R/Q .

This is approximately true for other machines too, and is often used in juggling
machine parameters at the design stage, since Q determines B and hence beam size.

What is much more important, however, is that Q must not be a simple integer or vulgar
fraction. Otherwise, over one or more paths around the ellipse the proton will repeat its
path in the machine and see the same field imperfections. These will then build up into a
resonant growth:

nQ = 2 (where n and £ are integers) .

This is a dangerous condition which can be avoided by tuning the restoring gradient k.

Suppose we take a number of protons which have the maximum amplitude present in the
beam. They follow trajectories at the perimeter of the ellipse but at any instant have a
random distribution of phases A. If we were able to measure x and x’ for each and plot
them in phase space they would lie around the ellipse of area € and their coordinates would
lie in the range:

-VBe < x < VBe
-Ve/B < x! <Ve/B .

We cannot measure x’, but an instrument such as the ionization beam scanner (IBS)
which produces a profile of the beam would show the particles in a region of tr’EE about
the beam centre; v Be is therefore the half-width or envelope of the beam. (A simple
capacitive pick-up electrode would just give the average beam position x = 0 for such

incoherent motion.) (Fig. 5.)



/ Beam profile

Signal a No. of electrons collected

Scanning voltage «« beam displacement

Fig. 5 1Ideal ion beam scanner scope trace

Conversely, if we take a well-collimated beam of protons and give it a kick in diver-
gence, Ax' = A(BR)/Bp, all the protons will jump to phase ¥ = 7/2 and will trace out an
ellipse, returning to a different point on subsequent turns. This coherent motion will
give a different position on a beam position monitor each turn. From this we can deduce Q,
or at least its fractional part, AQ. Seen by a single pick-up the displacement varies
(Fig. 6) as

x = BAx' sin 2mfAQt ,

where f is the revolution frequency around the machine.

In an undisturbed beam, protons of smaller amplitude (within a smaller emittance €2)
just follow similar but smaller ellipses whose semi-axes are in the ratio ve,/e to those
of the whole beam; Q is the same for all particles, so is the aspect ratio of the ellipse B.
These two quantities which are independent of initial amplitude and phase are called lattice

functions.

At this stage the beginner may be puzzled as to why we go to so much trouble to define
B and Q. It is hoped this will emerge when we see that in modern machines such as the PS
and the SPS, B and the other lattice functions have the same significance but vary around
the circumference. But first we must digress to discuss transport matrices. From now on
we deal only with alternating gradient (AG) machines in which the ring is a repetitive pat-
tern of focusing fields, the lattice, each element of which is best expressed by a matrix.

——‘ ‘-—Period of revolution (1 turn)

Envelope - x, sin 2nAQft

@ Signal from beam position monitor

-
-

6 Ideal Q-measurement signal following a
kick which excites coherent betatron
motion. Q = integer % 1/6.



2.3 Transport matrices

We can represent a particle's position in phase space by a column matrix (vector):

X
[X’] .
Later, as its motion develops, it moves to a new point, the transformation being

expressed by a transport matrix M:

C)-C )0

M is independent of x and x’ if the motion is linear and det M = ad-cb = 1, i.e. it

is unitary.

2.3.1 Drift length matrix

If a proton is left to drift a distance £:

1 !
Xz =X * 8], Xz =X]

therefore

2.3.2 Quadrupole lens

We have mentioned that the restoring force (focusing) of an accelerator's guide field
can be provided by a field such as that of a quadrupole which has a linear gradient:

By = Kx and Bx = Ky .

Remembering that the force is eV x B, we can obtain equations of motion in a quadru-

pole:

d®x | Kx _ _ K
&2 B0 @ B0

A%

and we will write k = K/Bp, the normalized gradient.

The first equation is just simple harmonic motion and, choosing our arbitrary constants

to be the initial (xq, x§), we can write the solution
X cos Vks + (1//K)x} sin Yk s,
-V/k xo sin /K s+ x§ cos Yk s

X

XI

We can see, therefore, with a little imagination, that the transport matrix for a

quadrupole of length £ is just MF’ where

x Xo cos Vk & 1/Vk sin vk 2/ X,
= M| = .
[x’] F x4 [— /X sin VXK % cos VK & J[xéj
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In this plane the lens is focusing and, if k% << 1, M can be written as the matrix of

1 0 1 0}
M=~ =~ ,
-kg 1 -1/f 1

so that the focal length is just

a thin lens:

£ = % = (Bp) /K% .

Inevitably, in the other plane, because the 'restoring'" term is negative, the dif-
ferential equation represents exponential growth (defocusing):

cosh Vk & L sinh /X 2
My = K :
/K sinh v/k & cosh vk &

To a first approximation the thin lens strength is just the same but defocusing. Reversing
N and S poles simply makes the x-plane defocusing and the y-plane focusing. How, then, can
one construct a machine like the SPS from alternating quadrupoles of equal strength yet
constrain the beam? The answer lies in the shape of the lattice functions (Fig. 1).
Remembering that the beam width is v'B we can see it is always minimum in D quadrupoles

but maximum in F quadrupoles. This is true in both x- and y-planes. The protons see much
more focusing effect from the F's than from the D's (remember the angular kick from a lens
is x/f). Such a lattice is termed FODO since the bending magnets, apart from a small
focusing term at their ends [see Bovet et a1.3)], bend the reference (x = 0) particle and
all others by the same amount. They are essentially just drift lengths.

2.4 Linking transport matrices and lattice functions

Once we have specified the gradients and lengths of the focusing system we have the
individual matrices, and multiplying them together will give a product matrix which will
enable us to track particles from one part of the ring to another or from some location s
round a full turn. The composite matrix is of course four numbers:

a b
M= s
c d

which tell us nothing about what happens subsequently or within the turn they describe.

It would be nice to be able to relate these numbers to something like the B and y of
our earlier theory in order to get some picture of the motion in phase space. This would
reveal what was happening within the turn and on subsequent turns. It appears we can do
this, but we must go right back to the differential equations and derive the same matrix
with variables which are not the lengths and strengths of the elements but the g and ¢ of
the lattice functions. Finally, to equate the two will give numerical values for the lat-

tice functions.



2.5 Hill's equation

We can write a differential equation for the whole machine,

2
kv =0,

which is like simple harmonic motion (SHM) but with a restoring constant which varies with
s. It is not surprising to find its solutions are like SHM but with an amplitude v/ eB(S)
which varies periodically with s with just the same periodicity as the FODO focusing pat-
tern, k(s).
In fact the solution is
1 1
y = 5/28/2(5) cos [y(s) + A] .
The only difference between this and earlier results is that B is a function of s so that

the SHM amplitude sausages around the ring. We remember that

_ ds
v B(s) °

This is still true, but the phase advance no longer increases linearly with the azi-
muth 6. It advances more rapidly at D quadrupoles where B is small. We can still define
a phase advance per turn = 2mQ, and, because of symmetry, the phase advance in each of the
2N cells between the centres of quadrupoles is just 2mQ/2N (about 45°) for the SPS.

The square root of the B function v'B is still the envelope of the beam, and at places
of symmetry (F and D quads) the ellipse with semi-axis,

x=+/eB, x'==+/e/B,

is again the emittance. The ellipse axes are different at the two quads just as B is maximum

or minimum. In between the ellipse distorts and tilts, but one rarely is interested in this.

2.6 Hill's equation and a general transport matrix (the Twiss matrix)

The solution of any linear differential equation can be expressed as a transport

matrix. If the general solutions have the form

x = 8%(s) cos ¥(s),

we differentiate to find the expressions for x’. Then we write down explicitly

(x(sz) J a bJ(x(sl) J
x' (s2) c  d N\ x'(s2)

for each of the two solutions, obtaining four simultaneous equations which we can solve to
find a, b, ¢, d. If we persevere we could in this way find a matrix to take us from s; to
s,, or from s, back after one turn to s; again. The working is complex, but for one turn

we have
fcos ¥ - ww' siny , w? sin ¥

M = | R
1+ ww!'? . .
-L_M.I).,__lsmw, cos ¥ + ww’ sin P

where w= V8.



We introduce the

The matrix for

R = w?
1
a = —ww' = - E%T
1l - ww'? 1+ a?
Y = wo! = B
v =2mQ .

M=
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(the slope of the B function)

Twiss parameters o, B, Y, where

(not used much)

cos u +a sinyu ,

-y sinyu ,

2.7 Computing lattice functions

one turn becomes the Twiss matrix:

B sin u

COS U - o Sin u

If we compute a, b, c, d from the product of all the elements starting and ending at s,

we find by equating the matrix to that of Twiss

(Note that a+d <

We also find

at the point s;.

u =

cos™! {

Tr M
2

cos™! (a+d)/2 .

2 is a condition for stability and det M = 1.)

B = b/sin u

We must compute the whole ring matrix many times since it is a function of where you

start, but by making the circle of the ring from each point on the circumference we can

plot B(s) at each point in the ring.

Integration of B(s) then gives

LENGTH
3,085000
4360000
6,260000
2400000
6,260000
2390000
6,260000
2380000
6,260000
2,342700
3,08%5000
350000
6,260000
+ 380000
6,260000
2390000
6,260000
2400000
6,260000
2,3%2700
3,08%000
1380000
6,260000
4400000
6,260000
2390000
6,260000
4380000
6,260000
2,342700
3,088000

ANGLE
0,000000
0,000000

,008445
0,000000

,008445
0,000000

,008445
0,000000

2008445
0,000000
0,000000
0,000000

,00844%
0,000000

,008445
0,000000

,008445
0,000000

1008445
0,000000
0,000000
0,000000

,008445
0,000000

,008445
0,000000

2008445
0,000000

. 008445
0,000000
0,000000

K(V)
©, 015063
0,000000
04000000
0,000000
0,000000
02000000
0,000000
04000000
02000000
01000000
1015037
04000000
0,000000
04000000
04000000
0,000000
04000000
0,000000
0,000000
0,000000
., 0150063
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
0,000000
1015037

ALPHA(P)

Vo) = [ 55 -

BETA(H)

1,386440104,884885
1,374653103,127965

1,196124
1,186405
1,060742
1,054559

,981762

,978948

2959017

1961450
1,034354
1,050730
1,370047
1,391038
1,763219
1,788083
2,213103
2,241952
2,719868

75,348859
73,75194)
51,548094
50,338182
33,701223
32,860011
21,781569
18,983146
18,983068
19,354500
28,764399
29,504322
44,472640
45,578891
66,113699
87,603985
93,714254

2,909420104,88226
2,946010104,882266
2,925443103,12542}

2,394240
2,574765
2,296428
2,280734
2,055264
2,043182
1,870877
1,815875
1,873603

Fig. 7 Example

78,347037
73,750162
51,546933
50,337087
33,700842
32,859428
21,78139%
18,983101
18,983178

ALPHA(H)
2,452160
2,428089
2,009521
1,98277%
1,564207
1,838130
1,119563
1,094154
1675586
518942
-,518916
.,542318
", 960879
»,986287
wi,404847
w,430924
~1,849484
»1,876229
«2,294790
»2,452099
2,452098
2,428027
2,009467
1,982722
1,564162
1,538085
1,119525
1,094117
1675587
2518917
«,518943

MUW/2PIL
2004571
£005422
1046433
1017287
033474
,034692
058975
1060793
,098381

BETA(V)
19,011703
19,395014
28,828710
29,609417
44,610910
45,71858%
66,274961
67,691002
93,787676

4116758104,896272
,143368104,901620
,146275103,196611

1189011
1191088
218734
1220109
0238298
1239251
1251780
1255558
1260129
2260680
1271992
1273846
1289032
0290281
2314534
1316382
1383944

75,452122
73,935822
51,724094
50,513067
33,849177
32,962034
21,859390
19,03899%
19,038106
19,42158
28,854181
29,634602
44,628208
45,735180
66,276862
87,691805
93,766993

,373318404,865902
,398928104,862544

ALPHA (V)
" 520345
01544408
01962519
~1989248
©1,40707}
017433122
»1,850527
«1,875896
2,2927%88
©2,449038
2,447388
2.,424067
2,007802
1,982463
1,565610
1,539589
14122280
1,095579
1677943
1520847
~, 520546
.i544579
.,962177
1988874
*1,406185
*1,432204
"1,849098
»1,874435
®2,290782
02,446873
2.447912

of lattice program output

MUvV/2P]
026574
1029555
0072198
1074377
101928
s103302
12144y
1122344
,134861
0138621
1143191
0143720
1158027
155836
171978
0173189
2197377
1199283
1236745
1255140
0281673
284653
327246
329424
0356957
03583314
1376466
2377369
389868
393648
2398220

AH/2
65,715663
64,547513
64,004371
54,751341
54,174091
45,428681
44,905056
36,980337
36,534921
30,069327
28,349412
28,638028
35,089639
35,546047
43,750575
44,298587
53,470174
54,079136
63,830281
67,592709
68,853088
67,665889
67,105194
57,546939
56,950187
47,899587
47,356928
39,127022
38,663082
31,892336
30,027986

av/2
9,917560
10,017039
12,212911
12,376826
15,192432
15,3794847
18,517478
18,71370%
22,028267
23,295624
23,716525
23,296218
23,100121
19,757412
19,557880
16,358398
16,168762
13,233307
13,068743
10,634409
9,924676
10,023890
12,218305
12,382087
15,195477
15,382238
18,517744
18,713817
22,020838
23,292254
23,712598
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Fortunately we have computers to help. A lattice program such as AGS or FOCPAR does
all the matrix multiplication to obtain (a, b,c, d) from each point (s) and back again.
It prints out B and ¢ (sometimes o and y, too) in each plane, and we can plot the result
to find the beam envelope around the machine. This is the way machines are designed.
Lengths, gradients, and numbers of FODO normal periods are varied to match the desired beam

sizes and Q values (Fig. 7).

EFFECT OF MOMENTUM SPREAD AND ORBIT ERRORS

3.1 Normal periods of the SPS

You will notice in Fig. 1 that the lattice functions B and y are plotted for only one
of the 108 FODO periods of the machine. They are identical in all the others. The SPS
is a homogeneous lattice, i.e. all its periods have the same focusing structure. There is
no way a proton can distinguish which period it is in. Put mathematically, since k(s) in
Hill's equation is periodic in azimuth 6, with frequency 1086, the lattice functions B and
¥ which describe the solutions of the equation have the same periodicity and therefore

repeat in every period.

Another symmetry argument tells us that the focusing lattice is indistinguishable for
a clockwise or anticlockwise proton and is symmetric about the centres of the horizontally
focusing (HF) and HD quadrupoles;. BH is therefore maximum (v 100 m) at HF quadrupoles and
minimum at HD quadrupoles (v 20 m). The phase-space ellipse is upright at both these
points (éH =100 m and a 2 tmmmrad emittance gives a beam width of +/Be = *14 mm;
g = 20 m gives +6 mm). Conversely, horizontal divergence is greatest at HD quads.

Another symmetry argument which applies to the SPS tells us that since all quadrupoles
have the same strength the FODO patterns seen in the H-plane and V-plane are identical.
But because HF quadrupoles defocus vertically, and vice versa, the patterns are displaced
by half a period. The lattice functions in the vertical plane are the same as in the
horizontal one except that the EV is at HD quads and év at HF quads. Figure 8 shows the
beam envelope.

® WORST BEAM SECTIONS
ol AND MAGNET GAPS
el NN =7
N
B\ \\\ L
[N >
o\ e > '\ 1=
of o~ h . —1 Wo&\
_— ‘::7 A o
— = L
=t
— ,,// N &

al

8l -~
ATD’ £ P, ® l))) .
/

P / \ \\

1

Fig. 8 Beam envelope
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It will emerge later that perturbing fields have their principal effect where B8 is
large and the beam wide and parallel. Taking this for granted at the moment, we can see
that the short gaps (HF short straight sections) are ideal places for exerting an influence
on the horizontal plane because 'BH is maximum and éV is minimum. Conversely, if we want to
detect motion or to correct motion in the vertical plane we place the hardware near an HD
quadrupole where the influence on the horizontal plane is reduced by some power of (B/B).

3.2 Circle approximation

So predominant is the effect of perturbations near 8 positions that you can often do
quite good 'back of the envelope' calculations by closing your eyes to what happens to the
protons in between F quadrupoles. At F quadrupoles the ellipse always looks the same, i.e.
upright, with semi-axes in displacement and divergence /E s /€/B. This can be reduced
to a circle radius v Be by using the new coordinates

X =X
p = Bx' .
The proton advances in phase by 2mQ/108 from one period to the next; this is just Qx
angle subtended at the centre of the circle. After one turn of the machine, it has made

27 revolutions of the circle plus an angle of 2m x the fractional part of Q (2m x 0.6 for
the SPS Q of 27.6). See Fig. 9.

This renormalization of the phase space can be done in a more rigorous way by choosing
new variables (n, ¢) which transform the distortion of the phase and amplitude so that the
motion becomes that of a harmonic oscillator. We must, of course, transform back again to
see physical displacements, but the mathematics is much more transparent. This simplifica-
tion is discussed in the next section. ‘

p=px" |

A initial

2n (Q-27) ( 2

B after 1 turn and 27+06
betatron oscillations

Fig. 9 Circle diagram (locus at F quadrupoles)

3.3 The (n, ¢) description of AG focusing

Hill's equation, the lattice functions B and y(s), and the phase ellipse give a physi-
cal summary of the motion of particles in an accelerator which is far superior to just
blindly multiplying matrices together over many turns. However, they are still rather
complicated. The phase-space ellipse and with it beam dimensions change with B around the
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ring, and the rate of advance of y(s) is not linearly related to the azimuth 6. It would
be nice to be able to hold a simple but rigorous picture in one's head, more closely related

to simple harmonic motion.

To do this we have to apply a transformation of (x and x') to a system where Hill's

equation converts into that of a harmonic oscillator:

2
G en-g@ ,

where g(¢) is the azimuthal pattern of some perturbation of the guide field related to

F(s) = 2B8)
P
In the ideal case g(¢) is everywhere zero.

I will not bother you with how this transformation is found, but just state it. The

new coordinates are

3
I OB Xe O

©
]

where ¢ advances by 2m every revolution. It coincides with 6 at each B or § location and

does not depart very much from 6 in between.

3.4 Closed orbit distortion

As a first illustration of the power of (n, ¢) coordinates we look at closed orbit
distortions. Even the best synchrotron magnets, such as those of the SPS, cannot be made
absolutely identical. Each magnet differs from the mean by some small error in integrated

strength:

8§(BY) = [ Bde - ([ Bde)

.

ideal

These and other machine imperfections, such as survey errors which can be expressed as
equivalent to field errors, are randomly spread around the ring.

We can use the (n, ¢) coordinates to find out how this perturbs a proton which would
otherwise have had zero betatron amplitude. Such a proton no longer goes straight down the
centre of the vacuum chamber but follows a perturbed closed orbit about which the normal
betatron motion of the other protons can be superimposed.

One of the most important considerations in designing a machine such as the SPS is to
keep this closed orbit distortion to a minimum because it eats up available machine aperture.
Also, once we have succeeded in getting a few turns round the machine, we want to reduce
this distortion with correcting dipole magnets. As a first step let us consider the effect
on the orbit of such a correcting dipole located at a position where B = Bk and observed at

another position B(s).

A short dipole (we shall assume it is a delta function in s) makes an angular kick in

divergence
6x' = §(BR)/(Bp) ,
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which produces a kink in the orbit of a zero emittance particle at the point of kick. Else-

where the motion of the particle must obey

2

n =mno cos (Q+1) .

We choose the ¢ = 0 origin to be diametrically opposite the kick. Then by symmetry
Since, by definition, the trajectory is

A = 0 and the "orbit" is that shown in Fig. 10.
= 7, the loca-

closed, continuity demands that the kick 8x’ matches the change in slope at ¢

tion of the dipole.

2tan™' (dq/d¢)

|

I
0 n 2n
Fig. 10  Tracing the closed orbit for one turn

in n,$ space with a single kick at
¢ =m (Q 5.6)

Differentiating the orbit equation

%% = -noQ sin Q@ = MeQ sin Qm ,  at ¢ =7 .

To relate this to the real kick we use

d _ 1 dx_ rp-dn
a‘s' QBK ’ dS B]( ’

therefore

Returning to physical coordinates we can write the orbit's equation in the range

- < ¢(s) < m:
T
x = V/B(s)no cos Q(s) = [2 Bs(lsn)i% . 6%3‘?)] cos Qp(s) .

The expression in square brackets is the maximum amplitude of the perturbation at

B(s).



X

A($=0)
D(¢=2Tt)

Kick
Ap=B, 6’

B(¢=m)

Trigonometry confirms amplitude is

B
“2sinnQ

a 5x’

Fig. 11 Tracing a closed orbit for one turn in the
circle diagram with a single kick. The
path is ABCD

In the special case of BK = B (a dipole at an HF quad) the circle approximation applies,
and we see quite clearly from Fig. 11 how this equation for the amplitude of the distortion

appears.

In estimating the effect of a random distribution of dipole errors we must take the
r.m.s. average, weighted according to the By Vvalues over all of the kicks Gx{ from the N
magnets in the ring. The expectation value of the amplitude:

1

72
- B2 (s) 12
(x(s) 77 sin T /g B; &x!

~_ VB(S)B Nllé , (8B&)yms
2v72 sin mQ Bp ’

The factor v 2 comes from averaging over all the phases of distortion produced.

For safety (and to combat Murphy's Law) we take twice this expectation value to cor-
respond with a confidence level of greater than 90%.

For the SPS we estimate <x(s) >98% tobe v 2 am ™).

3.5 The Fourier harmonics of the error distribution

One of the advantages of reducing the problem to that of a harmonic oscillator in
(n, ¢) coordinates is that perturbations can be treated as the driving term of the oscil-
lator, broken down into their Fourier components, and the whole problem solved like the
forced oscillations of a pendulum. The driving term is put on the r.h.s. of Hill's
equation:

o .
=@ ) et - stre
n=1

3
where F(s) is the azimuthal pattern of the perturbation AB/(Bp); Q%8 e comes from the
transformation from physical coordinates to (n, ¢).
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The Fourier amplitudes are defined:
3 .
£0) = B4E(s) = ), £,
k

where
1 " ik 1 o Y ik¢
= - _ 2 -1
£ =5 f £(0)e d¢-mf B8 2E(s)e™ K g5 .
0 0

We can then solve Hill's equation as
00 zf )
n = Z 62—;—11:7 e1k¢ (or its real part) . 2)
k=1

1
But be careful. Before doing the Fourier analysis, AB must be multiplied by B k if
3
the physical variable s is chosen as an independent variable, or B/2 if ¢, the transformed
phase, is used.

Looking carefully at Eq. (2) we see that this differs from the general solutions

51

n = nec R

which describe betatron motion about the équilibrium orbit, because the wave number is an
integer k. In fact it is a closed orbit, a particular solution of Hill's differential equa-
tion, to which we must add the general solutions which describe betatron oscillations about
this orbit.

The function Q*/(Q? - k2?) is sometimes called the magnification factor for a particular
Fourier component of AB. It rises steeply when the wave number k is close to Q, and the
effect of the two Fourier components in the random error pattern with k values adjacent to
Q (27 and 28 in the SPS) accounts for about 60% of the total distortion due to all random
errors. Figure 12 shows a closed orbit pattern from electrostatic pick-ups in the FNAL
ring, whose Q is between 19 and 20. The pattern shows strong components with these wave
numbers. If Q is deliberately tuned to an integer k, the magnification factor is infinite
and errors of that frequency make the proton walk out of the machine. This is in fact an

integer resonance driven by dipole errors.

100— CALIBRATED _ BEND BUS 95.05 AMPS 08/01+74 1089
guT
0~
IN
-1ooJ E, ? } 3 E 445

Fig. 12 FNAL main ring electrostatic pick-ups show closed orbit around
the ring (Q v 19.2)
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We shall see later that this simple relation between Q and an integer frequency in the
random field error pattern is a characteristic of all betatron resonances. The physical
reason is that the proton sees the same error pattern on every turn. Perturbation and
oscillation remain in phase.

Because it is the two closest harmonics which cause the distortion, a fair measure
of correction can be achieved by generating a strong 276 or 286 pattern of dipole strength
amongst the 108 equally spaced dipoles around the SPS, and matching the two phases and
amplitudes empirically to those of the same components in the error pattern. The same
principle, harmonic correction, can be used to compensate higher-order non-linear resonances,

as we shall see.

Even if the error pattern has no strong component close to Q, the Bsé(s) or B%é(¢)
function may have and, since the B function is mixed with F(s) before Fourier analysis,
this causes another kind of resonance, a structure or systematic resonance. Machines are
usually designed to avoid such conditions by being careful about simple integer relations
between N and Q.

3.6 Momentum compaction function (ap)

So far we have refrained from mentioning that all protons do not have the same momentum.
Higher momentum protons, being bent less, have a larger radius of curvature p in the guide
field and their closed orbit has a larger mean radius. They no longer pass axially through
the quadrupoles and therefore are subject to focusing forces. The closed orbit for a zero
betatron amplitude particle of momentum po (1 +Ap/p) is displaced from the central po orbit
by an amount

Ap
a
Ppp’
where ap is the momentum compaction function, a lattice function which varies with s.

We can find ap by using a similar method to that described in the previous section.

Each time an off-momentum proton passes through a bending magnet it gets an additional
kick or change in divergence with respect to the p, particle, which we can express as a
forcing term on the r.h.s. of Hill's equation:

d%x

R OB RO

where p is the radius of curvature of the equilibrium orbit at point (s)(1/p = 0 outside
dipoles).

Our Fourier analysis technique can be used to evaluate

Y
-1 | B2 Lik¢
fk anp e ds

and obtain a distorted closed orbit for the off-momentum particle:

eikd
. S kael op
X up D B T
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Fig. 13 Momentum compaction function in one superperiod

This new orbit (Fig. 13) will be rich in the frequencies k close to the multiples of
the superperiodicity, i.e. the symmetry of the pattern of empty long straight sections in
the bending structure. For the SPS, S = 6.

ap(s), like the other lattice functions, can be computed by programs such as FOCPAR by
simply adding another dimension (Ap/p) to the matrix algebra. On can find the correspond-
ing (3 x 3) transport matrices in Bovet et al.®) for all elements. Multiplying them round
the ring gives an over-all matrix M(s), and knowing that a(p) closes on itself we can state

of = 13321 + (1-311)a,3
p (@-an)/(-az2) - azi1a12 ’

then
Gp = (3120‘{:- +a;5)/(1-a;,) ,

where the a's are elements of the 3 x 3 matrix, and use these relations to find oy around
the ring. However, I think you will agree that these equations, while numerically correct,
are not as physically revealing as the Fourier analysis approach we described first.

Experimentally, the fact that ap is strongly modulated with S = 6 can be used to
estimate the Ap/p in the beam by comparing beam widths measured by the IBS at two very
different ap locations. The shape of ap is revealed in the shape of the closed orbit given
by the electrostatic pick-ups if the field is not matched to the mean radius of the machine.

The mean radial position increases:

since B and p are equivalent variables in determining r.
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3.7 The effect of an error in quadrupole strength

As a preparation for the discussion of chromatieity (the factor which controls varia-
tion of Q across the momentum spread in the beam) we treat the problem of the effect of a

small change in quadrupole gradient at position s:
k(s) = ko(s) + 8k(s) ,
where ko (s) applies to a perfect machine.

We assume the perturbation occurs over a small elemental length ds. There are several
ways of calculating the effect this has on the Q of the machine, but to provide a pretext
for introducing another useful mathematical technique for dealing with small errors we look
at the change it produces in the Twiss matrix for one turn starting and returning to s, the

quadrupole location.

The unperturbed quadrupole has a matrix

my = >
-ko(s) ds 1

1 ds
m = .
-[k(s)o*+8k(s)] ds 1

The unperturbed Twiss matrix for the whole machine:

COS Mg * a Sin B sin
Mo (S) =
-y sin g COS Yo - 0 Sin Yo

and perturbed, a matrix

includes my,.

To find the perturbed Twiss matrix we make a turn, back track through the small un-
perturbed quadrupole (mg'), and then proceed through the perturbed quadrupole (m). Trans-

lated into matrix algebra,

M(s) = mmpiM, .
Now
1 0
mmg! = .

-6k(s;) ds 1

So
COs uo + a sin yg Bo sin uo
M= .
-8k(s) ds (cosuo + a sin ug) - vy sin o -8k(s) ds B sin po *+ cos yg - a sin UOJ

Now 4 Tr M = cos u. So the change in cos u is

A(cos p) = -Au sin pg = Sijgu° B(s)8k (s) ds

2naQ = oy = BGLK(s) ds
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Since betatron phase is not involved in this equation, we are tempted to integrate
around the ring to obtain

AQ = 7= § B(s)6k(s) ds . (3)

This equation is only approximately true, however, since as we add each elemental
focusing error it modifies B(s) as well as Q so that there is a higher-order term which
should be included if one wants accurate numerical results [see Ref. 1, Egs. (4.32) to
(4.37)]. However, used with discretion it is sufficiently accurate to explain the physical
basis of the resonant phenomena we shall be discussing in later sections, which can usually
only be estimated to within a factor of 2 anyway.

MULTIPOLES, CHROMATICITY, AND NON-LINEAR RESONANCES

4.1 Multipole fields

The SPS magnets are rather long, and over most of their length BZ = 0 the field is
two-dimensional and Laplace's equation for the magnetic vector potential

VZA =0
has solutions in the polar coordinates in the x0y plane:
= n .
A= z: Ar’ sin ne .
The nth

n = 4, sin 46 plotted around the aperture circle goes +-+-+-+- corresponding to eight poles
(Fig. 14).

term in this expansion corresponds to a magnet with 2n poles. For example, if

QJ (46=3n/2)

Q\l (48 =m/2)

Fig. 14  oOctupole A = A,r* sin 46

The way to get the field distribution By and B, is to differentiate A in polar co-
ordinates and resolve Br and By to give

_ n-1 . _
Bx = DA T sin (n-1)6

By = nAnrn"1 cos (n-1)6 .
In the mid-plane, 6 = 0,

- (n-1)
By nAnx .
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Expressed as a Taylor series in terms of the field derivatives B(n_l),

(n-1)
_B (n-1)
By BRGEI X .

We can see that for a dipole n = 1 and the field is constant; for a quadrupole,
n = 2, linearly increasing with x; and for a sextupole, n = 3, proportional to x2. It is
this fact that links certain multipoles with the various orders of resonance at integer,
half integer, and third integer Q-values.

Cutting off the poles of a dipole at a finite distance produces a field distortion
which is symmetric about the N-S axis (Fig. 15). Quadrupole errors, B = x, are not
symmetric, but sextupole B « x? and decapole B = x* are. So a dipole has higher geometric
distortion in its field pattern corresponding to (2+4), (2+8), etc., poles.

In general if a magnet has p poles one must add multiples of 2p to find its higher

field harmonics.

The effect of saturation or of remanent field shape in the SPS magnets has the same
symmetry constraint as cutting of the pole edges, hence the remanent field of a dipole is
rich in 6-pole and 10-pole. That of a quadrupole contains 12- and 20-pole components.
Note that the higher the n number, the more non-linear is the x-dependence and the less
strongly an error at the edge of the aperture is felt near the centre of the beam.

_5N§©% ) @ % -6NZ®

-65=® / ' é 2 -6S=®)

Fig. 15 Effect of terminating poles of a di-
pole is to create small virtual south
poles next to north pole piece and
vice versa. Over-all pattern has
6-pole symmetry.

4.2 The working diagram

This is simply a diagram with QH and QV as its axes. The beam can be plotted on it
as a point but, because there is a certain Q-spread among protons of different momenta, it
is better to give the point a finite radius AQ (Fig. 16).

We plot on the diagram a mesh of lines which mark danger zones for the protons. We
have hinted that if Q in either the vertical or the horizontal plane is a simple vulgar
fraction, then

mQ=p,
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Fig. 16  SPS working diamond

where n and p are integer and n < 5, a resonance takes over and walks the proton out of the
beam. In general this is true when

Q’QH.'.mQV:p)
where |%2] + |m| is the order of the rescnance and p is the azimuthal frequency which

drives it.

This equation just defines a set of lines in the Q diagram for each order of resonance

and for each value of the integer p. Figure 16 shows these lines for the SPS.

Somehow, by careful adjustment of the quadrupoles in the lattice and by keeping the
Q-spread (chromaticity) small, we must coax the beam up to 400 GeV without hitting the
lines. To make things more difficult, each line has a finite width, proportional to the
strength of the imperfection which drives it. In some cases we must compensate the im-
perfections with correction multipoles to reduce this width.

But before discussing resonances and their correction, a word about chromaticity.

4.3 Chromaticity
The focusing strength of the lattice quadrupoles,

1y
K=y &

varies inversely with the momentum (Bp). A small spread in momentum in the beam, *Ap/p,
causes a spread in focusing strength:
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Since the Q-value depends on k, we can also write a formula for the Q-spread:

&:géﬁ
Q p’

where the constant £ is the chromaticity, analogous to chromatic aberration in an optical

system.

Equation (3) enables us to calculate g rather quickly:
Q. 1 -1 Lp
Q - 7Q f B(s)Ak(s) ds [ inq ‘[B(s)k(s) ds] >

The chromaticity & is just the quantity in square brackets. To be clear, this is
called the natural chromaticity. For the SPS and the PS, indeed most AG machines, its
dimensionless value is about -1.3 in both H and V planes.

The remanent field of the lattice dipoles, which we have seen is predominantly
sextupole, contributes an additional chromaticity gr. This is because an off-momentum
particle passes through each dipole at a displacement

X = ap(Ap/p) )

where the local gradient of the sextupole field is B”x. Therefore the particle sees

_ 1 —G_BX _ B”X _ BIIE
k-io‘ 58X -’Fp_— Bp (AP/P) .

We can calculate € the square brackets, by integrating around the ring:

AQ _ l:_l_ J‘B"(S)B(S)ap(s) ds:] ap
Q 4TTQ (Bp) P

The effect of the remanent field Er attenuates as 1/B as the proton is accelerated.

Other sources of sextupole fields are the eddy currents in the vacuum chamber (« ﬁ/B)
and the geometry of the magnet which can never be exact (constant with B). In each case
it is the mean sextupole (zero harmonic) which appears in the formulae.

If you put numbers in for the SPS you find AQ can be as large as 0.3 at transition
energy where Ap/p is largest --a disastrous situation leading to resonant loss of most of
the beam. Chromaticity must be corrected by imposing a zero harmonic sextupole component
of equal and opposite effect. This is done with two sets of 36 chromatic sextupoles. One
set, near the F quadrupoles where By is large, contributes mainly to the integral in the
horizontal plane e The other near the D quadrupoles affects AQV/QV since By is large.
The 36 equally spaced sextupoles are necessary to avoid driving resonances.

To match the time-varying function of the chromaticity careful experiments must be
done, adjusting the chromatic sextupole strength point by point up the ramp. During these
experiments we must be able to detect when AQ is minimum.
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Fig. 17 Measurement of radial dependence of
Q by changing RF frequency f,

There are two ways of measuring chromaticity. First, if we use RF radial steering
to move the average radius in or out, we can plot Q versus radius (or momentum) (Fig. 17).
Secondly, we can measure the time it takes for a coherent betatron oscillation following
a small kick to disappear as the AQ smears out the phase relation between protons of dif-
ferent momenta. A ringing time of 200 turns signifies a AQ v 1/200 and is about the best

we can hope for (Fig. 18).

Position on each turn —

Fig. 18 Position pick-up signal following a
kick showing decay of coherent beta-
tron oscillation due to Q spread
v 1/24

4.4 Resonances in betatron space and their correction

We have gone as far as is reasonable in trying to derive exact equations for betatron
motion. The effect of non-linear errors in magnets can only be treated rigorously by
Hamiltonian and perturbation theorys) which gives a small amplitude description of non-
linear motion. However, this is out of the scope of these lectures, and the student is
referred to Guniard®) for a general and rigorous treatment. Fortunately, quite good
estimates of these effects and a physically revealing picture of them can be obtained by

using the circle diagram.

One follows the particle's unperturbed motion around in (x, fx’) space. At each
quadrupole it sees a small kick A(Bx’) which we calculate from its x-coordinate combined
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with an average multipole error for the magnets close to that quadrupole. Each kick
advances the phase a little and we can sum around the circle by vector addition to find
the effect of the errors on Q. It is easier to demonstrate this with an example than to
generalize.

4.5 Second-order stopband

A small elementary quadrupole of strength §(K¢) is located close to an F quadrupole
where B = B. Suppose a proton describes a circular trajectory of radius a = veB and
encounters the quadrupole at phase:

Q(s) = Qb6 ,
where 6 is the azimuth which corresponds exactly to ¢ at the SPS lattice quadrupoles.

The first step is to write down the unperturbed displacement at the small quadrupole:

x =acos Q6 . @)
It receives a divergence kick (Fig. 19):
Ax' = A(BR)/Bp = A(KR)X/Bp . 5
The small change in BAx',
AP = EAX' > (6)
perturbs the amplitude a by
Aa = Ap sin Q8 .

Even more significantly there is a small phase advance (Fig. 19):
2nAQ = 22 cos Qo . %
By successive substitution of Eqs. (6), (5), and (4), we get

A(2K)
Bp

21AQ = B cos? Q6 . (8)

Over one turn the Q changes from the unperturbed Q by

AQ = %%%%%% (cos 2Q6 + 1) . 9)

Bx’

kick Ap = ABx’

Fig. 19 Circle diagram shows effect of kick
8p at phase Q6 advancing phase by
2mAQ = Ap cos QB/a
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On the average this shifts Q by
aQ = BAUK) e Eq. (3] . (10)

The first term, however, tells us that as the phase Q6 on which the proton meets the
quadrupole changes on each turn by 2m x (fractional part of Q), the Q-value for each turn

oscillates and may lie anywhere in a band

about the mean value.

Suppose this band includes a half-integer Q-value. Eventually, on a particular turn,
each proton will have exactly this half-integer Q-value (Q = p/2).

Because the first term in Eq. (8) is cos 2Q6, the argument increases by 2mp on the
next and all subsequent turns. The proton has been perturbed by the A(KR) error to a
Q-value where it "locks on'" to a half-integer stopband. Once there, the proton repeats
its motion every two turns, and the small amplitude increase from the perturbation Aa
builds up coherently and extracts the beam from the machine:

é‘ai ~ 218Q .

We can visualize this in another way by saying that the half-integer line in the Q
diagram,
2Q=p (p = integer) ,
has a finite width #8Q with respect to the unperturbed Q of the proton. Any proton whose
unperturbed Q lies in this stopband width locks into resonance and is lost (Fig. 20). This
is a theoretical convenience rather than a physical reality.

This quadrupole-driven half-integer resonance is just the mechanism which we intend to
use for the SPS fast-slow extraction. On the other hand, for ordinary slow extraction we
put a small sextupole in the ring. Equation (5) becomes

" "
Ax' = 6[g§%]x2 = 6[§§%Ja2 cos? Q6 .

The cos? Q8 (rather than cos Q6 for a quadrupole) will lead to a cos 36 term in
Eq. (9). It is left to the reader to work through to find the exact equivalent of Eq. (9)
for the sextupole case.

The resonant condition for a sextupole is then

Q=7p/3.

Sextupole errors drive the third integer resonances spaced by intervals of one-third

in the working diagram.

The reason for using this kind of resonance for really slow extraction lies in the a?
term in the formula for Ax'. This makes the stopband width proportional to a, the ampli-
tude of betatron motion. As the Q of the machine is made to sweep through the resonance,
first only the protons of large amplitude are extracted. The process can be made rather
gradual. The full theory involves momentum spread, too. I shall not pursue it any further.
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Extending the argument, octupoles drive quarter-integer Q-values with a width which is
« a?, decapoles drive fifth-order resonances at one-fifth integer Q-values, etc.

4.6 Unwanted stopbands and their compensation

In a real machine each quadrupole in the lattice has a small field error. The
A(2K)'s are chosen from a random distribution with an r.m.s. value A(Kl)rms. If the N
focusing quadrupoles have the principal effect at B we can see that the r.m.s. expecta-
tion value for 8Q is, from Eq. (10),

BA (K2)
<5Q>rms - \/@g _—iiﬁﬁgﬂgi :

The factor v/2 comes from integrating over the random phase distribution. The sta-
tistical treatment is similar to that used for estimating closed orbit distortion.

Now let us use some Fourier analysis to see which particular azimuthal harmonic of
the §(K2) pattern drives the stopband.

Working in normalized strength k = AK/(Bp) we analyse the function &§(Bk) into its
Fourier harmonics with

8gk(s) = 2: §kp cos pé + A an
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and

2T
A 1 —_—
ka =X f dsé[Bk(s)] Cos p8 + X .
0

We substitute the pth term in Eq. (11) into Eq. (5) and work through the steps to
obtain a new form for Eq. (9), namely:

B
2mAQ = JT cos p8 + A (cos 2Q0+ 1)ds .

The integration can be simplified by writing ds = Rd6:

2m

Bk R
YAQ=]T}:—Ic052Qecospe+>\de.

0

The integral is only finite over more than one betatron oscillation when the resonant
condition is fulfilled:

2Q = p-.

We have revealed the link between the azimuthal frequency p in the pattern of quadru-
pole errors and the 2Q = p condition which describes the stopband. For example, close to
Q = 27.6 in the SPS lies the half-integer stopband 2Q = 55. The azimuthal Fourier component
which drives this is p = 55. Similarly, a pattern of correction quadrupoles, powered in a
pattern of currents which follows the function

i =1y sin 556 + X ,
can be used to compensate the stopband by matching i, and A empirically to the amplitude of
the driving term in the error pattern.

It is exactly this procedure which we hope to use when we power the sets of harmonic
correction quadrupoles, each with its own power supply. We shall look for a sudden beam
loss due to a strong stopband at some point in the cycle where £ and Ap/p are large and
gradient errors important. This loss will appear as a downward step in the beam current
transformer signal. We will then deliberately make Q sit on the stopband at that point to
enhance the BCT step and alter the phase and amplitude of the azimuthal current patterns of
the harmonic correctors to minimize the loss. We may have to do this at various points in the
cycle with different phase and amplitude, hence the power supplies follow function generators.

Two sets of such quadrupoles are used. One, near HF machine quads, affects mainly
ZQH = 55; the other, near HD quads, affects ZQV = 55,

The harmonic sextupoles work in the same way except that there are four numerical
relations between QH and QV which are resonant. The keen student can verify this with an
extension to the mathematics of the previous section. He will find that two of the lines
are sensitive to errors of a sextupole configuration with poles at the top and bottom, the
other two to sextupoles with poles symmetrical about the median plane (Fig. 21). By per-
muting these two kinds of sextupoles with the two types of location, we can attack the four
lines more or less orthogonally.
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a) b)

Fig. 21  Sextupole configurations
a) Normal sextupole (3Qy = 83, Qy + 2Qy = 83)
b) Skew sextupole (2Qy + Qy = 83, 3Qy = 83)

BUNCHES, BUCKETS, AND MOTION IN RF PHASE SPACE

5.1 Digression on relativity

As a preparation for longitudinal dynamics we summarize some basic relativistic

quantities. The units are always in GeV.

B =v/c = P/E

Y = = B/

Ep = mc? = rest energy

P =pc = ;7%%%§T = Eo(By) = momentum

T = kinetic energy
E =E; +T-= (E%,+P2)1/2 = total energy .

(12)
(13)

(14)
(15)

The quantity By is used in longitudinal phase space as a measure of the momentum, just

as divergence is used in transverse phase space. Since Eq = 0.93826 GeV for a proton, the

equivalence of By and P is almost exact. Reference 3 contains these and many other useful

relativistic relations.

5.2 The synchronous particle

The RF voltage across the accelerating structure is

V =V, sin anat ,
where fa is the RF frequency.

(16)

The particle circulates around the machine in a time t and with a frequency f where

t=C/gc, f =Bc/2mR ,

where C = 2mR, the circumference.

a7
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In an ideal machine, there is a synchronous particle which has momentum P,, follows
the axis of the machine, and arrives at the same synchronous phase lag ¢ s behind the
*
rising ) zero-crossing of the RF wave. For this to occur, fa must be a multiple of f:
fa = hf , (18)

where h is the harmonic number.

The RF frequency is programmed during the cycle to be proportional to f. Since B
changes very little in the SPS, the adjustment is a small one.

The voltage it experiences on each turn is then

V = Vy sin bg - 19)

For the SPS, h = 4620, and there are 4620 places on the circumference where a particle
can arrive synchronously. These are the centres of the bunches or buckets, which we shall
describe later.

The voltage Vo is programmed, and the phase of the RF voltage with respect to the
bunches (measured by a wideband pick-up) is servo-controlled to keep V exactly equal to
the rate of acceleration determined by B, the rate of rise of the magnetic field.

Not all protons can arrive synchronously. In fact the beam delivered from the PS is
a continuous ribbon. If you imagine a coordinate system which is a cylinder (Fig. 22)
rotating with the velocity of the synchronous particle, some protons arrive after the zero-
crossing and therefore lag behind the RF wave by a phase angle ¢; others arrive before.

Lagging proton
Synchronous proton
B -V =V, sin 2rfat

¢
t

= =

Fig. 22 Cylindrical coordinate system rotates
with beam, demonstrates meaning of
RF phase angle in longitudinal phase
space

*) We describe the situation below transition energy.
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This relative phase of particle and RF wave is used as the horizontal axis of the longitu-
dinal phase-space diagram. Note that a particle outside the range

-mT<¢<T
falls in one of the other 4620 segments of the circumference, and its phase can always be

redefined with respect to the nearest rising zero-crossing to keep ¢ within this range.

We now have a way of plotting the motion of a proton in phase space. Anyone worried
about the use of ¢ to describe a displacement may reflect that a phase advance can be
related to a distance on our rotating cylinder, the distance between the proton and the
origin, i.e. ¢ = 0 of our coordinate system.

Unlike transverse phase space, areas A in longitudinal phase space are conserved
during acceleration.

5.3 Phase stability

Figure 23 shows diagrammatically the principle of phase stability below transition.

Below transition the particle is far enough from the velocity of light for the extra

acceleration
AE = Vo(sin ¢ - sin ¢g) , 20)
RF voltage wave
v Ad A ~ _—betore transition
-0, N\ -0
A I
| % C \\
| | \
| ! \ %
ibs -0, T ¢
|
ABy
1 | (8 | |
-1 [} -TC ¢s B T
a) b)

Fig. 23 Phase stability of synchrotron motion below (a) and above (b) transition



- 32 -

which a late particle B experiences, to cause it to speed up and overtake the synchronous
particle A. In so doing, its momentum or By becomes larger than the synchronous particle
and it describes an ellipse (for small amplitudes) in phase space. The motion up and down
the linear part of the RF wave is reminiscent of SHM. Its stability is characterized by
the fact that the trajectory is closed and depends upon the fact that AE is positive when
¢ -¢s is positive.

Not surprisingly, the motion is not the ellipse of simple harmonic motion if the
amplitude of the proton's phase oscillation brings it onto the non-linear part of the RF
wave and over the top. The ellipse becomes a fish-shaped trajectory.

Suppose a proton C oscillates with such large amplitude that ¢ becomes greater than
ki -¢S. We see from Eq. (20) that an increase in ¢ then causes a negative AE, which
further increases ¢. The particle is unstable and is continuously decelerated.

There is a particle on the limit of stability which, starting at ¢ =7 -¢S, would
trace out a fish-shaped trajectory, the separatrix between stable and unstable motion.
This figure is called the RF bucket.

Not surprisingly, the length of the bucket depends on o5 and if g is zero, as it
is at injection when acceleration is not required (Eq. 19), the bucket is said to be
"stationary", stretching over all phases from -m to m.

The bucket height is the range of momenta 2A(By) which the RF wave can constrain.
It turns out to be dependent on vV for a given - Obviously, as V is reduced the more
energetic protons spill over the top of the RF wave and reach an unstable phase before
the restoring action of the slope of the RF wave can reverse their motion. The analogy
with a pendulum whose amplitude is so large that it goes over the top is a good one.

Conversely, if V is increased slowly, the bucket height grows, and more and more of
the momentum or By spread in the beam is trapped. This is the mechanism called adiabatic
trapping which is used to capture the continuous ribbon of beam coming from the PS
(Fig. 24). This must be done with stationary buckets so that all phases are stable and V
is increased in a rather parabolic fashion so that bucket height grows steadily.

-Tt

Fig. 24  Adiabatic trapping of coasting beam in
growing stationary bucket
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5.4 Transition

We have mentioned transition and we now explain its effect. Above a certain energy,
the transition energy (= 20 GeV in the SPS), the proton's velocity is so close to the
velocity of light that any acceleration AE causes but a small increase in speed. The time
an over-energetic proton takes to make a circumnavigation of the ring is then mainly
determined by the extra distance it must travel because of its larger mean radius
Ar = o, Ap/p. In contrast to the situation below transition, a lagging particle on the
rising edge of the wave, seeing more voltage than the reference particle, gains more energy
but on the next turn arrives even later, so that its phase drifts even further from ¢s -
an unstable situation. To restore stability we must change the phase of the RF wave so
that b lies on the falling edge of the wave. The lagging particle gets less acceleration,
takes a shorter route, and catches up on the synchronous particle. Figure 23b shows the
situation above transition energy.

Mathematically, the quantity which described the relation between revolution frequency

and energy increment is

of | _ By of
() - % (58, - @
Since f = Bc/2mR,

dg _P
dP R

H%

n =

™[

The two terms describe changes in speed and path length, respectively.

1
Remembering that P = E¢8/(1 - 82) é, we can show that the first term is just y~2. The
second term is &;/R, by definition, and is a constant for the lattice, which we can write

Thus

We see immediately that n changes sign during acceleration from positive to negative
passing through zero at y = Yere Then E;y¢y is the transition energy.

The quantity n is a measure of the rapidity with which a small energy increment (ABy)
restores the phase of the particle towards g We shall not be surprised to find it

entering into the equation for the frequency of synchrotron motion around the fish.

It is a deliberate characteristic of most AG machines, and one of their advantages,
that ap is small. This makes the two terms comparable, and hence n = 0 occurs somewhere
between injection and top energy. In practice, the timing of the phase jump proves not to
be crucial since, just because n is small, nothing much can happen to disturb the bunch.
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Fig. 25 Estimated momentum spread in the SPS

What does happen, however, is that the bunch becomes very tall and thin so that there
is a momentary peak in ARy/BY, or Ap/p, at transition (Fig. 25) which necessitates very
careful control of both chromaticity and stopband width.

5.5 Frequency phase and debunching

Before deriving the equation of motion which describes phase or synchrotron oscilla-
tions, we remind the reader that frequency is really the rate of change of phase.

For a single oscillator,
i:
> f.

For two oscillators, the RF cavity with frequency hfo = f_, and the particle whose RF

a’
phase is determined by the frequency hf (f being its revolution frequency), the relative
phase difference changes at a rate

..
> haf .

We can write also
¢ = -2rh [ Af(t) dt .

We already have a relation between Af and (By) in Eq. (21),
= ﬁ
Af =g b (BY)

therefore

- Zﬂfa_n
BY

[aY) dt . (22)

This defines a trajectory in phase space. A simple case is when the RF is suddenly

switched off. The spread in momentum

A(BY) _ Ap
By P
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in the bunched beam stays constant, and particles just drift along lines parallel to the
¢ axis at a rate such that they enter the next bucket smearing into a continuum after a
time t given by

= = éR
m™T=9¢ anan pt-
This t is called the debunching time and we see that like all other phenomena debunching

gets very slow when n is small, close to transition. This is a reason why we cannot inject
much above 14 GeV from the PS.

5.6 The equation of motion for synchrotron motion

The differential version of Eq. (22) is

.

-Byd = Ay
ZohnE - 860 = F -

The operator d refers to what happens in one turn. A little relativity allows us to
relate this to the energy gain per turn:

) 2 . "
dE = Vo (sin ¢ - sin ¢g) = E,Ay =d %%%ﬂﬁ? = é%-z—igﬁgzxg .

We obtain the classical differential equation for synchrotron motion:

2 .
é% [%%%ﬁ%g] + Vo(sin ¢ - sin ¢g) = 0 .
Except close to Y¢y We can assume that 8, v, n, and f vary slowly in comparison with

the synchrotron oscillation which this equation describes. Hence

. 2mVonhf?

¢ —W(sin¢-sin¢s)=0.

For small amplitudes (¢ -¢g << 1)

" 2
¢ + ZﬂVonhf COos ¢5 (¢ _¢s) =0 .
EoB%y

This is simple harmonic motion about b with frequency

£ = nhVy cos ¢g
S ’ 2mEq B2y

By analogy with the betatron Q the number of synchrotron oscillations per turn 1is

called Q_:
S
_fg 2mnhV cos b
==V TEey

In most machines QS is of the order of 10% of the revolution frequency. It sweeps
down to zero at vy transition where n is zero and then rises again. In the SPS it is in
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the region 0 to 1 kHz and, but for the vacuum, one might hear it! It can cause trouble
when it crosses the harmonics of 50 Hz which occur in the power supply ripple, and the

radial servo loop can cause resonance.

5.7 Calculations of buckets and bunches

One of the stumbling blocks to the beginner is the complicated shape of the bucket
which leads to a trivial but very lengthy calculation of the area of the bucket as a func-
tion of bgs V, and n. Bruck!) gives a good explanation of how one does this analytically.
In practice it involves numerical integration of the differential equation of synchrotron
motion. Fortunately the answer has been tabulated?>?) but it is worth taking some prac-
tical examples since the formulae are mystifying at first sight and contain many pitfalls.

Problem 1 — What is the longitudinal emittance of a beam before capture, such as
that delivered by the PS and coasting in the SPS?

Figure 26 shows this. Unlike transverse emittance, A is not the product a b of the
semi-axes of an ellipse which must be multiplied by m to give the total area. The total
area is given by A, and, being dimensionless, is quoted in radians like A¢, the phase. This
can be confusing but for a coasting beam:

A = 2A(By) * 2m = 4mA(By) .

Relating this to momentum spread

A(By) = Ap/mec
or, as given on p. 25 of Ref. 2,

A(BY) = .A_R= + ———A
By p " 4mBy

ABY A=4TtABY

-TC ~.

11

Fig. 26 Longitudinal emittance A of a coasting
beam

Problem 2 - Is the stationary RF bucket large enough to accept this emittance?

Figure 27 (reproduced from Bovet) gives formulae for bucket area and half height as a
function of V, n, v, and h. For a stationary bucket, the form factors a(I) and Y(T'), which
describe the shrinkage as ¢S increases, are just 1 and v2, respectively. Remember to use
GeV (or keV) consistently for the RF voltage and total particle energy. The quantity
Ap/moc is identical to our A(BY).
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Fig. 27 Normalized bucket area and height (from Ref. 3)

Again, if we are only interested in Ap/p we can write a formula

AE = —-A_— 1
D + 88y for a full stationary bucket .
Problem 3 - During the front porch and ramp as we increase the rate of acceleration by
increasing g what is the bucket area and half height (momentum spread)?

We recalculate A and A(By) for the new V, n, and y, and this time put in the value of
T or Y read from Bovet's graph; T is a number less than 1 and Y less than v'Z which com-
pare the moving and stationary buckets.

We note that the height of the bucket, and withlit all the quasi-elliptical trajectories
of various amplitudes within the beam, scale as |n|~ A, becoming instantaneously infinite
. . .. °
at Yeransition® Also note that the area gets rapidly smaller if ¢ is increased above 45
to obtain a larger AE per turn [Eq. (2)].

Problem ¢ - Given a measurement of bunch length (¢: -¢2) during acceleration, what is the
emittance and momentum spread of the beam?

The bunch is the phase-space trajectory within the bucket which contains all the beam.
Its area is the longitudinal emittance A, which is invariant during acceleration in an
ideal machine (Fig. 23). Its length can be measured by observing the signal from a wideband
intensity.
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Hopefully we know the RF parameters ¢S and V, at the energy the measurement is made,
and can calculate A and ABy for a full bucket as in Problem 3. Gumowski’) has calculated
the ratio for partially full buckets:

Abunch A(BY)bunch
A'bucket A(BY)bucket

as a function of ¢, ¢2, and ¢g5. We have only to look up his voluminous tables (which apply
equally to PS and SPS) to find these ratios. Multiplying the bucket dimensions by these
ratios gives the size of the bunch area and half height.

Like the bucket, bunches grow in height as (n_Bé) as transition is passed. Their
momentum spread would become infinite if their motion (also proportional to n) did not
become so slow that transition is over before this happens. The problem is a complicated
non-adiabatic one to solve, but formulae [CERN/1050, Eq. (3.4)] do exist for an upper limit
on their growthi Conversely since A is invariant, the bunch length, (¢2 -¢:) shrinks in
proportion to n .

SPACE CHARGE, RESISTIVE WALL, AND OTHER COLLECTIVE EFFECTS

6.1 Collective effects

These can be divided into transverse and longitudinal phenomena. Anything which is
caused by the mutual forces between the protons in the beam is called "collective'. We
treat transverse collective effects first.

6.2 The transverse (incoherent) space-charge effect

Figure 28 shows a beam of cylindrical cross-section. If we rode on a proton p, we
would find it saw only electrostatic fields from its neighbours:

T (* indicates moving system) ,

and a radial defocusing force

density p

Fig. 28 Space-charge fields in cylindrical beam
of uniform density
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Transforming this relativistically into the laboratory system, the protons become also
line currents, producing magnetic fields and a mutually repelling radial defocusing force:

=P =P V
E 2¢e, T B¢ 2e, c? T

= E v B = _g.p_ - 2 = epr
dfr e(E + v x B) 2, 1 -89)r 27

We can equate this to rate of change of transverse momentum, velocity and, finally,

divergence:

_..epr = = i = i _____mVT = _d_il = 2 dz_‘r
ZEOYZ Gfr = dt (pT) dt [1/1'—62] my dc2? mY(BC) dsz °

Using the classical proton radius

e2

°=W=1.5X10"18m

T

to mop up a lot of constants, we arrive at
d2T = ToN T
ds? R2y3RS
where
R = radius of machine

S = beam cross-section
N = number of circulating protons.

Remembering that r can be either x or y in our Cartesian system for describing betatron
motion, we see that the equation is none other than Hill's equation with k, a defocusing
term acting all round the circumference:

k=§2{(%s-.

As a consequence, in both the horizontal and the vertical plane the Q is shifted down-
wards by an amount which we can calculate from previous formulae for the effect of gradient
errors [Eq. (3), Section 3]:

5Qz2—('llg-g%5“§. (23)

At first sight this seems not to be a nuisance. Uncorrected, a 8Q of a few times 1072
can be accommodated between the stopbands and, if it gets larger, retuning the lattice
quadrupole strength will restore the working point. But there is a limit to how far one
can apply such compensation. In practice for accelerators this is usually taken as .
6Q < 0.25. The difficulty is that not only must the strength of the compensation be pro-
grammed to vary with vy, the energy during acceleration, but it must follow variations in
intensity from day to day or even pulse to pulse. Even if one could do this, there remains
the problem that protons near the edge of the RF bunch find themselves, twice every synchro-
tron oscillation, in a region of rarefied density at the head and tail of the bunch. How-
ever, &Q is not the same for all protons or even for the same proton at different points in
the synchrotron motion.
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Fig. 29 SPS incoherent Laslett limit at 10 GeV/c
(E, = 25, AQ, = -0.25)

In designing accelerators, the intensity N, which gives a 8Q of -0.25, is considered
to be the space-charge limit of the intensity.

It used to be about N = 10'2 for the PS until the PSB was inserted to raise the energy
of injection from 50 to 800 MeV. Since 8Q is strongly dependent on B and y and is most
serious at injection, this raised the space-charge limit by a factor of 10.

Readers are warned not to rely on the above formula for 8Q in numerical calculations.
The full and accurate formula is to be found in Laslett and Resegottis).

The more accurate formula takes into account:
i) that the beam is bunched and therefore concentrated by a factor B = (¢2 -¢1)/2m;

ii) that the image forces in the walls of the vacuum chamber play an important role in

determining the absolute 8Q. In fact the vacuum chamber size is more important than S
at high energy.

When Moh1®) used this formula to calculate AQ for SPS parameters (Fig. 29) he found
that, depending on B and the beam size that we assume, AQ = 0.25 occurs at 10'* ppp. At
our modest 10'% ppp, AQ is ten times smaller and will not need compensation.

6.3 The transverse (coherent) resistive wall effect

This is a transverse effect which is a true instability and which will trouble us in
the SPS above 5 x 10'2 ppp.

The word "eoherent" implies that all the protons begin to do the same thing at the same
time. In this case they begin to make coherent betatron oscillations of increasing ampli-
tude.

The word <nstability describes an effect which feeds upon itself. In this case the
coherent motion produces image forces in the vacuum chamber walls which enhance the motion
so that its amplitude grows exponentially from a seed in the noise spectrum.
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A favourite trick in this kind of theory is to first postulate a coherent wave and
prove that the fields it produces support and enhance it.

We must first form a visual picture of the coherent disturbance. Just as the H,O mol-
ecules in the ocean describe small circles as individuals yet produce a collective effect
which is a long and rapidly moving sine wave, so we must mentally separate the individual
betatron motion of the protons from the collective disturbance which describes their average
or coherent motion.

The <ndividual protons camnot do anything else but perform betatron motion:

< = o 1@RIsp
p
where sp is the position in the ring of the proton, Sp = v, t.

Riding on a proton we would find it oscillating as
xy (1) = e TR L Tt (24)
where w, is the revolution frequency.

After a single turn (t = 2m/w,) the phase of this oscillation has changed by 2mAQ.
This is just the familiar description of betatron motion.

Suppose, however, that the average collective motion of the protons is described by
a standing wave which, since it Zs a standing wave, must close upon itself (Fig. 30).

l oS
Of,
O,
\’78

Fig. 30 Resistive wall instability. Coherent standing-wave pattern has mode number 8.
All protons lie close to this shape at any instant but make betatron oscillations
of Qy = 6.75. The left diagram shows how wave and betatron motion keep in phase.
(The solid line is the standing wave in space; it moves by 37/2 in phase each
turn. The dashed line is the betatron path in time of a single proton; it ends
up 37/2 different in phase after a turn, matching new position of standing wave.)
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If we were able to photograph the whole machine at any instant, all protons would appear to
lie on this serpentine path. The wave can in principle have any integer number of peaks.
Their number characterizes its mode number n.

If the wave is stationary one cannot reconcile the non-integral Q-value of the beta-
tron motion with its shape. But if, after one turn, it has moved to the dotted position
in Fig. 30, so that its phase at the start and finish line, s = 0, has changed by just
2mAQ, individual and collective motion are reconciled. In fact, if at the same time as the
wave moves slowly forwards the proton oscillates rapidly forwards, the phase of both the
individual and collective motion remains in step round the whole ring.

Mathematically such a moving standing wave is described by

- e-i(ns/R—wt)

X, (25)
where its velocity
Js wR
— ==, (26)
[ang=const n

As one rides on the proton one must obey both Eq. (24) and Eq. (25) with the extra
condition that s = v, t. For this to be possible the exponents must be identical:

-%(Vzt) + @t = -%vzt .
Now Vz/R = w,, the angular revolution frequency:
“-wg + w = _Q‘)O
27
w=Mm-Quo .

This frequency w is just the frequency we would see in a spectrum taken from a single
electrostatic pick-up watching the standing wave precess slowly past the pick-up (Fig. 31).
This is a clear signature of a resistive wall instability.
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Fig. 31 Resistive wall signature on spectrum
of low frequencies from a position
pick-up. Peak at revolution frequency
fo, comes from a hole in the circula-
ting beam
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Fig. 32 Resistive wall mechanism. A perfectly conducting wall produces an exact virtual
electron image of the proton beam in wall (dashed curve) via real electrons, con-
centrated between the peaks and attracting protons (solid curve). The resistive
wall delays the arrival of electrons as the standing wave moves forward. The attrac-
tive effect of the electrons acts on the proton beam as its velocity is directed
towards the wall.

But how is such a standing wave induced? What is the mechanism? We can imagine that
as the peaks of the wave approach the vacuum chamber walls, image currents flow in the walls
and attract the wave peaks, enhancing the amplitude of the disturbance (Fig. 32). If the
wall were perfectly conducting, the image current would just be in phase with the real
proton current but no instability would grow. At the peaks of the standing wave the protons
are at the outer extremity of their oscillation where -- as anyone who has pushed a child
on a swing will tell you -- a symmetrical push has no integrated effect. To increase the
amplitude, the force, if it is an attractive one, must be delayed until the protons are
swinging towards the wall with maximum velocity, i.e. a quarter wave later when they cross
the vacuum chamber centre line.

A few moments reflection will, I hope, convince the reader that, provided the standing
wave is travelling more slowly than the protons, the delaying effect on the currents of the
resistance of the walls will do this. Hence the name ''resistive' wall instability and the
mysterious condition that since Eq. (26) demands a positive w for a slow forward wave,

Eq. (27) insists that the lowest possible n value is the integer just greater than Q. For
the SPS, n can be 28, 29 etc., but not 26 or 27.

6.4 Growth time and damping

To calculate numerical predictions of the strength of any instability rather than just
verify the hypothesis that it might occur, requires complicated mathematics which can
usually be entrusted to the specialist. First we must calculate the image forces in the
walls and integrate their effect over the complete set of modes which can occur. For this
we need dispersion theory. This is nothing more than a more rigorous form of Fourier
analysis spanning a continuous spectrum of frequencies and including the relativistic
restriction that messages between the beam and the point of application of the force cannot
travel faster than the speed of light. We arrive finally at a growth time Tg for the
instability.
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For the resistive wall instability or any other instability to be dangerous, the growth
time must win over other mechanisms which tend to destroy the coherent pattern and damp out
the motion. One such damping mechanism is the Q-spread in the beam. In an earlier section
we showed how coherent oscillations decay, or become dephased, in a number of betatron
oscillations comparable to 1/AQ, where AQ is the Q-spread in the beam. This corresponds
to a damping time

0 = 2
which is just the inverse of the spread in frequencies of the oscillators involved, the
protons. The threshold for the growth of the instability is exceeded when Tg (which is
proportional to a power of N) exceeds t4; to be safe:

2m
Tg < ‘DOAQ .

This is a very general argument which affects all instability problems involving
oscillators, and is called Landau damping. Thinking of it another way, we can say that
the instability never gets a chance to grow if the oscillators cannot be persuaded to act
collectively for a time 1 _. If they have a frequency spread Af, the time for which they
can act concertedly is just 1/Af.

Unfortunately, in our quest for a small AQ to avoid lines in the Q-diagram by cor-
recting chromaticity, improvements in single-particle dynamics can lower the threshold
intensity for the instability. A pure machine is infinitely unstable. In practice at
FNAL and very probably at the SPS this happens at about 5 x 10!2 ppp if AQ = 0.02 and
T_~ 1 msec. Suddenly the beam begins to snake. A large fraction of the beam is lost
before stability is restored (Fig. 33).

The first remedy is to increase AQ. Landau damping octupoles are installed for this
purpose in the SPS. Octupoles produce an amplitude Q-dependence which is thought to be
more effective for this purpose than the p-dependence produced by simply detuning chro-
maticity. But as we apply more and more octupole strengths to reach higher intensities,
we start again to lose beam to resonances as the edges of the Q-spread hit stopbands.

510"

t/sec

Fig. 33 Effect of resistive wall instability,
causing beam loss twice during the
loading of the FNAL main ring
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Fig. 34 Resistive wall active damper. (Protons
make n + !/, betatron oscillations arriving
at damper at the same time as the signal.)

A more elegant remedy (Fig. 34) which has taken FNAL above 10'*® ppp 10) js to feed a
signal produced by an electrostatic pick-up detecting the undulations through a distributed
amplifier with a bandwidth sufficient to cover say the first 20 mode numbers (10 kHz to
1 MHz). The amplified signal is then applied to electrodes (*#1 kV) which kick the protons
as they come round for a second pass. Care must be taken to delay the signal so
that signal and protons are synchronized. We cannot hope to catch up with them since
B ~ 1, so we must choose a position for the deflector where it meets the protons on the
next turn round and at the correct betatron phase to reduce the amplitude of oscillation
which produced the signal, i.e. an odd number of quarter wavelengths downstream. It is
planned to use this active damping in the SPS.

6.5 Longitudinal instabilities

These are instabilities which arise when a bunch passes through a cavity-like object,
e.g. the pots which join vacuum chambers together. The cavity acts like a beam-excited
acceleration cavity. It has a certain resonant frequency which we can think of as n times
the revolution frequency, where n need not be related to the harmonic number of the ac-
celerating cavities. For a given beam current I, a voltage is induced across the ''cavity"
which is related to I via Ohm's law:

V=1Z7.
This defines Z, the (complex) impedance of the cavity. It is conventional to quote

the quantity
Z
I—l‘ ohm

as a measure of the influence of the cavity, since this appears in all the formulae.
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RF theory tells us that the bucket produced by this voltage has a height

eVy
A =~ —_—
(8Y) T/n|n|Eon

or rearranging, and being careful about the numerical factors which crop up when we integrate
over a bunch,

I

ABY)? = —2Y X I x

28
0.77|nlE, n (28)

If the whole momentum spread of the beam A(By) is within this bucket, it can start to
perform some sort of coherent motion with a synchrotron frequency which can be in step with
and be mutually reinforced by the driving voltage of frequency nf.

The Eq. (28) is a famous and generally accepted criterion, the Keil-Schnell criterion
for the threshold of a longitudinal instability. Remembering that nA(By) reflects the spread
in revolution frequencies, we can see that it is yet another way of writing a Landau damping
condition. If the beam has a large enough A(BY) to produce a revolution frequency spread
and a damping rate greater than the instability growth rate, the beam never becomes unstable.

There is a whole spectrum of possible mode numbers n, corresponding to cavity-like
objects with resonant frequencies from MHz up to several GHz. There are also many configura-
tions of instability, the details of which have been treated in other lectures in the
Academic Training Series. Broadly speaking, we can divide the configurations of longitudinal
instability into categories whose driving mode number n gets higher as one goes down the
list, as does the length of the wake field left behind by the bunch. They are as follows:

a) The coherent motion of all the bunches together in response to a driving frequency with
n ~h. Examples are the influence of the beam-induced voltage in the accelerating cavities
themselves and its interaction with the radial feedback loop. These can be subdivided into
modes in which the bunch gyrates in the bucket as a rigid body (dipole mode which can be
damped with radial feedback) and modes where the aspect ratio of the bunch oscillates
(quadrupole modes susceptible to Hereward damping). Another damping mechanism is to work
always with full buckets and using the non-linear change in fs near the separatrix to
provide Landau damping. Introducing an RF frequency modulated at the revolution frequency
or a multiple of RF frequency helps too.

b) Coherent motion in which the fading wake field of one bunch excites its neighbour.

An example of such an instability is the effect of higher frequency modes of the RF cavity
itself or of large vacuum tanks. This too can have dipole and quadrupole modes of oscilla-
tion and can be damped when there is a small number of bunches (e.g. in the PSB). Otherwise
the cures are similar to (a).

c) Motion develops in a very small local part of the bunch where A(By) happens to be too
small for the Keil-Schnell formula. The frequency is very high in the microwave region.
It is a coasting rather than a bunched beam instability.
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6.6 Precautions taken in the SPS

The accelerating cavities themselves are the most obvious potential source of trouble.
Their fundamental mode must unavoidably have a high Z/n if they are to do their job as
modest-power but high-voltage devices. All we can do is to refrain from installing more
of them than is strictly necessary.

The higher frequency modes of excitation of the cavities can also cause trouble when
a multiple of their frequency becomes a harmonic of the bunch frequency. This has been
seen and has caused trouble at FNAL. Careful design of the cavity can minimize these
impedances. At FNAL it was damped by filling the bucket.

Next in order of ascending frequency, we must look for large or numerous resonant
cavities in the design of the machine. Potential offenders are the vacuum junction boxes
between magnets and parts of the vacuum tanks for septa. The impedance of these has been
measured, and by placing damping resistors in the junction boxes we hope to have lowered
Z/n integrated around the ring to close to the ISR figure of a few ohms.

What is left is just the discontinuity or step which occurs frequently in the chamber
wall. This cannot resonate in the sense of a cavity but can act like a small dipole trans-
mitter radiating microwaves above the cut-off frequency of the pipe and sapping energy
from the beam.

The frequency is very high, > 1 GHz. It starts an instability of the last type which
affects just bits of the bunch where Ap/p is small. The symptoms of this kind of microwave
instability, seen in the PS with disastrous effects when the RF is switched off, are fully
described by Boussard!!).

To erase the 9.5 MHz structure of the PS beam which would saturate the counters of the
high-energy physics community, we have inevitably, either in PS or SPS, to let the beam
coast and debunch. Figure 35 shows how ARy becomes narrower in parts of the phase space
during debunching, and since the Keil-Schnell law tells us the threshold is « A(BY)2/I we
can imagine that the beam becomes locally unstable. This was what occurred when the de-
bunching procedure was tried in the PS. The instability caused energy to flow into the
protons which already had a large A(By) and vice versa until the momentum spread reached
a frightening 0.6%. This is well outside the acceptance of the SPS 200 MHz bucket and
beyond the tolerance on chromatic Q-spread which it was hoped to keep in the SPS.

ARy Small &(By)

L A%
- T

Fig. 35 Phase plots of a bunch before and during
debunching, showing how ARy becomes small
locally
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We have checked!?), by simulating SPS conditions in the FNAL main ring!?), that because
of the lower line current in the SPS (1/11th of the PS), we expect a detectable but not
disastrous effect from this new instability, provided we do the debunching in the SPS and
not in the PS. It is, however, something which should be an important consideration in
fixing the design of future circular machines, and it is a timely warning to those of us
who may be complacent enough to imagine we have thought of everything!
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