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ABSTRACT

W e exam Ine few sin ple extrem al black hole con gurations of N = 8,d = 4 super—
gravity. W e rst elucidate the relation between the BP S R eissnerN ordstrom black hole
and the nonBPS KalizaK lein dyonic black hole. Their classical entropy, given by the
B ekenstein-H aw king form ula, can be reproduced via the attractorm echanisn by suitable
choices of sym plectic fram e. Then, we digplay the em bedding of the axion-dilaton black
hole into N = 8 supergravity.
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1 Introduction

Tt has been known for som e tim e [1l] that extrem al BPS black hole (BH ) states com ing
from stringand M theory com pacti cationsto fourand wedin ensions, preserving various
fractions of the original N = 8 supersymm etry, can be invariantly classi ed in tem s
of orbits of the fiindam ental representations of the exceptional groups E (7, and E¢) -
T hese are the duality groups of the low energy actions, w hose discrete subgroups appear
as symm etries of the non-perturbative spectrum of BPS states [2]. These orbits, which
have been further studied In ([3,[4,[3]), correspond to well de ned categories of allow ed
entroples of extramal BHs In d = 5 and In d = 4, given In tem s of the cubic Eg
invariant Is ([,[4,[6]) and the quartic E,, nvariant I, ([1,[8,9]). There are three
types of orbits depending on w hether the BH background preserves 1=2, 1=4 or 1=8 of the
original supersymm etry. Only 1=8 BPS states have non vanishing entropy and reqular
horizons, while 1=4 and 1=2 BP S con gurations lead to vanishing classical entropy.

The N = 8 attractors have been explored In [9] by solving the criticality condition
for the suitable BH e ective potential and extending the lore of N = 2 gpecial K ahler
geom etxy [10].

In this note we focus on som e gpeci ¢ sinple con gurations n N = 8,d = 4 su-—
pergravity which capture som e representatives of the reqular (som etim es, called \large"),
i.e. with nonvanishing classical entropy, extrem alBP S and non-BP S BH charge orbits of
the theory. O ne is the R eissnerN ordstrtom (RN ) dyonic BH , w ith electric and m agnetic
charge e and m respectively, and B ekenstein-H aw king entropy (in unit of P lanck m ass)
(11

Sen = €+ m? o (1.1)

Another one is the KaluzaX lein (KK ) dyonic BH , with a KK m onopole charge p and
a KK momentum ¢, which isdualto a DO D 6 brane con guration n Type II A
supergravity. Its B ekenstein-H aw king entropy reads

Skk = I3 (1.2)

One more interesting exam ple is the extram al axion-dilaton BH , a subsector of pure
N = 4 supergravity in d = 4 which was considered in the past in [12,[13].

Our aln is to show how the entropies of these BH s can be obtained in the context
of N = 8,d = 4 supergravity by exploiting the attractor m echanian [14,[15,[10,[16] for
extram alBP S and non BPS BH s . Earlier studies for som e speci ¢ cases w here exam ined
n [17,[18].

It is iIn fact known thatwhile the BH charge con guration w ith entropy given by (1.1])
is1/8 BPS [11], the entropy (I.2) is related to a non BPS one. Indesd, the E 47, quartic
Invariant I, on these con gurations reduces to

d

RN = €+ m?; (13)
g

IEE = $qi: (14)

In particular we note that , if the m agnetic (or electric) charge is switched o , the RN
BH rem ains regular, whereas the KK BH reaches zero entropy (I = 0) and becomes 1/2
BPS [3].



T he sin plest way to obtain these con gurations is to obsarve that the BPS and non-—
BPS charge orbitswith I, 6 0 m N = 8,d = 4 supergravity are given by [1]

Eqm)

Oi158ps : ; I,> 0; (1.5)
6(2)
Eq¢)

Onon BPS - 7 I4< 0: (1.6)
Es)

T he m oduli spaces corresponding to the above dispint orbits are [19]

M B Es2)
FEEES T SUu(6) SU(2)
Es)
M Lon = — (L.7
BPS USp®) )

Hence, a convenient representative of these orbits is given by the (unigue) E ¢—singlets
In the decom position of the fundam ental representation 56 ofE ;) Into the two relevant
non-com pact real form s of E 4 :

38
<Esn ! Esp U@Q);
RN Oismps * o (1.8)
56! @27;L)+ (1;3)+ 27; 1+ (1; 3);
3
< E7(7) ! E6(6) SO (l;l),’
KK Onon BPS :. (1-9)

T56 ! (27;1)+ (1;3)+ (27% Ly+ 1% 3);

where the U (1) charges and SO (1;1) weights are indicated, and the prin e denotes the
contravariant representations. N otice that, consistently w ith the group factorsU (1) and
SO (1;1), 27 iscomplex for E¢(;), whereas it isrealfor E4) . Both E¢) U (1) and
Ese SO (1;1)arem axim alnon-com pact subgroups ofE (7 ,w ith sym m etric en bedding.

O ur result is sin ply stated as follow s.

The two extram al BH charge con gurations determ ining the em bedding of RN and
KK extremalBHs nto N = 8,d = 4 supemgravity with entropies (L) and (I.2), are
given by the two E s-singlets in the decom positions (1.8) and (I.9).

T he two situationscan be e ciently associated to two di erent param etrizations ofthe
real sym m etric scalarm anifold SEJ‘ZS)) (dimg = 70,rank= 7) ofN = 8,d= 4 supergravity.

For the branching (LJ), pertaining to the RN extrem alBH , the relevant param etriza—
tion is the SU (8)-covariant one. T his corresponds to the C artan’s decom position basis,
where the coset coordinates iy (1= 1;::8) sit In the ourfold antisym m etric selfreal
frrep 70 of SU (8). The attractor m echanisn in plies that at the horizon

ki = 05 (1.10)

ie. the scalar con guration at the event horizon of the 1/8-BP S extram alBH isgiven by
SEJ‘ZS’) . Som e care should be taken w ith regards to \ at" directions [§,[19].

D ue to the existence of them odu]ispaoeﬁ (dim z = 40, rank= 4)ofthe%_BPS

E
(6) SU

the origin of
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attractor solutions, strictly speaking 40 scalar degrees of freedom out of 70 are actually
undeterm ined at the event horizon of the given é BPS RN extream alBH . In otherwords,

6(2)

40 real scalar degrees of freedom , spanning the quatemionic symm etric coset SU(;W
(which isthe cm ap [20]of the vectorm ultiplets’ scalarm anifold of N = 2,d = 4 \m agic"
supergravity based on J5 ), can be set to any real value, w ithout a ecting the RN BH
entropy (LID).

Tt shoud benoticed that, consistently w ith the G aillard—~um ino form ulation ofelectric—
m agnetic duality In presence of scalar elds [21]], the solution {1.10) to the attractor equa-—
tions is the only one allowed in presence of a com pact underlying symm etry (in this case
U (1)).

On the other hand, the best param etrization for the branching (I.J), pertaining to
the KK extrem alBH, isgiven by by the KK radius

wx VT (111)

by the 42 real scalars ;4 (1= 1;:::8) sitting in the 42 of USp (8), and by the 27 real

Ligsg Va &%= 45; ; (112)

while all axions vanish:
a; = 0: (113)

The 42 real scalars 5 are actually undeterm ined at the event horizon of the non-BP S

KK BH,without a ecting its entropy (1.2). Indeed, they span the m oduli space [;E;—F‘f(é)
(dimg = 42, rank= 6) of the non-BP S attractor solutions, which is the real sym m etric
scalarm anifold of N = 8,d = 5 supergravity [19].

It should be clear from our discussion that the possibility of having a non-vanishing
scalar stabilized at the horizon of the KK extrem al BH is related to the presence of
a singlet in the relevant decom position of the 70 scalars. This n tum is related to
the existence of an underlying non-com pact symm etry (SO (1;1) in the present case),
adm itting no com pact sub-sym m etry.

An altemative way to obtain egs. (L) and (1.J) is to use appropriate truncations
for the bare charges in the corresponding expression of the quartic invariant I,,which is
known to be related to the Bekenstein-H aw king entropy by the form ula

p—
S = Ty (1.14)
The m anifestly SU (8)-nvariant expression of I, reads as follow s:
> 1
I,=Tr 7277 Vi 727Y + 8RePf (Z); (1.15)
where 7 Zap () is the central charge 8 8 skew-symm etric m atrix. Since (I.13) is

m oduli-Hndependent, it can be evaluated at = 0 w ithout loss of generality, and in such
acase Zag isreplaced by Qap , the are charge m atrix in the SU (8) basis.



Considering the RN black hole, we will see that a suitable truncation ofthe N = 8
are chargematrix Qg (A ;B = 1;:::8), reduces it to the form

ORE ! (za;0); 2z e+ im; (116)
where a;b= 1;2and T = ). T hus one obtains
T,= 7¥= +m?7; (117)

which is nothing but Eq. (1.3) and it isalso the ssme resultasin pure N = 2,d= 4
supergravity, which hasa U (1) globalR -symm etry [11]].

On the otherhand, them anifestly E ¢ ,-Invariant expression of I, in tem s ofthe cubic
invariant I, as function of the bare electric and m agnetic charges is given by [,[23,[51:

i 2
I,= pPo+pa +4 @l Pl @+ £Is @);Is @9 : (1.18)
By tmuncating the uxes In such a way that
p=0=g; (119)

one cbtains (° p,q q)
I, = ) ; (1.20)

which now coincides with Eq. (1.4).

W e will show that there is yet another way to obtain the two entropies for RN and
KK black holes (L) and (I.2) . This consists in using the attractor equations for the
e ective black hole potential @\éﬁ = 0 and the expression of the entropy as the value of
such potential at the critical point,

S = VBH j:rit: (1.21)

T he plan of this paper is as follow s.

In Sect. we consider various bases of N = 8, d = 4 supemgravity, nam ely the
SL (8;R),SU (8)-and U Sp(8)-covariant ones, exploiting the relevant branchings of the
U -duality group E ;(7,. Then, Sect. [3 is devoted to the com putation of the fundam ental

quantities for the geom etry of the scalar m anifold : 7 ‘(78’) in the SL (8;R )-covariant basis.
T hen, Sect.[4 analyses the E ¢ 4,~covariant basis, w ith the goalofexhbiting the connection
with N = 8,d= 5 supergravity: thed = 4 e ective BH potential is recast in a m anifestly
d = 5 covardiant form . M oreover, the charge con gurations of this potential leading to
vanishing axion elds are studied along with the corresponding attractor solutions. In
Sect. [H the em bedding of the axion-dilaton extremalBH n N = 8,d = 4 supergravity,
through an intemm ediate embedding nto N = 4,d = 4 theory with 6 vector m ultiplets,
is analyzed. Finally, Sect. [d contains an outlook, as well as som e concluding com m ents
and rem arks. T he paper also contains In an A ppendix the embedding of thed = 5 uplift
of the stu m odel (the socalled (SO (1;1))2 m odel) Into d = 5 m axin al supergravity.




2 Sym plectic Fram es

ThedeW itN icolai[24]form ulation ofN = 8,d = 4 supergravity isbased on a sym plectic
fram e where the m axin al non-com pact symm etry of the Lagrangian is SL (8;R) 23],
according to the decom position

E;9)! SL (8;R);
21)
56 ! 28+ 28%

where SL (8;R) is a maxin al non-com pact subgroup of E;,, and 28 is its two-fold
antisym m etric irreducible representation. Since the theory is pure, the R symm etry,
namely SU (8), is the stabilizer of the scalar m anifold. It is not a symm etry of the
Lagrangian, but only of the equations ofm otion. Them axim alcom pact sym m etry of the
Lagrangian is the intersection of SL (8;R ) with SU (8), which is SO (8) (the maxin al
com pact subgroup of SL (8;R ) itself).

Another sym plectic fram e corresponds to the decom position (I.9). In this case, the
m axin alnon-com pact symm etry of the Lagrangian isEg) SO (1;1) Ty, with \ "
denoting the sam idirect group product and T,; standing for the 27-dim ensional A belian
subgroup of E;(7,. The maxin al com pact symm etry is now USp (8), which is also the
m axim al com pact symm etry of the Lagrangian. Note that all term s In the Lagrangian
are SU (8) Invariant, w ith the exception of the vector kinetic term s, which are SU (8)-
Invariant only on-shell.

Letusdecom pose E 7y along two di erentm axin alnon-com pact subgroups according
to the follow iIng diagram :

Eq¢) ! SL(8;R)
# # 22)
Ee¢s) SO (1;1) ! SL(6;R) SL(2;R) SO ((1;1):

If one goes rst horizontally, the 56 ofE ;) decom poses as

8
< (A5;1;1)+ (6;2; 1)+ (1;1; 3)+

56! 28+ 28°1 (23)
T a5%1; L)+ 6%2;1)+ (1;1;3):

A ftematively, one can rst go downward, and use that
FEe¢s) ! SL(6;R) SL (2;R);

271 (15;1)+ (6%2); (24)

10 @1);

thus obtaining: o
< (15;1;1)+ 6%2;1)+ (1;1;3)+

56! @7;L)+ (1;3)+ (270; Ly+ (1; 3)! .
o+ (150;1; )+ (6;2; 1)+ (1;1; 3):
(2.5)



T herefore, either way on the diagram and irrespectively of the Interm ediate decom posi-
tion, one obtains the sam e irreducible representationsof SL (6;R) SL (2;R) SO (1;1),
which enpyes a unique en bedding In the U -duality group E (7). In particular, one sees
that the singlets are indeed the sam e In the two cases, and the altemative decom posi-
tions are related by the interchange of (15;1;1) with (15%1; 1). Then one concludes
that these two form ulations, corresponding to two di erent sym plectic fram es, can be
Interchanged by dualizing 15 out of the 28 vector elds.

An analogous argum ent holds if one decom poses E 57y according two two di erent
m axim al com pact subgroups along the diagram

Eqq) ! SU (8)
# # (26)
Egpy U(1) ! SU() SU((2) U(@Q):
This tin e, going rst horizontally along the diagram , the result reads:
o i (15;1;1)+ (6;2; 1)+ (1;1; 3)+
56! 28+ 28! (2.7)

T+ 15;1; 1+ 6;2;1+ (1;1;3):
Equivalently, one can rst go vertically on the diagram and use

E6(2) 1 SU (6) SU (2);
270 1A5;1)+ 632 ; (2.8)

10 @il

thus obtaining:

i (15;1;1)+ 6;2;1 + (1;1;3)+
56 1 (27;1)+ 27; 1 + (1;3)+ (1; 3)!

"+ 15;1; 1+ (6;2; 1)+ (1;1; 3):

(29

Again, either of the two altemative branchings in (2.8) , which are related by the in-
terchange of (15;1;1) with 15;1; 1, yield the sam e decom position into irreducible
representations of SU (6) SU (2) U (1). M oreover, the U (1) singlet which comm utes
with SU (6) SU (2) isthe same astheonewhich commutewith Eg(y).

Let us now tum to the scalar sector. A s m entioned above, the coordinate system
for the scalar m anifod SE @ based on the Cartan decom position, the real scalars 45
sit in the 70 ( four-old antisym m etric and selfveal irreducible representation) of SU (8)
with 1 = 1;:::;8. The enbedding of the RN extremal BH is related to the further

decom position

SU()! SU (6) SU (2) U(@1);
(2.10)
70 1 (20;2;0)+ (15;1; 2)+ 15;1;2:



O n the other hand, for describing the KK extrem alBH one decom poses SU (8) under its
m axin al subgroup U Sp(8):
SU(8)! USp(8);
(211)
700 42+ 27+ 1;

where 42 and 27 are regpectively the fourfold and two-old antisym m etric irreducible
representations (both skew 4raceless and selfxeal) of USp (8).

T he crucialdi erence between (2.10) and (2.11]) is that the latter decom position con-
tains a real singlet, whereas the rst one does not. This is related to an underlying
m axin al com pact (U (1) symm etry which is present for (2.10) and not for (2.11). This
feature explains the di erent behaviour of the two solutions at the attractor point: the
RN solution has the behaviour (I.I0) while the KK solution is given by (I.12)~{I.13).

3 SL (8;R )B asis

In this section we ain atm aking contact between the sym plectic form alian for extended
supergravities reviewed in [26]and the origihal form ulation of N = 8 supergravity of 24]
for som e of the key geom etrical ob fcts that are relevant for the present investigation (see
also [27] for recent developm ents).

W e start by considering the coset representative for £ ;(7)-sy (g) , which is param etrized
as [24]

IJ
Uij Vin L

VvV = (3.1)
VI kL

m anifest invariance w ith respect to the rigid diagonal subgroup ofE;7, SU (8),w ithout
distinction am ong the two types of indices. C om paring the notation of [24] (in particular
the appendix B ) w ith the sym plectic form alisn of [21],126]], we can dentify

0 u | uijkl: P =2 )ijkl;
1V : vitkl = P =2 )ij ymnkl
so that
(
f=#(o0+ 1)=r U+t V) 52)
th=#s(o 1)=s50m V)

Since sections are sub-m atrices of the sym plectic representation, relatively to electric and
m agnetic subgroups, their explicit indices com ponents are given by

1
£,7=p=

1=2 , k1 1=2 \ij nkl
)15 P ) Y ;

hio= P (P St e O Ly (33)



where, in m atrix notation,

P
v tanh BYB 1
P=1 YY", Y=B—P=———; Byu= P= i (34)
BYB 2 2

the last de nition com ing from the choice of the sym m etric gauge for the coset represen—
tative In Eq. (B .1) of [24]. If one de nes

P=1 YYY ; (3.5)
and uses the dentity
P yyr=yY® %), (36)

the follow Ing sin ple expressions for £ and h are nally achieved:
h i

1 1=2 1=2 1 1
f= P= P (P’ )Yy = ?—_[1 Yy]?: H (3.7)
2 , 2 1 YYY
. h i . 1
_ 1 1=2 1=2 vy _ - y .
h = p= P + (P )Y = ?:[I‘FY }p: : (3.8)
2 2 1 YYY
T he above notations are such that
., P—
pl=2 _ ) 1 vyv | Pijkl: }i<jl yijmnymnkl
Pl = 1 Yvy ! Py = & Y "Vany (3.9)

It is easily checked that the sym plectic sections satisfy the usual relations

i(ffh h¥f)=1;
hif ffh=0: (3.10)

T hese are obtained writing the sym plectic sections as in (3.1) and (3.8), and using the
dentity

vyplt=p'ly: (3.11)

T he kinetic m atrix is given iIn temm s of the sym plectic sections by [26]

N = hf' : (312)
Therefore, Egs. (3) and (3.8) yied
1 pP—
N = j_[1+ Yy}p: l YYy =
1 YYVY 1 YvY
1+ YY
= 1
1 YV
+
Nigg= A gn+ VUL vyt (3.13)



W e now tum to the central charge function, which is de ned by
Zi= £  hygpp™; (3.14)

w here electric and m agnetic charges are in the same SO (8) ad pint representation as
vector elds. Using the de nitions in (3.3), one obtajnﬂ

1 _ Lo i _ o
Zj_j: ?_E (P 1=2 )ijkl (P 1=2 )]mnym k1l Cﬁ<1+ p_z (P 1=2 )ijkl+ (P 1=2 )]mnym k1l pkl=

= @ 00 BT 00 -

| L 3
. © i3
1 4 1 1 ok 5
=P=" P Qx1 P YRS (3.15)
2 1YYy | 1YYy .
w here the com plex charges
1 e
Qi ?—E(Cﬁj"’ i) (3.106)

have been introduced.
T hen one can also give an expression for the BH potential, which is given by

1 —5
Ven = EZijZ =
1 1ijk1
=2 1 YY) Qx1Q 15+
pi_ lab pi_ llj
1 Yy  Qup 1 YY OdYodlekl+
ij
P— 133 _ P —— — 1«
1 YY Y Q1 1 YY Qu +
ab ;i ij
— —ijab
+ 0 YY) Y T YimnQaQua (317)

T hus, in the expansion around the zero eld con guration, the BH receives contribution
from the term

1 .
Ven (= 0)= ZQile] : (3.18)
The linear term In the expansion of the BH potential near the point = 0 receives
contrdbutions from the second and third row of Eq. (3.17), yielding the condition

Qi ixQx1 Qi Qu=0; (3.19)

+

m npgq 1 ijkIm npg
Q135Qx1 151 Z‘Q 15Q k1 =0: (320)

T he con guration corresponding to chargesQ g in the singlet of SU (2) SU (6) trivially
satis es condition (320). Furthem ore, it sets to zero the linear term for allvalues of ,
Inplying the = 0 point to be an attractor point for this con guration.

T he expression w ith explicit indices is given by

i3 _ ij
P k1l ™ (p)kl



4 Eg4pBasisand Relation tod= 5

This section is ain ed to establish the relation between the N = 8,d = 4 theory and
N = 8,d = 5 supegravity ([28,[29]), especially for what concems the e ective BH
potential.

In our nom alisations the kinetic Lagrangian for vector elds in the N = 2 theory
reads (with F (@A @A )= @A ) [30,BI

L= ::: ImN F F ReN F Fo; (4.1)

where N isthed = 4 vector kineticm atrix, with ; = 0;1;::27. The e ective BH
potential is given by [16]

1 T
Vpn = EQ M (N ) ; (4.2)

where Q is the sym plectic charge vector Q = 2 ,and thematrix M reads [16]

1
N + ReN (InN ) 'ReN ReN (InN )!
(InN ) 'ReN (InN )*! : (43)

A

=<

=2

I
PO ©

spanning the d = 5 scalarm anibld —1 (dimyp = 42; rank= 6).

USp(8)
A ccording to the splitting = £0;Ig, thed = 4 kinetic vector m atrix assum es the
block form
0 1
%Noo Nogs
B
N =E R (44)
B
€ Ny N, A

By using to the form ul obtained in [[32]which determ ineN In term sof ve-din ensional
quantities, In a nom a]jzatjorﬁ that is suitable for com parison to N = 2 , one obtains

0 1
B Zduxa’a’a® i€ aga'al + € Zdx ata® + ie” ag saf é
B
N =R & :45)
B C
¢ Tdg @ @ + e a af dx & i ay A
2 Com pared to the notation of [32], here we use N 14N, Ny ! oags,disx ! dryx =4 and
I I
a . a .

10



Since the d;yx tensor, the a' elds, thed = 5 vector kinetic m atrix a;; and the eld
are real, the expressions for InN and ReN are given by

0 1
B1+e? ayala’ et aKJaKS
. B G
mN = & B % ; (46)
% et ay & et a, A
0 1
% %dK LM a“ata" %dJLM aa"
% ig 1
ReN = = 3 2 4.7)
£ i dy
€ %dILM aa" disk a“ A
w here the follow iIng shorthand notation has been introduced:
d dpxaa’a® ; dr dypxa’d®  ; diy  dgxa (4.8)

The inverse matrix (Im N )*? T N can be determ ined by noticing the block
structure of (44d). Then, by perform ing com putations analogous to those of [22], one
nds

0 1

B 1 a’ e

. o .
MmN ') = e° B i (4.9)

% al| atal + & a7 A

where av (ars) ! . Inserting the above expressions nto Eq. (£2), theN = 8,d = 4
e ective BH potentialcan nally be rew ritten in a d = 5 lJanguage:

1 1 1 d?
Ver = () Eez ar;ata’ + 5e6 + §e6 5 + e adid; +

1 1
+pp & arsa’ Ze6 gddz + 2&* &F Jdk dyt +

1 1
+pp S a+ cef dids v et ddnd, 4

1 1
+%qopoe6 d+ %qlpoe6 da' + 3&" & Tk +

1 1
—gpe’ & qupJ e® dsal+ 2&' 5w +

2
1 1
+§(q0)2e6 + e’ at+ quqje6 ata’ + & av (410)

11



N otice that this form ula becom es dentical to the corresponding one of [22] conceming
(purely cubic) N = 2 geom etrdes [33,[34], where ay; = 4e' gy and V. € .

T he potential {(4.10), because of the de nitions (4.3), can be seen to be a polynom ial
of degree up to sixth in the axion elds, whose general solutions are hard to determ ine.
However, one can consider in particular attractor solutions w ith vanishing axion elds.
T hese are given by speci ¢ charge con gurations that solve the follow ing attractor equa-—

tions:
@VB H

Qal -0 = & popK axr e’ P dig a’" + qoqle6 =0 - (411)

T herefore, the BH charge con gurations Q = (p°;p% ;0 ;%) supporting axion {free
solutions 21l into three classes:

a) Q.= (©°;0;0;06) ElectricBH ;
b) Qn = (0;p ;9;0) M agnetic BH ;
c) Qo= (©";0;0;0) KK charged BH : (412)

In each ofthese classes, wenow specify the BH potentialby setting to zero the appropriate
charge con guration in (4.10):
a) Electric BH :
6 IJ

V (.O. 3 —} 042 }2 M 43
B H ,p,q1)11:0—2e (p)+2e a qq : (4.13)

b) M agnetic BH :

1 1
Ve (5970 )i = 5e6 (@) + §e2 arp'p : (414)
c) BH charged w ith respect to the KK vector:
0y 1 6 2 1 6 0,2
Ve ( 7P )i = 28 (@) + 7€ () : (4.15)

In order to recover the com plete attractor solution, one also has to stabilize e . For
the KK charged BH one gets,

@VBKHK ( i), 6 D
2 Jig=0 () e - (416)
thus yieding
Voo (@0 )= TP 3¢ 417)
In the electric case it holds that
1
@Ve . _ avag ¢
ii_,=0 e = @ — ; 418
@ bi-o ) 3(po )2 ! ( )
in plying the critical value
a qqy 3=4
Vg (@0 )deoo = 297 ——— (419)

3
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Analogously, for the m agnetic BH one nds

(CAVAS a- ot I
e ”ngp ; (4.20)
yieding
m T\ . 3=2 aIJpIPJ o
Vol (P ) dico = 2307 — : 421)

In virtue of the B ekenstein-H aw king entropy-area form ula, the above expressions for
the critical electric and m agnetic BH potentials m ust be com pared w ith appropriate
powers of the E4), cubic variants I5(p) Fdwx PP P and Is(@)  5d7" apok .
Indeed, In d= 5 i must hod that [10]

s VT .17 (4.22)

D e ning the electric and m agnetic d = 5 e ective potentials respectively as

Ve=aVqq ; VI =aypp (4.23)
one obtamns
yve >4
V= 2937 ?5 s (4 24)
and
Yo 3=4
Vi = 23957 % G - (4 25)

By com parison with N = 2 symm etric d geom etries having
Vedre = T:@7F° = newd; (4.26)

one obtains the expressions for the critical potential of the four din ensional electric and

m agnetic BH s:
r

HOQIIK :
P :jquqK J ; 4 27)

VBeH crit (% ;po) =2

and
r

Tpdiox PP P J .
3! )
M ore generally, these solutions can be com pared w ith the embedding of the N = 2
purely cubic supergravities into N = 8 supergravity, and using the above critical valies
of the BH potentialin (I.21l), one nds for the three fam ily of con gurations under exam
the correct result:

Vil erie (@iP7) = 2 (4.28)

SBH

P —
= JL43: (4.29)
Tt is interesting to ram ark that the KK black hole can be connected to the RN solution
by perform ing an analytic continuation of the charges, asone can see from the rede nition

P! p+ig;
D! p 19;

13



In ,which allow s one to recover the RN entropy
Sew = (P + ) (430)

W e conclude this Section by pointing out that the 70 scalars of N = 8,d = 4
supergravity have been decom posed according to representations of USp (8) (maxinal
com pact subgroup ofEgy SO (1;1)) as ollow s:

70! 42+ 27+ 1 : (431)

The 42 unstabilized elds are the coordinates of the corresponding m oduli space [19].
T he non-com pact form of the exceptional group, E¢), In fact, enters In the expression
of the coset

Eee)

e (4.32)
USp(8)

which is them oduli space of thed = 4 nonBPS,Z,s 6 0 extram alBH s, whose orbit is
precisely
Eq2m

o = : (4.33)
Eés)

Indesd, the KK BH is indeed a non supersym m etric solution (see also Sect.[D).

5 Embedding of the A xion-D ilaton Extrem alBH

T he em bedding of the axion-dilaton BH in N = 8,d = 4 supergravity can be perform ed
by a three step supersym m etry reduction, which can be schem atically indicated as

N =8! N=4,n,=6! pureN =4! N = 2 quadratic; ny = 1; (5.01)

w here ny denotes the num ber of vector m ultiplets coupled to the supergravity m ultiplet.
M ore precisely, the st step consists In truncating N = 8 supergravity to an N = 4
theory Interacting w ith six m atter (vector) m ultiplets. In the second step,N = 4 reduces
to the pure theory, while in the last reduction one obtainsN = 2 supergravity quadratic
[39] theory w ith a single vector m ultiplet.

Let us exam Ine m ore precisely each interm ediate step.

1) In the rst step, the N = 8 central charge m atrix Z ,r assum es the block form
(@;b= 1;:;4,1;7= 1;:254): 0 1

Za, O
Zap ! @ A (52)
0 175

where 7, is the N = 4 central charge m atrix and Z;5 are the m atter charges of the 6
vector m ultiplets (sitting in the two-fold antisymm etric of SU (4), or equivalently in the
vector representation o£SO (6) SU (4)).

14



Consequently, the N = 8 scalarm anibld —22-, reduces to

sSuU (8) '
SL (2;R) SO (6;6) _ SL (2;R) SO (6;6) . (53)
U (1) SO (6) SO (6)_ U (1) SU (4) SU 4)’

which adm its three orbits. T his is the scalarm anifold forN = 4 supergravity coupled to
6 vector m ultiplets, .

2) In the second step, the 6 vector multiplets are elin lnated and Z ;5 = 0; this cor—
responds to retaining only states which are singlets with respect to the second SU (4)
in the stabilizer of the coset (83)), and the theory becom es pure = 4, with U-duality
SL (2;R) SU (4): 0

1 0 1
Zab 0 Zab 0
@ B A Q@ A, (5.4)
0 s 0 0
with = % J . Accordingly, the scalar m anifold reduces to %. N otice that, the
SL2R)

presence of the axion-dikton s spanning —; a7 In theN = 4 supergravity multiplet, only
an SU (4) out of the whole (lbocal) N = 4 R symm etry U (4) gets prom oted to (global)
U duality symm etry .

3) In the last step, 4 out of 6 graviphotons drop out, reducing the overall gauge
symmetry from U (1)° to U (1)?, with resulting U-duality SL (2;R) U (1). Thus, the
fram ework becomes N = 2-supersymm etric, w ith the two skew eigenvalues (2;%,) of
Z . related to the N = 2 central and m atter charges (Z ;D 572 ) :

0 ; 0 1
Za ! @ A (5.5)
0 iD.Z
T herefore, at the N = 2 level one can have both BPS attractors (D2 = 0) and the
nonBPS (Z = 0) ones [5].
On a group theoretical side, this step correspond to perform ing the decom position

SU 4)! SU (2) SU () U 1d);
+ 1;2; % ; (56)

6! (2;2;0)+ (1;1;L)+ (1;1; 1);

and to retaining only the singlets of SU (2) SU (2).

T he above three step reduction can be viewed from the point of view of the clas-
si cation of lrge charge orbits [26,[36]. One starts with the N = 8 scalar m anifold
E-7=SU (8) adm itting the two regular orbits {I.9) and (1.d). The large charge orbits of
N = 4,d= 4 supergravity coupled to 6 vector m ultiplets are:

8
SO (6/)
§ O1u4mps * SL (2R)  s5@ sown’
<
SO (6/6)
OnonBPs;z.-0 ° SL 2R) 5@ soen’ (5.7)

« MW

SO (6:6) .
OnOnBPS;Zabéo : SL (2;R) SO (1;1) SO (555) '
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w here the coincidence of the rst two orbits is due to the symm etry between the gravity
and the m atter sector.

T he corresponding m oduli spaces for theN = 4,n = 6 attractor solutions, exploiting
the hidden sym m etries of the above charge orbits, are given by:

8 M _ SO (6/4) .
§ BPS ™ sSU (4) su(2) su (2) '
<

50 (6:4)
§ M nonBPSZ.=0= S5 @ so @/ (5.8)
: . so s . s0(55) .

M nonBPSZ.,60 — SO (111) SO (5) SO (5) SO (1/1) USp(d) USp@) *

Notice that M 14gps (@NAd M ,on Brsz .,-0) @re hom ogeneous symm etric quatemionic
manibolds,asnh theN = 4! N = 2 reduction they becom e the hypem ultiplets’ scalar
m anifold 26].

The truncation of the N = 8 theory nto N = 4 isbased on the decom position

E;q) ! SL(2;R) SO (6;6) (59)
and on the follow ing group em beddings

SO (6;4) SO (2) ( Esp); (510)
SO (5;5) SO (1;1) ( Ege: (511)

T herefore, one can readily establish that the orbits 1/4 BPS and non BPS, Z., = 0
descend from the N = 8,BPS orbit

E;:;z , whereas the ofoit O pongps; 7,60 COm es from
theN = 8,nonBPS oﬂojt—;z;: .

T here is also another way to interpret the three step reduction (&8.]l), that is in tem s
of U duality invariant representations. A t group level, the em bedding of the axion-dilaton
extremalBH mtoN = 8,d = 4 supergraviy is based on the decom position of E 77, !
SU (8) and

SU (8)! SU (4) SU (4) U (1);

81 4;1;2 + 1;4; 3 ;
(5.12)
28 ' (4;4;0)+ (6;1;1)+ (L;6; 1);
281 4;4;0+ (6;1; 1)+ (1;6;1);
where SU (4) SU (4) U (1) isamaximal subgroup of SU (8).
Then,the rsttruncation W = 8! N = 4;n = 6) consists In setting
(4;4;0)= 0= 4;4;0 ; (5.13)

w hich gives rise to the decom position (5.2).
W e recall that the quartic nvariant of the U duality group SL (2;R) SO (6;n) of
N = 4,d= 4 supergravity coupled to n vector m ultiplets is [3]

-5t Bt 514)
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where the three SO (6;n) Invariants S;, S, and 8_2 arede ned by (@;b= 1;::54,1 =
1;25n):

—ab —I

Sl —ZabZ ZIZ H (5.15)

S, bdy 7 212 : (5.16)

I N O =
o

The case n = 6 is ram arkably symm etric, as the symm etry of the gravity and m atter
sector is the sam e and furthemm ore, due to the isom orphisn SU (4) SO (6),the SO (6)-
vector Z ; of m atter charges can be equivalently represented as the SU (4)-antisym m etric
tensorifij (i;3= 1;::5;4). Consequently, forn = 6 we have

—ab 1— i3
Sl;n:6 _ZabZ EZ 1]Z H (5.17)

abcd
Somn=6

I N NS

1 3
7 07 o 2 a2 Uz < (518)

Notice that 0 1-4ps and O nenpres; z.,-0 I Eq. (51) correspond to the two disconnected
branches of the sam e m anifold, classi ed by the sign of the real SO (6;6)-invariant [2d]
Inde=d, Sl;n:6 > 0 foro 1-4pps and Sl;n:6 <0 forOnoans;Zab:O.

By a suitable U (1) SU (4) SU (4) transform ation, one can reach the norm al fram e
for both gravity sector and m atter sector, such that the two matrices 7., and Z ;5 are
sim ultaneously skew -diagonalized, obtaining

; 519
7, ( )
Z
’ ; (520)
Z4

where7,;%2, 2 R" ,and Z25;Z2, 2 R*, 2 [0;2 ). Thus, in the nom al fram e one obtains

Simes  FaT+ FoF BT BT (521)
Som=6 2 Z1Z, 2374 ; (522)
2
I4,'n=6 = 812;[1:6 ﬁ2;n=6j = |
X4 \ X4 . Y Y
= Y3 2 ¥iJ K+ 4 Z;+ Zi (523)
=1 i< §=1 =1 =1

Eq. (523) coincides w ith the expression of the quartic invariant of N = 8,d = 4 super—
gravity, as given by [1] (see also [3]) Considering now the second step of the reduction,
w here one reaches the pure N = 4 theory,one sets Z;5 = 0,orequivalently Z; = 0= 7,4
In the nom al fram e (that is, retaining only states which are singlets with respect to
the second SU (4) in the stabilizer of the coset (5.3)). Notice that, by doing so, Tan-o
becom es a perfect square:

2 2

2 2 2 2
Tin-0= Sipoo Pom-od = ¥1F  FLof "= 27 2] (524)

Eq. (224) i plies that I4,- is (weakly) positive, and as a consequence an unigue class
of large attractor exists, namely the 1=4-BPS one. The (weak) positivity of Io,-o IS
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consistent w ith the known expression of I;,- In tem s of the m agnetic and electric
charges p ;9 ( = 1;:::;6):

Tipeo=4 P°F (® D ; (5.25)

where herep? pp , T  gg andp g ©pg . Notice that in the basis
of kare charges I,,_¢, as given by Eq. (523), is (weakly) positive due to the Schwarz
nequality, and not because it is a non—rivial perfect square of an expression of the kare
m agnetic and ejﬁctm'c charges [37].

Notice that  Ign-q (With I4,-0 given by Eq. (529)) must coincide w ith the value
of the e ective BH potential of the pure N = 4 theory at its critical points. T his can be
understood (see the recent discussion given In [26]and [38]) because this potential reads
asfollows ( = 1;:::;6):

Ves puren =2 ;72;P ;9 =€ (5p g )sp g )=

= &€ at+e? W+ F 2 p q; (526)
w here the com plex (axion-dilaton) eld

s a+ ie? (527)

param etrizes the coset % of N = 4,d= 4 pure supergravity [39].

By com puting the criticality conditions ofVg i puren = 4 ,ONe obtains the follow Ing stabi-

Iization equations for theaxion a and thedilaton atcriticality, ( ;a)= ( g (©;9);ay (©;9)):
241
@y ( ja;piq) . P
.= 0 a )= ——; 528
i it () as (P;a) 7 ( )
@Ven ( ;a;p;iq) . e 9
— jo= e PP+ aap g= & PP+ 50
m
"PE _© @
ez swom_ PE P B, (529)
’
T hus, the Bekenstein-H aw king BH entropy is com puted to be
Ay (P;9) p b
Sen (Pia)= — = Ver (x @id)jaw ©i)iPiD=2 P @ D= Tip-o
(5.30)

The third and last step, when the pure N = 4 theory reduces to theN = 2 quadratic
theory withny = 1,isperform ed through the truncation (U (1))° ! (U (1)) ofthe overall
Abelian gauge Invariance ( = 1;u36 ! = 1;2). Inthiscase, I 4, _ g0 ) w2 Sa
perfect square in both the basis of 7 ,, and in the basisofcharges p ;q ,and itactually

is the square of the quadratic nvariant I, -, of the axion-dilaton system :

2 2 2 2
Lipcooants wayp = £1J  FoJ =4 joge? p2CI1 = Iz2(n=1); (531)
m

Ion-1y= 2P% PA ; (532)
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In plying that the axion-dilaton system exhibits two types of attractors: the %—BPS one
(Ion-1)> 0) and thenonBPS 2 = Oone (Iyn-1)< 0).
By further putting

p=0=x;p pia g (533)
() p g= 0),onecbtamns:
2
Limzomay var) = Iz2(n:1) = 4(pq) ; (5.34)
m
Iowo1y =  2393; (5.35)

where I means the evaluation along Eq. (533). For a recent treatm ent of the axion-
dilaton-M axw ellE instein—(super)gravity system and ofthe extrem alBH attractorstherein,
see eg. Sects. 6 and 7 of [38].

The sin ilarity between the rhs.s of Egs. (1L4) and (239) is only apparent. In
fact, the KK extrem alBH has I,x x , which necessarily in plies that it is non-BPS
(Zag € 0NN =8andZ &€ 0inN = 2).0On the other hand, the axion-dilaton extrem al
BH has Iyt anda\ " intherh.ss., so that it can be both %—BPS and nonBPSZ = 0
in N = 2. M oreover, the choice (5.33) leads to vanishing axion a (see Eq. (528)), and
this explains that Egs. (839) has SO (1;1) symm etry, asEq. (I.4).

5.1 Truncations of the scalar sector

As reported eg. In Sects. 6 and 7 of [38], one can see that the atiractor m echanisn
stabilizes the com plex axion-dilaton s at the event-horizon of the axion-dilaton extrem al
BH itself, while, as given by Egs. (I.1J) and (I.13) within the branching (2.11]), only
one real scalar degree of freedom , nam ely the KK radius ryx x de ned by Eq. (LI), is
stabilized at the event horizon of the extremalKK BH.

T he relevant branching of the scalar sector for the embedding of the axion-dilaton
extremalBH intoN = 8,d = 4 supergravity is given by:

SU()! SU (4) SU (4) U (1);
(536)
700 (1;12)+ (1;1; 2)+ (6;60)+ 4;41+ 44; 1

Eq. (8.34) is the analogue of Egs. (2.10) and (2.11), hoding respectively for the (N = 8§,
d= 4 enbedding of the) RN and KK d= 4 extrem al (and asym ptotically at) BHs.

A rem arkable feature characterizing the branchings (Z.10), (Z.11) and (538) is the
possible presence of a singlet In their rhs.’s. The decom position (5.38) contains two
SU (4)( SU (4)) singlets, whereas the decom position (2.11]) contains a real singlet, and
the decom position (2.10) does not contain any singlet. The presence of the singlet m ay
lead to an underlying m axin al com pact symm etry (U (1) for (2.10), absent for (2.11]),
and SU (4) for (534)).

1. The rsttruncation N = 8! N = 4;ny = 6) corresponds to settjncE

4;41 = 0= 44; 1 : (537)

3N otice the di erence w ith respect to the analogue truncation condition (5.13) for the decom position
of the 28 and 28 ofSU (8).
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Indesd, by applying the condition (5.37), one cbtains the correct quantum num bers

. SL2R) 50 (65)
ofthe scalarm anifold —; ¥ 506 50 @)
to 6 vector m ultiplets.

oftheN = 4,d= 4 supermgravity coupled

2. The second truncation (N = 4;ny = 6 ! pureN = 4 ) sinply consists In In ple—
m enting the condition
(6;60)= 0; (5.38)

which is consistently sym m etric under the exchange of the gravity sector and the
m atter sector. T hrough condition (5.38), one achieves the correct quantum num bers

. SL(2
of the scalar m anifold E((ﬁ)

ofthepure N = 4,d = 4 supemgravity.

3. The third and last step (pure N = 4 ! N = 2quadratic,ny = 1) does not change
anything w ith respect to the previous one. Tndeed, the scalar sector is una ected

by this third truncation, and the scalarm anifold rem ains SE((ZI?)

6 Conclusions

In the present hvestigation, we have considered som e exam ples of extrem alBH con gu-
rations in the fram ework of BH attractors of N = 8 supergravity.

The e ective BH potential has been com puted in di erent bases, nam ely in them an—
ifestly SU (8)-coveriant basis, as well as iIn the U Sp (8)-covariant one. The form er is
suitable to describe the (BPS) ReissnerNordstrom extrem alBH with #sU (1) symme-
try, as a consequence of the attractor point to be the origin of thed = 4 scalarm anifold
SEJ‘(Q) . The latter hasd = 5 origin, and it is appropriate in order to describe the non-
BPS KalizaXK lein extrem alBH ,with its SO (1;1) symm etry arisihg from the non-trivial
attractor value of the KK radialm ode.

W e have also considered the axion-dilaton system , whose BPS or non-BPS nature
depends on whether it isembedded N N = 2 quadraticorin N = 4,d = 4 supegravity.
T he axion-dilaton extrem alBH isobtained asa particular case of the attractor equations
of the maxinald = 4 theory. In that case, all 70 scalars other than the SU (4)
SU (4)-singlets in the decom position [5.36 are set to vanish, and correspondingly only 12
graviphoton electric and m agnetic charges are taken to be nonzero (see Eq. (2.17)). At
the levelN = 2, this attractor solution is obtained by retaining only 4 (2 electric and 2
m agnetic) non-vanishing charges, according to the decom position (5.8) of SU (4).

In Appendix A ,we have nally considered the em bedding ofthestumodeln N = 8,
d= 4 and d = 5 supergravity, is considered. In the d = 4 case, all non-singlet charges
In the decom position of E 77y with respect to SO (4;4) (SL (2,R ))3 are set to vanish
[44], whereas for d = 5 one obtains an axion-free fram ew ork, given by non- zero values

for (0 ,)a @ M or (@ )P PP -
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A Appendix
Truncation of N = 8;d = 5 supergravity
to the d = 5 uplift of the stu m odel

The bosonic sector of the N = 8, d = 5 supergravity theory consists in the m etric
g (; = 1;u35),27 vectors A and 42 scalars . param etrizing the coset UEsif(é) .
The index = 1;:::27 isn the 27 of E 44), and it can be traded for a couple of at
antisym m etric indices (ab) of USp(8). Thus, the vectors A% transform in the 27 of

USp(8) ,that is

27 OfEG(G) V27 OfUSp(8): (A .1)

The 42 scalars . are In the traceless selfreal 4-fold antisym m etric representation 42
ofUSp(8).

Upon perform ing thed = 5! d= 4 reduction, one gets 70 scalars, which split into
the follow Ing irreps. of U Sp(8):

70= 42+ 27+ 1: (A 2)

Here 27 acoounts for the axions com ing from the A2° vectors ofE¢,, 1 isthe KK radius

x x (see thede nition (I.I1l)), and 42 corresponds to the scalars in UESZ%) .

In order to extract the stu m odel, we notice that itsd = 5 uplift is the (SO (1;1))2
m odelw ith cubic hypersurface [33,[34] (see eg. the treatm ent given in [22])

bib2b3 _ 1. @ 3)

TheN =8 ! N = 2,d= 5 supersymm etry reduction corresoonds, at the level of
E ), to taking the decom position

Ege) ! SO (1;1) SO (5;5) ! (SO (1;1)) SO (4;4); (A 4)
0 that (weights w ith respect to SO (1;1)’s are disregarded, irrelevant for our purposes)

270 1+ 16+10! 1+ 85+ 8.+ 1+ 1+ 8: (A D)
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Thus, three SO (4;4)=singlets are generated; they correspond to the three Abelian
vector elds ofthed = 5 uplift of the stii m odel. By further reducing to d = 4, one gets
a further vector from the KK vector (alias the d = 4 graviphoton). This can be easily
seen by com pleting the decom position (A_4) starting from the U -duality group E (7, of
d= 4 maxin al supergravity:

Eqqy ! SO (1;1) Egq ! (SO (1;1)) y

SO (5;5) ! (SO (1;1) SO (4;4); A 6)

so thatEq. (A_3) getscom pleted as (asabove, neglecting w eights w ith respect to SO (1;1),
as they are irrelevant for our purposes)

281 27+ 1! 1+ 16+ 10+ 1! 1+ 8.+ 8.+ 1+ 1+ 8,+1; A7)

containing four SO (4;4) singlets in the last temm .
It isworth pointing out that atd = 4 the (SO (1;1))3 comm uting with SO (4;4) gets
enhanced to (SL (2;R ))3 . By further decom posing

SO (4;4) ! (SL (2;R)); @A 8)

thisyieldsthe (SL (2;R ) ,used for the seven qubit entanglem ent in quantum inform ation
theory [40,[411].

N otice that the presence of three di erent 8’s 0£ SO (4;4) in the rh s. of the decom —
position (A_F) (aswellas of (&_1)) is the origi of the triality symm etry [42,[43] of the
stu m odel [44].

The (SO (1;1))2 factor in the rhs. of the branching (A_4) is nothing but the scalar
m anibd of thed = 5 counterpart of the stu m odel (spanned by P, 0?2 and b? satisfying
the cubic constraint (&_3)). On the other hand, the (SO (1;1))3 factor in the rh.s. of
the branching (A_7) is spanned by the (unconstrained, strictly positive) d = 4 dilatons

! Im (s), ° Im (t) and ° Im (u). They are related to their hatted
counterpartsby ' kg Of,i= 1;2;3,Implying (seeEgs. (&3) and Eq. (I11); see alo
eg. [22])

L23=r¢, Vv (A 9)

T he decom position of the d = 5 stabilizer (analogue to the decom position (A_4) of
the U duality group of thed = 5 m axin al supergravity) reads as follow s:

USp(8) ! USp(4) USp(4)= Spin(5) Spin(5)! Spin(4) Spin(4)= (SU (2))° (SU (2))°;
A 10)
yielding the follow ing decom position of the fundam ental 8 of U Sp(8):
8! (4;1)+ (1;4)! (2;1;1;1)+ (1;2;1;1)+ (1;1;2;1)+ (1;1;1;2): A J11)

This allow s one to com pute the corresponding branchings of the 27 = (8 8), , and
42= (8 8 8 8),, (thesubscript \A ;0" standing for \antisym m etric traceless") of
USp (8) (the Interm ediate decom positions w ith respect to U Sp(4) U Sp(4) are om itted,
because irrelevant for our purposes):
27V (2;2;1;1)+ (2;1;2;1)+ (2;1;1;2)+ (1;2;2;1)+
+ (1;2;1;2)+ (1;1;2;2)+ 3(1;1;1;1); (A 12)

42V (2;2;2;2)+ (2;2;1;1)+ (2;1;2;1)+ (2;1;1;2)+ (1;2;2;1)+
+ (1;2;1;2)+ (1;1;2;2)+ 2(1;1;1;1) (A 13)
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Consistently with previous statem ents, the three (SU (2))4—sjng]ets In the rh.s. of the
decom position (&_12) and the two (SU (2))*-singlets .n in the rh s. of the decom position
{2_13) respectively are the three Abelian vector elds (incliding thed = 5 graviphoton)
and the two independent real scalars (say, P! and P?) in the bosonic spectrum of the
(SO (1;1))2 m odel, which is thed = 5 uplift of the st m odel.

Reducing to d = 4, the six real scalar degrees of freedom of the st m odel are the
radiis rx x  (see Egs. (L) and (&_9)), the two scalars P! and P?, and the three axions
(com Ing from the fth com ponent Aé (I = 1;2;3) of the three d = 5 vectors). As
previously m entioned, the fourd = 4 vectors com e from the threed = 5 vectors and from
the KK vectorgs ( = 1;::4).

F inally, it should be notice that ! ? 3 (de ning the volum e of thed = 5 cubic hyper-
surface through Egs. (ILIIl) and (&_9)) can be cbtained through a consistent truncation
of the E ¢ 4)-Invardant expression ( ; ; = 1;::527)

1
—d (A 14)
3!

to (SO (1;1))2 , by retaining only the three singlets of SO (4;4) (see the decom positions
(&a_4) and (&_3) above).
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