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Abstract. A frequent source of concern for resource providers is the efficient use of computing
resources in their centers. This has a direct impact on requests for new resources. There are
two different but strongly correlated aspects to be considered: while users are mostly interested
in a good turn-around time for their jobs, resource providers are mostly interested in a high and
efficient usage of their available resources.

Both things, the box usage and the efficiency of individual user jobs, need to be closely
monitored so that the sources of the inefficiencies can be identified. At CERN, the Lemon
monitoring system is used for both purposes. Examples of such sources are poorly written user
code, inefficient access to mass storage systems, and dedication of resources to specific user
groups. As a first step for improvements CERN has launched a project to develop a scheduler
add-on that allows careful overloading of worker nodes that run idle jobs.

1. Introduction

CPU resource providers have a high interest in keeping their CPUs busy. If a large fraction of
the available CPUs is idle, it is difficult to justify funding for additional resources. In general,
though, the resource provider has little influence on what the user jobs do on the nodes. The most
basic change resource providers can do is attempt to improve the box usage by simultaneously
running more jobs on each box. However, there are limits to this approach, because on the
execution nodes disk and memory space and I/O bandwidth are limited as well. These limits
become specially visible with multicore machines.

Inefficient use of computing resources by user jobs can have different reasons; while some jobs
or job classes are CPU intensive, other jobs need to access and process a large amount of data,
and are thus limited by I/O. The resource providers have no possibility to distinguish these job
classes. However, dedicated queues targeted at CPU and I/O bound jobs provided at the batch
system level allow users to tell the resource providers the type of job by submitting it to the
appropriate queue. Unfortunately, even this approach cannot eliminate the inefficiencies caused
by jobs which must wait for some external events - for example, a typical problem which has
been observed at the CERN batch farm is that users submit jobs which wait for tape recalls
via the CASTOR mass storage system. Even if users attempt to pre-stage their data before
submitting the jobs to the batch farm, jobs can be scheduled on the worker nodes before the
data has arrived on disk, for example if there are a lot of such requests pending.

The tape recall system at CERN knows about all incoming requests. From the position of a
request in the queue and the available resources it is possible to get an estimated time of arrival.
This information can be used in turn by a batch scheduler plugin to pick a fitting CPU bound
job and dispatch it on the worker node with the job which is doing nothing while waiting for its
data.



A mechanism doing exactly this has been developed and put in place at CERN for the shared
batch resources. Fig. 1 illustrates the basic idea.

2. The batch system at CERN

The batch system at CERN is an installation with almost 2000 batch worker nodes (at the time of
writing). About half of these resources are public1, shared among the different user communities
at CERN. Fair share scheduling is used on these shared nodes. The scheduler plugin previously
described works on this part of the cluster. Platform Computing Corporation’s Load Sharing
Facility, LSF [1], is used to manage the load on the whole farm. The batch nodes have two
Intel CPUs with two or four cores each and 2 GB of memory per core. In general, there is one
job slot assigned per core and experience shows that at least one out of eight simultaneously
running jobs on a node can be waiting for an external event. Therefore, we assign an additional
job slot per box, and let the LSF scheduler decide if it is used or not, based on the usage of the
machine.

Figure 1. Job back-filling, making use of information provided by the tape system.

2.1. Batch worker node usage at CERN
The CPU usage on the public batch farm during the past year is illustrated in fig. 2. As can be

Figure 2. Average CPU
usage on the public batch farm
at CERN.

seen from this figure, the average CPU usage has not been optimal during the last year. The
reasons for this are many-fold, as mentioned before. The aim of the project described in this
document is to improve the average CPU usage per machine, any previous knowledge on the
nature of the user jobs.

2.2. User job efficiencies
An obvious reason for low machine usage is low job efficiency. Fig. 3 shows the job efficiencies
for all user jobs for the four LHC experiments for jobs which were run at the CERN batch

1 Public means that these nodes can be used by all users who have access to the interactive Linux cluster at
CERN, lxplus



Figure 3. User job efficiencies for the four LHC communities.

farm. The CPU/runtime ratios are generally poor. Reasons for this have to be followed up by
the experiments. Single users often submit very different jobs, and some accounts are shared
by different parties. More information about individual jobs is needed to be able to really
chase these cases effectively. This has been attempted in a different project which addresses job
instrumentation, see [2].

3. Job types

User jobs can have very different efficiencies, depending on what they are doing. Here, we want
to focus on the two extreme cases, purely CPU bound jobs, and purely I/O bound jobs.

3.1. CPU bound jobs and CPU queues
Within this report, a CPU bound job is defined to be a job which has a CPU/runtime ratio
above 80%. This number is motivated by past experience. It is a free parameter which can be
used later to tune the algorithm.

For this class of jobs dedicated queues are introduced. The queues differ in the maximum
CPU time which can be used by the jobs running in it. The maximum run time is fixed by the
requirement that jobs shall have an efficiency of at least 80%.

For CPU bound queues it is important to have an efficient idle job detection. The LSF
product comes with a plugging which allows to raise an exception for a idle jobs. The site admin
has the possibility to provide a script, which can act on such jobs.

It is not a good idea to kill such jobs off immediately, however. Experience shows that some
jobs do a bit of I/O at the beginning, and then start to run very efficiently. Therefore, a check
is done if the job can still archive it’s goal of a total 80% CPU usage, taking into account the
remaining run time, see Fig. 4. If achieving this goal is no longer possible in the remaining
allowed runtime the job is automatically terminated.

3.2. I/O bound jobs
All jobs which are not CPU bound are assumed to be I/O bound. There are no special queues
for them; all jobs submitted to non-CPU queues are assumed to be I/O bound. In general, all
queues have a CPU and a run time limit defined, but in this case the run time limit is much
larger (up to four times) than the CPU time limit. A run time limit is set for operational
reasons, for example in the case when it is necessary to drain a machine.



Figure 4. Flow chart in-
dicating actions to be taken
for CPU bound jobs for which
an idle job detection has been
raised.

4. Back-filling scheduler

The public queues for I/O bound jobs make use of the automatic idle job detection as well. An
exception is raised when the CPU/run time ratio is lower than 50% for more than 30 minutes.
This exception is used as an entry point for the algorithm depicted in fig. 5.

The jobs are generally not killed. Instead, the algorithm retrieves a list from the mass storage
system to check if the job may be waiting for a tape recall. If this is the case, it obtains the
estimated time of the arrival for this data, and examines the jobs waiting in the CPU bound
queues for execution. The runtime limit for the queue is used to check if any of these jobs fits
into the gap, and if the CPU bound jobs resource requirements are matched by the worker node,
the algorithm dispatches the job to the worker node, in addition to the jobs which are already
running there via the normal scheduling. The idea is depicted in fig. 1. To avoid overloading of
boxes, only one CPU bound job can be dispatched per worker node this way at a time, even if
several jobs are on a singe box have idle exceptions due to tape recalls. Also, querying the mass
storage system too frequently must be strictly avoided because this could significantly degrade
the system. Instead of asking the mass storage system if there is a pending request related to a
specific worker node or job, the mass storage system has been configured to provide a list of all
currently pending requests, together with the estimated time of arrival of the data. The list is
made available via a web server, and parsed by the scheduler. No active queries are done.

In case no suitable CPU bound job is waiting in the system for execution, or in case the idle
job is stalled for a different reason, no action is taken.

5. Results

Before production deployment, the scheduler has been run for some time on the production
system in no-action mode. In this phase, 28% of the jobs with an idle job exception were
identified by the algorithm as back-filling candidates. Parameters which influence the likelihood
of finding possible back-filling candidate jobs are:

• the CPU/run time ratio above which a job is called CPU bound, (80%)

• the CPU/run time ratio limit for triggering an idle job exception, (50%)

• the time interval used for the idle time job exception, (30min).

The parameter values indicated were chosen conservatively to result in minimum impact on user
jobs. We expect future tuning of the parameters to increase the likelihood of back-filling and
further increase our resource CPU efficiency.



Figure 5. Flow chart indicat-
ing actions to be taken for I/O
bound jobs for which an idle
job detection has been raised.

The system has been released into production in December 2008 with the above settings, and
is running since then. The resulting effect is difficult to measure because of the chaotic nature
of the jobs run by the users. Nevertheless, an consistent increase of the average box can be
observed in the CERN monitoring figures, see fig. 2 since December 2008.

6. Summary

A mechanism has been developed and deployed at CERN which can help to increase the worker
node usage by cross talking to the mass storage system, and carefully over-commiting worker
nodes with idle jobs. User jobs need to be categorized into CPU and I/O bound, in order to
make the algorithm work. CPU bound jobs shall be submitted into dedicated queues. Due to
this algorithm and the fact that these queues have slightly higher priority, users tagging their
jobs by submitting to these queues are rewarded with a smaller turn around time.
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