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We discuss kinematic methods for determining the masses of the particles in events at a hadron collider

in which a pair of identical particles is produced with each decaying via a series of on shell intermediate

beyond-the-standard model (BSM) particles to visible standard model (SM) particles and an invisible

particle (schematically, pp ! ZZþ jets with Z ! Aa ! Bba ! Ccba ! . . . ! cba . . .þ N where

a; b; c; . . . are visible SM particles or groups of SM particles, A; B; C; . . . are on shell BSM particles,

and N is invisible). This topology arises in many models including supersymmetry (SUSY) processes such

as squark and gluino pair production and decay. We present the detailed procedure for the case of Z !
3 visible particlesþ N and demonstrate that the masses obtained from the kinematic procedure are

independent of the model by comparing SUSY to universal extra dimensions.
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I. INTRODUCTION

Many solutions to the hierarchy problem require new
particles whose loop corrections to the Higgs mass squared
cancel the quadratically divergent standard model (SM)
loop corrections. The masses of the new particles (espe-
cially the particle or particles which cancel the SM top
loop) should be sufficiently small that the Higgs mass can
be naturally below the TeV scale. On the other hand, if the
new particles have masses below OðTeVÞ then LEP ob-
servables will be strongly affected if they are exchanged at
tree level or can be singly produced. Both these latter
possibilities are automatically removed if there is a sym-
metry under which the new particles are odd and the SM
particles are even. In particular, the new particles can then
only contribute to the electroweak observables at the loop
level, and new particles with masses of order of a few
hundreds of GeV can be compatible with the data. In
such scenarios the lightest of the new particles is automati-
cally stable and it should be neutral for consistency with
bounds on new charged stable matter. Typically, it is also
weakly interacting. Such a weakly interaction massive
stable particle will be invisible, leading to ‘‘missing en-
ergy’’ in particle detectors. This scenario is also highly
desirable since such a weakly interaction massive stable
particle can readily provide the dark matter known to be
present in the Universe.

Almost all the models with dark matter candidates also
contain additional particles that are charged not only under
the new symmetry but also carry SM ‘‘charges,’’ most
often including color. At a collider, these new particles
must (and will) be pair produced, and since they are
heavier than the dark matter particle, they will cascade
decay down to it. In many cases, this cascade radiates SM
particles in a series of A ! Bc, 1� body ! 2� body
decays, in which A and B are new physics particles while
c is a SM particle. (In some cases, phase space restrictions

force one of the new particles off shell and A ! B�c !
Cdc, 1� body ! 3� body decays are relevant.) Since the
final step in the chain will yield a dark matter particle, the
typical collider signals for such a scenario will be jets and/
or leptons plus missing energy.
Supersymmetry (SUSY) is the most popular model of

this type. In SUSY, the new symmetry is termed matter
parity (sometimes called R parity). Its conservation implies
that the lightest supersymmetric particle is stable. In most
supersymmetric models, the lightest supersymmetric par-
ticle is the lightest neutralino, which is a good dark matter
candidate. It appears at the end of every supersymmetric
particle decay chain and escapes the detector. All super-
symmetric particles are produced in pairs, resulting in at
least two missing particles in each event.
Other theories of TeV scale physics with dark matter

candidates have been recently proposed. They have experi-
mental signatures very similar to SUSY, i.e., multileptons
and/or jets plus missing energy. For instance, universal
extra dimensions (UEDs) [1,2], little Higgs theories with
T parity [3], and warped extra dimensions with a Z3 parity
[4] belong to this category of models.
Clearly, being able to reconstruct events with missing

energy is an important first step to distinguish various
scenarios and establish the underlying theory. In addition,
studies [5] suggest that the mass of the dark matter particle,
and the masses of any other particles with which it can
coannihilate, need to be determined to within a few GeV in
order to be able to compute the dark matter density in the
context of a given model. Avery important question is then
whether or not the LHC can achieve such accuracy or will
it be necessary to wait for threshold scan data from the ILC.
The goal of this paper will be to provide details regarding
the kinematic techniques developed in Refs. [6,7] that
provide the needed accuracy using just LHC data. For the
case of 3 visible particles per decay chain, the focus of this
paper, we also show that the kinematic technique gives
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masses for the beyond-the-standard model (BSM) particles
that are completely insensitive to the particular model by
comparing a SUSY case to a UED case where the decaying
BSM and final invisible BSM particles in the two cases
have the same masses. This implies that it is unnecessary to
determine the overall mass scale of the BSM particles
using model-dependent information, such as total cross
sections. Indeed, to fully test a potential model, it is
necessary to first determine the masses of the produced
particles just based on kinematic information. Once the
masses are known, there are many chain decay configura-
tions for which it will be possible to determine the four-
momenta of all the particles on an event-by-event basis.
The four-momenta can then be employed in computing the
matrix element squared for different possible spin assign-
ments. In this way, a spin determination may be possible
which, in combination with cross section information, can
be used to distinguish different models.

In recent years there have been numerous studies in the
context of SUSY-like theories of how to measure the super-
partner masses just based on kinematic information [8–28].
In some cases the procedures employ a single long decay
chain of superparticles, usually requiring 3 or more visible
particles in the decay chain in order to have enough invari-
ant mass combinations of the visible particles to achieve
sensitivity to the absolute mass scale, as opposed to simply
mass differences. Squark decay, Fig. 1, is an example of
one such chain.

Our approach has been to pursue alternative procedures
that employ events in which a pair of identical (particle and
antiparticle, e.g., squark plus antisquark) BSM particles is
produced and both decay in the same manner. In such an
event, information from both decay chains in the event can
be included at once. In our first paper [6], we tackled the
difficult case where we assumed that only two particles
appeared in each chain decay, e.g., making use only of the
leptons appearing in Fig. 1. In this case, kinematic con-
straints alone cannot give a discrete solution for the un-
known masses. Nonetheless, the space of the allowed
solutions does contain enough information about the new
particle masses and they can be extracted using a statistical
procedure [6]. The mass determination can be further
improved by combining with other kinematic variables
such as MT2 [9,24]. However, these kind of analyzes
usually require large statistics in order to achieve a reason-
able precision. In this paper, we provide details on the case
where 3 visible particles are present in each chain decay. In

this case, a single pair of events provides enough informa-
tion to yield a discrete set of possible masses. Therefore,
very few events are needed for a rough determination of the
masses, in contrast to the statistical methods which rely on
the availability of a large number of events.
The general topology on which we focus is then that of

Fig. 2. After including combinatorics and resolution, we
will achieve root-mean-square accuracies on the three
underlying masses in the decay chain of the order of a
few GeV (depending upon the number of available events)
with a systematic shift that can be easily corrected. This
result is fairly stable when backgrounds are included so
long as S=B * 2.
The organization of the paper is as follows. In Sec. II, we

give the general counting of constraints and unknowns for
single chain and multiple chain events. In Sec. III, we give
a more detailed exposition regarding solving the topology
of Fig. 2. In Sec. IV, we first demonstrate how the masses of
the Z, Y, X, and N particles in Fig. 2 can be very precisely
determined using just a few events if there are no effects
associated with combinatorics, particle momentum mea-
surement resolutions, or backgrounds. We then develop the
very crucial strategies for dealing with the realistic situ-
ation where combinatorics, resolution effects, and back-
grounds are present. We still find good accuracies for all
the masses using only the kinematic information contained
in the available events. We study the accuracy of the mass
determinations as a function of the available number of
events and as a function of the signal to background ratio.
In Sec. V, we compare results for the SUSYand UED cases
and show that the masses determined are independent (to
within 1 to 2 GeV) of which the model is employed. We
summarize and present additional discussion in Sec. VI.
Some of the material in Secs. III and IV has appeared in
Ref. [7], but is included in the present article for complete-
ness and to simplify some of the discussions.

II. CONSTRAINTS COUNTING

To begin, it is useful to perform a general counting of
observables and constraints for various different configu-
rations. We consider first the counting when only one
decay chain in the event is considered at a time. We thenFIG. 1. A decay chain in SUSY.

FIG. 2. The event topology we consider.
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show the increase in constraints possible if both decay
chains in each event are considered at once.

A. Single decay chain case

We begin with the chain decay X ! aY ! abN, where
the four-momenta of the SM particles a and b are directly
measured. For each event, there are four unknowns due to
the unobserved four-momentum of the N. In addition, we
have the three unknown masses (the same for every event)
mX, mY , and mN . These are subject to 3n constraints
coming from requiring that the X, Y, and N be on their
mass shell. Thus, after n events we have 3þ 4n� 3n ¼
3þ n free parameters. No matter how many events we
examine, we will not be able to obtain a discrete solution
(or set of solutions) for mX, mY , and mN.

Next, consider a decay chain with three observable SM
particles: Z ! aY ! abX ! abcN. In this case, the num-
ber of unknowns after n events is 4þ 4n and the number of
constraints is 4n (the Z, Y, X, and N masses, which are the
same for every event). After n events we then have 4þ
4n� 4n ¼ 4 free parameters, which basically correspond
to the 4 unknown masses of the decaying particles. In this
case, each event will determine a region in the
ðmZ;mY;mX;mNÞ mass space and, as more events are
accumulated, in an ideal world the region of mass space
consistent with all events would become more and more
restricted, but it will never reach a discrete point (or a set of
discrete points) with any number of events. To pin down
the actual mass point, one needs to use additional infor-
mation by examining the end points of certain kinematic
distributions.

If one considers (as in [13]) a chain with four fully
measured SM particles, A ! aZ ! abY ! abcX !
abcdN, then we have 5 on shell particles, and after n
events, we end up with 5þ 4n unknowns and 5n con-
straints. The number of free parameters is then 5� n,
implying that (up to discrete ambiguities associated with
a high order polynomial and ignoring combinatorics and
resolution) n ¼ 5 events would be sufficient to solve for
the resonance masses. However, combinatorics and reso-
lution effects will considerably complicate the situation, as
already apparent from the study of [13], where they assume
that mY , mX, and mN are known, leaving, in principle, 2þ
4n unknowns and 5n constraints after n events, implying
that only n ¼ 2 events would be needed to solve for the
remaining 2 masses, mA and mZ. After including combina-
torics and resolution, Ref. [13] needed many more than 2
events in order to get a mass determination.

The general counting procedure is apparent. If the decay
chain has NA � 1 on shell decaying particles and a final
invisible particle, then after n events there will be 4n
unknowns associated with the four-momenta of the invis-
ible particle. There will also be NA unknowns correspond-
ing to the unknown masses of all the BSM particles. These
unknowns will be subject to NAn constraints from the

requirement that all the BSM particles have the same on
shell masses in each event. The number of unknowns after
n signal events will then be

NU ¼ NA þ 4n� NAn ¼ NA þ ð4� NAÞn: (1)

For NA � 4, a discrete solution or set of solutions is not
possible regardless of how many events are available. The
actual masses may still be obtained by combining addi-
tional information from the kinematic distributions for
NA ¼ 4 (e.g., the squark decay case of Fig. 1). For NA ¼
5 (e.g., the SUSY ~g ! q~q ! qq~�0

2 ! qql~‘ ! qqll~�0
1 de-

cay chain) n ¼ 5 events will give a discrete set of solutions
for the masses. Still longer decay chains would require
fewer events to obtain a set of discrete possibilities for the
BSM particle masses. An example of a longer decay chain
with NA ¼ 6 (implying that 3 events would give a discrete
set of solutions for the masses) would be

~g ! q~q ! qq~�0
3 ! qqZ~�0

2 ! qqZl~‘ ! qqZll~�0
1; (2)

where the Z would be observed in one of its visible decay
modes. By considering the full event at once through
inclusion of information from both decay chains, one
need not resort to such long decay chains in order to get
to the point of having a discrete set of solutions for the
masses.

B. Using the whole event, i.e., both decay chains

When considering the whole event at once, the con-
straint counting proceeds differently. Assuming that there
are two invisible particles present in the final state, the
number of unknowns associated with their four-momenta
in all n events is 8n. Requiring that the sum of the invisible
transverse momenta equal minus the sum of the visible
transverse momenta imposes 2n constraints on these un-
knowns. In addition, let us suppose that the topology is
such that NB masses are unknown (NB includes the un-
known masses of the invisible particles, which we do not
require to be the same at this point in our counting). Each
event will also be subject to a number NA of on shell mass
constraints, including the requirement that the two invis-
ible particles have masses equal to their on shell (unknown)
values. Then, after n events there are NAn constraints.
Thus, the number of unknowns before imposing con-
straints is NB þ 6n and the number of constraints is NAn,
leaving

NU ¼ NB þ ð6� NAÞn (3)

unknowns. If we consider an event with NA � 2> 4 on
shell decays and require that there be no unknowns, i.e.,
NU � 0, after nS events, we find

nS � NB

NA � 6
: (4)

Of course, in general NB � NA. For symmetric chains,
NB ¼ NA=2. For chains in which only the final missing
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particles are assumed to have the same mass, NB ¼ NA �
1. The particular case we focus on in this paper, Fig. 2,
corresponds NA ¼ 8 and NB ¼ 4. In this case, nS ¼ 2
events will lead to NU ¼ 0, implying a discrete set of
solutions for the unknown masses of Z, Y, X, N. Were
we to consider the case of two identical chains with only 2
visible particles in each and unknown masses for Y, X, N,
one would have NA ¼ 6 and NB ¼ 3, leading to NU ¼ 3
(corresponding to the unknown Y, X,N masses). This is the
case considered in [6]; a discrete set of solutions will never
emerge with any finite number of signal events. Additional
information from kinematic distributions is needed to pin
down the masses. Conversely, if one goes to symmetric
longer decay chains [such as that of Eq. (2)] with NA ¼ 12
and NB ¼ 6, then just one event will be sufficient to give a
discrete set of mass solutions. The general problem with
longer decay chains is that they are less likely to occur and
harder to identify even if they occur, as the visible particles
may be lost or hard to isolate. The shortest decay chains
that can give rise to discrete solutions, i.e., the topology of
Fig. 2, with NA ¼ 8 and NB ¼ 4 yielding nS ¼ 2, is likely
to be the optimal configuration for the mass determination.

Extension to more missing particles, or quadratic con-
straints is straightforward, but increases the order of the
equations to be solved, requiring more advanced polyno-
mial solvers. It also requires that more masses be specified.
For example, let us assume some definite topology for
which each event contains 3 ‘‘missing’’ particles. If we
do not presume any mass equalities among the total num-
ber,NA, of decaying resonances and missing particles, then
the number of unknowns after n events is NA þ ð4� 3�
2Þn, where the �2 is the transverse momentum constraint
setting the visible transverse momentum equal to minus the
invisible transverse momentum in each event and the 4�
3 ¼ 12 just corresponds to the 4 unknown components of
each of the 3 invisible particles’ four-momenta. The num-
ber of mass-shell constraints is (by definition) NAn. If the
topology is such that NA > 10 on shell masses can be
reconstructed from the visible momenta and the invisible
momenta and if onlyNB of theNA masses are independent,
then the number of unknowns after n events is NB þ ð4�
3� 2Þn and the number of constraints is NAn. Again
neglecting possible relations among these masses and re-
quiring the final number of unknowns, NU ¼ NB þ 10n�
NAn, to be 0 or negative in order to have fewer unknowns
than constraints after n ¼ nS events, one finds that

nS � NB

ðNA � 10Þ (5)

events would lead to a certain set of discrete mass solu-
tions. If all the invisible particles are the same then NB �
NA � 2.

We have classified many possible decay chains which
fall into a category such that a small handful of events
could give an essentially unique mass spectrum in the

absence of combinatorial and experimental resolution ef-
fects. However, generically speaking one wishes to keep
the chains as short as possible while consistent with a small
number of events being sufficient to yield a discrete spec-
trum of mass solutions. This is because (a) shorter chains
are easier to isolate on an event-by-event basis and
(b) combinatorial and resolution smearing of the solutions
may be lessened.

III. BASIC EQUATIONS FOR THE TOPOLOGY OF
FIG. 2

The topology on which we focus in this paper is that
given in Fig. 2. As sketched in the previous section, this is
an ideal topology for precise mass reconstruction.
Assuming mN ¼ mN0 , mX ¼ mX0 , mY ¼ mY0 , mZ ¼ mZ0 ,
and denoting the four-momenta for particles iði ¼ 1 . . . 8Þ
with pi, we have

p2
1 ¼ p2

2ð¼ m2
NÞ; (6)

ðp1 þ p3Þ2 ¼ ðp2 þ p4Þ2ð¼ m2
XÞ; (7)

ðp1 þ p3 þ p5Þ2 ¼ ðp2 þ p4 þ p6Þ2ð¼ m2
YÞ; (8)

ðp1 þ p3 þ p5 þ p7Þ2 ¼ ðp2 þ p4 þ p6 þ p8Þ2ð¼ m2
ZÞ:
(9)

We assume further that the only invisible particles are
particles 1 and 2, and thus have two more constraints,

px
1 þ px

2 ¼ px
miss; py

1 þ py
2 ¼ py

miss: (10)

There are 8 unknowns in Eqs. (6)–(10), namely, the four-
momenta p1 and p2 of the missing particles. Therefore the
system is underconstrained and we cannot solve the equa-
tions. This situation changes if we add a second event with
the same decay chains. Denoting the four-momenta in the
second events as qi ði ¼ 1 . . . 8Þ, we have 8 more un-
knowns, q1 and q2, but 10 more equations,

q21 ¼ q22 ¼ p2
1; (11)

ðq1 þ q3Þ2 ¼ ðq2 þ q4Þ2 ¼ ðp2 þ p4Þ2; (12)

ðq1 þ q3 þ q5Þ2 ¼ ðq2 þ q4 þ q6Þ2 ¼ ðp2 þ p4 þ p6Þ2;
(13)

ðq1 þ q3 þ q5 þ q7Þ2 ¼ ðq2 þ q4 þ q6 þ q8Þ2
¼ ðp2 þ p4 þ p6 þ p8Þ2; (14)

qx1 þ qx2 ¼ qxmiss; qy1 þ qy2 ¼ qymiss: (15)

Altogether, we have 16 unknowns and 16 equations. The
system can be solved numerically and we obtain discrete
solutions for p1, p2, q1, and q2 and thus the masses mN,
mX, mY , mZ. Note that the equations always have 8 com-
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plex solutions, but we will keep only the real and positive-
energy ones, which we simply call ‘‘solutions’’ in the rest
of the paper. Thus, up to a certain number of discrete
ambiguities we can determine the Z, Y, X, N masses by
pairing any two signal events. Even a few pairs of events
are typically sufficient to eliminate the discrete ambiguities
due to higher order equations. However, effects such as
wrong combinations and solutions, initial and final state
radiation, experimental resolutions, and background events
will add complications, which we address in Sec. IV.

Eqs. (6)–(15) can be easily reduced to 3 quadratic equa-
tions plus 13 linear equations,

p2
1 ¼ p2

2 ¼ q21 ¼ q22; (16)

2p1 � p3 þ p2
3 ¼ 2p2 � p4 þ p2

4 ¼ 2q1 � q3 þ q23

¼ 2q2 � q4 þ q24; (17)

2ðp1 þ p3Þ � p5 þ p2
5 ¼ 2ðp2 þ p4Þ � p6 þ p2

6

¼ 2ðq1 þ q3Þ � q5 þ q25

¼ 2ðq2 þ q4Þ � q6 þ q26; (18)

2ðp1 þ p3 þ p5Þ � p7 þ p2
7 ¼ 2ðp2 þ p4 þ p6Þ � p8 þ p2

8

¼ 2ðq1 þ q3 þ q5Þ � q7 þ q27

¼ 2ðq2 þ q4 þ q6Þ � q8 þ q28;

(19)

px
1 þ px

2 ¼ px
miss; py

1 þ py
2 ¼ py

miss; (20)

qx1 þ qx2 ¼ qxmiss; qy1 þ qy2 ¼ qymiss; (21)

where all but the first line are linear equations because
p3;4;5;6;7;8 and q3;4;5;6;7;8 are all visible measured momenta.

In general, the above equation system has 8 complex
solutions, each of which could be real. This can be shown
by calculating the Gröbner basis [29], in which the system
is transformed to an 8th order univariate equation plus 15
linear equations. Since the other 15 equations are linear, it
is straightforward to solve for the other 15 variables once
the 8th order equation is solved. Commercial software such
as MATHEMATICA uses this method. However, it consumes
an intolerably long time for a single or small number of
PCs. We take a simpler and faster approach which is
described in detail in the appendixes. In our method,
instead of ending up with an 8th order equation, we obtain
a 9th order univariate polynomial equation and therefore
introduce a fake solution in addition to the true solutions.
The 9th order univariate polynomial equation is numeri-
cally solved using the algorithm TOMS/493 [30]. The fake
solution can be easily eliminated by substituting back all
solutions in the original equations.

IV. APPLICATIONS

A. SUSY point SPS1a

For illustration and easy comparison to the literature, we
apply our method for the SUSY point, SPS1a [31],
although many of the discussions below apply for generic
cases. For SPS1a, the particles corresponding to N, X, Y, Z

are ~�0
1,

~‘Rð‘ ¼ e=�Þ, ~�0
2, ~qLðq ¼ d; u; s; cÞ, respectively.

The masses are

mN ¼ 97:4 GeV; mX ¼ 142:5 GeV;

mY ¼ 180:3 GeV; mZ ¼ 564:8=570:8 GeV;
(22)

with the final two numbers corresponding to up/down type
squarks, respectively. Since m~� � m~e; ~�, the ‘ ¼ � case is

an important background. We generate events with
PYTHIA 6.4 [32].

We first consider the ideal case: no background events,
all visible momenta measured exactly, all intermediate
particles on shell and each visible particle associated
with the correct decay chain and position in the decay
chain. We also restrict the squarks to be up-type only. In
this case, we can solve for the masses exactly by pairing
any two events. The only complication comes from there
being 8 complex solutions for the system of equations, of
which more than one can be real and positive. Of course,
the wrong solutions are different from pair to pair, but the
correct solution is common. The mass distributions for the
ideal case with 100 events (no kinematic cuts applied) are
shown in Fig. 3. Note the logarithmic scale. As expected,
we observe �-function-like mass peaks on top of small
backgrounds coming from wrong solutions. On average,
there are about 2 solutions per pair of events.
The � functions in the mass distributions arise only

when exactly correct momenta are input into the equations
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FIG. 3. We plot the number of mass solutions (in 1 GeV bins—
the same binning is used for the other plots) vs mass in the ideal
case. All possible pairs for 100 events are included. Signal events
only.
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we solve. To be experimentally realistic, we now include
the following.

(1) Wrong combinations. For a given event a ‘‘combi-
nation’’ is a particular assignment of the jets and
leptons to the external legs of Fig. 2. For each event,
there is only one correct combination (excluding
1357 $ 2468 symmetry). Assuming that we can
identify the two jets that correspond to the two
quarks, we have 8 (16) possible combinations for
the 2�2e (4� or 4e) channel. The total number of
combinations for a pair of events is the product of
the two, i.e., 64, 128, or 256. Adding the wrong
combination pairings for the ideal case yields the
mass distributions of Fig. 4. Compared to Fig. 3,
there are 16 times more (wrong) solutions, but the �-
function-like mass peaks remain evident.

(2) Finite widths. For SPS1a, the widths of the inter-
mediate particles are roughly 5 GeV, 20 MeV, and

200 MeV for ~qL, ~�
0
2, and

~‘R. Thus, the widths are

quite small in comparison to the corresponding
masses.

(3) Mass splitting between flavors. The masses for up
and down type squarks have a small difference of
6 GeV. Since it is impossible to determine flavors for
the light jets, the mass determined should be viewed
as the average value of the two squarks (weighted by
the parton distribution functions).

(4) Initial/final state radiation. These two types of ra-
diation not only smear the visible particles’ mo-
menta, but also provide a source for extra jets in
the events. We will apply a pT cut to get rid of soft
jets.

(5) Extra hard particles in the signal events. In SPS1a,
many of the squarks come from gluino decay (~g !
q~qL), which yields another hard q in the event.
Fortunately, for SPS1a m~g �m~qL ¼ 40 GeV is

much smaller than m~qL �m~�0
2
¼ 380 GeV.

Therefore, the q from squark decay is usually
much more energetic than the q from ~g decay. We
select the two jets with highest pT in each event after
cuts. Experimentally, one would want to justify this
choice by examining the jet multiplicity to ensure
that this analysis is dominated by 2-jet events, and
not 3 or 4 jet events.

(6) Background events. The SM backgrounds are neg-
ligible for this signal in SPS1a. There are a few
significant backgrounds from other SUSY pro-
cesses:

(a) ~qL ! q~�0
2 ! q�~� ! q��~�0

1 for one or both decay

chains, with all �’s decaying leptonically. Indeed,
~�0
2 ! �~� has the largest partial width, being 14

times that of ~�0
2 ! � ~�. However, to be included

in our selection the two �’s in one decay chain must
both decay to leptons with the same flavor, which
reduces the ratio. A cut on lepton pT also helps to
reduce this background, since leptons from � decays
are softer. Experimentally, one should perform a
separate search for hadronically decaying tau’s or
nonidentical-flavor lepton decay chains to explicitly
measure this background.

(b) Processes containing a pair of sbottoms, which have
different masses from the first two generations.
Since b jets are distinguishable, a separate analysis
should be performed to determine the b squark
masses. However, this presents a background to
the light squark search since b-tagging efficiency
is only about 50% at high pT .

(c) Processes that contain a pair of ~�0
2’s, not both com-

ing from squark decays. For these events to fake
signal events, extra jets need to come from initial
and/or final state radiation or other particle decays.
For example, direct ~�0

2 pair production or ~�0
2 þ ~g

production. These are electroweak processes, but,
since ~�0

2 has a much smaller mass than squarks, the

cross section is not negligible. In our SPS1a analy-
sis, the large jet pT cut reduces this kind of back-
ground due to the small m~g �m~qL .

(7) Experimental resolutions. In order to estimate this
experimental effect at the LHC, events in both signal
and the aforementioned SUSY backgrounds are fur-
ther processed with pretty good simulation (PGS)
[33]. Note that in [7], we used ATLFAST [42] for the
detector simulation. Compared with ATLFAST, PGS
has more stringent lepton isolation cuts, therefore
we obtain fewer events. Nevertheless, as shown
below, the results turn out to be similar. All objects
including jets, isolated leptons, and missing pT are
taken directly from PGS.

The cuts used to isolate the signal are:
(I) Four isolated leptons with pT > 10 GeV, j�j< 2:5,

and matching flavors and charges consistent with our

assumed ~�0
2 ! ~‘ ! ~�0

1 decay.
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FIG. 4. Number of mass solutions vs mass after including all
combination pairings for 100 events. Signal events only, with
only combinatoric ambiguities included.
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(II) No b jets and � 2 jets with pT > 100 GeV, j�j<
2:5. The 2 highest-pT jets are taken to be particles 7
and 8.

(III) Missing pT > 50 GeV.
For a data sample with 300 fb�1 integrated luminosity,

there are about 620 events left after the above cuts, out of
which about 420 are signal events. After taking all possible
pairs for all possible combinations and solving for the
masses, we obtain the mass distributions in Fig. 5.

From Fig. 5, we see that the mass peaks are smeared but
still present around the input masses. The analytical for-
mula for the distributions are unknown, so we estimate the
masses by reading the peak positions. To minimize the
effect from statistical fluctuations, we fit each distribution
using a sum of a Gaussian plus a (single) quadratic poly-
nomial and taking the maximum positions of the fitted
peaks as the estimated masses. We will use this function
as the ‘‘standard fit’’ throughout this article. The fitted
range is restricted to be above the half height. The fitted
curves are superimposed on the mass distributions in
Fig. 5, which yields f78:4; 134:2; 181:5; 553:9g GeV for
the masses. Averaging over 20 different data samples, we
find

mN ¼ 76:7� 2:0 GeV; mX ¼ 134:6� 2:2 GeV;

mY ¼ 178:9� 3:8 GeV; mZ ¼ 561:6� 5:4 GeV:

(23)

The statistical uncertainties are very small, but there exist
biases, especially for the two light masses. In practice, we
can always correct the biases by comparing real data with
Monte Carlo data. Nevertheless, we would like to reduce
the biases as much as possible using data only. In some
cases, the biases can be very large and it is essential to
reduce them before comparing with Monte Carlo data—we
will see an example later.

The combinatorial background is an especially impor-
tant source of bias since it yields peaked mass distributions
that are not symmetrically distributed around the true
masses, as can be seen from Fig. 4. This will introduce
biases that survive even after smearing. Therefore, we
concentrate on reducing wrong solutions.
First, we reduce the number of wrong combinations by

the following procedure. For each combination choice, c,
for a given event, i (i ¼ 1, Nevt), we count the number,
Npairðc; iÞ, of events that can pair with it (for some combi-

nation choice for the 2nd events) and give us solutions. We
repeat this for every combination choice for every event.
Neglecting effects 2–7, Npairðc; iÞ ¼ Nevt � 1 if c is the

correct combination for event i. After including back-
grounds and smearing, Npairðc; iÞ<Nevt � 1, but the cor-

rect combinations still have statistically larger Npairðc; iÞ
than the wrong combinations. The frequency with which
various values of Npairðc; iÞ occur is shown as a function of
Npairðc; iÞ in Fig. 6.

To enhance the likelihood that a particular choice of c, i
corresponds to a correct solution, we cut on Npairðc; iÞ. For
the SPS1a model point, if Npairðc; iÞ � 0:75Nevt we discard

the combination choice, c, for event i. If all possible c
choices for event i fail this criterion, then we discard event
i altogether (implying a smaller Nevt for the next analysis
cycle). We then repeat the above procedure for the remain-
ing events until no combinations can be removed. After
this, for the example data sample, the number of events is
reduced from 622 (424 signalþ 198 background) to 430
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FIG. 5. Mass solutions with all effects 1–7 included and after
cuts I–III for the SPS1a SUSY model and L ¼ 300 fb�1. All
effects incorporated, including backgrounds.
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FIG. 6 (color online). For each event, i, and each combination,
c, associated with that event, we count the number, Npairðc; iÞ, of
events that can pair with it and give at least one solution. The
plot shows the frequency of occurrence of different values of
Npairðc; iÞ. All effects are incorporated, including backgrounds.

The plot is for the SPS1a case (for which the total number of
signal+background events is 620 for L ¼ 300 fb�1). In the bias-
reduction procedure, any choices of c, i yielding Npairðc; iÞ to the
left of the red (dashed) line (corresponding to 75% of the total
number of events) are discarded.
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(322 signalþ 108 background), and the average number
of combinations per event changes from 11 to 4.

Second, we increase the significance of the true solution
by weighting each surviving pair of events by 1=n where n
is the number of solutions for the given pair (using only the
combination choices that have survived the previous cuts).
This causes each pair (and therefore each event) to have
equal weight in our histograms. Without this weighting, a
pair with multiple solutions has more weight than a pair
with a single solution, even though at most one solution
would be correct for each pair.

Finally, we exploit the fact that wrong solutions and
backgrounds are much less likely to yield MN , MX, MY ,
andMZ values that are all simultaneously close to their true
values. We plot the 1=n-weighted number of solutions as a
function of the three mass differences (Fig. 7). We define
mass difference windows by 0:6� ðpeak heightÞ and keep
only those solutions for which all three mass differences
fall within the mass difference windows. The surviving
solutions are plotted (without the 1=n weighting) in
Fig. 8. Compared with Fig. 5, the mass peaks are narrower,
more symmetric and the fitted values are less biased. The
fitted masses are f93:9; 140:3; 180:5; 559:2g GeV.
Repeating the procedure for 20 data sets, we find

mN ¼ 93:8� 3:9 GeV; mX ¼ 138:4� 4:5 GeV;

mY ¼ 178:7� 4:6 GeV; mZ ¼ 559:5� 5:4 GeV;

(24)

to be compared to the input masses of Eq. (22). Thus, the
biases are reduced without significantly increasing the
statistical errors.

Thus, we have shown that the masses can be measured
with high precision for a few hundred events in the four-
fermion decay channel. In the case of the SPS1a point, the
number of events employed above corresponds to a high
integrated luminosity, L� 300 fb�1. The reason that such
a high luminosity is required in the case of the SPS1a

scenario is that the branching ratio for ~�0
2 ! ~�� is 14 times

that for ~�0
2 ! ~�� or ~�0

2 ! ~ee. More generally, the inte-
grated luminosity needed to get a few hundred events is
highly dependent on the branching ratios for the various
SUSY particle decays in the model. For example, if one
takes the SPS1a masses but requires that ~�0

2 decays equally

to the three lepton flavors instead, the same number of
signal events as employed above can be obtained with just
10 fb�1 of data.
Although the errors in the mass determinations depend

upon the number of events, our method is quite robust in
that we get decent mass determinations even with a small
number of events. In Fig. 9, the mass distributions for 50
events are shown, with evident mass peaks. By repeating
our procedure for multiple data sets of a given size, we
obtain the errors as functions of the number of events.
Figure 10 shows the error for the ~�0

1 mass determination
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FIG. 7. SPS1a, L ¼ 300 fb�1 mass difference distributions.
All effects incorporated, including backgrounds.
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FIG. 8. Final mass distributions after the bias-reduction pro-
cedure for the SPS1a SUSY model and L ¼ 300 fb�1. All
effects incorporated, including backgrounds.
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FIG. 9 (color online). Mass distributions for 50 events for
SPS1a.
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as a function of the number of signal+background events.
Note that the central value for multiple data sets of the
given size is quite insensitive to the data set size, but, of
course, the possible deviation from this central value for
any one data set increases as the data set size decreases.

B. SUSY Point No. 1

We have applied our method to other mass points to
show its reliability. We quote here results for ‘‘point no. 1’’
defined in Ref. [6] with the following masses:
f85:3; 128:4; 246:6; 431:1=438:6g GeV. For 100 fb�1

data, we have about 800 events (770 signal events) after
the same prebias-reduction cuts. The resulting mass plot
before performing bias-reduction cuts is that given in
Fig. 11. From Fig. 11, we see that the mass peaks are
very broad and we get more than 50 GeV biases if we
use the positions of the maxima as the true mass values. We
then repeat the same bias-reduction procedure as for SPS1a
except that we employ a looser cut on Npairðc; iÞ than for

the SPS1a case, despite the fact that there are more signal
events for point no. 1. We require Npairðc; iÞ> 0:6Nevt. The

reason is that, unlike the SPS1a case, the gluino mass in
point no. 1 (524 GeV) is significantly larger than the squark
mass. Therefore the quark jet from gluino decay is often
misidentified as the jet from squark decay, which reduces
the chance to obtain solutions for a pair of events.1 In
practice, there is not a universal ‘‘best’’ cut on Npairðc; iÞ:
a more stringent cut leads to smaller biases but larger
statistical uncertainties. After the bias-reduction procedure
using Npairðc; iÞ> 0:6Nevt we are left with 560 events (550

signal events). The mass distributions are shown in Fig. 12.
They are much narrower and the biases are considerably

reduced. After following the bias-reduction procedure and
using 20 data samples to estimate the errors, we obtain
mN ¼ 82:8� 3:2 GeV, mX ¼ 127:9� 3:0 GeV, mY ¼
245:7� 3:4 GeV, mZ ¼ 436:4� 5:4 GeV. The central
values are in quite close agreement with the input masses
except for mN which comes out a bit low.

C. Comments and comparisons

We emphasize that the remaining biases in the above
mass determinations can be removed by finding those input
masses that yield the observed output masses after pro-
cessing Monte Carlo generated data through our proce-
dures. In this way, very accurate central mass values are
obtained with the indicated statistical errors.
The above results for the N, Y, and X masses for the

SPS1a point and point no. 1 can be compared to those
obtained following the very different procedure of Ref. [6].
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FIG. 10 (color online). Error bars for mN as a function of the
number of backgroundþ signal events for SPS1a. All effects
and procedures included.
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FIG. 11. Final mass distributions before the bias-reduction
procedure for the point no. 1 SUSY model and L ¼ 100 fb�1.
All effects incorporated, including backgrounds.
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FIG. 12. Final mass distributions after the bias-reduction pro-
cedure for the point no. 1 SUSY model and L ¼ 100 fb�1. All
effects incorporated, including backgrounds.

1It is possible to improve the results by considering all high pT

jets as candidates for the quarks from squark decays, instead of
simply choosing the two highest pT jets.
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There, only the X ! Y ! N parts of the two decay chains
were employed and we used only 4� events. For the SPS1a
model point we obtainedmN ¼ 98� 9 GeV,mY ¼ 187�
10 GeV, and mX ¼ 151� 10 GeV. And, for point no. 1
we found mN ¼ 86:2� 4:3 GeV, mX ¼ 130:4�
4:3 GeV, and mY ¼ 252:2� 4:3 GeV. Including the 4e
and 2�2e channels will reduce the indicated errors by a
factor of �2. The procedure of [6] can thus be used to
verify the results for mN , mX, and mY from the present
procedure and possibly the two can be combined to obtain
smaller errors than from either one, withmZ determined by
the procedure of this paper.

We also compare the results for SPS1a with those given
in Ref. [7] where exactly the same procedure and cuts are
applied to the same model point. The difference is that we
used ATLFAST for the detector simulation in Ref. [7] while
we have switched to PGS in the current paper. The PGS
simulation has more stringent lepton isolation cuts and
therefore we obtain fewer events in the present analysis
(620 vs 1050). In Ref. [7], we obtained

mN ¼ 76:7� 1:4 GeV; mX ¼ 135:4� 1:5 GeV;

mY ¼ 182:2� 1:8 GeV; mZ ¼ 564:4� 2:5 GeV

before the bias-reduction procedure and

mN ¼ 94:1� 2:8 GeV; mX ¼ 138:8� 2:8 GeV;

mY ¼ 179:0� 3:0 GeV; mZ ¼ 561:5� 4:1 GeV

after. Comparing the above numbers with those in
Eqs. (23) and (24), we see that the masses obtained using
PGS simulation have larger statistical errors, in accord
with the smaller number of events. On the other hand,
the central values agree well, indicating that the bias-
reduction procedure affects the mass peaks in a nearly
model-independent manner. We view this as evidence of
the robustness of our method.

D. Removing biases using a dilepton edge cut

As we have discussed, the primary source of biases is the
detector smearing of wrong solutions, especially those
associated with wrong combinations. It will be possible
to efficiently eliminate many of these wrong solutions if
there is a significant structure associated with correct so-
lutions in one or more distributions constructed from the
visible particles’ momenta. In the SUSY examples we
consider here, such a structure is especially apparent in
the distribution of m‘þ‘� , where ‘ ¼ e, � (same flavor
pairs only). The advantage of using only leptons is the
much better resolution for the lepton momentum measure-
ments. Ignoring resolution smearing, kinematics predicts
that correct combinations should have

ðmedge

‘þ‘�Þ2 ¼
ðm2

Y0 �m2
X0Þðm2

X0 �m2
N0Þ

m2
X0

; (25)

where mY0, mX0, and mN0 are the input masses. Note that
there are many more dilepton events than four lepton
events since dileptons require only a single decay chain
of Fig. 1. The plot ofm‘þ‘� values for all solutions coming
from 600 SPS1a events (after PGS smearing and general
cuts, but before applying the bias-reduction procedure) is
shown in Fig. 13. The edge at the predicted value of
80 GeV is apparent and its location can be determined
quite accurately from the data.
Before employing the bias-reduction procedure, we ap-

ply a cut on the mY , mX, mN values obtained for a given
solution of

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Y �m2
XÞðm2

X �m2
NÞ=m2

X

q
�medge

‘þ‘�j< 20 GeV; (26)

where we have purposely employed a rather loose cut so as
to not lose statistics and to take into account smearing of
the input X, Y, N masses that will be present even for a
correct combination, as well as the small error associated
with determining the edge location experimentally. We
then use the same bias-reduction procedure as discussed
earlier using a sequence of choices for the cut fcut defined
by retaining only combinations with Npairðc; iÞ> fcutNevt

in Table I.
We clearly observe that the dilepton edge cut has greatly

reduced the bias in comparison to results obtained without
the dilepton edge cut. Further, for the larger values of fcut,
the mass peak locations are not biased at all (within statis-
tics) in comparison to the input masses of Eq. (22). This
occurs because many of the wrong solutions have been
eliminated. For example, after the dilepton edge cut and
after employing the bias-reduction procedure using fcut ¼
0:75, about 160 events are retained on average and the
average number of solutions for the remaining pairs
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FIG. 13. We plot the number of events as a function of m‘þ‘�

for 600 SPS1a events in 5 GeV bins (after PGS smearing and
general cuts, but before the bias-reduction procedure). Only
events containing two muons and two electrons with opposite
charges are used to avoid ambiguity, each of which contributes
two entries to the histogram. The edge at 80 GeV is apparent.
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formed from these surviving events is only about 1.2. In
other words, the dilepton edge cut is highly effective in
removing wrong combinations. Errors for the peak mass
values are, of course, slightly larger when a dilepton edge
cut is imposed, implying that ultimately the best mass
determinations may be those obtained using Monte Carlo
determination of the bias corrections that should be applied
to mass peak values obtained without the dilepton edge cut.
Nonetheless, doing the analysis with a dilepton edge cut
will provide a very important cross check of the bias
determination.

As a final note, we observe that in the case of SPS1a
there are also incorrect solutions coming from chains con-
taining a pair of leptonically decaying �’s. Many, but not
all of these wrong solutions are also be eliminated by the
dilepton edge cut. The remaining background events con-
tain mostly those events for which one chain has ‘ ¼ e, �
while the other has a pair of leptonically decaying �’s,
since sometimes such events will give a solution with
nearly correct mass values.

E. More on backgrounds

Because the SM background can be efficiently reduced
by applying a large missing pT cut, the most difficult
backgrounds usually come from other SUSY processes
that contain the same final state particles. In the above
examples, we have already encountered such backgrounds.
In the SPS1a case, the backgrounds are dominated by
events that contain leptonically decaying �’s. For SUSY
point no. 1, although most events are originally signal
events, in many cases the jets from squark decays are not
correctly identified, in which case these events should be
viewed as background events. In both examples, the back-
ground events are closely related to the signal events and
therefore also carry some information about the masses. It
is also interesting to study the effects of background events
of a completely different origin, and test the stability of our
mass determination method.

In order to explore the issues that arise, we will perform
an analysis in which we consider the SPS1a events as
signal events, fixing the number of events to 600 (including
the intrinsic background of SPS1a). For a possible SUSY
background to the SPS1a events we employ events of the
above SUSY point no. 1 as ‘‘background’’ events, varying
the ratio of point no. 1 events with respect to the SPS1a

events. Since this is only for illustration, we are not con-
cerned with how this could happen in a specific SUSY
model. The existence of two different types of events is
immediately seen from the dilepton invariant mass distri-
bution (Fig. 14), where two different edges are evident.
The position of the edges are given by Eq. (25). In this case,
the two signals give two different mY0, mX0, and mN0 input
mass sets. Again, there are many more dilepton events than
four lepton events since a dilepton only requires a single
decay chain of Fig. 1. From Fig. 14 we see that the position
of the edge associated with the SPS1a signal can be deter-
mined quite precisely even when the background to signal
ratio is of order one. Consequently, one can try to combine
the edge location measurement with information from
double chain events (see, also, Ref. [22]).
First, we repeat our fitting procedure on the mixed

events without using the dilepton edge information. Since
there are more background events, we cannot use the fixed
Npairðc; iÞ> 0:75Nevt cut as before. This is because Nevt

now refers to the total number of events from both SPS1a
and SUSY point no. 1 so that such a cut would amount to a
much stronger fcut value for the SPS1a signal on its own.
Instead, we choose the Npairðc; iÞ cut so that 60% of all the
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FIG. 14. Dilepton invariant mass distribution for 600 SPS1a
events together with 600 point no. 1 events (after PGS smearing
and general cuts, but before the bias-reduction procedure). Only
events containing two muons and two electrons of opposite
charge are used to avoid ambiguity. The two edges at 80 GeV
and 157 GeV correspond to SPS1a and point no. 1, respectively.

TABLE I. Peak locations for various values of fcut with and without the dilepton edge cut. Errors were determined using 20 distinct
data sets.

With dilepton edge cut Without dilepton edge cut

fcut 0.60 0.65 0.70 0.75 0.60 0.65 0.70 0.75

mN (GeV) 93:0� 3:7 96:1� 3:9 97:5� 4:3 97:9� 4:9 85:6� 2:3 88:1� 3:5 90:7� 3:8 93:8� 3:9
mX (GeV) 138:9� 3:9 141:4� 4:6 143:7� 4:6 144:3� 4:0 131:5� 2:7 133:9� 3:6 135:9� 4:3 138:4� 4:5
mY (GeV) 176:5� 3:8 178:8� 4:6 180:8� 5:1 181:5� 5:3 172:8� 2:8 174:8� 3:8 176:6� 4:4 178:7� 4:6
mZ (GeV) 557:8� 4:4 559:9� 4:5 563:2� 5:0 565:6� 6:2 555:8� 5:2 557:2� 5:5 557:8� 5:1 559:5� 5:4
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events are left after the bias-reduction procedure. The
corresponding value of fcut varies according to the amount
of SUSY point no. 1 background included. For 600 SPS1a
events combined with 600 point no. 1 background events
the 60% survival fraction corresponds to using fcut � 0:58
in the bias-reduction procedure. For the SPS1a signal
alone, the corresponding fcut value is somewhat larger.
The measured mN is shown in Fig. 15 as a function of
the number of background events (after PGS smearing, but
before the bias-reduction procedure). From Fig. 15, we see
that the mass determination is not accurate when the back-
ground/signal ratio is high. However, as long as the number
of background events after general cuts is less than about
half the number of signal events, the bias-reduction proce-
dure is effective in removing background events while
retaining signal events, and the mass determination is quite
good. Of course, in practice we will not know a prioriwhat
the number of background events is relative to the number
of signal events and therefore we would need additional
input in order to know if the fitted masses from mass peaks
are reliable estimates for the true masses. In the present
case, the dilepton mass plot of Fig. 14 would clearly have
indicated the presence of two different classes of events
and we would therefore know that it would help to use an
additional cut to reduce the background class. We again
employ the simple cut of Eq. (26), where in order to isolate
the SPS1a component of the combined events we would

employ m
edge

‘þ‘� ¼ 80 GeV. Again note that this is a loose

cut that does not require a precise knowledge of the edge
position from the single chain events. Applying the cut in
Eq. (26) on data sets with 600 signalþ 600 background
events (after general cuts, but before the bias-reduction
procedure) and repeating the fit procedure, we obtain the
masses

mN ¼ 96:2� 3:6 GeV; mX ¼ 141:3� 4:1 GeV;

mY ¼ 178:4� 4:1 GeV; mZ ¼ 558:5� 4:6 GeV;

(27)

where errors were determined using 20 distinct data sets.
The same fcut ¼ 0:58 was used as in the case without
dilepton edge cut. With the dilepton edge cut, we are left
with averagely 363 SPS1a events and 8 SUSY point no. 1
events in the mass distributions used to get the mass peak
locations of Eq. (27). Thus, we effectively isolated the
signal of interest by employing the dilepton edge cut. We
have also obtained central mass values that have almost no
bias relative to the input SPS1a masses. This is because the
fcut for the SPS1a signal alone that yields the number of
events (� 360) after bias reduction is close to 0.65, which
according to Table I should give a nearly unbiased mass
determination.

V. COMPARISON OF SUSYAND UED

In this section, we address the question of whether or not
the mass determinations (and the accuracy thereof) are
sensitive to the model employed by comparing results for
the SPS1a point to a UED model chosen so that the masses
are exactly the same as for SPS1a (the corresponding decay
chain in UED is KK quark ! KK Z ! KK lepton !
KK photon). We have also adjusted the squarks/Kaluza-
Klein (KK) quarks of different flavors to have the same
mass (564.8 GeV, as for ~uL in SPS1a) and chosen squark/
KK quark pair production as the only process (i.e., no
gluinos/KK gluons). The finite widths of the involved
particles are also turned off. Both SUSY and UED events
are simulated with Herwigþþ [34], with spin correla-
tions included and confirmed by comparing with Ref. [35].
In Figs. 16 and 17, for SUSY and UED, respectively, we
plot the mass distributions after employing identical
smearing (PGS), general cuts and the bias-reduction pro-
cedure [using Npairðc; iÞ> 0:75Nevt]. The size of the event

samples for SUSY and UED are set by requiring that both
samples contain 400 events after PGS smearing and gen-
eral cuts, but before the bias-reduction procedure. Visually,
it is clear that the peaks are in very similar locations.
After employing our standard fitting techniques, we

obtain masses of

mN ¼ 90:3� 3:0 GeV; mX ¼ 135:4� 3:1 GeV;

mY ¼ 176:0� 2:9 GeV; mZ ¼ 551:2� 5:2 GeV

for the actual SUSY SPS1a model and masses of

mN ¼ 89:5� 3:5 GeV; mX ¼ 134:8� 3:5 GeV;

mY ¼ 176:2� 3:7 GeV; mZ ¼ 548:7� 5:8 GeV

for the UED model with SPS1a masses. We note that the
measured masses still have some biases of order of a few
GeV (for the three smaller masses) up to more than

num. of background events
0 100 200 300 400 500 600

 (
G

eV
)

N
m

90

100

110

120

130

140

150

FIG. 15 (color online). The measured mN as a function of the
number of background events. The number of signal (SPS1a)
events is fixed to 600. In both cases, these are the event numbers
after general cuts but before the bias-reduction procedure.
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10 GeV. But the biases are very similar for the two models
with different spins, indicating that the major part of these
biases can be removed by comparing with Monte Carlo
even before the underlying model is determined. Using the
technique of repeating the procedure 20 times, we find that
the SUSYmodel statistical errors in this case are somewhat
smaller than quoted earlier in Eqs. (24) because we have
not included any background from other SUSY processes.
The biases are also slightly different from Eqs. (24) where
the backgrounds are included. The UED model errors
would also be increased by including backgrounds coming

from other UED processes. In other words, the masses are
very well determined (to within a few GeV) by our purely
kinematic procedures, but the errors are mildly model
dependent because of variation in the nature and magni-
tude of the new-physics-model backgrounds. The contri-
bution from the backgrounds can often be inferred from
real data and subtracted. For example, the SPS1a back-
ground is dominated by the chain decays that yield staus,
whose existence and production rate can be determined
from hadronically decayed taus.

VI. DISCUSSION AND CONCLUSIONS

One important question is whether it is better to use one-
chain or two-chain techniques. Our point of view is that
one should use all available kinematic information, regard-
less of whether it is from one-chain or two-chain events.
On the one hand, due to the fact that not all events contain
two identical chains, one often obtains more one-chain
events of a certain type than events with two identical
decay chains of that type. However, if one considers only
one chain at a time, information, in particular, that related
to the measured missing transverse momentum, is always
lost. The consequence is that either one cannot solve
directly for all involved masses for a given length of decay
chain, or one must employ longer decay chains, in which
case the method becomes very complicated. For example,
in the one-chain case one needs to employ decay chains
with four visible particles (vs three visible particles in the
two-chain case) and, in addition, one needs to combine five
events to obtain discrete solutions for the unknown masses.
Even assuming that such events do exist, there are more
wrong combinations and wrong solutions than the two-
chain case studied in this paper. Further, the existence of a
certain type of decay chain implies that there are always
events with two identical such decay chains. Events with
two identical decay chains always provide more informa-
tion for the masses of the particles in the decay chains. The
challenge of two-chain techniques is that one needs to
identify those events in which there are indeed two iden-
tical chain decays. Ideally, one would divide the observed
events into different channels according to their event
topologies (chain type 1þ chain type 1, chain type 1þ
chain type 2, chain type 2þ chain type 2, . . .), apply
methods appropriate to each topology and, in order not to
lose statistics, combine all these channels in the analysis.
For this reason, it is very important to extend the studies in
Ref. [6] and the current paper to other event topologies.
The importance of using one-chain decay information is

illustrated in the SPS1a case. Since there are many more
dilepton events than four-lepton events, the dilepton edge
given in Eq. (25) can be measured very precisely. If avail-
able, one should certainly incorporate this measurement
into the two-chain techniques to better determine the
masses. This kind of ‘‘hybrid’’ approach has been studied
here and in [21,22,24]. As summarized below, adding the
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FIG. 16. Final mass distributions for signal events only after
employing the bias-reduction procedure for the SPS1a mass
choices in the context of the SUSY model and using 400 signal
events after PGS smearing and general cuts but before bias
reduction. All combinations and solutions are included, but
backgrounds associated with the SUSY model are not included.
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FIG. 17. Final mass distributions for signal events only after
the bias-reduction procedure for the SPS1a mass choices, but in
the case of the UED model. The UED event sample is scaled so
that there are 400 signal events after PGS smearing and general
cuts, but before bias reduction. All combinatorics and solutions
are included, but backgrounds associated with the UED model
are not included.
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dilepton edge information improves the two-chain mass
determinations obtained following the basic procedure
developed in this paper.

In our procedure, we have applied a set of bias-reduction
methods. In particular, to reduce the number of combina-
tions, we have utilized the fact that correct combinations
can pair with relatively more events than wrong combina-
tions. Alternatively, one may try to reduce the number of
wrong combinations before doing the event reconstruction.
For example, one could try to group objects into two
hemispheres [36] and assume that the objects in the same
hemisphere come from the same decay chain. However,
this only works well when the initial particles are substan-
tially boosted, while the squarks in our case are produced
mostly close to the threshold without large boosts. For
small boosts, the quark and ~�0

2 from squark decay actually

belong to two opposite hemispheres instead of the same

one. The directions of the subsequent ~�0
2 and ~‘ decay

products are even more random. We have applied the
hemisphere method on a set of ideal events from squark
pair production, each containing 2 quarks and 4 leptons
according to the decay chain in Fig. 1. Even without any
complications from extra jets, experimental smearing and
so forth, only about 12% of the events have the decay
chains correctly identified (this does not account for the
ambiguity of the two leptons in the same decay chain).

One could explore the effectiveness of imposing a cut
which accepts only events with substantial thrust or small
circularity before separating each event into two hemi-
spheres. It is not clear to us that the gain from decreasing
the combinatorics problem would outweigh the reduced
statistics associated with the fact that such a cut would
remove a large fraction of the available events.

However, we have shown that when a two-particle mass
edge (such as the dilepton mass edge in the examples we
have considered) can be identified, it is very useful to
impose a cut whereby only solutions that give a dilepton
mass within roughly �20 GeV of the edge location are
retained. By applying this cut before proceeding with the
rest of our analysis procedure the mass peak biases are
essentially eliminated and the errors on the central mass
values are very similar. In addition, we have shown that this
cut is capable of essentially eliminating contamination of
the mass determinations for the SUSY signal of interest by
events coming from some other SUSY signal that does not
share the same dilepton edge location. Presumably, any
other recognizable kinematic edge could be exploited in
similar fashion, but dilepton mass edges will typically be
least impacted by detector momentum smearing.

In conclusion, we have proposed a kinematic technique
for mass determination in events with two invisible dark
matter particles. The technique seeks constraints on the
mass space from measured momenta. In Sec. II, we have
given general constraint counting and discuss the corre-
sponding strategies for both the single decay chain case

and the double decay chain case. In the former, one only
uses the information from one of the two decay chains in
each event; in the latter, one uses information associated
with both decay chains. The constraints include the mass-
shell constraints for the dark matter particle as well as all
intermediate particles. In the double decay chain case, we
obtain extra constraints from the measured missing trans-
verse momenta. In both cases, more constraints are avail-
able when the decay chain is longer. In certain instances
(this includes the single decay chain case with 3 visible
particles per chain and the double identical decay chain
case with 2 visible particles per chain), we obtain discrete
solutions for the missing momenta by using trial masses for
the unknown particles. Requiring that we obtain physical
solutions for the momenta, the consistent mass region
becomes more restricted when more events are included.
The actual masses are obtained by studying the kinematic
distributions of the consistent region. This is the strategy
we adopted in Refs. [6,24]. When the decay chains pre-
sented in each event are longer, it is possible to obtain
discrete solutions for the momenta (and therefore the
masses) by combining the constraints from a few different
events, without assuming any trial masses. This occurs
when there are 4 or more visible particles per decay chain
for the single chain case, or 3 or more visible particles per
decay chain for the double chain case. In this article, we
have focused on the double identical chain case with the
number of visible particles per chain fixed to 3.
In our case, the constraints can be solved for discrete

solutions of the unknown masses when two events are
combined. However, because the system of equations con-
tains quadratic equations, wrong solutions are introduced.
Nonetheless, if the visible momenta could be measured
without errors, it would take only three events to obtain the
correct masses. This is because the wrong solutions would
be different for the three different possible event pairings
whereas the correct solution remains the same for every
event pair. This remains true even when wrong combina-
tions are included. However, in practice the nonzero ex-
perimental resolutions imply that the correct solution
distribution becomes smeared which then overlaps with
the distribution coming from wrong solutions, wrong com-
binations, and background events. Despite this, we have
shown that when two of the visible particles in a decay
chain are leptons, we obtain good precision
(� a few GeV) if a few hundred events are available.
We have developed methods to reduce the number of
wrong combinations and backgrounds. The resulting
mass solution distributions are clearly peaked around the
input masses with small systematic errors which can be
eliminated either by comparing with Monte Carlo distri-
butions around the estimated masses or by imposing an
initial dilepton edge mass cut on the accepted solutions. An
important assumption for doing this comparison is that the
distributions are only sensitive to the masses instead of the
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underlying theories. We have shown that this is indeed the
case by comparing two distinct theories with different spin
structure, minimal supersymmetric standard model and
UED. We have set the spectra of the two models to be
the same and examined the mass distributions, which show
little difference. Correspondingly, the systematic errors
introduced by model dependence are much smaller than
the statistical errors.

Finally, we comment on possible improvements of our
method. Given the precision of the purely kinematic results
and availability of spin determination techniques [37], it
would certainly be possible to figure out the underlying
theory/spins and then apply model-dependent techniques
to refine the mass determinations. For example, one could
adopt a likelihood method similar to the one used in the top
mass measurement with dilepton events at Tevatron [38].
In this method, a probability density, as a function of all
unknown masses, is defined for each event by convoluting
matrix elements and detector resolution functions. One
then obtains the joint probability by taking the product of
the probability densities from all events. The best-fit
masses are given by the values that maximize the joint
probability. Compared with top quark mass measurement,
the event topology considered in this paper is more com-
plicated since more final state particles are involved. One
also needs to scan a four dimensional instead of one
dimensional mass space to minimize the probability func-
tion. Therefore, another benefit of the purely kinematic
method is that it significantly simplify the computation by
reducing the candidate mass space to a very small region.

We could also consider simplified likelihood methods
using the detector resolution functions, but without the
knowledge of the matrix element. One such method is
based on the constraints, Eqs. (6)–(10), which can be
viewed as a generalization of the method discussed in
this paper: for each event, we can eliminate the four-
momenta of the two missing particles by using Eqs. (6)–
(10). We are then left with two equations in the form

fðmN;mX;mY;mZ;pvisÞ ¼ 0; (28)

gðmN;mX;mY;mZ;pvisÞ ¼ 0; (29)

where f and g are functions of the masses and all visible
momenta, pvis. If we require that the equalities hold ex-
actly, then each event defines a two-dimensional surface in
a four-dimensional mass space. The two-dimensional sur-
faces of two different events intersect at discrete points,
which correspond to the mass solutions. This is equivalent
to saying that in the mass space, for each event we assign a
nonzero probability density for points on the surface and a
zero probability density for points off the surface. Then by
combining two events, the joint probability is nonzero only
at discrete points. Obviously, a more sophisticated method
is to assign a maximum probability density for points on
the surface, and smaller but nonzero probability densities

for points away from the surface. This can be done by
calculating the �2 distribution for each point in the mass
space,

�2 ¼ f2

�2
f

þ g2

�2
g

; (30)

where

�2
f 	

X
pvis

�
@f

@pvis

�pvis

�
2
; (31)

and a similar formula holds for �g. Here, we have assumed

Gaussian distributions for the invisible momenta pvis with
errors given by �pvis

. Of course, in practice Eq. (31) is

complicated by correlations among the visible momenta,
as well as the correlation between f and g. We then sum the
�2 over all events and obtain the masses when the total �2

is minimized. In practice, f and g are very complicated
functions of the visible momenta, which may result in large
round-off errors when calculating the derivatives in
Eq. (31). As in the matrix element method, one also needs
to efficiently minimize the �2 over a four-dimensional
space. Therefore, further studies are needed to determine
whether this approach can improve the precision of the
mass measurement over the simple method discussed in
this paper.
In closing, we note that the program for determining the

mZ;Y;Z;N solutions as a function of input visible momenta

for two-chain events is available at Ref. [39] . Stand-alone
programs that implement the methods of Refs. [6,24] are
also available at this same website.
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APPENDIX A: SOLVING THE CONSTRAINT
EQUATIONS

In this Appendix, we describe in detail our procedure to
solve the system of the kinematic constraint equations

p2
1 ¼ p2

2 ¼ q21 ¼ q22; (A1)

2p1 � p3 þ p2
3 ¼ 2p2 � p4 þ p2

4 ¼ 2q1 � q3 þ q23

¼ 2q2 � q4 þ q24; (A2)

2ðp1 þ p3Þ � p5 þ p2
5 ¼ 2ðp2 þ p4Þ � p6 þ p2

6

¼ 2ðq1 þ q3Þ � q5 þ q25

¼ 2ðq2 þ q4Þ � q6 þ q26; (A3)
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2ðp1 þ p3 þ p5Þ � p7 þ p2
7 ¼ 2ðp2 þ p4 þ p6Þ � p8 þ p2

8

¼ 2ðq1 þ q3 þ q5Þ � q7 þ q27

¼ 2ðq2 þ q4 þ q6Þ � q8 þ q28;

(A4)

px
1 þ px

2 ¼ px
miss; py

1 þ py
2 ¼ py

miss; (A5)

qx1 þ qx2 ¼ qxmiss; qy1 þ qy2 ¼ qymiss: (A6)

As mentioned earlier, it is straightforward to numerically
solve the above equations using commercial software such
as MATHEMATICA, but the speed is intolerably low. Instead,
we solve the equation system using a programming lan-
guage such as Cþþ. The idea is to reduce the system to a
univariate polynomial equation whose coefficients are
(fixed) functions of the original visible momenta. Note
that it is convenient to obtain the coefficient functions
with the assistance of MATHEMATICA. After that, the func-
tions are hard coded in the Cþþ program and
MATHEMATICA is no longer needed. The univariate equa-

tion can then be solved numerically using any available
polynomial solver. The MATHEMATICA notebook and the
Cþþ code are available from Ref. [39] or any of the
authors. The key MATHEMATICA operations are also de-
scribed in Appendix B for reference. The method can be
easily generalized to solve other polynomial equations
efficiently.

It is straightforward to eliminate 13 variables using the
13 linear equations and obtain 3 quadratic equations with 3
variables. Generically, 3 quadratic equations can be written
as

z2 þ a8zyþ a7zxþ a6zþ a5y
2 þ a4yx

þ a3yþ a2x
2 þ a1xþ a0 ¼ 0; (A7)

zyþ b7zxþ b6zþ b5y
2 þ b4yxþ b3y

þ b2x
2 þ b1xþ b0 ¼ 0; (A8)

zxþ c6zþ c5y
2 þ c4yxþ c3yþ c2x

2 þ c1xþ c0 ¼ 0;

(A9)

where x, y, z are variables, and ai, bi, ci are coefficients as
functions of the original visible momenta. We have ordered
the left-hand terms lexicographically in the order z > y >
x. We will eliminate variables also in this order and even-
tually obtain a univariate equation in x. In our implemen-
tation, we choose x, y, z to be p0

1, p0
2, q01 or some

permutation thereof. In fact, we solve several times for
several different permutations just to make sure we do not
miss any solutions.

First, by calculating ðA7Þ � y� ðA8Þ � z, we cancel the
term z2y and obtain a polynomial equation with leading
term �b7xz

2. We repeatedly use (A7)–(A9), to reduce the

polynomial, i.e., to eliminate the leading term of the poly-
nomial. For example, we eliminate the �b7xz

2 term by
subtracting �b7 � ðA9Þ. The next leading term is / z2,
which again can be eliminated by subtracting from it
Eq. (A7) with the appropriate coefficient. Repeating this
procedure until it cannot be reduced further, we obtain an
equation in the form

zþ y3 þ y2xþ y2 þ yx2 þ yxþ yþ x3

þ x2 þ xþ 1 ¼ 0; (A10)

where we have omitted all coefficients. Similarly, reducing
ðA7Þ � x� ðA8Þ � z, we obtain another equation also in
the form of (A10). Canceling the leading term, we elimi-
nate the variable z and obtain a cubic equation in ðy; xÞ.
Reducing ðA8Þ � x� ðA9Þ � y, we obtain another cubic
equation in ðy; xÞ.
We are then left with 2 cubic equations in 2 variables,

y3 þ d8y
2xþ d7y

2 þ d6yx
2 þ d5yxþ d4yþ d3x

3 þ d2x
2

þ d1xþ d0 ¼ 0;

y2xþ e7y
2 þ e6yx

2 þ e5yxþ e4yþ e3x
3

þ e2x
2 þ e1xþ e0 ¼ 0; (A11)

where the coefficients di and ei are derived from ai, bi, and
ci in Eqs. (A7)–(A9). This system can be solved using the
following method. The resultant [40] of two univariate
polynomials is defined as follows. Given a polynomial
[note that the ai and bi below are not those given in
Eqs. (A7) and (A8)]

PðxÞ ¼ anx
n þ an�1x

n�1 þ . . .þ a1xþ a0; (A12)

of degree n with roots �i, i ¼ 1; . . . ; n and a polynomial

QðxÞ ¼ bmx
m þ bm�1x

m�1 þ . . .þ b1xþ b0 (A13)

of degree m with roots �j, j ¼ 1; . . . ; m, the resultant

	ðP;QÞ, also denoted RðP;QÞ and also called the elimi-
nant, is defined by

	ðP;QÞ ¼ amn b
n
m

Yn
i¼1

Ym
j¼1

ð�i � �jÞ: (A14)

The resultant is also given by the determinant of the
corresponding Sylvester matrix [41]. The Sylvester matrix
associated to polynomials P and Q is the ðnþmÞ � ðnþ
mÞ matrix obtained as follows:
(1) The first row is

an an�1 � � � a1 a0 0 � � � 0
� �

: (A15)

(2) The second row is the first row, shifted one column
to the right; the first element of the row is zero.

(3) The following (m� 2) rows are obtained the same
way, still filling the first column with a zero.
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(4) The (mþ 1)th row is

bm bm�1 � � � b1 b0 0 � � � 0
� �

: (A16)

(5) The following rows are obtained the same way as
before.

Taking the left-hand side polynomials of Eqs. (A11) as P
and Q, respectively, we have n ¼ 3 and m ¼ 2 and the
Sylvester matrix in this case is

S ¼

a3 a2 a1 a0 0
0 a3 a2 a1 a0
b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0

0
BBBBB@

1
CCCCCA; (A17)

where

a3 ¼ 1; a2 ¼ d8xþ d7; a1 ¼ d6x
2 þ d5xþ d4;

a0 ¼ d3x
3 þ d2x

2 þ d1xþ d0; b2 ¼ xþ e7;

b1 ¼ e6x
2 þ e5xþ e4; b0 ¼ e3x

3 þ e2x
2 þ e1xþ e0:

(A18)

Therefore, 	ðP;QÞ ¼ detS is a 9th order polynomial in x.

By Eq. (A14), if 	ðP;QÞ ¼ 0, the two equations in (A11)
have at least one common root. In other words, for each
root xi of detS ¼ 0, we can find a yi such that ðxi; yiÞ is a
solution of Eqs. (A11). Thus, the problem has been reduced
to the solution of a 9th order polynomial equation with real
coefficients. We solve it numerically using the algorithm
TOMS/493 [30]. Note that one of the roots is fake. It can
easily be identified and eliminated by substituting back
each of the solutions into the original equations to identify
the root that is not actually a solution of the original
equations.

APPENDIX B: MATHEMATICA FILE

Many of the operations described in Appendix A can be
conveniently done in MATHEMATICA, which we describe
below.
First, suppose we have obtained Eqs. (A7)–(A9). As

mentioned, the coefficients ai, bi, and ci are functions of
the visible momenta. These functions are usually compli-
cated, therefore it is always desirable to use intermediate
parameters such as ai, bi, and ci, and normalize the co-
efficients of the leading terms to 1. To obtain Eqs. (A11),
we use the MATHEMATICA function PolynomialReduce:

P1 ¼ a0þ a1xþ a2x2 þ a3yþ a4yxþ a5y2 þ a6zþ a7zxþ a8zyþ z2;

P2 ¼ b0þ b1xþ b2x2 þ b3yþ b4yxþ b5y2 þ b6zþ b7zxþ zy;

P3 ¼ c0þ c1xþ c2x2 þ c3yþ c4yxþ c5y2 þ c6zþ zx;

P4 ¼ Expand½PolynomialReduce½P1y� P2z; fP1; P2; P3g; fz; y; xg
½½2


;
P5 ¼ Expand½PolynomialReduce½P1x� P3z; fP1; P2; P3g; fz; y; xg
½½2


;
P6 ¼ Expand½PolynomialReduce½P2x� P3y; fP1; P2; P3g; fz; y; xg
½½2


;

where we obtain P4 and P5 as two polynomials in the form
of Eq. (A10) and P6 a cubic polynomial in x and y. Then it
is straightforward to cancel the variable z and cast the
remaining two polynomials in the form of Eqs. (A11).
The resultant is obtained from

P7 ¼ d0þ d1xþ d2x2 þ d3x3 þ d4yþ d5yx

þ d6yx2 þ d7y2 þ d8y2xþ y3;

P8 ¼ e0þ e1xþ e2x2 þ e3x3 þ e4yþ e5yx

þ e6yx2 þ e7y2 þ y2x;

resultant ¼ Resultant½P7; P8; y
;
where resultant is the 9th order polynomial in x we are
seeking. After obtaining the roots of the resultant numeri-
cally, y and z can be uniquely determined as follows:
Defining the polynomial P9 by

P9 ¼ Expand½PolynomialReduce

� ½P7x� P8y; fP7; P8g; fy; xg
½½2


;

we see that P9 can be written in the form

P9 ¼ f0þ f1xþ f2x2 þ f3x3 þ f4x4 þ f5yþ f6yx

þ f7yx2 þ f8yx3 þ y2:

It turns out that the polynomial P10 defined below is linear
in y:

P10 ¼ Expand½PolynomialReduce

� ½P9x� P8; fP8; P9g; fy; xg
½½2


:

We then obtain y from the equation P10 ¼ 0 by substitut-
ing in the solutions for x. Once this is done, we can obtain z
from the equation P4 ¼ 0 since it is linear in z. One of the
9 solutions is a fake solution to the original equation
system, which can be easily identified by finding the
solution which does not actually solve the system of equa-
tions when substituted back into the system of equations.
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