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We examine a few simple extremal black hole configurations of N ¼ 8, d ¼ 4 supergravity. We first

elucidate the relation between the BPS Reissner-Nördstrom black hole and the non-BPS Kaluza-Klein

dyonic black hole. Their classical entropy, given by the Bekenstein-Hawking formula, can be reproduced

via the attractor mechanism by suitable choices of symplectic frame. Then, we display the embedding of

the axion-dilaton black hole into N ¼ 8 supergravity.
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I. INTRODUCTION

It has been known for some time [1] that extremal BPS
black hole (BH) states coming from string and M theory
compactifications to four and five dimensions, preserving
various fractions of the original N ¼ 8 supersymmetry,
can be invariantly classified in terms of orbits of the
fundamental representations of the exceptional groups
E7ð7Þ and E6ð6Þ. These are the duality groups of the low

energy actions, whose discrete subgroups appear as sym-
metries of the nonperturbative spectrum of BPS states [2].
These orbits, which have been further studied in ([3–5],
correspond to well-defined categories of allowed entropies
of extremal BHs in d ¼ 5 and in d ¼ 4, given in terms of
the cubic E6ð6Þ invariant I3 ([1,4,6]) and the quartic E7ð7Þ
invariant I4 ([7–9]). There are three types of orbits depend-
ing on whether the BH background preserves 1=2, 1=4, or
1=8 of the original supersymmetry. Only 1=8 BPS states
have nonvanishing entropy and regular horizons, while 1=4
and 1=2 BPS configurations lead to vanishing classical
entropy.

The N ¼ 8 attractors have been explored in [9] by
solving the criticality condition for the suitable BH effec-
tive potential and extending the lore of N ¼ 2 special
Kähler geometry [10].

In this paper we focus on some specific simple configu-
rations inN ¼ 8, d ¼ 4 supergravity which capture some
representatives of the regular (sometimes called ‘‘large’’),
i.e. with nonvanishing classical entropy, extremal BPS and
non-BPS BH charge orbits of the theory. One is the
Reissner-Nördstrom (RN) dyonic BH, with electric and
magnetic charge e and m respectively, and Bekenstein-

Hawking entropy (in unit of Planck mass) [11]

SRN ¼ �ðe2 þm2Þ: (1.1)

Another one is the Kaluza-Klein (KK) dyonic BH, with a
KK monopole charge p and a KK momentum q, which is
dual to a D0�D6 brane configuration in Type II A
supergravity. Its Bekenstein-Hawking entropy reads

SKK ¼ �jpqj: (1.2)

One more interesting example is the extremal axion-
dilaton BH, a subsector of pure N ¼ 4 supergravity in
d ¼ 4 which was considered in the past in [12,13].
Our aim is to show how the entropies of these BHs can

be obtained in the context of N ¼ 8, d ¼ 4 supergravity
by exploiting the attractor mechanism [10,14–16] for ex-
tremal BPS and non-BPS BHs. Earlier studies for some
specific cases were examined in [17,18].
It is in fact known that while the BH charge configura-

tion with entropy given by (1.1) is 1=8 BPS [11], the
entropy (1.2) is related to a non-BPS one. Indeed, the
E7ð7Þ quartic invariant I4 on these configurations reduces toffiffiffiffiffiffiffiffiffi

IRN
4

q
¼ e2 þm2; (1.3)

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�IKK

4

q
¼ jpqj: (1.4)

In particular we note that, if the magnetic (or electric)
charge is switched off, the RN BH remains regular,
whereas the KK BH reaches zero entropy (I4 ¼ 0) and
becomes 1=2 BPS [3].
The simplest way to obtain these configurations is to

observe that the BPS and non-BPS charge orbits with I4 �
0 in N ¼ 8, d ¼ 4 supergravity are given by [1]

O 1=8-BPS:
E7ð7Þ
E6ð2Þ

; I4 > 0; (1.5)
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O non-BPS:
E7ð7Þ
E6ð6Þ

; I4 < 0: (1.6)

The moduli spaces corresponding to the above disjoint
orbits are [19]

M 1=8-BPS ¼ E6ð2Þ
SUð6Þ � SUð2Þ ; Mnon-BPS ¼ E6ð6Þ

USpð8Þ :
(1.7)

Hence, a convenient representative of these orbits is
given by the (unique) E6 singlets in the decomposition of
the fundamental representation 56 of E7ð7Þ into the two

relevant noncompact real forms of E6:

RN

O1=8-BPS:

�
E7ð7Þ ! E6ð2Þ �Uð1Þ;
56 ! ð27; 1Þ þ ð1; 3Þ þ ð27;�1Þ þ ð1;�3Þ;

(1.8)

KK

Onon-BPS:

�
E7ð7Þ ! E6ð6Þ � SOð1; 1Þ;
56 ! ð27; 1Þ þ ð1; 3Þ þ ð270;�1Þ þ ð10;�3Þ;

(1.9)

where theUð1Þ charges and SOð1; 1Þweights are indicated,
and the prime denotes the contravariant representations.
Notice that, consistently with the group factors Uð1Þ
and SOð1; 1Þ, 27 is complex for E6ð2Þ, whereas it is real

for E6ð6Þ. Both E6ð2Þ �Uð1Þ and E6ð6Þ � SOð1; 1Þ are maxi-

mal noncompact subgroups of E7ð7Þ, with symmetric

embedding.
Our result is simply stated as follows.
The two extremal BH charge configurations determining

the embedding of RN and KK extremal BHs into N ¼ 8,
d ¼ 4 supergravity with entropies (1.1) and (1.2), are
given by the two E6 singlets in the decompositions (1.8)
and (1.9).

The two situations can be efficiently associated to two
different parametrizations of the real symmetric scalar

manifold
E7ð7Þ
SUð8Þ (dimR ¼ 70, rank ¼ 7) of N ¼ 8, d ¼ 4

supergravity.
For the branching (1.8), pertaining to the RN extremal

BH, the relevant parametrization is the SUð8Þ-covariant
one. This corresponds to the Cartan’s decomposition basis,
where the coset coordinates �ijkl (i ¼ 1; . . . 8) sit in the

four-fold antisymmetric self-real irrep 70 of SUð8Þ. The
attractor mechanism implies that at the horizon

�ijkl;H ¼ 0; (1.10)

i.e. the scalar configuration at the event horizon of the

1=8-BPS extremal BH is given by the origin of
E7ð7Þ
SUð8Þ .

Some care should be taken with regard to ‘‘flat’’ directions
[8,19]. Because of the existence of the moduli space

E6ð2Þ
SUð6Þ�SUð2Þ (dimR ¼ 40, rank ¼ 4) of the 1

8 -BPS attractor

solutions, strictly speaking 40 scalar degrees of freedom
out of 70 are actually undetermined at the event horizon of
the given 1

8 -BPS RN extremal BH. In other words, 40 real

scalar degrees of freedom, spanning the quaternionic sym-

metric coset
E6ð2Þ

SUð6Þ�SUð2Þ (which is the c map [20] of the

vector multiplets’ scalar manifold of N ¼ 2, d ¼ 4

‘‘magic’’ supergravity based on JC3 ), can be set to any

real value, without affecting the RN BH entropy (1.1).
It should be noticed that, consistent with the Gaillard-

Zumino formulation of electric-magnetic duality in pres-
ence of scalar fields [21], the solution (1.10) to the attractor
equations is the only one allowed in the presence of a
compact underlying symmetry [in this case Uð1Þ].
On the other hand, the best parametrization for the

branching (1.9), pertaining to the KK extremal BH, is given
by the KK radius

rKK � V 1=3 � e2’; (1.11)

by the 42 real scalars c ijkl (i ¼ 1; . . . 8) sitting in the 42 of

USpð8Þ, and by the 27 real axions aI (I ¼ 1; . . . ; 27) sitting
in the 27 of USpð8Þ [or equivalently, in the 27 of E6ð6Þ].
In virtue of the attractor mechanism, the KK radius is

stabilized as follows [22]:

r3KK;H � VH � e6’H ¼ 4

��������q

p

��������; (1.12)

while all axions vanish:

aIH ¼ 0: (1.13)

The 42 real scalars c ijkl are actually undetermined at the

event horizon of the non-BPS KK BH, without affecting its

entropy (1.2). Indeed, they span the moduli space
E6ð6Þ

USpð8Þ
(dimR ¼ 42, rank ¼ 6) of the non-BPS attractor solutions,
which is the real symmetric scalar manifold of N ¼ 8,
d ¼ 5 supergravity [19].
It should be clear from our discussion that the possibility

of having a nonvanishing scalar stabilized at the horizon of
the KK extremal BH is related to the presence of a singlet
in the relevant decomposition of the 70 scalars. This in turn
is related to the existence of an underlying noncompact
symmetry [SOð1; 1Þ in the present case], admitting no
compact subsymmetry.
An alternative way to obtain Eqs. (1.1) and (1.2) is to use

appropriate truncations for the bare charges in the corre-
sponding expression of the quartic invariant I4, which is
known to be related to the Bekenstein-Hawking entropy by
the formula

S ¼
ffiffiffiffiffiffiffiffiffi
jI4j

q
: (1.14)

The manifestly SUð8Þ-invariant expression of I4 reads
as follows:
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I 4 ¼ TrðZZyÞ2 � 1
4 Tr

2ðZZyÞ þ 8RePfðZÞ; (1.15)

where Z � ZABð�Þ is the central charge 8� 8 skew-
symmetric matrix. Since (1.15) is moduli-independent, it
can be evaluated at� ¼ 0without loss of generality, and in
such a case ZAB is replaced byQAB, the bare charge matrix
in the SUð8Þ basis.

Considering the RN black hole, we will see that a
suitable truncation of the N ¼ 8 bare charge matrix
QAB (A, B ¼ 1; . . . 8), reduces it to the form

QRN
AB ! ðz�ab; 0Þ; z � eþ im; (1.16)

where a, b ¼ 1, 2 and �T ¼ ��. Thus one obtains

I 4 ¼ jzj4 ¼ ðe2 þm2Þ2; (1.17)

which is nothing but Eq. (1.3) and it is also the same result
as in pure N ¼ 2, d ¼ 4 supergravity, which has a Uð1Þ
global R symmetry [11].

On the other hand, the manifestly E6ð6Þ-invariant expres-
sion of I4 in terms of the cubic invariant I3, as function of
the bare electric and magnetic charges is given by [1,5,23]

I 4 ¼ �ðp0q0 þ piqiÞ2 þ 4½q0I3ðpÞ � p0I3ðqÞ
þ fI3ðpÞ; I3ðqÞg�: (1.18)

By truncating the fluxes in such a way that

pi ¼ 0 ¼ qi; (1.19)

one obtains (p0 � p, q0 � q)

I 4 ¼ �ðpqÞ2; (1.20)

which now coincides with Eq. (1.4).
We will show that there is yet another way to obtain the

two entropies for RN and KK black holes (1.1) and (1.2).
This consists of using the attractor equations for the effec-

tive black hole potential @VBH

@� ¼ 0 and the expression of the

entropy as the value of such potential at the critical point
(crit)

S ¼ �VBHjcrit: (1.21)

The plan of this paper is as follows.
In Sec. II we consider various bases of N ¼ 8, d ¼ 4

supergravity, namely, the SLð8;RÞ-, SUð8Þ-, and
USpð8Þ-covariant ones, exploiting the relevant branchings
of theU-duality group E7ð7Þ. Then, Sec. III is devoted to the
computation of the fundamental quantities for the geome-

try of the scalar manifold
E7ð7Þ
SUð8Þ in the SLð8;RÞ-covariant

basis. Then, Sec. IVanalyzes the E6ð6Þ-covariant basis, with
the goal of exhibiting the connection with N ¼ 8, d ¼ 5
supergravity: the d ¼ 4 effective BH potential is recast in a
manifestly d ¼ 5 covariant form. Moreover, the charge
configurations of this potential leading to vanishing axion
fields are studied along with the corresponding attractor
solutions. In Sec. V the embedding of the axion-dilaton

extremal BH in N ¼ 8, d ¼ 4 supergravity, through an
intermediate embedding intoN ¼ 4, d ¼ 4 theory with 6
vector multiplets, is analyzed. Finally, Sec. VI contains an
outlook, as well as some concluding comments and re-
marks. The paper also contains in an appendix the embed-
ding of the d ¼ 5 uplift of the stu model [the so-called
ðSOð1; 1ÞÞ2 model] into d ¼ 5 maximal supergravity.

II. SYMPLECTIC FRAMES

The de Wit-Nicolai [24] formulation of N ¼ 8, d ¼ 4
supergravity is based on a symplectic frame where the
maximal noncompact symmetry of the Lagrangian is
SLð8;RÞ [25], according to the decomposition

E7ð7Þ ! SLð8;RÞ; 56 ! 28þ 280; (2.1)

where SLð8;RÞ is a maximal noncompact subgroup of
E7ð7Þ, and 28 is its two-fold antisymmetric irreducible

representation. Since the theory is pure, the R symmetry,
namely SUð8Þ, is the stabilizer of the scalar manifold. It is
not a symmetry of the Lagrangian, but only of the equa-
tions of motion. The maximal compact symmetry of the
Lagrangian is the intersection of SLð8;RÞ with SUð8Þ,
which is SOð8Þ [the maximal compact subgroup of
SLð8;RÞ itself].
Another symplectic frame corresponds to the decompo-

sition (1.9). In this case, the maximal noncompact symme-
try of the Lagrangian isE6ð6Þ � SOð1; 1Þ �s T27, with ‘‘�s’’

denoting the semidirect group product and T27 standing for
the 27-dimensional Abelian subgroup of E7ð7Þ. The maxi-

mal compact symmetry is now USpð8Þ, which is also the
maximal compact symmetry of the Lagrangian. Note that
all terms in the Lagrangian are SUð8Þ invariant, with the
exception of the vector kinetic terms, which are SUð8Þ
invariant only on shell.
Let us decompose E7ð7Þ along two different maximal

noncompact subgroups according to the following dia-
gram:

E7ð7Þ ! SLð8;RÞ
# #

E6ð6Þ � SOð1; 1Þ ! SLð6;RÞ � SLð2;RÞ � SOð1; 1Þ:
(2.2)

If one goes first horizontally, the 56 of E7ð7Þ decomposes as

56 ! 28þ 280

!
� ð15; 1; 1Þ þ ð6; 2;�1Þ þ ð1; 1;�3Þþ
þð150; 1;�1Þ þ ð60; 2; 1Þ þ ð1; 1; 3Þ: (2.3)

Alternatively, one can first go downward, and use that

E6ð6Þ ! SLð6;RÞ � SLð2;RÞ;
27 ! ð15; 1Þ þ ð60; 2Þ;
1 ! ð1; 1Þ;

(2.4)
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thus obtaining

56 ! ð27; 1Þ þ ð1; 3Þ þ ð270;�1Þ þ ð1;�3Þ

!
� ð15; 1; 1Þ þ ð60; 2; 1Þ þ ð1; 1; 3Þþ
þð150; 1;�1Þ þ ð6; 2;�1Þ þ ð1; 1;�3Þ: (2.5)

Therefore, either way on the diagram and irrespective of
the intermediate decomposition, one obtains the same
irreducible representations of SLð6;RÞ � SLð2;RÞ �
SOð1; 1Þ, which enjoys a unique embedding in the
U-duality group E7ð7Þ. In particular, one sees that the

singlets are indeed the same in the two cases, and the
alternative decompositions are related by the interchange
of ð15; 1; 1Þ with ð150; 1;�1Þ. Then one concludes that
these two formulations, corresponding to two different
symplectic frames, can be interchanged by dualizing 15
out of the 28 vector fields.

An analogous argument holds if one decomposes E7ð7Þ
according to two different maximal compact subgroups
along the diagram

E7ð7Þ ! SUð8Þ
# #

E6ð2Þ �Uð1Þ ! SUð6Þ � SUð2Þ �Uð1Þ:
(2.6)

This time, going first horizontally along the diagram, the
result reads

56 ! 28þ 28

!
� ð15; 1; 1Þ þ ð6; 2;�1Þ þ ð1; 1;�3Þþ
þð15; 1;�1Þ þ ð�6; 2; 1Þ þ ð1; 1; 3Þ: (2.7)

Equivalently, one can first go vertically on the diagram
and use

E6ð2Þ ! SUð6Þ � SUð2Þ;
27 ! ð15; 1Þ þ ð�6; 2Þ;
1 ! ð1; 1Þ;

(2.8)

thus obtaining

56 ! ð27; 1Þ þ ð27;�1Þ þ ð1; 3Þ þ ð1;�3Þ

!
� ð15; 1; 1Þ þ ð�6; 2; 1Þ þ ð1; 1; 3Þþ
þð15; 1;�1Þ þ ð6; 2;�1Þ þ ð1; 1;�3Þ: (2.9)

Again, either of the two alternative branchings in (2.6),
which are related by the interchange of ð15; 1; 1Þ with

ð15; 1;�1Þ, yield the same decomposition into irreducible
representations of SUð6Þ � SUð2Þ �Uð1Þ. Moreover, the
Uð1Þ singlet which commutes with SUð6Þ � SUð2Þ is the
same as the one which commutes with E6ð2Þ.

Let us now turn to the scalar sector. As mentioned above,

the coordinate system for the scalar manifold
E7ð7Þ
SUð8Þ based on

the Cartan decomposition are the real scalars �ijkl that sit

in the 70 (four-fold antisymmetric and self-real irreducible
representation) of SUð8Þwith i ¼ 1; . . . ; 8. The embedding

of the RN extremal BH is related to the further decom-
position

SUð8Þ ! SUð6Þ � SUð2Þ �Uð1Þ;
70 ! ð20; 2; 0Þ þ ð15; 1;�2Þ þ ð15; 1; 2Þ:

(2.10)

On the other hand, for describing the KK extremal BH one
decomposes SUð8Þ under its maximal subgroup USpð8Þ:

SUð8Þ ! USpð8Þ; 70 ! 42þ 27þ 1; (2.11)

where 42 and 27 are, respectively, the four-fold and two-
fold antisymmetric irreducible representations (both skew-
traceless and self-real) of USpð8Þ.
The crucial difference between (2.10) and (2.11) is that

the latter decomposition contains a real singlet, whereas
the first one does not. This is related to an underlying
maximal compact Uð1Þ symmetry which is present for
(2.10) and not for (2.11). This feature explains the different
behavior of the two solutions at the attractor point: the RN
solution has the behavior (1.10) while the KK solution is
given by (1.12) and (1.13).

III. SLð8;RÞ BASIS
In this section we aim at making contact between the

symplectic formalism for extended supergravities re-
viewed in [26] and the original formulation of N ¼ 8
supergravity of [24] for some of the key geometrical
objects that are relevant for the present investigation (see
also [27] for recent developments).
We start by considering the coset representative for

E7ð7Þ=SUð8Þ, which is parametrized as [24]

V ¼ uIJij vijKL

vklIJ uklKL:

 !
(3.1)

The submatrices u and v carry indices of both E7ð7Þ and
SUð8Þ (I ¼ 1; . . . ; 8, I ¼ 1; . . . ; 8) but one can choose a
suitable SUð8Þ gauge for the fields, and then retain only
manifest invariance with respect to the rigid diagonal sub-
group of E7ð7Þ � SUð8Þ, without distinction among the two

types of indices. Comparing the notation of [24] (in par-
ticular Appendix B) with the symplectic formalism of
[21,26], we can identify

�0 � u
�1 � v

! uij
kl ¼ ðP�1=2Þijkl;

vijkl ¼ �ð �P�1=2Þijmn �y
mnkl;

so that

f ¼ 1ffiffiffi
2

p ð�0 þ�1Þ ¼ 1ffiffiffi
2

p ðuþ vÞ

ih ¼ 1ffiffiffi
2

p ð�0 ��1Þ ¼ 1ffiffiffi
2

p ðu� vÞ:
(3.2)

Since sections are submatrices of the symplectic represen-
tation, relative to electric and magnetic subgroups, their
explicit indices components are given by
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fij
kl ¼ 1ffiffiffi

2
p ððP�1=2Þijkl � ð �P�1=2Þijmn �y

mnklÞ;

hij;kl ¼ �iffiffiffi
2

p ððP�1=2Þijkl þ ð �P�1=2Þijmn �y
mnklÞ;

(3.3)

where, in matrix notation

P ¼ 1� YYy; Y ¼ B
tanh

ffiffiffiffiffiffiffiffiffiffi
ByB

p
ffiffiffiffiffiffiffiffiffiffi
ByB

p ;

Bij;kl ¼ � 1

2
ffiffiffi
2

p �ijkl;

(3.4)

the last definition coming from the choice of the symmetric
gauge for the coset representative in Eq. (B.1) of [24]. If
one defines

~P ¼ 1� YyY; (3.5)

and uses the identity

ð ~P�1=2ÞYy ¼ YyðP�1=2Þ; (3.6)

the following simple expressions for f and h are finally
achieved:

f ¼ 1ffiffiffi
2

p ½P�1=2 � ð ~P�1=2ÞYy� ¼ 1ffiffiffi
2

p ½1� Yy� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� YYyp ;

(3.7)

h ¼ � iffiffiffi
2

p ½P�1=2 þ ð ~P�1=2ÞYy�

¼ � iffiffiffi
2

p ½1þ Yy� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� YYyp : (3.8)

The above notations are such that

P1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� YYy

p
! Pij

kl ¼ �kl
ij � yijmn �y

mnkl;

~P1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� YyY

p
! �Pkl

ij ¼ �kl
ij � �yklmnymnij:

(3.9)

It is easily checked that the symplectic sections satisfy
the usual relations

iðfyh� hyfÞ ¼ 1; hTf� fTh ¼ 0: (3.10)

These are obtained writing the symplectic sections as in
(3.7) and (3.8), and using the identity

Y ~P�1 ¼ P�1Y: (3.11)

The kinetic matrix is given in terms of the symplectic
sections by [26]

N ¼ hf�1: (3.12)

Therefore, Eqs. (3.7) and (3.8) yield

N ¼ i½1þ Yy� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� YYyp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� YYy

p 1

1� Yy

¼ �i
1þ Yy

1� Yy

+
N ijjkl ¼ �ið�kl

mn þ �ymnklÞð�mn
ij � �yijmnÞ�1

(3.13)

We now turn to the central charge function, which is
defined by

Zij ¼ fij
klqkl � hijjklpkl; (3.14)

where electric and magnetic charges are in the same SOð8Þ
adjoint representation as vector fields. Using the definitions
in (3.3), one obtains1

Zij ¼ 1ffiffiffi
2

p ððP�1=2Þijkl � ð �P�1=2Þijmn �y
mnklÞqkl

þ iffiffiffi
2

p ððP�1=2Þijkl þ ð �P�1=2Þijmn �y
mnklÞpkl

¼ ðP�1=2ÞijklQkl � ð �P�1=2Þijmn �y
mnkl �Qkl

¼ 1ffiffiffi
2

p
��

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y �Y

p
�
ij

kl
Qkl �

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �YY
p

�
ij

mn

�Ymnkl �Qkl

�
;

(3.15)

where the complex charges

Qij � 1ffiffiffi
2

p ðqij þ ipijÞ (3.16)

have been introduced.
Then one can also give an expression for the BH poten-

tial, which is given by

VBH ¼ 1
2Zij

�Zij

¼ 1
4½ð1� Y �YÞ�1ijklQkl

�Qij

þ�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y �Y

p
Þ�1ab
ij Qabð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �YY

p
Þ�1ij

cdYcdklQkl

þ�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �YY

p
Þ�1ij

ab
�Yabkl �Qklð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Y �Y

p
Þ�1
ij

cd �Qcd

þ ð1� �YYÞ�1
ijkl

�YijabYklmn
�QabQmn�: (3.17)

Thus, in the expansion around the zero field configuration,
the BH receives contribution from the term

VBHð� ¼ 0Þ ¼ 1

4
Qij

�Qij: (3.18)

The linear term in the expansion of the BH potential near
the point � ¼ 0 receives contributions from the second
and third row of Eq. (3.17), yielding the condition

1The expression with explicit indices is given by

�P ij
kl ¼ ð ~PÞklij:
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Qij�ijklQkl � �Qij
��ijkl �Qkl ¼ 0; (3.19)

+
QijQkl�

mnpq
ijkl � 1

4!
�Qij

�Qkl�
ijklmnpq ¼ 0: (3.20)

The configuration corresponding to charges QAB in the
singlet of SUð2Þ � SUð6Þ trivially satisfies condition
(3.20). Furthermore, it sets to zero the linear term for all
values of �, implying the � ¼ 0 point to be an attractor
point for this configuration.

IV. E6ð6Þ BASIS AND RELATION TO d ¼ 5

This section is aimed to establish the relation between
theN ¼ 8, d ¼ 4 theory andN ¼ 8, d ¼ 5 supergravity
([28,29]), especially for what concerns the effective BH
potential.

In our normalizations the kinetic Lagrangian for vector
fields in the N ¼ 2 theory reads (with F �� � 1

2 ð@�A� �
@�A�Þ ¼ @½�A��) [30,31]

L ¼ . . .� ImN ��F �F � � ReN ��F ��F �; (4.1)

where N �� is the d ¼ 4 vector kinetic matrix, with �,
� ¼ 0; 1; . . . ; 27. The effective BH potential is given by
[16]

VBH ¼ �1
2Q

TMðN ÞQ; (4.2)

where Q is the symplectic charge vector

Q ¼ p�

q�

� �
;

and the matrix M reads [16]

M ðN Þ ¼ ImN þ ReN ðImNÞ�1 ReN �ReN ðImN Þ�1

�ðImN Þ�1 ReN ðImN Þ�1

� �
: (4.3)

The d ¼ 5 U-duality group E6ð6Þ acts linearly on the 27
vectors ÂI

�̂, with �̂ ¼ 1; . . . ; 5 and I ¼ 1; . . . ; 27. The d ¼
5 vector kinetic matrix N̂ IJ is a function of the scalar
fields spanning the d ¼ 5 scalar manifold

E6ð6Þ
USpð8Þ (dimR ¼

42, rank ¼ 6).
According to the splitting � ¼ f0; Ig, the d ¼ 4 kinetic

vector matrix assumes the block form

N �� ¼ N 00 N 0J
N I0 N IJ

� �
: (4.4)

By using to the formulas obtained in [32] which determine
N �� in terms of five-dimensional quantities, in a normal-
ization2 that is suitable for comparison to N ¼ 2, one
obtains

N �� ¼
1
3dIJKa

IaJaK � iðe2�aIJaIaJ þ e6�Þ � 1
2dIJKa

IaK þ ie2�aKJa
K

� 1
2dIKLa

KaL þ ie2�aIKa
K dIJKa

K � ie2�aIJ

 !
: (4.5)

Since the dIJK tensor, the aI fields, the d ¼ 5 vector kinetic matrix aIJ, and the field � are real, the expressions for ImN
and ReN are given by

ImN �� ¼ �e6�
1þ e�4�aIJa

IaJ �e�4�aKJa
K

�e�4�aIKa
K e�4�aIJ

� �
; (4.6)

ReN �� ¼
1
3dKLMa

KaLaM � 1
2dJLMa

LaM

� 1
2dILMa

LaM dIJKa
K

 !
¼

1
3d � 1

2dJ� 1
2 dI dIJ

 !
; (4.7)

where the following shorthand notation has been intro-
duced:

d � dIJKa
IaJaK; dI � dIJKa

JaK;

dIJ � dIJKa
K:

(4.8)

The inverse matrix ðImN ��Þ�1 � ImN �� can be deter-

mined by noticing the block structure of (4.6). Then, by
performing computations analogous to those of [22], one
finds

ðImN �1Þ�� ¼ �e�6� 1 aJ

aI aIaJ þ e4�aIJ

� �
; (4.9)

where aIJ � ðaIJÞ�1. Inserting the above expressions into
Eq. (4.2), the N ¼ 8, d ¼ 4 effective BH potential can
finally be rewritten in a d ¼ 5 language:

2Compared to the notation of [32], here we use N �� !
4N ��, 2N̂ IJ ! aIJ , dIJK ! �dIJK=4, and aI ! �aI .
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VBH ¼ ðp0Þ2
�
1

2
e2�aIJa

IaJ þ 1

2
e6� þ 1

8
e�6�

�
d2

9
þ e4�aIJdIdJ

��

þ p0pI

�
�e2�aIJa

J � 1

4
e�6�

�
1

3
ddI þ 2e4�aKJdKdJI

��
þ pIpJ

�
1

2
e2�aIJ þ 1

8
e�6�ðdIdJ þ 4e4�aKLdIKdLJÞ

�

þ 1

6
q0p

0e�6�dþ 1

6
qIp

0e�6�½daI þ 3e4�aKIdK� � 1

2
q0p

Ie�6�dI � 1

2
qIp

Je�6�½dJaI þ 2e4�aKIdJK�

þ 1

2
ðq0Þ2e�6� þ q0qIe

�6�aI þ 1

2
qIqJe

�6�½aIaJ þ e4�aIJ�: (4.10)

Notice that this formula becomes identical to the corre-
sponding one of [22] concerning (purely cubic) N ¼ 2
geometries [33,34], where aIJ ¼ 4e4�gij and V � e6�.

The potential (4.10), because of the definitions (4.8), can
be seen to be a polynomial of a degree up to the sixth in the
axion fields, whose general solutions are hard to determine.
However, one can consider, in particular, attractor solu-
tions with vanishing axion fields. These are given by
specific charge configurations that solve the following
attractor equations:

@VBH

@aI

��������aJ¼0
¼ �e2�p0pKaKI � e�2�qJp

KdILKa
JL

þ q0qIe
�6� ¼ 0: (4.11)

Therefore, the BH charge configurations Q ¼
ðp0; pI; q0; qIÞ supporting axion-free solutions fall into
three classes:

aÞ Qe ¼ ðp0; 0; 0; qIÞ ElectricBH;
bÞ Qm ¼ ð0; pI; q0; 0Þ MagneticBH;

cÞ Q0 ¼ ðp0; 0; q0; 0Þ KK chargedBH:

(4.12)

In each of these classes, we now specify the BH potential
by setting to zero the appropriate charge configuration in
(4.10):

(a) Electric BH:

VBHð�;p0; qIÞjaI¼0 ¼ 1
2e

6�ðp0Þ2 þ 1
2e

�2�aIJqIqJ:

(4.13)

(b) Magnetic BH:

VBHð�; q0; p
JÞjaI¼0 ¼ 1

2e
�6�ðq0Þ2 þ 1

2e
2�aIJp

IpJ:

(4.14)

(c) BH charged with respect to the KK vector:

VBHð�; q0; p
0ÞjaI¼0 ¼ 1

2e
�6�ðq0Þ2 þ 1

2e
6�ðp0Þ2:

(4.15)

In order to recover the complete attractor solution, one
also has to stabilize e�. For the KK charged BH one gets

@VKK
BH ð�; q0; p

0Þ
@�

��������aI¼0
¼ 0 , e6� ¼

��������q0
p0

��������; (4.16)

thus yielding

VKK
BH ðq0; p0ÞjaI¼0 ¼ jq0p0j: (4.17)

In the electric case it holds that

@Ve
BH

@�

��������aI¼0
¼ 0 , e2� ¼

�
aIJqIqJ
3ðp0Þ2

�
1=4

; (4.18)

implying the critical value

Ve
BHðqI; p0ÞjaI¼0 ¼ 2jp0j1=2

�
aIJqIqJ

3

�
3=4

: (4.19)

Analogously, for the magnetic BH one finds

@Vm
BH

@�

��������aI¼0
¼ 0 , e2� ¼

�
aIJp

IpJ

3q20

��ð1=4Þ
; (4.20)

yielding

Vm
BHðq0; pIÞjaI¼0 ¼ 2jq0j1=2

�
aIJp

IpJ

3

�
3=4

: (4.21)

In virtue of the Bekenstein-Hawking entropy-area for-
mula, the above expressions for the critical electric and
magnetic BH potentials must be compared with appropri-
ate powers of the E6ð6Þ cubic invariants I3ðpÞ �
1
3!dIJKp

IpJpK and I3ðqÞ � 1
3!d

IJKqIqJqK. Indeed, in d ¼
5 it must hold that [10]

S� V3=4jcrit � jI3j1=2: (4.22)

Defining the electric and magnetic d ¼ 5 effective poten-
tials, respectively, as

Ve
5 ¼ aIJqIqJ; Vm

5 ¼ aIJp
IpJ; (4.23)

one obtains

Ve
crit ¼ 2jp0j1=2

�
Ve
5

3

�
3=4
��������crit

; (4.24)

and

Vm
crit ¼ 2jq0j1=2

�
Vm
5

3

�
3=4
��������crit

: (4.25)

By comparison withN ¼ 2 symmetric d geometries hav-
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ing

Ve
5 jcrit ¼ jI3ðqÞj2=3 ¼ jq1q2q3j; (4.26)

one obtains the expressions for the critical potential of the
four dimensional electric and magnetic BHs:

Ve
BH critðqI; p0Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp0dIJKqIqJqKj

3!

s
; (4.27)

and

Vm
BH critðq0; pIÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jq0dIJKpIpJpKj

3!

s
: (4.28)

More generally, these solutions can be compared with
the embedding of the N ¼ 2 purely cubic supergravities
into N ¼ 8 supergravity, and using the above critical
values of the BH potential in (1.21), one finds, for the three
family of configurations under examination, the correct
result:

SBH
�

¼
ffiffiffiffiffiffiffiffiffi
jI4j

q
: (4.29)

It is interesting to remark that the KK black hole can be
connected to the RN solution by performing an analytic
continuation of the charges, as one can see from the
redefinition

p0 ! pþ iq; q0 ! p� iq;

which allows one to recover the RN entropy

SRN ¼ �ðp2 þ q2Þ: (4.30)

We conclude this section by pointing out that the 70
scalars of N ¼ 8, d ¼ 4 supergravity have been decom-
posed according to representations of USpð8Þ [maximal
compact subgroup of E6ð6Þ � SOð1; 1Þ] as follows:

70 ! 42þ 27þ 1: (4.31)

The 42 unstabilized fields are the coordinates of the cor-
responding moduli space [19]. The noncompact form of
the exceptional group, E6ð6Þ, in fact, enters in the expres-

sion of the coset

E6ð6Þ
USpð8Þ ; (4.32)

which is the moduli space of the d ¼ 4 non-BPS, ZAB � 0
extremal BHs, whose orbit is precisely

O ¼ E7ð7Þ
E6ð6Þ

: (4.33)

Indeed, the KK BH is indeed a nonsupersymmetric solu-
tion (see also Sec. I).

V. EMBEDDING OF THE AXION-DILATON
EXTREMAL BH

The embedding of the axion-dilaton BH inN ¼ 8, d ¼
4 supergravity can be performed by a three step supersym-
metry reduction, which can be schematically indicated as

N ¼ 8 ! N ¼ 4;

nV ¼ 6 ! pureN ¼ 4 ! N ¼ 2 quadratic;

nV ¼ 1;

(5.1)

where nV denotes the number of vector multiplets coupled
to the supergravity multiplet. More precisely, the first step
consists in truncating N ¼ 8 supergravity to an N ¼ 4
theory interacting with six matter (vector) multiplets. In
the second step, N ¼ 4 reduces to the pure theory, while
in the last reduction one obtains N ¼ 2 supergravity
quadratic [35] theory with a single vector multiplet.
Let us examine more precisely each intermediate step.
(1) In the first step, the N ¼ 8 central charge matrix

ZAB assumes the block form (a, b ¼ 1; . . . ; 4, i, j ¼
1; . . . ; 4):

ZAB ! Zab 0
0 i �Zij

� �
; (5.2)

where Zab is the N ¼ 4 central charge matrix and
Zij are the matter charges of the 6 vector multiplets

[sitting in the two-fold antisymmetric of SUð4Þ, or
equivalently in the vector representation of SOð6Þ �
SUð4Þ].
Consequently, the N ¼ 8 scalar manifold

E7ð7Þ
SUð8Þ ,

reduces to

SLð2;RÞ
Uð1Þ � SOð6; 6Þ

SOð6Þ � SOð6Þ
¼ SLð2;RÞ

Uð1Þ � SOð6; 6Þ
SUð4Þ � SUð4Þ ; (5.3)

which admits three orbits. This is the scalar mani-
fold for N ¼ 4 supergravity coupled to 6 vector
multiplets.

(2) In the second step, the 6 vector multiplets are elim-
inated and Zij ¼ 0; this corresponds to retaining

only states which are singlets with respect to the
second SUð4Þ in the stabilizer of the coset (5.3), and
the theory becomes pure ¼ 4, with U duality
SLð2;RÞ � SUð4Þ:

Zab� 0
0 i �Zij�

� �
! Zab 0

0 0

� �
; (5.4)

with

� ¼ 0 1
�1 0

� �
:

Accordingly, the scalar manifold reduces to SLð2;RÞ
Uð1Þ .
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Notice that, the presence of the axion-dilaton s

spanning SLð2;RÞ
Uð1Þ in the N ¼ 4 supergravity multi-

plet, only an SUð4Þ out of the whole (local)N ¼ 4
R symmetry Uð4Þ gets promoted to (global)
U-duality symmetry.

(3) In the last step, 4 out of 6 graviphotons drop out,
reducing the overall gauge symmetry from Uð1Þ6 to
Uð1Þ2, with resulting U duality SLð2;RÞ �Uð1Þ.
Thus, the framework becomes N ¼ 2 supersym-
metric, with the two skew-eigenvalues ðZ1; Z2Þ of
Zab related to theN ¼ 2 central and matter charges
ðZ;DsZÞ:

Zab ! Z 0
0 i �D �s

�Z

� �
: (5.5)

Therefore, at the N ¼ 2 level one can have both BPS
attractors (DsZ ¼ 0) and the non-BPS (Z ¼ 0) ones [5].

On a group theoretical side, this step corresponds to
performing the decomposition

SUð4Þ ! SUð2Þ � SUð2Þ �Uð1Þ;
4 ! ð2; 1; 12Þ þ ð1; 2;�1

2Þ;
6 ! ð2; 2; 0Þ þ ð1; 1; 1Þ þ ð1; 1;�1Þ;

(5.6)

and to retaining only the singlets of SUð2Þ � SUð2Þ.
The above three step reduction can be viewed from the

point of view of the classification of large charge orbits
[26,36]. One starts with the N ¼ 8 scalar manifold
E7ð7Þ=SUð8Þ admitting the two regular orbits (1.5) and

(1.6). The large charge orbits ofN ¼ 4, d ¼ 4 supergrav-
ity coupled to 6 vector multiplets are

O 1=4BPS: SLð2;RÞ � SOð6; 6Þ
SOð2Þ � SOð6; 4Þ ;

Onon -BPS;Zab¼0: SLð2;RÞ � SOð6; 6Þ
SOð2Þ � SOð6; 4Þ ;

Onon -BPS;Zab�0: SLð2;RÞ � SOð6; 6Þ
SOð1; 1Þ � SOð5; 5Þ ;

(5.7)

where the coincidence of the first two orbits is due to the
symmetry between the gravity and the matter sector.

The corresponding moduli spaces for theN ¼ 4, n ¼ 6
attractor solutions, exploiting the hidden symmetries of the
above charge orbits, are given by

MBPS ¼ SOð6; 4Þ
SUð4Þ � SUð2Þ � SUð2Þ ;

Mnon -BPS;Zab¼0 ¼ SOð6; 4Þ
SOð6Þ � SOð4Þ ;

Mnon -BPS;Zab�0 ¼ SOð1; 1Þ � SOð5; 5Þ
SOð5Þ � SOð5Þ

¼ SOð1; 1Þ � SOð5; 5Þ
USpð4Þ �USpð4Þ :

(5.8)

Notice that M1=4BPS (and Mnon-BPS;Zab¼0) are homogene-

ous symmetric quaternionic manifolds, as in the N ¼
4 ! N ¼ 2 reduction they become the hypermultiplets’
scalar manifold [26].
The truncation of the N ¼ 8 theory into N ¼ 4 is

based on the decomposition

E7ð7Þ ! SLð2; RÞ � SOð6; 6Þ; (5.9)

and on the following group embeddings:

SOð6; 4Þ � SOð2Þ ⊊ E6ð2Þ; (5.10)

SOð5; 5Þ � SOð1; 1Þ ⊊ E6ð6Þ: (5.11)

Therefore, one can readily establish that the orbits 1/4 BPS
and non-BPS, Zab ¼ 0 descend from the N ¼ 8, BPS

orbit
E7ð7Þ
E6ð2Þ

, whereas the orbit Onon -BPS;Zab�0 comes from

the N ¼ 8, non-BPS orbit
E7ð7Þ
E6ð6Þ

.

There is also another way to interpret the three step
reduction (5.1), that is in terms of U-duality invariant
representations. At the group level, the embedding of the
axion-dilaton extremal BH intoN ¼ 8, d ¼ 4 supergrav-
ity is based on the decomposition of E7ð7Þ ! SUð8Þ and
SUð8Þ ! SUð4Þ � SUð4Þ �Uð1Þ;

8 ! ð4; 1; 12Þ þ ð1; 4;�1
2Þ;

28 ! ð4; 4; 0Þ þ ð6; 1; 1Þ þ ð1; 6;�1Þ;
28 ! ð�4; �4; 0Þ þ ð6; 1;�1Þ þ ð1; 6; 1Þ;

(5.12)

where SUð4Þ � SUð4Þ �Uð1Þ is a maximal subgroup of
SUð8Þ.
Then, the first truncation (N ¼ 8 ! N ¼ 4, n ¼ 6)

consists in setting

ð4; 4; 0Þ ¼ 0 ¼ ð�4; �4; 0Þ; (5.13)

which gives rise to the decomposition (5.2).
We recall that the quartic invariant of the U-duality

group SLð2;RÞ � SOð6; nÞ ofN ¼ 4, d ¼ 4 supergravity
coupled to n vector multiplets is [8]

I 4 ¼ S2
1 � jS2j2; (5.14)

where the three SOð6; nÞ invariants S1, S2, and �S2 are
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defined by (a, b ¼ 1; . . . ; 4, I ¼ 1; . . . ; n)

S 1 � 1
2Zab

�Zab � ZI
�ZI; (5.15)

S 2 � 1
4�

abcdZabZcd � �ZI
�ZI: (5.16)

The case n ¼ 6 is remarkably symmetric, as the symmetry
of the gravity and matter sector is the same and further-
more, due to the isomorphism SUð4Þ � SOð6Þ, the SOð6Þ
vector ZI of matter charges can be equivalently represented
as the SUð4Þ-antisymmetric tensor i �Zij (i, j ¼ 1; . . . ; 4).

Consequently, for n ¼ 6 we have

S 1;n¼6 � 1
2Zab

�Zab � 1
2
�ZijZ

ij; (5.17)

S 2;n¼6 � 1
4�

abcdZabZcd � 1
4�ijklZ

ijZkl: (5.18)

Notice that O1=4BPS and Onon -BPS;Zab¼0 in Eq. (5.7) corre-

spond to the two disconnected branches of the same mani-
fold, classified by the sign of the real SOð6; 6Þ invariant
[26] Indeed, S1;n¼6 > 0 for O1=4BPS and S1;n¼6 < 0 for

Onon -BPS;Zab¼0.

By a suitable Uð1Þ � SUð4Þ � SUð4Þ transformation,
one can reach the normal frame for both gravity sector
and matter sector, such that the two matrices Zab and Zij

are simultaneously skew-diagonalized, obtaining

Zab ! Z1

Z2

� �
� �; (5.19)

Zij ! ei�
Z3

Z4

� �
� �; (5.20)

where Z1, Z2 2 Rþ, and Z3Z4 2 Rþ, � 2 ½0; 2�Þ. Thus,
in the normal frame one obtains

S 1;n¼6 � jZ1j2 þ jZ2j2 � jZ3j2 � jZ4j2; (5.21)

S 2;n¼6 � 2ðZ1Z2 � �Z3
�Z4Þ; (5.22)

I4;n¼6 ¼ S2
1;n¼6 � jS2;n¼6j2

¼ X4
i¼1

jZij4 � 2
X4

i<j¼1

jZij2jZjj2

þ 4

�Y4
i¼1

Zi þ
Y4
i¼1

�Zi

�
: (5.23)

Equation (5.23) coincides with the expression of the
quartic invariant of N ¼ 8, d ¼ 4 supergravity, as given
by [7] (see also [3]). Considering now the second step of

the reduction, where one reaches the pure N ¼ 4 theory,
one sets Zij ¼ 0, or equivalently Z3 ¼ 0 ¼ Z4 in the nor-

mal frame [that is, retaining only states which are singlets
with respect to the second SUð4Þ in the stabilizer of the
coset (5.3)]. Notice that, by doing so, I4;n¼0 becomes a

perfect square:

I 4;n¼0 ¼ S2
1;n¼0 � jS2;n¼0j2 ¼ ðjZ1j2 � jZ2j2Þ2

¼ ðZ2
1 � Z2

2Þ2: (5.24)

Equation (5.24) implies that I4;n¼0 is (weakly) positive,

and as a consequence an unique class of large attractor
exists, namely, the 1=4-BPS one. The (weak) positivity of
I4;n¼0 is consistent with the known expression of I4;n¼0 in

terms of the magnetic and electric charges ðp�; q�Þ (� ¼
1; . . . ; 6):

I 4;n¼0 ¼ 4½p2q2 � ðp � qÞ2�; (5.25)

where here p2 � p�p����, q
2 � q�q��

��, and p � q �
p�q��

�
�. Notice that in the basis of bare charges I4;n¼0, as

given by Eq. (5.25), is (weakly) positive due to the Schwarz
inequality, and not because it is a nontrivial perfect square
of an expression of the bare magnetic and electric charges
[37].

Notice that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
I4;n¼0

p
[with I4;n¼0 given by Eq. (5.25)]

must coincide with the value of the effective BH potential
of the pureN ¼ 4 theory at its critical points. This can be
understood (see the recent discussion given in [26,38])
because this potential reads as follows (� ¼ 1; . . . ; 6):

VBH;pureN¼4ð�; a; p�; q�Þ
¼ e2�ðsp� � q�Þð�sp� � q�Þ
¼ ðe2�a2 þ e�2�Þp2 þ e2�q2 � 2ae2�p � q; (5.26)

where the complex (axion-dilaton) field

s � aþ ie�2� (5.27)

parametrizes the coset SUð1;1Þ
Uð1Þ of N ¼ 4, d ¼ 4 pure su-

pergravity [39].
By computing the criticality conditions of VBH;pureN¼4,

one obtains the following stabilization equations for the
axion a and the dilaton � at criticality, ð�; aÞ ¼
ð�Hðp; qÞ; aHðp; qÞÞ [26]:

@VBHð�; a; p; qÞ
@a

��������crit
¼ 0 , aHðp; qÞ ¼ p � q

p2
; (5.28)
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@VBHð�; a; p; qÞ
@a

��������crit
¼ �e�4�p2 þ q2 � aHðp; qÞp � q ¼ �e�4�p2 þ q2 � ðp � qÞ2

p2
¼ 0;

m

e�2�Hðp;qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2q2 � ðp � qÞ2p

p2
: (5.29)

Thus, the Bekenstein-Hawking BH entropy is computed to
be

SBHðp; qÞ ¼ AHðp; qÞ
4

¼ �VBHð�Hðp; qÞ; aHðp; qÞ; p; qÞ

¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2q2 � ðp � qÞ2

q
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
I4;n¼0

q
: (5.30)

The third and last step, when the pure N ¼ 4 theory
reduces to the N ¼ 2 quadratic theory with nV ¼ 1, is
performed through the truncation ðUð1ÞÞ6 ! ðUð1ÞÞ2 of the
overall Abelian gauge invariance (� ¼ 1; . . . ; 6 ! � ¼
1; , 2). In this case, I4;n¼0;ðUð1ÞÞ6!ðUð1ÞÞ2 is a perfect square

in both the basis of Zab and in the basis of charges ðp�; q�Þ,
and it actually is the square of the quadratic invariant
I2ðn¼1Þ of the axion-dilaton system:

I 4;n¼0;ðUð1ÞÞ6!ðUð1ÞÞ2 ¼ ðjZ1j2 � jZ2j2Þ2
¼ 4ðp1q2 � p2q1Þ2 ¼ I2

2ðn¼1Þ;

(5.31)

m
I2ðn¼1Þ ¼ 	2jp1q2 � p2q1j; (5.32)

implying that the axion-dilaton system exhibits two types
of attractors: the 1

2 -BPS one (I2ðn¼1Þ > 0) and the non-BPS

Z ¼ 0 one (I2ðn¼1Þ < 0).
By further putting

p1 ¼ 0 ¼ q2; p2 � p; q1 � q; (5.33)

( ) p � q ¼ 0), one obtains

I �
4ðn¼0;Uð1Þ6!Uð1Þ2Þ ¼ I2�

2ðn¼1Þ ¼ 4ðpqÞ2; (5.34)

m
I�
2ðn¼1Þ ¼ 	2jpqj; (5.35)

where I� means the evaluation along Eq. (5.33). For a
recent treatment of the axion-dilaton–Maxwell-Einstein–
(super)gravity system and of the extremal BH attractors
therein, see e.g. Secs. 6 and 7 of [38].

The similarity between the right-hand sides of Eqs. (1.4)
and (5.35) is only apparent. In fact, the KK extremal BH

has
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�I4;KK

p
, which necessarily implies that it is non-BPS

(ZAB � 0 in N ¼ 8 and Z � 0 in N ¼ 2). On the other
hand, the axion-dilaton extremal BH has I�

2ðn¼1Þ and a

‘‘	’’ in the right-hand side, so that it can be both 1
2 -BPS

and non-BPS Z ¼ 0 in N ¼ 2. Moreover, the choice
(5.33) leads to vanishing axion a [see Eq. (5.28)], and
this explains that Eqs. (5.35) has SOð1; 1Þ symmetry, as
Eq. (1.4).

A. Truncations of the scalar sector

As reported, e.g. in Secs. 6 and 7 of [38], one can see that
the attractor mechanism stabilizes the complex axion-
dilaton s at the event-horizon of the axion-dilaton extremal
BH itself, while, as given by Eqs. (1.12) and (1.13) within
the branching (2.11), only one real scalar degree of free-
dom, namely, the KK radius rKK defined by Eq. (1.11), is
stabilized at the event horizon of the extremal KK BH.
The relevant branching of the scalar sector for the em-

bedding of the axion-dilaton extremal BH into N ¼ 8,
d ¼ 4 supergravity is given by

SUð8Þ ! SUð4Þ � SUð4Þ �Uð1Þ;
70 ! ð1; 1; 2Þ þ ð1; 1;�2Þ þ ð6; 6; 0Þ þ ð�4; 4; 1Þ

þ ð4; �4;�1Þ: (5.36)

Equation (5.36) is the analogue of Eqs. (2.10) and (2.11),
holding, respectively, for the (N ¼ 8, d ¼ 4 embedding
of the) RN and KK d ¼ 4 extremal (and asymptotically
flat) BHs.
A remarkable feature characterizing the branchings

(2.10), (2.11), and (5.36), is the possible presence of a
singlet in their right-hand sides. The decomposition
(5.36) contains two SUð4Þð�SUð4ÞÞ singlets, whereas the
decomposition (2.11) contains a real singlet, and the de-
composition (2.10) does not contain any singlet. The pres-
ence of the singlet may lead to an underlying maximal
compact symmetry [Uð1Þ for (2.10), absent for (2.11), and
SUð4Þ for (5.36)].
(1) The first truncation (N ¼ 8 ! N ¼ 4, nV ¼ 6)

corresponds to setting3

ð�4; 4; 1Þ ¼ 0 ¼ ð4; �4;�1Þ: (5.37)

Indeed, by applying the condition (5.37), one ob-
tains the correct quantum numbers of the scalar

manifold SLð2;RÞ
Uð1Þ � SOð6;6Þ

SOð6Þ�SOð6Þ of the N ¼ 4, d ¼ 4

supergravity coupled to 6 vector multiplets.

3Notice the difference with respect to the analogue truncation
condition (5.13) for the decomposition of the 28 and 28 of
SUð8Þ.
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(2) The second truncation (N ¼ 4, nV ¼ 6 ! pure
N ¼ 4) simply consists in implementing the con-
dition

ð6; 6; 0Þ ¼ 0; (5.38)

which is consistently symmetric under the exchange
of the gravity sector and the matter sector. Through
condition (5.38), one achieves the correct quantum

numbers of the scalar manifold SLð2;RÞ
Uð1Þ of the pure

N ¼ 4, d ¼ 4 supergravity.
(3) The third and last step (pure N ¼ 4 ! N ¼ 2

quadratic, nV ¼ 1) does not change anything with
respect to the previous one. Indeed, the scalar sector
is unaffected by this third truncation, and the scalar

manifold remains SLð2;RÞ
Uð1Þ .

VI. CONCLUSIONS

In the present investigation, we have considered some
examples of extremal BH configurations in the framework
of BH attractors of N ¼ 8 supergravity.

The effective BH potential has been computed in differ-
ent bases, namely, in the manifestly SUð8Þ-coveriant basis,
as well as in the USpð8Þ-covariant one. The former is
suitable to describe the (BPS) Reissner-Nördstrom ex-
tremal BH with its Uð1Þ symmetry, as a consequence of
the attractor point to be the origin of the d ¼ 4 scalar

manifold
E7ð7Þ
SUð8Þ . The latter has d ¼ 5 origin, and it is

appropriate in order to describe the non-BPS Kaluza-
Klein extremal BH, with its SOð1; 1Þ symmetry arising
from the nontrivial attractor value of the KK radial mode.

We have also considered the axion-dilaton system,
whose BPS or non-BPS nature depends on whether it is
embedded in the N ¼ 2 quadratic or in N ¼ 4, d ¼ 4
supergravity. The axion-dilaton extremal BH is obtained as
a particular case of the attractor equations of the maximal
d ¼ 4 theory. In that case, all 70 scalars other than the
SUð4Þ � SUð4Þ singlets in the decomposition (5.36) are set
to vanish, and correspondingly only 12 graviphoton elec-
tric and magnetic charges are taken to be nonzero [see
Eq. (5.12)]. At the level N ¼ 2, this attractor solution is
obtained by retaining only 4 (2 electric and 2 magnetic)
nonvanishing charges, according to the decomposition
(5.6) of SUð4Þ.

In the appendix, we have finally considered the embed-
ding of the stu model in N ¼ 8, d ¼ 4 and d ¼ 5 super-
gravity. In the d ¼ 4 case, all nonsinglet charges in the
decomposition of E7ð7Þ with respect to SOð4; 4Þ �
ðSLð2;RÞÞ3 are set to vanish [40], whereas for d ¼ 5 one
obtains an axion-free framework, given by nonzero values
for ðp0Þ,q1, q2, q3 or ðq0Þ, p1, p2, p3.
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APPENDIX: TRUNCATION OF N ¼ 8, d ¼ 5
SUPERGRAVITYTO THE d ¼ 5 UPLIFT OF THE

stu MODEL

The bosonic sector of the N ¼ 8, d ¼ 5 supergravity
theory consists in the metric g�� (�, � ¼ 1; . . . ; 5), 27

vectors A�
�, and 42 scalars �abcd parametrizing the coset

E6ð6Þ
USpð8Þ . The index � ¼ 1; . . . 27 is in the 27 of E6ð6Þ, and it

can be traded for a couple of flat antisymmetric indices
ðabÞ of USpð8Þ. Thus, the vectors Aab

� transform in the 27

of USpð8Þ, that is
27 of E6ð6Þ ! 27 of USpð8Þ: (A1)

The 42 scalars �abcd are in the traceless self-real 4-fold
antisymmetric representation 42 of USpð8Þ.
Upon performing the d ¼ 5 ! d ¼ 4 reduction, one

gets 70 scalars, which split into the following irreps of
USpð8Þ:

70 ¼ 42þ 27þ 1: (A2)

Here 27 accounts for the axions coming from the Aab
5

vectors of E6ð6Þ, 1 is the KK radius rKK [see the definition

(1.11)], and 42 corresponds to the scalars in
E6ð6Þ

USpð8Þ .
In order to extract the stumodel, we notice that its d ¼ 5

uplift is the ðSOð1; 1ÞÞ2 model with cubic hypersurface
[33,34] (see e.g. the treatment given in [22])

�̂ 1�̂2�̂3 ¼ 1: (A3)

The N ¼ 8 ! N ¼ 2, d ¼ 5 supersymmetry reduc-
tion corresponds, at the level of E6ð6Þ, to taking the decom-

position
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E6ð6Þ ! SOð1; 1Þ � SOð5; 5Þ ! ðSOð1; 1ÞÞ2 � SOð4; 4Þ;
(A4)

so that [weights with respect to SOð1; 1Þ’s are disregarded,
irrelevant for our purposes]

27 ! 1þ 16þ 10 ! 1þ 8s þ 8c þ 1þ 1þ 8v: (A5)

Thus, three SOð4; 4Þ singlets are generated; they corre-
spond to the three Abelian vector fields of the d ¼ 5 uplift
of the stu model. By further reducing to d ¼ 4, one gets a
further vector from the KK vector (alias the d ¼ 4 grav-
iphoton). This can be easily seen by completing the de-
composition (A4) starting from the U-duality group E7ð7Þ
of d ¼ 4 maximal supergravity:

E7ð7Þ ! SOð1; 1Þ � E6ð6Þ ! ðSOð1; 1ÞÞ2 � SOð5; 5Þ
! ðSOð1; 1ÞÞ3 � SOð4; 4Þ; (A6)

so that Eq. (A5) gets completed as [as above, neglecting
weights with respect to SOð1; 1Þ, as they are irrelevant for
our purposes]

28 ! 27þ 1 ! 1þ 16þ 10þ 1

! 1þ 8s þ 8c þ 1þ 1þ 8v þ 1; (A7)

containing four SOð4; 4Þ singlets in the last term.
It is worth pointing out that at d ¼ 4 the ðSOð1; 1ÞÞ3

commuting with SOð4; 4Þ gets enhanced to ðSLð2;RÞÞ3. By
further decomposing

SOð4; 4Þ ! ðSLð2;RÞÞ4; (A8)

this yields the ðSLð2;RÞÞ7 used for the seven qubit entan-
glement in quantum information theory [41,42].

Notice that the presence of three different 8’s of SOð4; 4Þ
in the right-hand side of the decomposition (A5) [as well as
of (A7)] is the origin of the triality symmetry [43,44] of the
stu model [40].

The ðSOð1; 1ÞÞ2 factor in the right-hand side of the
branching (A4) is nothing but the scalar manifold of the

d ¼ 5 counterpart of the stumodel [spanned by �̂1, �̂2, and

�̂3 satisfying the cubic constraint (A3)]. On the other hand,
the ðSOð1; 1ÞÞ3 factor in the right-hand side of the branch-
ing (A7) is spanned by the (unconstrained, strictly positive)
d ¼ 4 dilatons �1 � �ImðsÞ, �2 � �ImðtÞ, and �3 �
�ImðuÞ. They are related to their hatted counterparts

by �i � rKK�̂
i, i ¼ 1, 2, 3, implying [see Eqs. (A3) and

(1.11); see also e.g. [22] ]

�1�2�3 ¼ r3KK � V : (A9)

The decomposition of the d ¼ 5 stabilizer [analogue to
the decomposition (A4) of the U-duality group of the d ¼
5 maximal supergravity] reads as follows:

USpð8Þ ! USpð4Þ �USpð4Þ ¼ Spinð5Þ � Spinð5Þ
! Spinð4Þ � Spinð4Þ ¼ ðSUð2ÞÞ2 � ðSUð2ÞÞ2;

(A10)

yielding the following decomposition of the fundamental 8
of USpð8Þ:
8 ! ð4; 1Þ þ ð1; 4Þ
! ð2; 1; 1; 1Þ þ ð1; 2; 1; 1Þ þ ð1; 1; 2; 1Þ þ ð1; 1; 1; 2Þ:

(A11)

This allows one to compute the corresponding branchings
of the 27 ¼ ð8� 8ÞA;0 and 42 ¼ ð8� 8� 8� 8ÞA;0 (the

subscript ‘‘A, 0’’ standing for ‘‘antisymmetric traceless’’)
of USpð8Þ [the intermediate decompositions with respect
to USpð4Þ �USpð4Þ are omitted, because irrelevant for
our purposes]:

27 ! ð2; 2; 1; 1Þ þ ð2; 1; 2; 1Þ þ ð2; 1; 1; 2Þ þ ð1; 2; 2; 1Þ
þ ð1; 2; 1; 2Þ þ ð1; 1; 2; 2Þ þ 3ð1; 1; 1; 1Þ; (A12)

42 ! ð2; 2; 2; 2Þ þ ð2; 2; 1; 1Þ þ ð2; 1; 2; 1Þ þ ð2; 1; 1; 2Þ
þ ð1; 2; 2; 1Þ þ ð1; 2; 1; 2Þ þ ð1; 1; 2; 2Þ þ 2ð1; 1; 1; 1Þ:

(A13)

Consistently with previous statements, the three ðSUð2ÞÞ4
singlets in the right-hand side of the decomposition (A12)
and the two ðSUð2ÞÞ4 singlets in the right-hand side of the
decomposition (A13), respectively, are the three Abelian
vector fields (including the d ¼ 5 graviphoton) and the two

independent real scalars (say, �̂1 and �̂2) in the bosonic
spectrum of the ðSOð1; 1ÞÞ2 model, which is the d ¼ 5
uplift of the stu model.
Reducing to d ¼ 4, the six real scalar degrees of free-

dom of the stu model are the radius rKK [see Eqs. (1.11)

and (A9)], the two scalars �̂1 and �̂2, and the three axions
[coming from the fifth component AI

5 (I ¼ 1, 2, 3) of the
three d ¼ 5 vectors]. As previously mentioned, the four
d ¼ 4 vectors come from the three d ¼ 5 vectors and from
the KK vector g5� (� ¼ 1; . . . ; 4).

Finally, it should be notice that �1�2�3 [defining
the volume of the d ¼ 5 cubic hypersurface through
Eqs. (1.11) and (A9)] can be obtained through a consistent
truncation of the E6ð6Þ-invariant expression (�, �, � ¼
1; . . . ; 27)

1

3!
d����

����� (A14)

to ðSOð1; 1ÞÞ2, by retaining only the three singlets of
SOð4; 4Þ [see the decompositions (A4) and (A5) above].
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