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1 Introduction

Increasing precision in the calculation of sparticle effects is an important part of theoretical

preparation for the LHC. Much of this work has concentrated on the mSUGRA scenario,

where it is assumed that the unification of gauge couplings at high energies is accompanied

by a corresponding unification in both the soft supersymmetry-breaking φ∗φ scalar masses

and the gaugino masses: and also that the cubic scalar φ3 interactions are of the same form

as the Yukawa couplings and related to them by a common constant of proportionality,

the A parameter.

Anomaly mediation (AMSB) [1]–[16] as the main source of supersymmetry breaking

is an attractive alternative to the mSUGRA paradigm. In AMSB, the φ∗φ masses, φ3

couplings and gaugino masses are all determined by the appropriate power of the grav-

itino mass multiplied by perturbatively calculable functions of the dimensionless couplings

of the underlying supersymmetric theory. Moreover these functions are renormalisation
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group (RG) invariant, and the AMSB predictions are thus ultraviolet insensitive [8]. Un-

fortunately the theory in its simplest form leads to tachyonic sleptons and thus fails to

accommodate the usual electroweak vacuum state. There are many different successful

approaches which fix this problem, however.

There have been a number of studies of the sparticle spectrum in the AMSB context

but these have generally been carried out in the approximation whereby third-generation

Yukawa couplings only are retained. In this paper we consider flavour physics in the AMSB

context; aspects of this were considered in ref. [5] for the b → sγ process, but there has

been considerable progress both on the experimental and theoretical side since then. We

will also show how AMSB satisfies the requirements of the principle of Minimal Flavour

Violation (MFV) [17]–[20]. Moreover, we will show that specific to AMSB there is a natural

suppression of flavour changing neutral current (FCNC) effects related to the size of the

top quark Yukawa coupling at the electroweak scale.

We consider in some detail the critical calculation of the B → Xsγ branching ratio,

taking into account inter-generational squark mixing. We show that for positive Higgs

mass term µ the dependence of BR(B → Xsγ) on tan β, the ratio of the two Higgs vacuum

expectation values, is positively dramatic, because the charged Higgs mass has a minimum

for large tan β in the class of AMSB models we are treating. As a result, for µ > 0, B → Xsγ

constrains tan β to be relatively low; we nevertheless show that within AMSB models it

is possible for the supersymmetric contribution to account for the current discrepancy

between theory and experiment for the muon anomalous magnetic moment. We further

analyse leptonic Bs → µµ and B → τν decays within AMSB. For Bs → µµ we take

into account the full flavour structure of the squark sector and include both chargino and

gluino contributions. Despite AMSB being MFV, the gluino contributions induced by

inter-generational down-squark mixing turn out to be significant. We show that current

data on the leptonic modes are beginning to probe the µ < 0 branch. Once higher statistics

become available these decays could provide decisive constraints on the parameter space.

The plan of the paper is as follows: In section 2 we review AMSB and squark flavour

violation in minimal supersymmetric models. We present in section 3 analytical results for

the AMSB soft terms with full generational structure, showing thereby how AMSB fulfils

the MFV principle. We also assess the effect on the squark mass spectrum of a number

of solutions to the tachyonic slepton problem. In section 4 we give numerical estimates

for the size of the flavour-mixing entries of the squark mass matrices. We further evaluate

the constraints from the B → Xsγ decay, work out implications for leptonic B-decay

observables in AMSB and comment on the anomalous magnetic moment of the muon. In

section 5 we conclude. In appendix A we provide details on the numerical computation of

the squark flavour-mixing parameters.

2 Generalities

We review AMSB in section 2.1 and general squark flavour violation within the MSSM in

section 2.2.
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2.1 Anomaly mediated supersymmetry breaking

For completeness and to establish notation, let us recapitulate some standard results for

the general case. We take an N = 1 supersymmetric gauge theory with gauge group ΠαGα

and with superpotential

W (Φ) =
1

6
Y ijkΦiΦjΦk +

1

2
µijΦiΦj . (2.1)

We also include the soft supersymmetry-breaking terms

Lsoft = −(m2)j iφ
iφj −

(
1

6
hijkφiφjφk +

1

2
bijφiφj +

1

2
Mαλαλα + h.c.

)
, (2.2)

where we denote by φ the scalar component of the superfield Φ and φi = (φi)
∗. Here Mα

are the gaugino masses and h, b and m2 are the standard soft supersymmetry-breaking

scalar terms.

The following set of results for soft supersymmetry-breaking terms are characteristic

of AMSB and are RG invariant [4]:

Mα = m3/2βgα/gα, (2.3a)

hijk = −m3/2β
ijk
Y , (2.3b)

(m2)ij =
1

2
m2

3/2µ
d

dµ
γi

j , (2.3c)

bij = κm3/2µ
ij − m3/2β

ij
µ . (2.3d)

where γi
j is the chiral superfield anomalous dimension matrix, and βgα , βY are the β-

functions for the gauge and Yukawa couplings, respectively. βY is given by

βijk
Y = γi

lY
ljk + γj

lY
ilk + γk

lY
ijl, (2.4)

and βµ by a similar expression. At one loop we have

16π2β(1)
gα

= g3
α [T (Rα) − 3C(Gα)] , (2.5a)

16π2γ(1)i
j =

1

2
Y iklYjkl − 2

∑

α

g2
α[C(Rα)]ij. (2.5b)

Here Rα is the group representation for Gα acting on the chiral fields, C(Rα) the corre-

sponding quadratic Casimir and T (Rα) = (rα)−1Tr[C(Rα)] , rα being the dimension of

Gα. For the adjoint representation, C(Rα) = C(Gα)Iα, where Iα is the rα × rα unit ma-

trix. Obviously if the gauge group has an abelian factor, G1 say, with hypercharge matrix

Y i
j = Yiδ

i
j, then T (R1) = Tr[Y2], [C(R1)]

i
j = (Y2)ij and C(G1) = 0.

As we indicated in the introduction, eq. (2.3c) is unrealistic for the sleptons; most

phenomenology has been done by replacing it (at the GUT scale) with

(m2)ij =
1

2
m2

3/2µ
d

dµ
γi

j + m2
0δ

i
j, (2.6)
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that is, by introducing a common scalar mass for the chiral super multiplets. We will call

this model mAMSB in what follows. There have been a number of alternative approaches

to the problem; for a discussion see in particular ref. [2], and for the phenomenology of

deflected anomaly mediation see ref. [6].

One approach, first explored in detail in ref. [7], and subsequently by a number of

authors [8]–[13], is to replace eq. (2.3c) with

(m2)ij =
1

2
m2

3/2µ
d

dµ
γi

j + ξYiδ
i
j, (2.7)

where ξ is a constant (with dimensions of mass2) and Yi are charges corresponding to

a U(1) symmetry of the theory. The ξY term corresponds in form to a Fayet-Iliopoulos

(FI) D-term. This alternative has the advantage that it does not require us to postulate

an independent source of supersymmetry breaking characterised by m2
0; the new term in

eq. (2.7) can be derived in a natural way via the spontaneous breaking of a U(1) symmetry

at high energies [14, 15].

For a discussion of how eq. (2.7) affects the RG invariance of the AMSB expressions

see ref. [16]. The outcome is that if we work at a specific renormalisation scale (such as

MSUSY) throughout, then we may use eq. (2.7), with a specific value of ξ, as long as the

U(1) represented by the charges Y has no mixed anomalies with the SM gauge group.

An example of a way to provide a viable solution to this slepton problem but retain

eq. (2.3c) unaltered is to introduce R-parity violating leptonic interactions, which provide

positive sleptonic (mass)2 contributions [21].

Most applications of AMSB to the minimal supersymmetric standard model (MSSM)

and variants have employed eq. (2.3a), (2.3b) and eq. (2.6) or (2.7), and determined the

Higgs B parameter (along with the µ term) by the minimisation of the scalar potential.

This reflects the fact that the form of the B-term is more model dependent than the other

soft breaking terms; for a recent discussion see ref. [15]. In fact eq. (2.3d) (with the arbitrary

parameter κ) is the most general form consistent with RG invariance of the AMSB form

of soft supersymmetry breaking.

The MSSM (with right-handed neutrino superfields ν̄) admits two independent,

generation-blind and anomaly-free U(1) symmetries, one of which is of course U(1)Y ; it

is convenient for our purposes to parameterise them with the lepton doublet and singlet

charges. The possible charge assignments are shown in table 1; we will call the additional

symmetry U(1)′ in what follows. Note that in the effective theory below the scale of the

right-handed neutrino mass U(1)′ has no mixed anomalies with the SM gauge group.

Alternatively, by introducing an additional SM gauge singlet N per generation, appro-

priately charged under the U(1) symmetry, and completing the two Higgs multiplets to a

5 and a 5 (per generation) we can have a charge assignment that is compatible with grand

unification to SU(5) × U(1) (see table 2). When we assess this possibility we will assume

that only one pair of Higgs doublets (and no Higgs triplets) survive in the effective field

theory below unification. So this case differs from the U(1)′ case in that the U(1)SU(5) is

anomalous in the low-energy theory; this will affect the discussion of the RG invariance of

the soft terms in what follows.
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Q Ū D̄ H1 H2 ν̄

−1
3L −e − 2

3L e + 4
3L −e − L e + L −2L − e

Table 1. Anomaly-free U(1)′ charges for arbitrary lepton doublet and singlet charges L and e

respectively. U(1)Y corresponds to L = −1/2 and e = 1. ν̄ is a SM gauge singlet.

Q, Ū D̄ ν̄ H1 H2 N

e L 2e − L −2e −e − L L + 3e

Table 2. Anomaly-free U(1)SU(5) charges for arbitrary lepton doublet and singlet charges (L and

e respectively) compatible with SU(5) × U(1). N , ν̄ are SM gauge singlets.

2.2 Flavour structure of the MSSM Lagrangian

The quark chiral superfields of the MSSM have the following GSM = SU(3)c × SU(2)L ×
U(1)Y quantum numbers in the SLHA2 [22] conventions, which we adopt:

Q :

(
3, 2,

1

6

)
, Ū :

(
3̄, 1,−2

3

)
, D̄ :

(
3̄, 1,

1

3

)
, (2.8)

and the superpotential of the MSSM is written as

WQ = ǫab

[
Qb

i (YD)ij Ha
1 D̄j + Lb

i (YE)ij Ha
1 Ēj + Qa

i (YU )ij Hb
2 Ūj − µHa

1 Hb
2

]
. (2.9)

Throughout this section, we denote SU(2)L fundamental representation indices by a, b =

1, 2 and the generation indices by i, j = 1, 2, 3. ǫab = ǫab is the totally antisymmetric tensor,

with ǫ12 = 1. The SU(3) colour indices are suppressed. All MSSM running parameters are

in the DR scheme [23]. We now tabulate the notation of the relevant soft supersymmetry

(SUSY) breaking parameters. The squark trilinear scalar interaction potential is

V3 = ǫab

[
Q̃b

iL (TD)ij d̃∗jR Ha
1 + Q̃a

iL (TU )ij ũ∗
jR Hb

2

]
+ h.c., (2.10)

where fields with a tilde are the scalar components of the superfield with the identical

capital letter. Note that the electric charges of ũR, d̃R are +2/3 and -1/3 respectively. The

squark bilinear SUSY-breaking terms are contained in the potential

V2 = Q̃∗
iLa (m2

Q̃
)ij Q̃a

jL + ũiR (m2
ũ)ij ũ∗

jR + d̃iR (m2
d̃
)ij d̃∗jR. (2.11)

Eqs. (2.9)–(2.11) are in the basis of flavour eigenstates. To discuss flavour violation

we need to work in the so-called super-CKM basis, where the quark mass matrices are
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diagonal and the squarks are rotated parallel to their fermionic partners. We choose the

following convention for the Yukawa couplings and for the CKM matrix V :

YU = V T diag(λu, λc, λt), YD = diag(λd, λs, λb), (2.12)

where λq denote the Yukawa couplings of the quarks in the mass eigenstate basis. Under

this convention the down-type SU(2)L-doublet squarks and the singlets are already in the

super-CKM basis, while the up-type doublets need to be rotated. We define the 6×6 mass

matrices for the up-type and down-type squarks as

Lmass
q̃ = − Φ†

u M2
ũ Φu − Φ†

d M2
d̃
Φd , (2.13)

where Φu = (ũL, c̃L, t̃L, ũR, c̃R, t̃R)T and Φd = (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R)T . The mass

matrices read

M2
ũ =




m2

ŨL
+ m2

u + Du LL
v2√
2
T̂ †

U − µ mu cot β

v2√
2

T̂U − µ∗ mu cot β m2
ũ

T
+ m2

u + Du RR



 , (2.14)

M2
d̃

=




m2

D̃L
+ m2

d + Dd LL
v1√
2

T ∗
D − µ md tan β

v1√
2

T T
D − µ∗ md tan β m2

d̃

T
+ m2

d + Dd RR



 . (2.15)

In the equations above, v1 and v2 are the vacuum expectation values (VEVs) of the two

Higgs doublets (with tan β ≡ v2/v1 and v ≡
√

v2
1 + v2

2 ≈ 246 GeV), the matrices mq

(with q = u, d) are the diagonal quark masses and Dq LL,RR are flavour-diagonal D-term

contributions. Furthermore, m2
D̃L

≡ m2
Q̃
, and we introduced the 3 × 3 matrices

m2
ŨL

≡ V m2
Q̃

V † , T̂U ≡ T T
U V † , (2.16)

accounting for the rotation of the up-type doublets to the super-CKM basis.

3 AMSB squark flavour

We derive and analyse the exact one-loop AMSB squark soft terms with the full three-

generational structure in section 3.1. We then go on to show how the soft terms are in

MFV form in section 3.2. In section 3.3 we discuss the implications of various solutions to

the tachyonic slepton mass problem for the squark sector.
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3.1 Fully flavoured squark mass boundary conditions

The one-loop anomalous dimensions for the quark and Higgs chiral superfields are easily

derived from eq. (2.5b) and are given by

(16π2)γT
Q = YUY †

U + YDY †
D −

(
1

30
g2
1 +

3

2
g2
2 +

8

3
g2
3

)
.1 , (3.1a)

(16π2)γU = 2Y †
UYU −

(
8

15
g2
1 +

8

3
g2
3

)
.1 , (3.1b)

(16π2)γD = 2Y †
DYD −

(
2

15
g2
1 +

8

3
g2
3

)
.1 , (3.1c)

(16π2)γH2
= 3Tr

(
Y †

UYU

)
− 3

10
g2
1 − 3

2
g2
2 , (3.1d)

(16π2)γH1
= 3Tr

(
Y †

DYD

)
+ Tr

(
Y †

EYE

)
− 3

10
g2
1 − 3

2
g2
2 , (3.1e)

where 1 is the identity matrix in flavour space. The quark Yukawa β functions are

βYU
= YUγU + (γT

Q + γH2
)YU , βYD

= YDγD + (γT
Q + γH1

)YD, (3.2)

from which expressions we obtain using eq. (2.3c) the following leading-order results:

(16π2)2(m2
Q̃
)T

m2
3/2

=

(
−11

50
g4
1−

3

2
g4
2 +8g4

3

)
.1+(YUY †

U )

(
3Tr(YUY †

U )− 13

15
g2
1−3g2

2−
16

3
g2
3

)

+(YDY †
D)

(
3Tr(YDY †

D) + Tr(YEY †
E) − 7

15
g2
1 − 3g2

2 − 16

3
g2
3

)

+YUY †
UYDY †

D + YDY †
DYUY †

U + 3(YUY †
U )2 + 3(YDY †

D)2, (3.3a)

(16π2)2m2
ũ

m2
3/2

=

(
−88

25
g4
1 + 8g4

3

)
.1 + (Y †

UYU)

(
6Tr(YUY †

U ) − 26

15
g2
1 − 6g2

2 − 32

3
g2
3

)

+2Y †
UYDY †

DYU + 6(Y †
UYU)2, (3.3b)

(16π2)2m2
d̃

m2
3/2

=

(
−22

25
g4
1 + 8g4

3

)
.1

+(Y †
DYD)

(
6Tr(YDY †

D) + 2Tr(YEY †
E) − 14

15
g2
1 − 6g2

2 − 32

3
g2
3

)

+2Y †
DYUY †

UYD + 6(Y †
DYD)2, (3.3c)

16π2TU

m3/2
= −

[(
3Tr(YUY †

U ) − 13

15
g2
1 − 3g2

2 − 16

3
g2
3

)
.1 + 3YUY †

U + YDY †
D

]
YU ,(3.3d)

16π2TD

m3/2
= −

[(
3Tr(YDY †

D) + Tr(YEY †
E) − 7

15
g2
1 − 3g2

2 − 16

3
g2
3

)
.1

+YUY †
U + 3YDY †

D

]
YD. (3.3e)

The results agree in the dominant third-family flavour-conserving limit with the expressions

in ref. [3]. Note the presence in eq. (3.3a) of a YUY †
U term. As remarked, for instance,
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in ref. [19], such a term can lead to sizeable contributions to FCNC phenomena, if its

coefficient is of O(1). We will see presently, however, that squark flavour mixing in AMSB

is in fact naturally suppressed in the low-tan β region.

From the exact one-loop formulae for the squark soft terms in eqs. (3.3a)–(3.3e) we

can derive relations displaying the flavour structure and suppression from the CKM matrix

elements Vij explicitly. In the approximation that we retain only the third-generation

Yukawa couplings we find

(
m2

Q̃

)

ij
=

m2
3/2

(16π2)2

[
δij

(
−11

50
g4
1 − 3

2
g4
2 + 8g4

3

)
+ V ∗

tiVtjλ
2
t (β̂λt

− λ2
b)

+δi3δj3λ
2
b(β̂λb

− λ2
t ) + λ2

t λ
2
b(δj3V

∗
tiVtb + δi3VtjV

∗
tb)

]
, (3.4)

(
m2

ũ

)
ij

=
m2

3/2

(16π2)2

[
δij

(
−88

25
g4
1 + 8g4

3

)
+ 2 δi3δj3λ

2
t

(
β̂λt

− λ2
b(1 − |Vtb|2)

)]
, (3.5)

(
m2

d̃

)

ij
=

m2
3/2

(16π2)2

[
δij

(
−22

25
g4
1 + 8g4

3

)
+ 2 δi3δj3λ

2
b

(
β̂λb

− λ2
t (1 − |Vtb|2)

)]
, (3.6)

(TU )ij = −δj3

m3/2

16π2
λt

[
Vti(β̂λt

− λ2
b) + λ2

bδi3Vtb

]
, (3.7)

(TD)ij = −δj3

m3/2

16π2
λb

[
δi3(β̂λb

− λ2
t ) + λ2

t VtiV
∗
tb

]
. (3.8)

Here, β̂λt
and β̂λb

are defined through the beta functions of the top, β̂λt
≡ 16π2βλt

/λt,

and bottom, β̂λb
≡ 16π2βλb

/λb, Yukawa couplings, respectively, with one-loop expression

in our approximation given as

β̂λt
= 6λ2

t + λ2
b − Ct , (3.9)

β̂λb
= 6λ2

b + λ2
τ + λ2

t − Cb , (3.10)

where

Ct =
13

15
g2
1 + 3g2

2 +
16

3
g2
3 , (3.11a)

Cb =
7

15
g2
1 + 3g2

2 +
16

3
g2
3 . (3.11b)

Note that β̂λt
, β̂λb

< 0 in the physical region. Incidentally, we remark that, when the

renormalisation scale approaches MGUT, (m2
ũ)33 turns negative as β̂λt

in eq. (3.5) becomes

more strongly negative.

Finally, performing the rotation of the up-type squark doublets to the super-CKM

basis we find

(
m2

ŨL

)

ij
=

m2
3/2

(16π2)2

[
δij

(
−11

50
g4
1 − 3

2
g4
2 + 8g4

3

)
+ δi3δj3λ

2
t (β̂λt

− λ2
b)

+VibV
∗
jbλ

2
b(β̂λb

− λ2
t ) + λ2

t λ
2
b(δi3V

∗
jbVtb + δj3VibV

∗
tb)

]
, (3.12)

(
T̂U

)

ij
= −δi3

m3/2

16π2
λt

[
δj3(β̂λt

− λ2
b) + λ2

bV
∗
jbVtb

]
. (3.13)
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It is apparent from eqs. (3.4)–(3.8) and eqs. (3.12)–(3.13) that inter-generational squark

mixing is suppressed by the off-diagonal entries of the CKM matrix, and that 1–3 mixing

is smaller by one power of the Cabibbo angle with respect to 2–3 mixing.

Of particular interest is the low- to moderate-tan β region, i.e. λb ≪ λt. We see at

once that, in that case, all flavour violation in eqs. (3.4)–(3.13) would be proportional to

β̂λt
. It is thus a remarkable feature specific to the AMSB soft terms that squark flavour

violation vanishes (at least for values of tan β where we may neglect λb) as β̂λt
→ 0, to the

extent that eqs. (3.4)–(3.13) remain a good approximation at MSUSY (as we shall discuss,

whether or not this is true depends on our resolution of the tachyonic slepton problem).

Moreover, the value of tan β for which β̂λt
vanishes is close to the infrared quasi-fixed point

(IRQFP) for λt. If we neglect the electroweak gauge couplings, the IRQFP [24] can be

easily determined in the one-loop approximation; it corresponds to

λ2
t (mt)

g2
3(mt)

=
7

18

(
1 −

(
g2
3(MX)

g2
3(mt)

) 7

9

)−1

, (3.14)

MX being the scale of a Landau pole in λt. For MX ∼ 1016 GeV, of the order of the gauge

unification scale, and including electroweak corrections, we find that the IRQFP occurs at

λt(mt) ≈ 1.1, while β̂λt
vanishes for λt(mt) ≈ 1.2. Through mt = λt v sin β/

√
2, we could

predict tan β by inserting the empirically measured top mass. However, the resulting

value of tan β is very sensitive to higher-order corrections, therefore we refrain from doing

so here. We instead estimate that for 1.0 . λt(MZ) . 1.2 we are somewhere in the region

1 < tan β < 10.

So we conclude that, at small to moderate tan β, flavour mixing in AMSB is quite

naturally suppressed, and resides in the mass matrix for the down-type squarks.

The MFV flavour mixing implies that the first- and second-generation squarks are

highly degenerate. Moreover, again specialising to low tan β, we see that the down squarks

obey a 3 + 2 + 1 pattern, with three degenerate SU(2)-singlet squarks, two degenerate

doublet squarks and one SU(2)-doublet sbottom. The down-squark left-right mixing

vanishes in this approximation (λb → 0). The up-squark spectrum in AMSB is of the type

2 + 2 + 1 + 1: it contains the first-two-generation singlet and doublet squarks, and two

stops with left-right admixture.

The dominant third-family approximation in eqs. (3.4)–(3.13) is accurate to the

per-mill level except in two cases: (m2
ŨL

)12 and (m2
D̃L

)12. Of these, the former is off by a

few tens of percent, due to a significant contribution which, albeit suppressed by (λs/λb)
2,

is enhanced by four inverse powers of the Cabibbo angle with respect to the contributions

in eq. (3.12):

(
∆m2

ŨL

)

12
=

m2
3/2

(16π2)2
VusV

∗
cs λ2

s

(
6λ2

s + 3λ2
b + λ2

τ − Cb

)
. (3.15)

On the other hand, (m2
D̃L

)12 is accurate at the few-percent level.
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3.2 AMSB and minimal flavour violation

The usual notion of MFV is that the source of all flavour violation stems from the Yukawa

matrices. This principle can be implemented to hold if the Lagrangian satisfies a global

SU(3)5 flavour symmetry [17], under which the Yukawa matrices act as spurions and trans-

form non-trivially. Consequently, if we assume R-parity conservation, the MSSM soft scalar

masses such as, e.g., the squark masses, can be written in powers of Yukawa matrices as [18]

(m2
Q̃
)T = zq

1 1 + zq
2 YUY †

U + zq
3 YDY †

D + zq
4 (YUY †

U )2 + zq
5 (YDY †

D)2 (3.16)

+(zq
6 YDY †

DYUY †
U + h.c) + · · · ,

m2
ũ = zu

1 1 + zu
2 Y †

UYU + zu
3 Y †

UYDY †
DYU + zu

4 (Y †
UYU )2 + · · · , (3.17)

m2
d̃

= zd
1 1 + zd

2 Y †
DYD + zd

3 Y †
DYUY †

UYD + zd
4 (Y †

DYD)2 + · · · , (3.18)

where the ellipsis stands for terms involving higher powers of the Yukawa matrices.

By the use of Cayley-Hamilton identities, it has been shown in ref. [20] that the expan-

sion in eq. (3.16) terminates after a finite number of terms. It is further argued that, by

appropriately fine-tuning the coefficients zi, any 3× 3 hermitian matrix can be cast in the

form of eq. (3.16). This means that all the MSSM parameter space could be considered as

MFV if one takes the spurion definition [18] at face value. Therefore, the decompositions

eqs. (3.16)–(3.18) themselves are not restrictive unless we impose additional constraints,

such as controlled departure from flavour blindness,

|zx
i |

|zx
1 |

. O(1) ∀i ≥ 2 , x = u, d, q , (3.19)

suppressing large hierarchies among the coefficients.

From the one-loop results for the AMSB squark masses eqs. (3.3a)–(3.3c) one can infer

the MFV expansion parameters:

zq
1 =

m2
3/2

(16π2)2

(
−11

50
g4
1 − 3

2
g4
2 + 8g4

3

)
, (3.20)

zq
2 =

m2
3/2

(16π2)2

(
3Tr(YUY †

U ) − 13

15
g2
1 − 3g2

2 − 16

3
g2
3

)
, (3.21)

zq
3 =

m2
3/2

(16π2)2

(
3Tr(YDY †

D) + Tr(YEY †
E) − 7

15
g2
1 − 3g2

2 − 16

3
g2
3

)
, (3.22)

zq
4,5 = 3zq

6 = 3
m2

3/2

(16π2)2
, (3.23)

zu
1 =

m2
3/2

(16π2)2

(
−88

25
g4
1 + 8g4

3

)
, zd

1 =
m2

3/2

(16π2)2

(
−22

25
g4
1 + 8g4

3

)
, (3.24)

zu
2 = 2zq

2 , zd
2 = 2zq

3, (3.25)

zu
4 = 3zu

3 = 6
m2

3/2

(16π2)2
, zd

4 = 3zd
3 = 6

m2
3/2

(16π2)2
, (3.26)

where all other zu,d,q
i vanish. Note that zu,d,q

2 and zq
3 are negative, and that all of the zu,d,q

i

are real. Thus non-CKM CP-violating phases do not exist in this sector in AMSB. One
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Figure 1. Selected MFV ratios |zu,d,q
i /zu,d,q

1 | in pure AMSB for tanβ = 10 as a function of the

renormalisation scale Q.

potential source for non-CKM CP-violating phases in AMSB models is a phase associated

with the Higgs µ and B terms [5]; another is the right-handed neutrino Yukawa matrix.

In figure 1 we plot some such selected ratios |zu,d,q
i /zu,d,q

1 | as a function of the renor-

malisation scale Q, which varies between MZ and MGUT. We see an increase with the scale

in all the ratios, driven by the decrease of the flavour-blind contributions proportional to

zu,d,q
1 towards the GUT scale. The suppression of flavour violation with decreasing scale in

the MSSM with general squark mixing has also been observed in refs. [19, 25].

The observed behaviour of the flavour coefficients zu,d,q
i in AMSB is different from other

common MFV MSSM models. While AMSB is nowhere flavour blind (except for, at small

tan β, in the limit β̂λt
→ 0), both gauge mediation and (by construction) mSUGRA have

flavour-diagonal sfermion masses at a certain high scale. In the latter models, the zu,d,q
i>1

parameters are induced by renormalisation group evolution [26], and the ratios |zu,d,q
i>1 /zu,d,q

1 |
increase towards the weak scale. However, due to the automatic suppression by loop factors

(times logs) and the enhancement of the zu,d,q
1 terms by the gaugino contributions, the ratios

|zu,d,q
i>1 /zu,d,q

1 | remain small, in agreement with eq. (3.19).

3.3 Solutions to the tachyonic slepton problem

An example of a scenario which fixes the tachyonic slepton problem without disturbing

eqs. (3.3a)–(3.3e) is provided by ref. [21], where the MSSM is augmented by the addition

to the superpotential of (non MFV) R-parity violating couplings of the form λijkLiLjĒk.

These Yukawa couplings provide positive contributions to the slepton squared masses which

can be sufficiently large, while leaving eqs. (3.3a)–(3.3e) unaffected at the scale of the SUSY-

breaking terms, MSUSY. Other solutions to the tachyonic slepton problem in which only the

boundary conditions on the slepton masses themselves are modified will generally affect

the squark masses as well, modifying their renormalisation group evolution below the scale
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at which the additional slepton masses are switched on. However, the slepton masses enter

the one-loop β-functions for m2
Q̃
, m2

ũ and m2
d̃

only via their contribution to the U(1)Y
Fayet-Iliopoulos (FI) S-term [26] and consequently would have at most a small effect on

the running for these quantities.

On the other hand if we adopt the popular mAMSB solution of eq. (2.6) we must replace

m2
Q̃
→ m2

Q̃
+ m2

0 1, m2
ũ → m2

ũ + m2
0 1, m2

d̃
→ m2

d̃
+ m2

0 1 (3.27)

in eqs. (3.3a)–(3.3c) and apply the theoretical boundary condition at the gauge unification

scale MGUT. The MSSM renormalisation group equations, which deviate from the pure

AMSB trajectory, must then be run down to the SUSY scale MSUSY in order to determine

the mass spectrum. Note that even a flavour-universal shift to the squark masses, such as

the one in eq. (3.27), affects the flavour-mixing mass parameters via the running between

MGUT and MSUSY. For instance, the beta function for (m2
Q̃L

)ij (where i 6= j) contains a

piece [26] (βm2

Q̃L

)ij =
∑

l(m
2
Q̃L

)iiV
†
il (ŶU )2llVlj + · · · , where ŶU is the diagonalised up-quark

Yukawa matrix. Thus, a change to the flavour-universal piece of the squark mass matrix

(m2
Q̃L

)ii induces a change in (m2
Q̃L

)ij .

With the U(1)-based solution of eq. (2.7) we should really distinguish the two alterna-

tives we consider. With the U(1)′ model (table 1) we have

m2
Q̃
→ m2

Q̃
− ξ

L

3
.1, m2

ũ → m2
ũ − ξ

(
e +

2

3
L

)
.1, m2

d̃
→ m2

d̃
+ ξ

(
e +

4

3
L

)
.1 . (3.28)

In this case the non-FI contributions to the masses retain RG invariance, in the sense

that applying eq. (3.28) at MGUT with a given (ξe, ξL) pair corresponds to the same

physics as applying the same equation at MSUSY with a different pair. For example, with

m3/2 = 40 TeV and tan β = 10, and fixing for simplicity ξ = 1 TeV2 at both scales, the

choice (e, L) = (0.25, 0) at MGUT corresponds to (e, L) ≈ (0.06, 0.09) at MSUSY. The rea-

son this does not correspond simply to a renormalisation of ξ is that, as well as such a

renormalisation, a FI term associated with U(1)Y is generated when we run down from

MGUT. This FI term can be absorbed into the existing one by redefining L and e. For a

detailed discussion see section 4 and in particular eq. (3.17) of ref. [16]. The allowed region

in the (e, L) plane has been discussed in ref. [14], see figure 1 of that reference. With

m3/2 = 40 TeV and ξ = 1 TeV2, one needs L & 0.03 and e & 0.04 (at MSUSY) to avoid

negative square masses for the slepton doublets and singlets, respectively, and it transpires

one also needs L + e . 0.17 in order that the Higgs potential gives rise to the electroweak

vacuum. Thus, values of (e, L) of O(0.1) are viable.

With the alternative of U(1)SU(5) from table 2 we have

m2
Q̃
→ m2

Q̃
+ ξe.1, m2

ũ → m2
ũ + ξe.1, m2

d̃
→ m2

d̃
+ ξL.1 , (3.29)

but in this case the non-FI contributions to the masses are not RG invariant because

the low energy theory has U(1)SU(5) anomalies, so we must again apply the theoretical

boundary condition at MGUT and run the MSSM RGEs down to the weak scale. As

discussed in ref. [16], there are lower limits on L and e comparable to those found in the
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U(1)′ case, but also a dramatic difference in that increasing (e, L) with L ≈ e does not

lead to loss of the electroweak vacuum. The reason for this is that in this case the FI

contributions to the square masses of both Higgses are negative. Of course, increasing

(e, L) scales up the squark and slepton masses, |m2
H1,2

| and hence the superpotential Higgs

mass parameter µ, thus increasing the fine tuning known as the little hierarchy problem.

In all three cases we anticipate that, because of the flavour-blind nature of the modi-

fication of the scalar masses, our expectation that flavour violation will be suppressed at

low tan β will turn out to be true; it is clear, of course, that if we were to use a U(1)

with family-dependent charges in eq. (3.28) or eq. (3.29) we would compromise the MFV

structure and inevitably face FCNC problems [10].

4 Predictions of squark flavour violation

In order to quantify AMSB predictions for flavour violation, we use SOFTSUSY3.0 [27], which

includes full three-family flavour mixing. We consider the range m3/2 = 40−140 TeV, where

the lightest supersymmetric particle mass is mχ0
1
∼ 130 − 520 GeV and the gluino mass is

mg̃ = 800 − 3100 GeV, in the interesting range for LHC SUSY discovery [28]. There are

no direct SUSY-search constraints conflicting with 3 < tan β < 42 and 40 TeV < m3/2 <

140 TeV, therefore this is the range taken. See appendix A for further details on input

parameters and the calculation.

4.1 Flavour-changing squark mass insertions in AMSB

We now calculate the flavour-changing squark mass insertions in AMSB. First, the La-

grangian parameters are transformed to the super-CKM basis described in section 2.2, by

rotating the one-loop corrected squark mass matrices by the same mixing matrix required

to diagonalise the quark Yukawa matrices at MSUSY. We may then define the usual flavour-

violating mass-insertion parameters δq from the entries of the 6×6 squark mass matrices

M2
ũ and M2

d̃
defined in eqs. (2.14) and (2.15)

(δq
ij)LL =

(M2
q̃)ij√

(M2
q̃)ii(M2

q̃)jj
, (δq

ij)RR =
(M2

q̃)i+3 j+3√
(M2

q̃)i+3 i+3(M2
q̃)j+3 j+3

,

(δq
ij)LR =

(M2
q̃)i j+3√

(M2
q̃)ii(M2

q̃)j+3 j+3

, (4.1)

with i, j ∈ {1, 2, 3} and q = u, d. In this section we shall compare the AMSB prediction of

δq originating from eqs. (3.3a)–(3.3e) with the empirical bounds from ref. [29].

In figure 2a we show the tan β dependence of the absolute values of the flavour-violating

up-squark mass insertions (δu
12)LL , (δu

13)LL , (δu
23)LL and (δu

23)LR in the “pure” AMSB

scenario, where we assume that eqs. (3.3a)–(3.3c) are unaffected by the mechanism that

fixes the tachyonic slepton problem; while in figure 2b we show the corresponding results

for the down-squark sector. The two curves for (δu,d
23 )LR visible in each plot correspond

to m3/2 = 40 GeV (upper curve) and m3/2 = 140 GeV (lower curve), respectively. Indeed,
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Figure 2. Magnitudes of selected flavour-violating mass insertions δq in AMSB as functions of

tan β. When two curves are visible for the same δq, the upper curve is for m3/2 = 40TeV and the

lower curve is for m3/2 = 140TeV.

eqs. (2.14), (2.15), (3.13), (3.8) and (4.1) imply that (δu,d
ij )LR are inversely proportional

to m3/2 for i 6= j, whence the significant, O(100%) dependence upon the SUSY-breaking

scale. On the other hand, eqs. (3.3a)–(3.3c) combined with eq. (4.1) imply that there is no

dependence of (δu,d
ij )LL,RR on m3/2 [aside from logarithmic corrections coming from scale

dependence of the right-hand side of eqs. (3.3a)–(3.3c)]. In figures 2a and 2b the curves

for (δu,d
ij )LL that correspond to the two different values of m3/2 are practically overlaid.

We also see from the figures that the mass insertions in the up-squark sector show a

significant dependence on tan β, while the dependence in the down-squark sector is much

less pronounced. The reason for this is quite simple. We can see from eqs. (3.4) and (3.12)

that the down-squark sector off-diagonal elements are more sensitive to λt and the up-

squark off-diagonal elements are more sensitive to λb; but as tan β increases from 5 to 40,

sin β (and hence λt) scarcely changes but cos β (and hence λb) changes by a factor of 12.

In our solutions to the slepton mass problem, the additional contributions in

eqs. (3.27), (3.28) and (3.29) affect only the diagonal terms of the squark mass matri-

ces at the scale at which they are applied (i.e., MSUSY for the U(1)′ solution and MGUT

for mAMSB and U(1)SU(5)). For a model such as the U(1)′ solution in eq. (3.28), which

preserves the RG invariance of the expressions for squark soft SUSY-breaking terms, the

change in the magnitudes of the δq parameters with respect to the pure AMSB case can

be directly estimated by the effect of the slepton mass fix on the diagonal squark mass

parameters. Thus, denoting xq
ij ≡

√
(M2

q̃)ii(M2
q̃)jj ,

∆|(δq
ij)XY |

|(δq
ij)XY |

≈ −
∆xq

ij

xq
ij

, (4.2)

with q = u, d. Interestingly, in the U(1)-inspired solutions the shifts ∆xq
ij enter the up

and down singlet and doublet squark masses in a non-universal way, hence the relative size

of δq
LR versus δq

LL can be modified at this level.
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The experimental upper bounds upon the δq parameters depend upon the squark

masses and the ratio of the gluino mass to the squark masses. In order to obtain a rough

estimate, we have fitted the constraints in ref. [29] with a parabola to determine the

dependence upon the gluino/squark mass ratio (whereas there is a simple scaling relation

with the squark mass itself). We detail some of the larger δq parameters in appendix A

for four AMSB variants. However, the bottom line is that all δq are easily within their

experimental bounds, regardless of which tachyonic slepton fix is taken. AMSB is far from

being ruled out on the basis of these naive empirical flavour constraints, the closest to

the bound being (δd
13)LL ∼ O(10−3), which has a bound of (δd

13)LL < 0.16 [29]. However,

the mass insertions that mix the second and third generations can affect the prediction of

the branching ratios for rare B decays such as B → Xsγ and Bs → µµ, by mediating the

b → s transition in loops involving squarks. In sections 4.3 and 4.4 we will examine these

important physical observables, whose uncertainties have been vastly reduced since ref. [29].

4.2 AMSB prediction for the charged Higgs mass

The Higgs sector of the MSSM (for a review see, e.g., ref. [30]) contains two CP-even

neutral scalars h and H, a CP-odd neutral scalar A and a charged scalar H±. One of the

CP-even scalars as well as A and H± have couplings to the down-type fermions that are

enhanced by tan β with respect to the couplings of the SM Higgs boson. Thus, even in

SUSY-breaking scenarios such as AMSB in which the super particles are typically rather

heavy, there can be sizeable contributions to rare B decays from diagrams involving the

non-standard Higgs bosons, if the latter are light and tanβ is large [31].

For moderate-to-large tan β the non-standard CP-even scalar is close in mass to the

CP-odd scalar, whose mass is determined by m2
A = 2B / sin 2β at tree level. The masses

of the CP-odd and charged scalars are in turn related at tree level by m2
H± = m2

A + m2
W .

It is therefore useful to investigate the AMSB prediction for the charged Higgs boson mass

mH± , bearing in mind that we determine the soft SUSY-breaking Higgs mass parameter B

by minimisation of the scalar potential. Inserting the pure AMSB expressions [3] for m2
H1

and m2
H2

in the tree-level formula for m2
H± (see e.g. ref. [32]), and neglecting contributions

controlled by all Yukawa couplings other than λt and λb, we obtain, in the large-tan β limit,

(16π2)2

m2
3/2

m2
H± ≈ K −

(
3λ

2
b Cb − 36λ

4
b

)
tan2 β + 18λ

4
b tan4 β, (4.3)

where K is positive and does not depend on tan β at tree level, Cb is defined in eq. (3.11b)

and λ̄b ≡ λb cos β. Since at tree level λ̄b =
√

2 mb/v, the coefficient of tan2 β is negative and

eq. (4.3) predicts a minimum for mH± at a certain value of tan β. However, for an accurate

prediction of the position of the minimum we must take into account the tan β-enhanced

threshold corrections [33] to the relation between the bottom mass and the bottom Yukawa

coupling, as well as the radiative corrections to the tree-level formula for m2
H± .

In figure 3 we show the full numerical dependence on tan β of mH± , as computed by

SOFTSUSY for “pure” AMSB conditions, with m3/2 = 40 TeV and either sign of µ (the

µ > 0 curve terminates because the electroweak minimum of the Higgs potential becomes

unstable). The marked difference between the curves corresponding to the two signs of
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Figure 3. The charged Higgs boson mass as a function of tanβ in mSUGRA model SPS1a and

pure AMSB with m3/2 = 40TeV and either sign of µ.

µ is due to the fact that the tan β-enhanced threshold corrections, whose effect depends

on the sign of the product mg̃ µ, enhance λ̄b for µ > 0 and suppress it for µ < 0. In the

former case the position of the minimum in mH± is shifted towards smaller values of tan β,

while in the latter we see no stationary point up to tan β = 60. For comparison we also

show mH± as a function of tan β for the SPS1a mSUGRA point [34]; the dependence on

tan β is much less marked. The curves end when the stau becomes tachyonic, signalling an

inappropriate scalar potential minimum.

4.3 B → Xsγ constraints

Flavour-changing neutral current processes are loop suppressed in the SM as well as in the

MSSM. In the SM the b → sγ transition is mediated at one loop by diagrams involving

W boson and up-type quarks. Additional one-loop contributions arise in the MSSM from

diagrams involving a charged Higgs boson and up-type quarks, a chargino and up-type

squarks and, in the presence of flavour violation in the squark sector, a gluino and down-

type squarks. The contributions of diagrams with neutralinos and down-type squarks

are suppressed with respect to the gluino loops by the smaller gauge coupling and by an

accidental cancellation in the magnetic-chromomagnetic mixing.

The current experimental value of the branching ratio for the B → Xsγ decay is [35]

BR(B → Xsγ)exp = (3.52 ± 0.23 ± 0.09) × 10−4 , (4.4)

for a photon energy Eγ > 1.6 GeV. The corresponding next-to-next-to leading order

(NNLO) SM prediction that was published two years ago reads [36]

BR(B → Xsγ)SM = (3.15 ± 0.23) × 10−4 , (4.5)
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Figure 4. Constraints on the AMSB parameter space from the rare decay B → Xsγ. (a) BR(B →
Xsγ) as a function of tanβ for m3/2 = 40TeV and both signs of µ. (b) BR(B → Xsγ) displayed

as the background colour for µ > 0 in the tanβ − m3/2 plane. For the explanation of the various

curves in both panels see the text.

and a recent update [37] of the calculation of the normalisation factor for the branching

ratio results in a modest enhancement to (3.28 ± 0.25) × 10−4 (see also ref. [38]). In both

cases, the error on the theoretical prediction for the branching ratio is around 7%. Inflating

the theoretical error to 10% we accommodate — rather conservatively – for the additional

uncertainty arising from the calculation of the SUSY contributions to the decay. Thus, at

95% C.L., we may require 2.70 × 10−4 < BR(B → Xsγ) < 4.34 × 10−4.

We use the public computer program SusyBSG 1.2 [39] to obtain a next-to-leading

order (NLO) prediction of BR(B → Xsγ) in the MSSM. The program implements the

results of ref. [40] for the two-loop gluon contributions to the Wilson coefficients of the

magnetic and chromomagnetic operators relevant to the b → sγ transition, and the full

results of ref. [41] for the two-loop gluino contributions (accounting also for the tan β-

enhanced charged-Higgs contributions first discussed in ref. [42]). While the two-loop

contributions are computed in the approximation of neglecting flavour mixing in the squark

sector, the computation of the one-loop contributions to the Wilson coefficients takes into

account the full flavour structure of the squark mass matrices. The relation between the

Wilson coefficients and BR(B → Xsγ) is computed at NLO along the lines of ref. [43],

taking into account also the recent results of ref. [37]. The free renormalisation scales of

the NLO calculation are adjusted in such a way as to mimic the NNLO contributions that

are not present in the calculation, reproducing the central value of the SM prediction of

the branching ratio given in ref. [37].

Figure 4a displays BR(B → Xsγ) as a function of tan β, for m3/2 = 40 TeV and either

sign of µ, assuming that the squarks do not deviate from the pure AMSB trajectory. The

red (solid) curves include all effects in the calculation of the Wilson coefficients, while the

blue (dotted) curves ignore flavour-mixing effects in the squark masses. The green shaded

region represents the 95% C.L. limits on the branching ratio. The difference between the

curves corresponding to the two signs of µ is due to the combination of two factors. First

of all, as discussed above, the tan β-enhanced threshold corrections to the relation between
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the bottom mass and the bottom Yukawa coupling result in a much lighter charged Higgs

boson — thus an enhanced contribution to the Wilson coefficients — for µ > 0 (the peak

in the branching ratio around tanβ ∼ 37 corresponds indeed to the minimum in mH±

shown in figure 3). In addition, the contributions to the Wilson coefficients from diagrams

involving the top quark and the charged Higgs boson and those from diagrams involving

squarks and charginos — the latter depending on the sign of the product At µ, where

At ≡ (T̂U )33/λt – interfere constructively for µ > 0 and destructively for µ < 0. We remark

that in the traditional mSUGRA scenario, in which mg̃ (and, in most cases, At) have

opposite sign with respect to the prediction of AMSB, the dependence of BR(B → Xsγ)

on the sign of µ is reversed [42].

The flavour-changing mass insertions (δd
23)LL and (δd

23)LR mediate the b → sγ transi-

tion in one-loop diagrams involving gluinos and down-type squarks. In addition, (δu
23)LL can

contribute a sizeable amount to one-loop diagrams involving charginos and up-type squarks

(the smallness of the flavour-changing mass insertion being compensated by the fact that

the wino-strange-scharm vertex is not Cabibbo-suppressed). From the comparison between

the red (solid) and blue (dotted) curves in figure 4a we see that the flavour-violating effects

have a comparatively large effect (up to 10%) on the predicted value of BR(B → Xsγ) for

large tan β. We also see that, had we not included squark flavour-violating effects in the

calculation of BR(B → Xsγ), we would have deduced that for µ > 0 the empirical limit

leads to tan β = 15, which is too weak by around 10%. For µ < 0, neglecting squark flavour

violation would have resulted on the tan β bound being roughly 30% too high.

Figure 4b displays BR(B → Xsγ) as the background colour in the tan β −m3/2 plane,

for µ > 0. The yellow (dot-dashed) contour on the left delimits the regions ruled out by

the LEP2 Higgs-mass constraints.1 The red (dotted) contour on the right is the bound on

the tan β − m3/2 plane obtained by applying the 95% C.L. experimental upper bound on

the branching ratio. The green (dashed) rightmost contour is the bound that would be

obtained if the squark flavour mixing effects were ignored. For a given value of m3/2, the

upper limit on BR(B → Xsγ) effectively provides an upper bound on the parameter tan β,

because the SUSY contribution is enhanced for large tanβ. We see that the strictest bound

is tan β < 13 for m3/2 = 40 TeV but this relaxes to tan β < 35 for m3/2 = 140 TeV, where

heavier charged Higgs boson and heavier sparticles provide a suppression of the SUSY

contribution to BR(B → Xsγ).

4.4 Implications for Bs → µµ and future impact

The supersymmetric Higgs spectrum has a significant impact on the rare leptonic decay

Bs → µµ. Specifically, the decay amplitude receives tan β-enhanced contributions propor-

tional to 1/m2
A from neutral-Higgs exchange [46, 47]. In our determination of the MSSM

prediction for BR(Bs → µµ) we implemented the results of ref. [47] for the subset of one-

loop contributions involving up-type squarks and charginos that are enhanced by tan3 β,

as well as the results of ref. [48] for the one-loop contributions involving down-type squarks

1 LEP2 ruled out Standard Model Higgs masses of less than 114.4 GeV to 95% C.L. [44]. The same bound

also applies, to a good approximation, for the parameter space of AMSB investigated here. We account for

a 3 GeV theoretical error in the prediction of the Higgs mass by plotting the bound for 111.4 GeV.
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Figure 5. BR(Bs → µµ) in pure AMSB with (“total”) or without (“no flavour”) squark flavour

changing contributions to down-squark gluino loops for m3/2 = 40TeV and either sign of µ. Also

shown is the SM prediction and the current experimental upper bound [45].

and gluinos. The latter are relevant in the presence of flavour mixing in the down squark

sector; the dominant contribution in AMSB stems from (δd
23)LL, which, at 10−2, is one of

the largest mass insertions (see figure 2). Finally, for the treatment of the tan β-enhanced,

higher-order contributions that originate in the corrections to the relation between the

down-quark masses and Yukawa couplings we followed ref. [49] (see also ref. [50]). We

checked the relevant part of our results against micrOMEGAS 2.1 [51], which however does

not include the effect of flavour mixing in the squark sector.

Figure 5 shows BR(Bs → µµ) in pure AMSB as a function of tanβ, for m3/2 = 40 TeV

and either sign of µ. The red (solid) lines represent the total result, while the blue (dotted)

lines neglect the effect of flavour mixing in the squark sector. For the SM branching ratio

we obtain BR(Bs → µµ)SM = (3.6 ± 0.9) × 10−9, with the uncertainty dominated by the

one of the Bs-meson decay constant fBs = 0.24± 0.03 GeV [52]. For µ > 0 the effect of the

dip in mA (recall that mA ≈ mH±) around tan β ∼ 35−40 is clearly visible in the steep rise

of the Bs → µµ branching ratio. For µ < 0 the tan β-enhanced corrections to the Higgs-

quark-quark coupling cause a milder increase with tan β (recall that in AMSB the relative

sign between µ and the gluino mass is opposite to the one in mSUGRA). Our analysis also

shows that — contrary to what happens in BR(B → Xsγ) – in BR(Bs → µµ) the inclusion

of squark flavour mixing reduces the deviation from the SM at large tan β. Here, the

relative sign between the chargino and gluino contributions is sign(At mg̃ (δd
23)LL), which

is negative in AMSB. The effect of the gluino contribution is important and accounts

for changes up to a factor of two in the branching ratio. We also show in figure 5 the

experimental 95% C.L. upper bound BR(Bs → µµ) < 58 × 10−9 [45], which is an order

of magnitude above the SM value. Figure 5 shows that current Bs → µµ data is not as
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Figure 6. BR(Bs → µµ) in pure AMSB displayed as the background colour in the tanβ − m3/2

plane, for (a) µ < 0 and (b) µ > 0. For the explanation of the various curves in both panels see

the text.

constraining as the B → Xsγ branching ratio shown in figure 4a, but if the experimental

limit on BR(Bs → µµ) approaches the Standard Model prediction in the future, for the

µ < 0 branch, Bs → µµ will become more constraining than B → Xsγ.

In figure 6 we show BR(Bs → µµ) in pure AMSB as the background colour in the

tan β −m3/2 plane, for (a) µ < 0 and (b) µ > 0. Constraints from a hypothetical measure-

ment of the branching ratio at 1×10−8 (solid line) and 5×10−9 (dashed line) are given for

illustration. Superimposed on each panel are the boundaries of the allowed region, which

are as in figure 4b: the yellow (dash-dotted) line delimits the parameter space allowed by

the LEP2 Higgs search, whereas the magenta (dotted) line marks the border of parameter

space allowed by B → Xsγ. Hence, for µ > 0, the B → Xsγ constraint rules out the possi-

bility of a large Bs → µµ enhancement at large tan β. Note that if we were to include also

the constraints on the muon anomalous magnetic moment, which requires a positive µ term

(see section 4.6), we would predict the Bs → µµ branching ratio to not exceed its SM value.

With improved data the rare leptonic mode will hence become increasingly important.

Searches for Bs → µµ are ongoing at the Tevatron collider and will commence at the LHC.

The LHCb experiment will be able to exclude or discover new physics in Bs → µµ after

one year, while ATLAS and CMS will be able to do so after three years of operation [53].

4.5 Charged Higgs effects in B → τν

Substantial effects in the leptonic B → τν decays are possible from charged Higgs exchange

at large tan β [54]. It is customary to study the branching ratio normalised to the SM one,

which yields a simple expression [55]

Rτν ≡ BR(B → τν)

BR(B → τν)SM
=

(
1 − m2

B

m2
H±

tan2 β

1 + ǫg tan β

)2

. (4.6)

Here, mB denotes the mass of the B meson and ǫg is the gluino-induced correction to the

relation between the mass of the bottom quark and its Yukawa coupling.
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green regions are disfavoured at the 2σ level.

In figure 7 we show Rτν in AMSB for m3/2 = 40 TeV. For µ > 0 the sharp peak around

tan β ∼ 37 from the mH± dip is clearly visible. Using the stronger constraint on tanβ from

BR(B → Xsγ), we predict 0.83(0.96) < Rτν ≤ 1 for µ > 0 (µ < 0). Thus, Rτν is con-

strained to be below unity within AMSB, which is natural in large-tan β MFV scenarios [55].

The branching ratio has been measured at the B-factories by Belle and BaBar [56]

BR(B → τν) = (1.51 ± 0.33) × 10−4 with the average provided by [35]. With |Vub| =

(3.95± 0.35)× 10−3 [57] and the B-meson decay constant fB = 0.216± 0.022 GeV [58] the

SM prediction for the branching ratio is given as

BR(B → τν)SM = 1.29 × 10−4

( |Vub|
3.95 · 10−3

)2( fB

0.216GeV

)2

, (4.7)

with a net uncertainty of 19%. For the ratio between experimental result and SM prediction

we obtain Rexp
τν = 1.17 ± 0.34, where we added the uncertainties in quadrature.

We remark that the value of |Vub| used here results from combining data on inclusive

and exclusive b → u decays. Currently, the individual determinations of |Vub| are not

in perfect agreement with each other, i.e., the exclusive modes prefer a lower value than

the inclusive ones. Recent lattice computations [59] also give lower values for fB and

hence favour a somewhat larger Rexp
τν of 1.44±0.38, which is harder to accommodate within

SUSY. Furthermore, the experimental situation for B → τν is also still improving; at a

high-luminosity e+e− machine [60], a measurement of the branching ratio could perhaps

be made with an uncertainty of 10% (for 10 ab−1). Given the situation, at present we

cannot draw definite conclusions for AMSB from B → τν, but note that this mode has the

potential to become important in the future.
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Figure 8. Supersymmetric contribution to the anomalous magnetic moment of the muon in U(1)′

AMSB, for m3/2 = 40TeV and either sign of µ. The experimental constraint listed is at the 95%

confidence level.

4.6 Comment on (g − 2)µ

In the AMSB context, having discussed BR(B → Xsγ), it behoves us to comment on the

supersymmetric contribution to the muon anomalous magnetic moment δaµ. Relying on

e+e− data for some of the hadronic components, one finds [61] that

δaµ ≡ δ
(g − 2)µ

2
= (29.5 ± 8.8) × 10−10 (4.8)

is the discrepancy between the empirical value and the Standard Model (SM) prediction.

The one-loop gaugino contribution to this is given at large tan β by [5, 62, 63]

aSUSY
µ ≈

m2
µµ tan β

16π2

(
g2
1M1F1 + g2

2M2F2

)
, (4.9)

where F1,2 are positive definite functions of the slepton, chargino and neutralino masses,

behaving like 1/M4
SUSY

in the approximation that the relevant sparticles are degenerate in

mass. Thus for M1,M2 > 0, as is the case in AMSB, a supersymmetric explanation of the

discrepancy between the SM and experiment favours µ > 0. But we see from figure 4 that it

is the µ > 0 case that is restricted by BR(B → Xsγ). So as remarked, e.g., in ref. [64], this

creates a potential difficulty for explaining the discrepancy between theory and experiment

for aµ using AMSB. Since F1,2 depend upon the slepton masses, the prediction of δaµ in

AMSB models depends to a large extent upon the slepton mass fix that is employed. In

figure 8, we show such a prediction for the U(1)′ fix. We take the one-loop results for

δaµ from ref. [64], supplementing them with the two-loop leading-log QED correction from

ref. [65] and the tan β-enhanced contribution from ref. [63]. In the figure, it is clear how

the µ > 0 prediction in the red (solid) line fits the empirical 95% confidence level value of
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δaµ for tan β > 8. Comparison with figure 4a then shows a region 8 < tan β < 14 which is

compatible with both δaµ and B → Xsγ constraints.

5 Conclusions

We have investigated flavour violation in the squark sector in various versions of AMSB;

squark mixings are always readily calculable because of the simple and constrained nature

of supersymmetry breaking terms in anomaly mediation. The resulting supersymmetric

contributions to flavour-changing processes are CKM-induced and hence small. The model

thus is consistent with all observations of quark flavour change. Quark electric dipole

moment constraints imply fairly strict bounds on the imaginary phases on |Im(δu,d
11 )LR| <

O(10−6) [29], but these are easily satisfied due to the real coefficients multiplying the

Yukawa matrices in eqs. (3.3d) and (3.3e).

At present, the branching ratio B → Xsγ provides the most stringent constraint

on the model, and receives non-negligible supersymmetric flavour corrections, affecting

upper bounds on tan β. As we demonstrated, in the future, Bs → µµ and B → τν

decays will provide complementary constraints. We have also shown explicitly that there

are regions of AMSB parameter space that can accommodate the measurements of the

B → Xsγ branching ratio as well as the anomalous magnetic moment of the muon,

depending on the precise model for fixing the tachyonic slepton problem. Indeed, a

recent χ2 analysis of electroweak and baryon precision observables favoured mAMSB over

mSUGRA and minimal gauge mediation [66]; note, however, that this analysis neglected

inter-generational squark mixing effects.

Predictivity in the flavour sector makes the AMSB scenario an attractive alternative

to mSUGRA, whose family-universal pattern of SUSY-breaking sfermion masses is at best

approximate. It is not immediately clear without further model building how the flavour

off-diagonal pieces of the sfermion mass squared matrices are suppressed in order to give

the mSUGRA pattern. Moreover, AMSB soft SUSY-breaking terms are always present;

the issue is whether, as we have assumed here, they represent the dominant contributions

to supersymmetry breaking.

Of course AMSB is not without its problems; the origin of the Higgs µ term (and of

the associated soft SUSY-breaking B term) is model dependent, and in minimal versions

the lightest supersymmetric particle is the neutral wino, which represents a problematic

dark matter candidate. These difficulties are not insuperable, however (for one approach

see ref. [15]). We believe that it is perhaps time for AMSB to be afforded status comparable

to mSUGRA in modelling our expectations (or hopes) for what will be seen at the LHC. In

any case, the two models should be easily discriminated in the event of a supersymmetric

signal at the LHC [28] due to their widely different predicted patterns of supersymmetric

masses and associated signals.

We close with some general remarks on quark flavour physics. The flavour chang-

ing signals of AMSB are MFV in character: they feature CKM-induced CP asymmetries,

suppressed wrong-chirality contributions and CKM relations between b → s and b → d

processes [67]. Because these models contain only a minimal amount of flavour and CP
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violation, their experimental separation from the SM background needs precise measure-

ments, feasible perhaps at super flavour factories [53, 60].
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A Numerical detail of squark flavour violation

In this appendix we collate the input parameters and detail of the numerical calculation

of the δq parameters as implemented in SOFTSUSY 3.0. The sparticle pole masses receive

one-loop corrections to the flavour conserving pieces, and family mixing is included at the

tree level. SOFTSUSY solves the MSSM renormalisation group equations to two-loop order

consistent with this theoretical boundary condition and SM data. Fermion masses and

gauge couplings are obtained at MZ using an effective field theory of 3-loop QCD × 1-loop

QED below MZ . Our default SM data set contains the MS quark masses mu(2 GeV) =

2.4 MeV, md(2 GeV) = 4.75 MeV, ms(2 GeV) = 104 MeV, mc(mc) = 1.27 GeV, mb(mb) =

4.23 GeV [57]. The top quark mass input is the pole mass, mt = 172.4 GeV [68], and the

strong gauge coupling in the MS scheme αs(MZ) = 0.1176 [57]. We fix MZ = 91.1876 GeV

to its central value [57], as well as the Fermi constant from muon decays, Gµ = 1.16637 ×
10−5 GeV−2. α(MZ) = 1/127.925 is fixed to be the MS value of the QED gauge coupling.

The CKM mixing is parameterised by the Wolfenstein parameters at their central empirical

values [57]: λ = 0.2258, A = 0.814, η̄ = 0.349 and ρ̄ = 0.135.

In table 3 we display the full numerical determination of the δq parameters for tan β =

10, µ > 0 and m3/2 = 40 TeV. Only δq parameters larger than 10−5 are listed. We contrast

the “pure” AMSB prediction, where we assume that eqs. (3.3a)–(3.3c) are unaffected by

the mechanism that fixes the tachyonic slepton problem (as is the case, e.g., for the R-

parity violating solution in ref. [21]), with models where the slepton mass problem has been

fixed by other means. In the model labelled mAMSB we introduce a common GUT-scale

scalar mass m0 = 230 GeV as in eq. (3.27). In the models labelled U(1)′ and U(1)SU(5),

with charges from tables 1 and 2, respectively, the FI-term contributions to SUSY-breaking

masses are added at MSUSY and MGUT, respectively, setting ξ = 1 TeV2, e = 0.06 and L =

0.09 in the first case and ξ = 1 TeV2, e = L = 0.1 in the second. In the upper section of the

table we display the square roots of the flavour-diagonal entries of the squark mass matrices
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U(1)′ pure ℜpure mAMSB U(1)SU(5)

mũL
/GeV 821 817 817 853 877

mũR
/GeV 826 822 822 857 881

md̃L
/GeV 825 820 820 856 880

md̃R
/GeV 832 828 828 864 887

mt̃L
/GeV 733 729 729 754 793

mt̃R
/GeV 636 632 632 645 703

mb̃L
/GeV 722 718 718 743 782

mb̃R
/GeV 821 816 816 852 876

(δu
13)LL/10−5 −2.0 + 5.2i −2.0 + 5.3i −5.6 −5.7 −5.1

(δu
23)LL/10−4 −6.4 + 0.0i −6.6 + 0.0i −6.5 −6.6 −5.9

(δu
23)LR/10−5 −6.5 − 0.0i −6.7 + 0.0i −6.7 −6.4 −5.8

(δd
12)LL/10−5 7.4 + 3.1i 7.4 + 3.1i 5.4 5.7 4.8

(δd
13)LL/10−3 −2.0 + 0.8i −2.0 − 0.8i −1.5 −1.6 −1.3

(δd
23)LL/10−2 1.0 + 0.0i 1.0 + 0.0i 1.0 1.0 0.9

(δd
23)LR/10−5 3.0 + 0.0i 3.0 + 0.0i 3.0 2.9 2.7

Table 3. Flavour-violating mass insertions δq for various different AMSB models for m3/2 = 40TeV,

µ > 0, tanβ = 10. The mAMSB point has m0 = 230GeV, whereas the U(1) models both have

ξ = 1 TeV2, with the U(1)′ model having e = 0.06, L = 0.09 at MSUSY, and the U(1)SU(5) e = L = 0.1

at MGUT. No loop corrections have been added to the masses.

— which, with a slight abuse of notation, we denote as the masses of the corresponding

squark species — because they shall be important for the following discussion. The second-

family squark masses are roughly degenerate with the first-family squark masses of identical

SM quantum numbers. For the pure AMSB and the U(1)′ cases, eqs. (3.3a)–(3.3e) may

be applied directly at MSUSY once the Yukawa and gauge couplings have been determined,

including complex phases in the definition of the CKM matrix V . This procedure neglects

the scale dependence of V , but, between MZ and MSUSY, it is expected to be a small effect:

|∆Vij |/|Vij | ≤ O(λ2
t ln(MZ/MSUSY)/16π2).

For models which break the RG invariance of the soft terms and have boundary

conditions imposed at MGUT (here, the mAMSB and U(1)SU(5) models), we use SOFTSUSY

to run all MSSM parameters between MZ and MGUT. SOFTSUSY does not currently

include complex phases in its RGEs, and when used in the running-mode it fits V to a

real version with zero complex phase at MZ . The magnitude of each Vij is equivalent to

the corresponding fully complex |Vij| to better than the per-mille level for all Vij except

for |Vts|, which is incorrect to only 1%, and |Vtd|, which is incorrect by around 50%

fractionally. Any δq parameters where the dominant contribution is proportional to Vtd

are therefore subject to this fractional uncertainty. From eqs. (3.4)–(3.13), we see that

(δd
12)LL and (δd

13)LL are in this category.

In order to investigate the size of inaccuracies due to the real approximation, we

employ the latter to calculate the pure AMSB δq parameters, and list the results under the

– 25 –



J
H
E
P
0
4
(
2
0
0
9
)
0
8
8

heading ℜpure in table 3. The comparison between the ‘pure’ and ‘ℜpure’ approximations

shows that for all the δd parameters that involve the first generation the discrepancy in

absolute value between the exact and the approximate results is of order 30%–40%. For

the δu parameters that mix the first and second generations the discrepancy is of order

15%–20%. Finally, for the remaining δq parameters the real approximation reproduces the

absolute value of the complex result to better than 10% accuracy. We expect that similar

uncertainties will be present in the mAMSB and U(1)SU(5) cases on the results listed.

With our choice of parameters, the pure AMSB predictions for the parameters xq
ij

are of the order of 0.5 TeV2, while the additional contributions ∆xq
ij are controlled by

(ξe, ξL) = (0.06, 0.09) TeV2 (the smallish values of the charges being necessary to ensure

the correct breaking of the electroweak symmetry). As a result, by comparing the second

and third columns of table 3 we see that the predictions for the δq parameters of the

U(1)′ solution are rather close to those of the pure AMSB solution: both the real and the

imaginary parts of all δq parameters agree to better than 10% fractional accuracy.

For solutions that break the RG invariance of the soft SUSY-breaking terms, such as

mAMSB and U(1)SU(5), the RG evolution causes the squark flavour-mixing parameters to

depend on the form of the tachyonic slepton fix. The mAMSB solution in eq. (3.27) makes

all squark mass-squared parameters larger by a common term m2
0, hence all δq smaller at

the GUT scale where we assume this mass contribution arises. However, m2
0 ≈ 0.05 TeV2

does not make a large difference to the squark masses for m3/2 = 40 TeV, as the comparison

between the mAMSB and ℜpure columns in table 3 shows: the squark masses change by

only a small amount from their pure AMSB values (the largest being a 2% fractional

difference). The above-mentioned RGE effects in squark mixing parameters are evident for

the mAMSB case, as some of the small changes in the magnitudes of the δq parameters

do not correspond to a decrease as expected from squark mass effects alone. However, the

perturbation of the squarks away from their pure AMSB trajectory, due to the addition of

m0 = 230 GeV to the scalar masses, is small enough that eqs. (3.3a)–(3.3e) remain a good

approximation at the 10% level.

Finally, the U(1)SU(5) solution in eq. (3.29) allows for larger values of the (e, L)

charges than the U(1)′ solution does, without upsetting the breaking of the electroweak

symmetry. Indeed, by comparing the ℜpure and U(1)SU(5) columns in table 3, we see that

with our choice ξe = ξL = 0.1 TeV2 (at MGUT) the deviations in the δq parameters from

the pure AMSB predictions are somewhat larger than in the other cases, although still of

the order of 10%.

We see from table 3 that the other models in which the slepton mass problem is fixed

explicitly agree to roughly 10% fractional accuracy with the pure AMSB predictions for

the δq parameters. Had we raised our choice of ξ from 1TeV2, or our choice of m0 from

230 GeV, we would start to see larger departures. There is, however, clearly a non-negligible

part of parameter space of each model which reproduces the pure AMSB δq parameters

and which provides a solution to the tachyonic slepton problem.
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[48] C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Enhancement of

B(B̄(d) → µ+µ−)/B(B̄(s) → µ+µ−) in the MSSM with minimal flavor violation and large

tan β, Phys. Rev. D 66 (2002) 074021 [hep-ph/0204225] [SPIRES].

[49] J. Foster, K.-I. Okumura and L. Roszkowski, New Higgs effects in B physics in

supersymmetry with general flavour mixing, Phys. Lett. B 609 (2005) 102 [hep-ph/0410323]

[SPIRES]; Probing the flavour structure of supersymmetry breaking with rare B-processes: a

beyond leading order analysis, JHEP 08 (2005) 094 [hep-ph/0506146] [SPIRES].

[50] G. Isidori and A. Retico, Scalar flavour-changing neutral currents in the large-tan(β) limit,

JHEP 11 (2001) 001 [hep-ph/0110121] [SPIRES]; Bs,d → ℓ+ℓ− and KL → ℓ+ℓ− in SUSY

models with nonminimal sources of flavor mixing, JHEP 09 (2002) 063 [hep-ph/0208159]

[SPIRES];

A. Dedes and A. Pilaftsis, Resummed effective Lagrangian for Higgs-mediated FCNC

interactions in the CP-violating MSSM, Phys. Rev. D 67 (2003) 015012 [hep-ph/0209306]

[SPIRES];

A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, ∆Md,s, B
0
d,s → µ+µ− and

B → Xsγ in supersymmetry at large tan β, Nucl. Phys. B 659 (2003) 3 [hep-ph/0210145]

[SPIRES].

[51] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: a program for

calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103

[hep-ph/0112278] [SPIRES]; MicrOMEGAs: version 1.3,

Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [SPIRES]; MicrOMEGAs2.0: a

program to calculate the relic density of dark matter in a generic model,

Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].

[52] T. Onogi, Heavy flavor physics from lattice QCD, PoS(LAT2006)017 [hep-lat/0610115]

[SPIRES].

[53] M. Artuso et al., B, D and K decays, Eur. Phys. J. C 57 (2008) 309 [arXiv:0801.1833]

[SPIRES].

[54] A.G. Akeroyd and S. Recksiegel, The effect of H± on B± → τ±ντ and B± → µ±νµ,

J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [SPIRES].

[55] G. Isidori and P. Paradisi, Hints of large tan β in flavour physics,

Phys. Lett. B 639 (2006) 499 [hep-ph/0605012] [SPIRES].

[56] K. Ikado et al., Evidence of the purely leptonic decay B− → τ−ν̄τ ,

Phys. Rev. Lett. 97 (2006) 251802 [hep-ex/0604018] [SPIRES];

Belle collaboration, I. Adachi et al., Measurement of B− → τ−ν̄τ decay with a semileptonic

tagging method, arXiv:0809.3834 [SPIRES];

BABAR collaboration, B. Aubert et al., A search for B+ → τ+ν,

Phys. Rev. D 76 (2007) 052002 [arXiv:0705.1820] [SPIRES];

BABAR collaboration, B. Aubert et al., A search for B+ → τ+ν with hadronic B tags,

Phys. Rev. D 77 (2008) 011107 [arXiv:0708.2260] [SPIRES].

[57] Particle Data Group collaboration, C. Amsler et al., Review of particle physics,

Phys. Lett. B 667 (2008) 1 [SPIRES].

[58] HPQCD collaboration, A. Gray et al., The B meson decay constant from unquenched lattice

QCD, Phys. Rev. Lett. 95 (2005) 212001 [hep-lat/0507015] [SPIRES].

[59] E. Gamiz, Heavy flavour phenomenology from lattice QCD, arXiv:0811.4146 [SPIRES].

– 30 –

http://dx.doi.org/10.1103/PhysRevD.66.074021
http://arxiv.org/abs/hep-ph/0204225
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0204225
http://dx.doi.org/10.1016/j.physletb.2004.12.050
http://arxiv.org/abs/hep-ph/0410323
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0410323
http://dx.doi.org/10.1088/1126-6708/2005/08/094
http://arxiv.org/abs/hep-ph/0506146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0506146
http://dx.doi.org/10.1088/1126-6708/2001/11/001
http://arxiv.org/abs/hep-ph/0110121
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0110121
http://dx.doi.org/10.1088/1126-6708/2002/09/063
http://arxiv.org/abs/hep-ph/0208159
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0208159
http://dx.doi.org/10.1103/PhysRevD.67.015012
http://arxiv.org/abs/hep-ph/0209306
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0209306
http://dx.doi.org/10.1016/S0550-3213(03)00190-1
http://arxiv.org/abs/hep-ph/0210145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0210145
http://dx.doi.org/10.1016/S0010-4655(02)00596-9
http://arxiv.org/abs/hep-ph/0112278
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0112278
http://dx.doi.org/10.1016/j.cpc.2005.12.005
http://arxiv.org/abs/hep-ph/0405253
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0405253
http://dx.doi.org/10.1016/j.cpc.2006.11.008
http://arxiv.org/abs/hep-ph/0607059
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0607059
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2006)017
http://arxiv.org/abs/hep-lat/0610115
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0610115
http://dx.doi.org/10.1140/epjc/s10052-008-0716-1
http://arxiv.org/abs/0801.1833
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.1833
http://dx.doi.org/10.1088/0954-3899/29/10/301
http://arxiv.org/abs/hep-ph/0306037
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0306037
http://dx.doi.org/10.1016/j.physletb.2006.06.071
http://arxiv.org/abs/hep-ph/0605012
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0605012
http://dx.doi.org/10.1103/PhysRevLett.97.251802
http://arxiv.org/abs/hep-ex/0604018
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0604018
http://arxiv.org/abs/0809.3834
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.3834
http://dx.doi.org/10.1103/PhysRevD.76.052002
http://arxiv.org/abs/0705.1820
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.1820
http://dx.doi.org/10.1103/PhysRevD.77.011107
http://arxiv.org/abs/0708.2260
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.2260
http://dx.doi.org/10.1016/j.physletb.2008.07.018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B667,1
http://dx.doi.org/10.1103/PhysRevLett.95.212001
http://arxiv.org/abs/hep-lat/0507015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-LAT/0507015
http://arxiv.org/abs/0811.4146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.4146


J
H
E
P
0
4
(
2
0
0
9
)
0
8
8

[60] S. Hashimoto et al., Letter of intent for KEK Super B Factory, KEK-REPORT-2004-4

[SPIRES];

J.L. Hewett et al., The discovery potential of a Super B Factory. Proceedings, SLAC

Workshops, Stanford U.S.A. 2003, SLAC-R-709 [hep-ph/0503261] [SPIRES];

M. Bona et al., SuperB: a high-luminosity asymmetric e+e− super flavor factory,

arXiv:0709.0451 [SPIRES].

[61] J.P. Miller, E. de Rafael and B.L. Roberts, Muon g-2: review of theory and experiment,

Rept. Prog. Phys. 70 (2007) 795 [hep-ph/0703049] [SPIRES].

[62] T. Moroi, The muon anomalous magnetic dipole moment in the minimal supersymmetric

standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424]

[hep-ph/9512396] [SPIRES].

[63] S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tanβ-enhanced supersymmetric
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