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Abstract
Modern high-energy physics experiments collect data us@ticated complex multi-level trigger sys-
tems which perform an online selection of potentially ie&ting events. In general, this selection
sufers from indficiencies. A further loss of statistics occurs when the ra@coepted events is arti-
ficially scaled down in order to meet bandwidth constraiis. offline analysis of the recorded data
must correct for the resulting losses in order to determigedriginal statistics of the analysed data
sample. This is particularly challenging when data sampdesrded by several triggers are combined.
In this paper we present methods for the calculation of thime corrections and study their statistical
performance. Implications on building and operating teiggystems are discussed.

1 Introduction

Modern high energy collider experiments operating at higieraction rates rely on complex multi-
level trigger systems (semg.[1-6]) which select potentially interesting scattering evefintsn large
backgrounds. The selection procedures reduce the initi@idction rates, often by several orders of
magnitude, to output rates acceptable for permanent stordije recorded events are used in subse-
quent physics analyses. The lower level trigger systemsyaieally built in custom hardware using
information from diferent detector components. The higher trigger levels aftersist of computer
farms performing partial or complete event reconstructidmch allows the application of sophisticated
decision algorithms.
At each trigger level, events fulfilling the criteria of one more independent trigger selections are
chosen. Event losses occur due tofliméencies of the trigger selections with respect to tliéine
analysis. These itfigciencies result from the coarse event reconstruction pegd within the limited
time available at each level. In addition, the bandwidthriet®ons at the diterent levels may prevent the
recording of all events accepted by certain selectionggdesli to cover phase space regions with high
rates. The solution applied by the experiments is an arifbddwnscaling of the corresponding event
rates.
In an dfline data analysis, thedfects of limited diciency and rate downscaling must be corrected for,
in order to determine the original statistics of the analydata sample. This is particularly challenging
for analyses of combined event samples recorded by sevetapéndent trigger selections. Such a
combination may be neccessary if the individual triggeestbns cover dierent regions of the analysed
phase space. Typical cases are:
e Trigger selections based on information fronffelient detector components,g. a data analysis
relying on trigger selections using signals from barrel andcap muon chambers;
e Trigger selections designed forflidirent kinematic regions.g.an analysis of events accepted by
several trigger selections requiring the energy in a aaletér to exceed ffierent thresholds;
e Trigger selections sensitive toftirent objects in the final state,g.a study of complex final states
triggered via electron, muon afud jet selections.
Ideally a particular combination of trigger selectionsligeady foreseen at the design stage of the trigger
configuration before data taking. If a combination provifldsefficiency for a given signal, only the



downscaling must be corrected for in afiioe analysis. However, for many trigger setups fiillG@ency
cannot be achieved. In particular, this may be true for asalyinforeseen initially, in which the necessity
of the combination becomes apparent only in retrospect.

In this paper we provide recipes for the calculation of trmrexhentioned corrections. We discuss their
applicability and statistical performance assuming witrigger setups. The aim is to achieve the
smallest statistical uncertainty.

The paper is organised as follows. In S@dbvasic definitions used throughout the paper are introduced.
Analyses using event samples recorded via a single triggdection are discussed in Segt.Section4
presents several methods to calculate the correctionofobined event samples collected with a one-
level trigger system. The corrections of trigger fliim@encies are considered separately. The recipes
are then extended to multi-level trigger systems in Seckinally, the implications for the design and
operation of trigger systems are summarized in $ect.

2 Basic Ingredients and Definitions

Trigger selections The decision at each trigger level is based on the fulfilineénequirements imposed
on event properties, such as a minimum energy in a calorireetertain number of tracks in tracking or
muon chambers, or a correct timing of the signals. In thiepépese pieces of trigger logic are called
trigger elements Within one level the trigger elements are combined intadalgexpressions (using
AND, OR, ...) which we caltrigger items). A trigger item may, of course, simply consist of a single
trigger element. At each level an event is accepted if itlfalfit least one trigger item. The rate of
events collected by a trigger item can be scaled down Hbgvanscale factor dsuch that on average
only everyd-th selected event is kept by the system. The correspondingigtale procedures can be
implemented via simple counters leadingleterministicdownscaling, or via more sophisticated random
selection mechanisme@n-deterministidownscaling). In multi-level systems, individual triggegms
from several levels are further combined iotwins(see Secb). Events fulfilling all trigger items within

a chain are finally accepted by the trigger system.

Runs. Data at collider experiments are usually collected in egamples of separateins in which
stable detector performance and steady running conditiesaintained. The trigger setup, in particular
the downscaling factors are kept constant within one rubpay vary from run to run as a reaction to
changing conditionsg.g.instantaneous luminosity and background rates.

Trigger bits. The states of trigger items in the trigger system are erccaubits. We denote by thew
trigger item bit

)1 ifeventjis accepted by trigger iteimbefore downscaling,
710 otherwise,

and by theactual trigger item bit

a = 1 ifeventjis accepted by trigger iteimafter downscaling,
710 otherwise.

For the following discussion we assume that these bits fdrigber levels are stored in the record of
each event and are available faflime data analysis.

Efficiency. For an unbiased event sample fulfilling a given analysisctieln the number of events
accepted by a raw trigger item divided by the original nuntifezvents denotes the#ficiencye of this
trigger item. By definition theféiciency depends on thdftine selection.

DSome experiments adopt aférent nomenclature, calling trigger itemg). subtriggersr justtriggers



Various techniques for thdficiency determination exist, which are often specific toaiaréxperiments
and physics signals. A detailed review of these technigaiegyond the scope of this paper. In general
they rely on an event sample collected by a reference triggyarbased on information independent from
that used by the studied trigger item. Accounting for vioiz of the diciency in the phase space, it is
usually determined in bins of certain event parameters

_number of events selected by both trigger items
~ number of events selected by reference trigger item

e(a)

(1)

where only events fulfilling theffline event selection are used. Taetual bit of the reference trigger
item must be setj = 1) for all events of the reference sample in order to ensuaie sielection by this
trigger item, thus avoiding any potential bias. In contrést the studied trigger item either the raw or
the actual bit can in principle be used. For the latter, doaltesfactors have to be taken into account.
The usage of the raw trigger item however increases theadlaibtatistics by the downscale factbof
this trigger item. This underlines the importance of stptime raw trigger item information in theftine
event record. The obtainedfieiency distribution is usually fitted by a smooth functiorigh can in
principle vary from run to run. In practice, it is determingftline for the entire event sample or for large
subsamples with stable running conditions.

The dficiency of an individual trigger element used within a triggem is defined analogously. For a
trigger item consisting of several not fullyfeient trigger elements, the totaheiency can be determined
applying similar considerations as given subsequentlydot.8.3 for combinations of several trigger
items with ingficiency.

Event weights The recipes presented in this paper provideegghtw; for each evenf = 1,...,N of
the analysed sample which corrects for the above-mentienewdt losses, such that the original statistics
of the analysed event sample is given by the sum of the weights

N
Nori = Z wj . (2
=1
w:
This results in thevisible cross sectiofl o given byo = L where £ is the integrated luminosity of

the event sample. A non-trivial requirement for each metldtlat the relative statistical uncertainty of
the cross-section determination should improve with lusity.

3 Treatment of a Single Trigger Item

If an event sample selected by a single trigger itesused in an analysise. a; = 1 for each event,
the weight of the event in rukcan be calculated with
dix

T ) ©)
wheredj is the downscaling factor for trigger iteimn runk, andei(q;) is the dficiency of this trigger
item in this run as a function of a set of event parametgrs
Example. A simple example is given by an analysis using a single étiggm with a constant down-
scale factoid and an éiciencye constant over the whole parameter space of the physicsgzaceler
investigation. In this case the weights of the events 1,..., N passing the filine selection criteria,
including the trigger requirement; = 1, are given byw; = d/e and the respective visible cross section
can be calculated as = (X wj) /L = (N/£) x (d/e). o

2The determination of the true cross section involves furtioerections for detectorfciency, acceptance, etc. which are
irrelevant for the present discussion.
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Figure 1: Results of a toy Monte Carlo simulation of an analysis redyim a single trigger item. The original
generated distribution of an example varialgdashed histogram) is depicted, as well as the distribution
triggered events reweighted using run-dependent (opeles)rand averaged weights (closed triangles) with their
respective statistical errors.

If the downscaling factors vary strongly from run to run, mtgefrom runs with high downscale factors
in the sample obtain large weights according to BYy. This leads to a low statistical significance of the
result, especially for dierential distributions, where large statistical errorg/raecur in certain regions
of phase space. A higher significance is reached if an avevegght over all runs in the whole event
sample is used. WitN selected events, with the original number of evéiysand the total cross section
of the triggered processes the event weight is given by

Nruns
Wi = Nori _ Nori /o _ Zk:l Lk (4)
i~ = = )
N N/O’ ZII(\IerS‘LkEIkd(fJ)

where Nuns and Ly are the total number of runs and the luminosity of the kunespectively. For a
given original number of eventdy, i.e. for a given integrated luminosity of the sample, the avedage
weight for a trigger item depends solely on the total numli@&vents collected via this itenlN. Hence,
any optimisation of the downscaling factors during daténigkvhich leads to a larger collected statistics
results in smaller weights and consequently in a smalléisstal uncertainty.

Example. In a toy Monte Carlo (MC) experiment we simulate an analgeligng on a single trigger item
with full efficiency. The simulated data sample corresponds to 20 rungichwhe rate of the trigger
item is scaled down by downscale factors varying from ruruta Within each run a non-deterministic
downscaling procedure is used. In half of the runs, goodingnconditions are assumed, such that the
downscale factors are low — between 1 and 5. The other 10 nmaspond to bad running conditions
affecting the trigger rate, hence the downscale factors ardhdanger — in this example of the order
of 100. The run luminosity is varied such that each run cesgi$ 1000 to 1500 events. The ratio
of the number of events in each run to its integrated lumtgidsismeared using Poissonian statistics.
Figurel shows the original distribution of an example varialileas well as the distributions of triggered
events reweighted using the run-dependent weights of3r@nd the averaged weights of Ed) (vith
their corresponding uncertainties. Both methods are abtegroduce the original distribution but with
different statistical performance. As expected, the applicadf the averaged weights results in a smaller
statistical uncertainty and thus a much smoother distghutThis is reflected by the total numbers of
events and their uncertainties obtained with the two method



Statistical uncertainty. With N selected events, the statistical uncertainty on the @iginmber of
eventsNyi is given by the standard formula

5Nori =

N
>iu?. (5)
=1

For different sets oN real numbersy;, all having the same suPNori, the sum of the squares of these
numbers is minimised when all numbers are equal. This caify d&s proven using for instance the
method of Lagrange multipliers or mathematical inductidherefore, the application of averaged event
weights (Eq.4)) minimises the statistical uncertaingy, ;. For the same reason, weight averaging over
run ranges improves the result for all methods of combiniiggérs described in this papef(Sect4
andb).

In case of aleterministicdownscaling procedure,g.using hardware counters, eadith event in rurk

is accepted and the initial number of eveNtg is exactlyequal to the sum of event weights and the sum
of the counter valuepy at the run endsNoi = > wj + X, pk. Since the second term can be neglected in
the limit of large statistics in individual runs, one mightpect a statistical uncertainty 6f = vNori.
However, this is only true for the total number of events ia $ample accepted by a trigger item. In the
subsequent data analyses, cuts are made #iedatitial distributions are studied, such that the errags ar
determined for subsamples of events. In practice, the suewarit weights in a subsamplkeg.in one

bin of a diterential distribution, isiot exactlyequal to the original number of everits;; due to statistical
fluctuations of the downscaling procedure from bin to bine Bam gives, however, a correct statistical
estimate ofN,,; within the uncertainty given by E¢). Fornon-deterministiclownscaling this equation

is correct in all cases.

Systematic uncertainties. In a deterministic downscaling procedure, selecting tret or last event
within a downscale interval introduces a systematic efrhrei varying value of the downscale counter at
the end of each run is not considered in the analysis. Thévwelarror for the total number of events is
then of the order oynd/(2€ 3, wj), whered is a typical downscale factag,is the averagefiiciency and

2. wj is the sum of weights of all recorded events. This error ischify negligible except for analyses
using many short runs with large downscale factors. Thenaiogy is further reduced if the selection
is performed in the middle of the downscale interval sinceaeerage, the counter values at run ends
are equally spread around the middle vAlué&he uncertainty can be completely avoided with a non-
deterministic downscaling procedurg.if the downscale system selects events on a random basis, or
if at least a random position of the downscale counter at aatstart is chosen.

4 Combination of Trigger Items in One-Level Systems

In this section we present methods for the calculation ofemions for event losses in analyses of
combined event samples recorded by several trigger itenmastiigger system consisting of only one
level. The methods are also applicable if the higher tridgeels accept all events preselected by the
first-level trigger items in the analysed phase space. Thie lsancepts discussed here are extended in
Sect5 to the general case of multi-level systems.

4.1 Division Method

An obvious approach for a combined analysis on a singledri¢gyel is theDivision Method in which
the phase space is divided into distinct regions in termsppf@priate kinematic variables, and only

3The sum of event weights is, of course, not constant but #esuaround\,,; with the spread given by Ecp),

“Exceptional cases are runs with extremely small statistitscted by the actual trigger item.g. resulting from large
downscale factors, lowfgciency or short run time, in which no more than one event perisiselected, and the downscale
counter does not reach on average the middle of the interval.



events selected by a single actual trigger item are useddin egyion, while all other events are not
considered. Clearly, for the smallest statistical undetgathe trigger item which provides the largest
number of events must be used in the corresponding regiotis division simplifies the task to an
analysis of separate samples each using one trigger itedesasibed in SecB. The dficiency of the
trigger items must be determined individually in the respeqhase space regions, which may introduce
a certain complexity in practice.

Example. The phase space is divided into intervals of energy medsara calorimeter, in each of
which a separate trigger item is used. However, one of timasiteicludes the requirement of a certain
number of tracks in a tracking chamber. In this case it coelddcessary to determine thi@ency of
this trigger item as a function of an appropriate trackieslavariable e.g.the number of reconstructed
tracks, for the energy interval in which it is used.

4.2 Advanced Methods for Fully Hficient Combinations

For analyses in which the individual trigger items providfisient statistics in their respective phase
space regions, the Division Method may yield adequate giati Otherwise, more elaborate approaches
can be used, such as tB&clusion Methodind thelnclusion Methoddescribed in the following.

For both methods, a correction for the triggerfli@ency is not necessary if the chosen combination of
the trigger items is fully ficient in the analysed kinematic range, as is often the cassfobinations
designed before data taking. Note that this does not im@y ¢lach individual trigger item is fully
efficient in the whole range, but it is Sicient that each event in the original sample fulfilling th&ioe
selection is triggered by at least one of the chosen rawdrigigms. The event may then still be rejected
by the downscaling procedure.

For this reason we first discuss both methods for the casdlddfficiency. These recipes, though not
labelled as in this paper, have been used in data analysdsebiyl collaboration €.g.in [7-9]) to
correct for downscaling. Afterwards we present newly depetl techniques which includdhieiency
corrections. Finally, we compare the statistical perfarogaof the various methods.

4.2.1 Exclusion Method for Fully Efficient Combinations

Similarly to the Division Method, the Exclusion Methoti(] splits the event sample into subsamples in
which single trigger items are considered. However, thepbaim now divided not in terms of kinematic
variables, but according to trigger item bits and downstadtors. From the set of considered trigger
itemsi, for which the raw trigger has fired;( = 1) in eventj taken in rurk, the trigger iteni* with the
smallest downscale factor is chosen:

i* o dig = rnin di . (6)

1=
The weight for the event is then given by
wik = ik &sj - (7
Consequently, the event is rejected, if the actuabjgitfor the trigger item with the smallest downscale
factor is not set.
In case of trigger items with equal downscale factors, tliigrin which the status of the actual bits is
checked, is arbitrary, but must not depend on the status it8esimple solution is to define the order
once for the whole run range. A similar prescription holdseeery variation of the Exclusion Method
discussed in the following.
As before, a better statistical significance is reached ifjiate averaged over all runs are used (
Eg. @)). In this case, for each considered trigger iteithe average weight factor
;T Lk
W = N L (8)
2ier Lige

6



is calculated once for the whole run range. For all triggemi with the raw bitj; = 1 in eventj, the
smallest weight factor is then assigned as the weight towtbetgeif the corresponding actual lait; is
set,i.e.

%

I wl. = minwy ,

e (9)

wj = wi'* aj+j .

Again, the event is rejected, if the corresponding actuagiis not sev.
This averaging procedure can only be used if the definitiba#l ohosen trigger items remain unchanged
during the run range, as it assumes that if the raw bit is seafioevent in a certain run, it would
also be set for an identical event in any other run. In practidgger items may be redefined within
the running periode.g.trigger thresholds may be modified. For the calculation @néwveights the
corresponding event sample must then be split into subssmyth constant definitions. Consequently,
frequent redefinitions of trigger items should be avoided.

4.2.2 Inclusion Method for Fully Efficient Combinations

In the previously discussed methods the event sample isisfi subsamples, in which the weight
calculation for each event is based on a single trigger itemthe contrary, in the Inclusion Methodi],

12] a combinedweight based on all considered trigger items is determioedhi entire event sample.
For each event, at least one actual trigger item bit from gt@kconsidered items is required to be set.
Thus, events only triggered by items not considered in therganalysis are rejected.

The weight calculation is based on the probability to acteptevent after the downscaling procedure.
For a single trigger itemwith the downscale factafi in runk, this probability for an evenjis
fij

di

Assuming all downscaling decisions to be independent df etteer, the probability that at least one of
the Niems trigger items accepts the event is given by

Pijk = (10)

Nitems I
Py 1- ( _jg. (11)
i=1 ik
The run-dependent weight for eveis then
1
Wik = — , 12
ik Pik (12)
while the weight averaged over runs is given by
ZN:runSLK
wj = N“+ . (13)
2 LkPik

As for the Exclusion Method, the averaged weight can be usdifthe definition of all chosen trig-
ger items remains unchanged during the run range, suchttisapossible to calculate the triggering
probability of an event in a run fierent from the one in which it was recorded.

Note, that the assumption of independent downscaling idesiss not valid in deterministic downscaling
systems containing several (quasi-)identical triggen#®. In this case the above formulae can still be
applied if (i) the downscaling factors for these items arffesient and(ii) the downscaling factors are
coprime integers, or in general, they are irreducible foast with coprime enumerators.

5Note that the average weight factor in E8). (epresents an average downscale factor, and therefoselbetion of the
minimum in Eq. @) is an analogon of Eq6J.

®)Since identical trigger items accept the same events toeinscaling decisions are made synchronously leading tis-sta
tical correlation. Quasi-identical items which selectwsimilar event samples follow a synchronous downscalirap@dure
in parts of the data-taking period.
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Figure 2: a) Assumed ficiencies of the three trigger items as a function of an evariasle X used in the
toy Monte Carlo simulation; b) Original event distributi¢siashed line), as well as the distributions of triggered
events reweighted using the Exclusion Method (closed gtem) and the Inclusion Method (open circles), both
with weights averaged over runs.

4.2.3 Comparison of the Exclusion and Inclusion Methods

While the Division Method and the Exclusion Method only usfeaation of the total triggered event
sample, the Inclusion Methodters the advantage of usiad) events in the sample and therefore outper-
forms the other methods in statistical precision. For fiiatson we performed a toy Monte Carlo study
comparing the Exclusion and the Inclusion Methods.

Example. In the MC toy experiment the response of a trigger systerh thitee items is simulated.
The items select events based on the value of an event \&atihis could bee.g.the energy in a
calorimeter). The assumeffieiencies of the trigger items are shown in Flg.as a function oK. Each
part of the analysed phase space is fully covered by at lesstr@gger item,i.e. the combination is
fully efficient. An event sample is simulated corresponding to 20 witts varying luminosities and
downscale factors. The run luminosity is varied such thahean consists of 500—600 events. The ratio
of the number of events in each run to its integrated lumigiasispread around a mean value following
Poissonian statistics. The downscale factors are alsed/&nom run to run: for the first (second, third)
trigger item they are spread around 50 (40, 20). In Bigthe original event distribution is shown as
well as the distributions of triggered events reweighteidgishe Exclusion and the Inclusion Method
with weights averaged over runs. Both methods provide ammésults which reproduce the original
distribution within the statistical uncertainties. As exfed, the Inclusion Method provides a better
statistical significance, as indicated by the error barstarithe error on the total number of evenis.

While the Inclusion Method provides by construction a bettatistical precision, the relative improve-
ment with respect to the Exclusion Method depends on theremexperimental set-up and is rather
small in many practical scenarios. The maximum gain is aeléf (i) the overlap of #icient regions
of the trigger items is large ar(d) the items have big downscale factors of similar magnituc siat
the overlap between the event samples actually collectebebgiterent trigger items is small.

Example. Two trigger items with downscale factalsandd, > d; are both fully dficient in the analysed

phase spacé.e. both raw trigger items fired in all events. The number of evevith the actual trigger
item bit 1 or 2 set is given by = Nyi/di andny = Noji/dp, respectively), whereNy is the original

DStatistical fluctuations and end-of-run corrections aglawted.



number of events. In total < n; + ny events are recorded. With the Exclusion Method, the re&ativ
statistical error oy, is then given by

5exgl “]:Ld2 1 q
Nori — 1 _ — \/_1 ’ (14)
Nori nidq Nan VNori

while with the Inclusion Method we get

N VN2 1 Ve 1
— - - — = ——  withtheweight w=-—->"-——. (15)
Non ™ N TR VG ivdam
The ratio of the two errors is thus:
6eXC| ‘\/d_ d 1
|\lori
m:—lz l+d—l—d—. (16)
N, Vw b O

The maximum ratio of V2 is reached if both downscale factors are large@nd d; (noted, > d; in
this example). FoNiems trigger items the maximum ratio i§Niems. ®

4.3 Additional Corrections for Trigger Ine fficiencies

In the general case of not fullyfficient trigger combinations additional corrections muspbgormed.
Basically, two conceptually fierent approaches are possible. One approach is based oeténmid
nation of a singleglobal efficiency for the combination of all involved trigger items hretwhole phase
space. This approach has however several drawbacks:

e Since diferent trigger items depend in general ofiatient event properties, a global correction will
typically be non-universal but specific for the given datagke with given selection cuts. Therefore
any change of the analysis selection requires a new detatimminof the global fficiency correction,
as the mixture of data samples taken bijatent trigger items may vary both with cuts and from run
to run.

e The dficiency correction is applied on top of the correction for deealing, and therefore must be
determined for the combination nbt downscaledrigger items. If the fficiency is determined from
data, a proper event subsample must be selected in whicleltteve contributions of subsamples
collected by diferent trigger items are the same as for the combination aidhdownscaled items.

e A determination of the globalfciency from data may be unfeasible if no trigger item exisiéciv
is orthogonal to all involved trigger items and providefiisient statistics.

For these reasons the determination of a global trig@f&iency is in many cases only possible using
Monte Carlo simulations. This implies a high level of undansling of the detector and of the trigger
system to be available in such simulations, which, if atiglysually reached only after several years of
data taking.

An alternative approach foiffeciency corrections is based orseparatedetermination of theféciency
for each trigger item. This requires modifications of thegedures of weight calculation, as described in
the following. For the further discussion we assume ftieiency correction functioey(q) to be known
for each trigger iteniin runk.

4.3.1 Hficiency Correlations

For the modification of the trigger combination methods ve#iparate fciency functions, correlations
between triggerféiciencies must be considered. Contrary to the downscaliigger dficiencies are not



a priori independenti.e. the dficiency gm(q) of the trigger itemi for events in which a dierent raw
trigger itemm has fired is not necessarily the same as fhieiencye(q) for all events. Correlations can
result from technicginstrumental &ects or physic#kinematic event properties.

Example of technical dfects The dficiencies are certainly correlated if the trigger itemsudel the
same inéicient trigger element. They can be correlated if triggemaets of diferent trigger items
are implemented in the same electronics. For instanceralaviggger items which include elements
triggering on the jet energy filer in the energy thresholds or in the required number of ¢ets.

Example of kinematic dfects For a trigger item 1 requiring a certain value of energy iralgmeter
and atrigger item 2 demanding a certain number of tracksreccking chamber, arfiéciency correlation
arises from the physical correlation between the numberaaks and the energy. In such cases the
efficiencies can often be defined in an independent way if theyletermined as functions of proper
kinematic variables. In this example, thi&encies determined as a function of the calorimeter energy
E for the first trigger item and as a function of the number o€EksaN for the second one may be
uncorrelated, such thatp(E) = e1(E), e21(N) = e2(N). The first relation holds if theficiency of the
calorimeter trigger depends solely on the energy but isiaddent of the type of particles depositing the
energy. In this case thdfieiency in each energy bin is independent of the fraction efged particles

in the signal and therefore on the number of tracks. Similéine second relation holds if théfieiency

of the track trigger is a function of the track multiplicityly and is unéfected by the track momente.

4.3.2 Expected Trigger Item Bit

In Eq. ) the trigger diciency is defined with respect to thélme selection. For each trigger item we
introduce theexpected trigger item bivhich is set to one if the ffline reconstructed event falls into a
specifically chosen region of phase space with significigger eficiency,i.e.for which the trigger item
is expected to fire with gticiently high probability:

)1 ifeventjlies inside the chosen phase space region for triggeriitem
710 otherwise.

Example. A trigger itemi is designed to fire if the energy in a calorimeter exceedstainghresholck;.
Due to the coarse determination of the energy in the trighergticiency measured as a function of the
offline reconstructed energy is not a step functiol;abut a smoothly rising Fermi function as shown
in Fig.3. Since the usage of a trigger item in phase space region®\tbeafficiency is very small may
lead to large event weights (Ejor 4), one might decide to use this trigger item only at energiesEg
where its diciency exceeds a certain valieg.10%. The expected trigger bit; is thus set to one for
events withE > Eg and to zero otherwise.

In practice, a trigger item may consist of a number of trigglements which are fullyfécient for the
analysed signal and of one or a few trigger elements for wéfictiency corrections are determined as
functions of some kinematic variables. The trigger itemxpeeted to fire if the fully #icient trigger
requirements are fulfilled and the kinematic variablesrithie range for which thefigciency correction
functions are applied in the analysis.

The introduction of the expected trigger bi{ allows rather straightforward extensions of the trigger
combination methods, where the raw triggerritplays nearly the same role with respectfpas the
actual trigger bit; with respect taj;. However, while thejj anda;j bits are set by the trigger system,
the x;; bits are defined in the physics analysis. As a result, it capda that the raw and actual trigger
bits rj; and & are set, whilex;; is not. Therefore, instead of; anda;j, one must useq;; and x;;a;j,
respectively. In the above example this means artificiatyirsg a;; = O for all events withE < Eo.
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trigger efficiency g

energy

Figure 3: Efficiency correction function for an example calorimetergsgitem with the threshol&;. Also
indicated are the two chosen phase space regions witieh iti the value set for the expected trigger itemxit

4.3.3 Exclusion Method for Combinations of Trigger ltems wth Inefficiencies

With the above definitions the Exclusion Method is easily ified to take diciencies into account. The
run-dependent weight factor of evenin runk for each chosen trigger itemfor which the expected bit
Xij is set, is given by
o = dix
U ax(q))
Then the trigger iteni* with the smallest weight factor is chosen and this factosggned as the weight
to the event if the actual b#;; for the trigger item is set:

17)

" wiy = minwyjj
=t (18)

If the actual bit is not set, the event is rejected. For waigiveraged over runs the expression
it Li

_ i He 19)
g L

is used instead of EqL{). Contrary to the original Exclusion Method (E&)), the averaged weights
must be calculated for each event since thiiency ey is in general a function of event propertigs
Furthermore, the modified method allows the usage of theageerweights even if the definitions of the
chosen trigger items change during the run range, providedi¢finitions of the expected bits remain
unchanged.

In many cases the modified Exclusion Method is a variant oftivésion Method since it divides the
phase space into kinematic regions in each of which onedriijgm is used.

Example. The analysed data sample is collected by two trigger iteas®ed on the energig in a
calorimeter with diferent thresholds. The trigger item with the higher thredh@s a smaller down-
scaling factor. In Figd the assumedficiency functions for both trigger items divided by the redpe
downscaling factors are shown. The expected bits for babedr items are set to one in the whole en-
ergy range depicted in the figure. The crossing pBindf the two curves divides the phase space, such
that for events withe > E; (E < E.) only the trigger item with the higher (lower) threshold ised.
Since the downscale factors and ttigogencies may vary from run to run, tii® value may also vary
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trigger item 1

trigger item 2

E. energy

Figure 4: Efficiency correction functions divided by the respective devate factors for two example trigger
items based on the calorimeter energy.

For this method, possible kinematic correlations of thieiencies must be taken into account. In partic-
ular, it might be necessary to redetermine thieiency functions for the individual phase space regions,
if the dficiencies of the respective trigger items depend on othéahas than those used for the phase
space division.

Example. Two trigger items, as given in the example of kinematfitees from Sect.3.], are used in
the analysis. As a result of the comparison of the rati¢g)/d; andex(N)/dy, the phase space is split
into two energy intervals, such that for energies aboveo(ipeh certain valuds;, only events selected
by the calorimeter (tracker) trigger item are used. Due tossible kinematic correlation between the
calorimeter energy and the number of tracks, tfiiency of the tracker trigger item may have to be
redetermined for the energy range< E;. Thus for this trigger item, onefigciency functioney(N)

is used to determine the bounddEy and another oneye<g.(N) to calculate the event weight. The
procedure might be improved by iterative redeterminatibtihhe boundary and of thefieciency. Ideally,

no redetermination is needed if th&eiencies for both trigger items are determined as a two-dgioaal
function of bothE andN. e

4.3.4 Inclusion Method for Combinations of Trigger Items with Inefficiencies

For the Inclusion Method the cases of uncorrelated and lededetrigger item ficiencies must be dis-
tinguished. For the former the original procedure can gdslextended. For each evgrih the sample,
it is required that from the chosen list of trigger items,estdt one expected trigger item kjf and its
corresponding actual trigger item li§ are setj.e. xja; = 1.

The probability that at least one bfemstrigger items accepts the event is given by

'\1"—‘9]‘(1 ~ Xijfik(qj)) .

Py =1-
: dik

(20)
i=1
The run-dependent and run-averaged weights are thena@dulsing Eq.1(2) and Eq.(3), respectively.

The method for correlatedtfeciencies is more involved. For the case of only two triggemis Eq. 20)
reads

dik dik dox die  dx

where we use the short-hand notatign= ex(d;). The first two terms correspond to the respective prob-
abilities for each of the two trigger items to accept the ev&he last term gives the overlap probability

2
Xij €ij Xij€1j  Xgj€2)  Xij€1j Xoj€r;
ijzl—n(l— JJ): €y | Xeie) _ Xuey Xeie) 21)
i1
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that both trigger items accept the event. This term must bdified to correct for a possible correlation

of the dficiencies:
X1j€1j N Xoj€2)  Xij€1j X2j€1j

ik ok dik  dx
where ey is the dficiency of trigger item 2 in evenj provided that (raw or actual) trigger item 1
accepted the event. Note, that according to Bayes'aijig1j = exjenp;.

Example. Two trigger items with downscale factatsandd, have the samefciencye and the expected
bits of both items are set for all events in the analysed datgpke. For uncorrelatediiciencies Eq.41)
results inPj = e(d—ll + dz - oG ) For fully correlated #iciencies, which would occur if both trigger

items include the same trigger element wifficéencye, the result of Eq.42) is Py = e(d—l + d—2 - rldz)
since in this caseypj = ey1j = 1 obviously holds. As expected for the latter case, the weiglculation

factorises into the correction for downscaling (Ei)j and the global ficiency corrections

With a dedicated treatment of the overlap probabilitiescimrelated #iciencies, the recipe can easily
be extended to any number of trigger items.

Pk = , (22)

4.4 Comparison of Methods with and without Hficiency Corrections

Though not strictly needed, the recipes includifigcency corrections can also be used for trigger item
combinations with full éiciency. This introduces an additional systematic errortdube limited preci-
sion of each fficiency correction, while for the methods withodiegiency corrections, it is sticient to
include only the uncertainty of thdfiiency of one trigger item which is assumed to be fuliiyogent.
However, if this additional uncertainty is small, the methavith dficiency corrections may provide a
significant gain of statistical precision.

Example. An analysis using the Inclusion Method is based on data Esngollected by two trigger
items with the downscale factods = 10 andd, = 1, respectively. The first trigger item is fullyieient;
i.e. each event in the analysed phase space has its raw bit sé, thdnisecond one has affieiency

e = 0.5. In practice, such a trigger setup may appear if two trigigens are based on the same event
property with diferent thresholds. The trigger item with the lower threshslthore dficient but has
a higher prescale factor. With the original number of evéMys, the number of eventhll, which are
accepted only by the actual trigger item 1 and rejected byahetrigger item 2 is given on average by
Na = Nori(1 — €)/d1. The othe\y accepted events have both raw trigger item bits set and aepimul
by at least one of the actual trigger items, such Mat Nor.e( + d - I ) In the Inclusion Method
without eﬁicrency correctrons the events of the first and second catemj;ﬂrarn the weights); = d; and
wp =1/ (d—ll + dz TG ) respectively. The statistical error Nfy; is then given by

N
sl = JNaw2 + Np wi = \/ Nori(1 — €)dy + ——2— ori € ~ 2.35+/Ngyi . (23)

dg dldz
On the other hand, if thefiéciency corrections are mcluded the expected bits can e sme for all

Nc analysed event®\. = Ny + Np = Ngri (d—l1 + dz dld ) and thus all events obtain the same weight
we =1/ (F + & - g5 )- The statistical error is then given by

[ N
5g]ocr|r Nc wc = P 1.35+/Nori - (24)

didy

The statistical precision is thus improved by a factor G#ile

The reason for the improved performance of the Inclusionhigidis the assignment of equal weights to
all events, leading to the minimisation of the statisticabe as discussed in Se8t.

For the Exclusion Method, the introduction of thiigency corrections may lead to a gain or loss of
statistical precision depending on the trigger setup.
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Example. In the above example, the Exclusion Method withdilicency corrections provides a statis-
tical uncertainty of

5exc|

nocorr = \/Non(l - G)d]_ + Noriédz ~ 235 vV Nori . (25)
while the application of theficiency corrections gives a smaller uncertainty

d
68Xl = w/Norif ~ 1.42/Nyri . (26)

However, ford; = 2 instead of 10, the uncertaing®X% would be larger thaggd . e

The impact on the statistical precision of the Exclusion etdepends on the interplay of two opposite

effects. On the one hand, the inclusion of ttiéceéency corrections increases the weights for individual

trigger items and reduces the statistics. On the other lhadgjected events may have had even bigger
weights in the calculation without the corrections.

The recipes includingf@ciency corrections do not require the knowledge of raw #iggits and hence
might be the only solutions in case the raw trigger bits aaedessible in the data analysis. However this
should not be considered as a motivation for skipping thetrager bits in the data aquisition offtine
reprocessing steps, since thf@a@ency corrections determined from data can become signific less
accurate (see Se@).

5 Combination of Trigger Items in Multi-Level Systems

In multi-level trigger systems each trigger item on a pattctrigger level uses as input events accepted
by certain trigger items of the previous level. In the mostagal case, each lower level trigger item
provides accepted events as input to a number of triggesitamthe subsequent trigger level, and each
higher level trigger item accepts events from several &iggems on the lower level. In the following,

a sequence of trigger items wiéhxactlyone item on each trigger level is referred to ashairf). The
general case then corresponds to a collection of many chaitts potentially large overlap between
incorporated trigger items.

All methods described above can be extended to multi-leiggldr systems provided all bits are known
at the analysis step for all chosen trigger items at all @idgvels. This is not necessarily guaranteed
in modern trigger systems where higher trigger levels rufili@s processes on computer farms. For
a better use of the available computing power and a fasteruéra on the filter farms, the following
mechanisms are often used:

e Early-reject mechanismChains are evaluated in parallel, and the processing ofim ¢t stopped
as soon as it is clear that the event cannot be accepted phtiis In particular, the corresponding
algorithms of the chain on the higher levels are not run if etuia trigger item bit is not set on a
lower trigger level.

e Early-accept mechanismAt the last trigger level, trigger items are processed satjally, and as
soon as the decision to accept the event by one item is regti@amaining part of the code is not
executed. The downscaling is then either not performecdedast level or the statements are checked
in the order of increasing downscale factors.

In such systems the state of the raw and actual bits at themhigbels remains unknown. Therefore for
early-accept systems the missing trigger information nbastalculated in thefiine data processing,
where the selection code, the event parameters and corgdaia, such as the alignment and calibration
constants used in the online processing of the event filtest tve available. For early-reject systems, the
information must be calculated either in the trigger sysédt@ar a positive trigger decision or likewise in
the dlline data processing.

®In the nomenclature of some experiments, chains are tetngggr paths
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5.1 Division Method

The Division Method can easily be extended to multi-levgger systems. The analysed phase space
is divided into distinct regions in each of which events atested by a single trigger chain. The phase
space regions should be chosen such that the highestisthtstinificance is reached. Weight factors
for each of the levels involved can be calculated using #q.The total event weight is then given by
the product of the weight factors for all trigger levels.

5.2 Exclusion Method
5.2.1 Exclusion Method for Fully Efficient Combinations

In the Exclusion Method for fully ficient configurations the run-dependent weight factorsdcheshain
| in eventj in runk are given by

Nievels
wiy= ] drij Ge), 27)
I=1
whereNevels IS the number of trigger levels, amg and di'k are the raw bits and downscale factors for
the trigger item on trigger levell belonging to the chaih, respectively. The chaili with the smallest
non-zero weight factor is chosen, and this factor is assigisethe weight to the event, if all actual bits
a}*j belonging to this chain are set:
[*: = min ,
wl j w”:;towlJ
Nievels (28)
wi=wly [ ] ag @ el”.
I=1

The event is rejected if one of the actual la]'t.? is not set. For weight factors averaged over runs, E4g. (

is replaced by
Z Nruns Nievels

]—[ r, (el). (29)

’

wlj ZNrunsL I—INIeveIs 1

While the raw trigger item bits are set separately for ea@ngk\the ratio in front of the product can be
calculated once for the whole run range.

As in the one-level case, frequent redefinitions of trig¢gmi at all trigger levels should be avoided. In

particular, changes of the setups dfalient levels should be done simultaneously in order to kieep t
number of diferent run ranges considered in the analysis as small adbf@ssi

5.2.2 Exclusion Method for Combinations with Indficiencies

For an extension of the Exclusion Method with limiteffi@encies, #iciency correlations between trig-
ger items not only within one trigger level but also betweéfedent levels must be taken into account.
For example, algorithms on a higher level may not use thedietiéctor information, but only “regions
of interest” in the detector identified by the lower triggevél. For such correlations we introduce the
conditional ﬁiciencyei'le(qj) which is the #ficiency of the trigger item in run k on levell under the
condition that the actual trigger items on certain loweels\ forming the given chain are set.

The run-dependent weight factor for each chaisthen calculated using
Nievels d|

wi= [ | —F*—x (e, (30)
. [1[ 'Eilkl(l—l)...l(qj) J
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Figure 5: Example trigger setup of two levels with two trigger itemseach level, forming three chains.

Wheree Ki(-1)..1 indicates the ficiency under the condition that all corresponding actugbér items
from the ower levelsl(- 1)...1 fired. Weight factors averaged over runs are given by
, Z Nruns Nievels )
wij = []x Gen. (31)

Nruns Nievels € (@) 1

Z n level k\(' ij)lkl =1
With the chain weight factors defined according to Bf) (or (31), the event weight is then calculated
using Eq. £8).
Example. In the simplest non-trivial example depicted in Figevents in one run are selected by two
trigger itemss;! ands;* on level 1 (L1) and subsequently by two trigger itegh$ and ;2 on level 2
(L2). Events accepted by the actual trigger itespisandss* are processed bg:?, while s;? processes
only events accepted Is*. Depending on the products of the respective expectedfifsi!, xt2, x52,
the setup can be considered as three chdins: {si's-?}, I, = {51 s5?}, and |3 = {s;'s:?). The weight
factors for these chains are given by the respective dowaéaetors and conditional probabilities with
obvious notationw; = (dildkz)/(eklelﬁfl D w2 = (dgldgz)/(eglezﬁfl ,), andws = (d5'd}?) /(eleehﬁl )
Events withx}*x-? = 1 and with the other productg'x;? = x5'x}? = 0 get the weightv;. Similarly,
events with onlyx'élx'é2 1 get the weightv,, and events with onlyglx'-2 = 1 obtain the weightvs.
Events with onlyx:1x5? = 1 are excluded from the analysis, since the correspondiaip chnot defined.
For events with?x-2x5t = 1 andxs? = 0, the weight factorsy; andws are compared. The smallest
weight factor is chosen as the event weight, and only eveittstie proper combinatination of actual
trigger items &1 ak? for wy < ws, orastal? for ws < wy) remain in the analysis sample. In a similar way,
events Wlthx'-lx'fx'z;lx'é2 1 are selected or rejected based on the smallest of all treggtfactorss

For the treatment of kinematic correlations, consideratisimilar to those discussed in S&cB.3apply.
For each chain thefﬁclenmes:_clkl(I Y ,(gj) may have to be redetermined for the corresponding phase
space regions.

5.3 Inclusion Method
5.3.1 Inclusion Method for Fully Efficient Combinations

The Inclusion Method for fully fiicient combinations of chains is described here followihd] for the
case of only two trigger levels. It can be extended to any rarmblevels in a straightforward way.

In general, the definition of chains between two trigger level and L2, can be described by the
following matrix:

M = 1 if L1 trigger itemi forms a chain with L2 trigger iterm,
™7 10 otherwise.

Eventj is accepted by the trigger system, if at least one of the mts@* Minal2 is equal to one. The
probability for the event to be accepted by the downscalinggdure then depends on the combination
of the fired raw trigger itemfsl'-leimrr';nzj. Before discussing the general case of an arbitrary number o
items on each level, we begin with two simple, often occudng instructive configurations:
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¢ All-to-1 configuration.ln an analysis based on a single L2 trigger it@rthe probability for an event
jinrunk to be accepted by L2 trigger itemis given by

L2
pL2 — b (32)
mik ™ gL2 >

mk

whererhﬁ. is the raw bit anaiJIanZk the downscaling factor for the L2 trigger itemnm The probability for

the system to select the event is given by the produ@tngﬁt and the probability of at least one actual
L1 trigger item having fired, which forms a chain with the LRger item in questiondf. Eq. (11)):

Nig rEMim )] rt2

L12 i mj
Pojc=1{1- | | {l ERPTER | (33)

i=1 ik mk

wherer;* andd;! are the raw bit and the downscale factor for the L1 triggeniterespectively, and
N_1 is the number of L1 trigger items.

e 1-to-all configuration.In an analysis based on a single L1 trigger iteforming chains with several
L2 trigger items, the triggering probability factorisesarsimilar manner as in EQB9):

L1 N2 M:.rL2
L12 _ i IMmj
ik m=1 mk

with N» representing the number of L2 trigger items.

In the most general case of trigger items entering severhslon both levels, the calculation becomes
rather involved, since the weight is calculated based orrahetrigger item bits independently of the
actual trigger item which accepted the event. However, wiehdefinition of chains (according to the
matrix Mim), the actual L1 trigger item bits after downscaling influertise decision to accept the event
via an L2 trigger item, and therefore the selection prolit#dsl of L1 and L2 are correlated and do not
factorise. The total probability is given by the sum of prioitides for all combinations (pattern§ ; of
actual L1 trigger item bits that are possible for the raw ligger item setting of the everjt

P_lezz[l—[ E] n[l_ﬁ”.{l_ﬁ[l—[l—n(l—l\/l- ) ﬁ” (35)
ik dtl dit | Tl

Si1 \ieSy Tk J ligSa m=1 €S
Here, the expression inside the curly braces gives the pili@gdhat an event with a given L1 actual trig-
ger item bit pattern is kept by L2, while the two products ionfr give the probability that this L1 actual
bit pattern occurs. In general, the sum runs ov&r 2 1 terms, which may be a large number. However,
in practice, individual analyses use only a small numberigger items at each level which makes the
usage of Eq.35) feasible. In addition Eq3p) is simplified for the following two configurations:

¢ All-to-all configuration.If several L2 trigger items form chains with the same set ofrigger items
(i.e. Mim = M; independent om) the probabilities factorise:

NL1 rile NL2 rrl;ﬁ
L12 _
e (e ey E]
i=1 ik mk

m=1
e All-1-to-1-only configuration.For parallel chains, having one separate trigger item oh &ayger
level, the matrixM;y, can be expressed as an identity matrix and 8g).gimplifies to

Nitems r.L.l r.L.2

L12 _ 1 1

Pl —1‘1_[[ _ﬁp]’ (37)
i=1 ik ik

(36)

which is similar to Eqg.11) for one-level systems.
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Using the total probability from one of the equatio@8)-(37), the event weight is calculated similarly
to the case of one-level systentsf( Eq. (12) or (13)). The weight is assigned to the evgrif at least
one produclaj'-jlM.mamzJ for the considered trigger items is equal to one. Otherwisesvent is rejected.

For the Inclusion Method with fully ficient trigger configurations the algorithm of an L2 triggem
must not make use of thectual L1 trigger item bits, since otherwise the L1 downscalingeentas an
inefficiency of the L2 trigger item and the configuration is notyfudfficient. In particular, in trigger
systems with early-reject mechanism, one may be temptest theshigher level raw trigger bit to zero if
the corresponding actual bits at the lower level are unddt [€ads however to wrong weight calculation
since this is equivalent to the inclusion of the lower lewetbal bits into the algorithm of the higher level.
On the contrary, the usage of thawv L1 trigger item bits in L2 algorithms is allowed.

5.3.2 Inclusion Method for Combinations with Inefficiencies

Uncorrelated infficiencies can be included in the same way as for the one-lggtgrm. In Eq.83)—
(37) the L1 and L2 raw trigger bits must be replaced by the pradatthe respective expected bits and
efficiencies.E.g.the general expressiol) is modified to

XLl Ll(Ch) XILl |Lk1(qj)
- Sl -

i Xrieri )
o e 2

wherexI xm are the expected trigger item bits, aﬁﬂ(q,) e (q,)are the éiciency correction func-
tions for L1 tngger item and L2 trigger itenm, respectively.

Efficiencies correlated between trigger items of one level andden difterent levels can be treated in a
way similar to Sect4.3.4 However, the treatment of correlations betwedtedent levels must take into
account, whether the conditiondlieiencies depend on the raw or actual trigger items from |deveis.

In case of a dependence on the raw bits, each pattern of adggar items has to be split into the sum
of subpatterns with all possible raw trigger item configiorzdé and conditional faciencies specific for
each subpattern have to be applied.

Example. The example setup ofx2 trigger items forming three chains discussed in $e2t2and
depicted in Fig5 cannot be reduced to an all-to-1, 1-to-all, all-to-all drlato-1-only configuration.
Hence, Eq.38) has to be applied giving the probability

L1 11 L1 L1y (L2 L2
pliz _ X & ( %58 )Xl €1

dLl dLl dLZ
39)
L1l (2.2 L2l2 (2012 2 12 (

WS (X 6  XNe Xag Xe

+
L1 L2 L2 L2 L2
dsl | dt d d-2 b

The first summand gives the probability that the L1 actugger itemsﬁ1 accepts the event, while the
L1 actual trigger itenéil rejects it, and multiplied by the probability that the eventhen accepted by
the L2 actual trigger itens}?. If the ficiencies of the item%1 ands;! on level 1 are correlated™ in
this summand must be replaced by the correlatgdiency 5 Ch 1 for the L1 trigger |ten‘$1 to accept the
event, provided the L1 trigger |te5‘11 also accepts the event. If théieiency of the L2 trigger |ten:};§2

is conditional and depends on the raw trigger item titsandr}?, then this summand has to be split into
two terms corresponding to the cases that the L1 raw triggm:r},i2 should or should not have fired in
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the event:

L1 L1 L1 L1y (L2 L2 L1 L1 L2 L2
I PRI B B ST U NE e PR RN (1= xelek? X1 €&
g-1 gtt dt2 gt 2 72 g1 2 =2 L2
1 2 1 1 2 1 (40)
L1 L1 L2 L2 L1 L1 L2 L2
_Xe (o L)XaT Xa (1— XLkt X1 €
d-1 2 =2 g1 g2 g1 2 72 g2
1 2 1 1 1

In the first summand theﬂ?taciency.si2 has to be replaced by the conditionﬁlceiencyehﬁl_12 of the L2
trigger items;? for the case that both L1 raw trigger items fired. Similarlythie second summanek?
has to be replaced by the conditiondligency
the L1 raw trigger itens;* fired.
The second summand in EQ9Y) can be treated similarly. It gives the probability that thie actual
trigger item%1 and subsequently at least one of the two L2 actual triggerstaccept the event. If the
efficiencies of the L2 trigger items depend on the raw triggen iiét ril, this summand again has to be
split into two terms corresponding to the probabilitiest thés bit is set or not set in the event:

L2
€L1-17

Xléle'lz‘l sz €]|j2 XEZ €I2_2 B XEZ €]|j2 XEZ €I2_2
dt Td?2 T Td2 CTd? de
XIQ_lEIZ_l X&Z EJITZ X|2‘2 E|2‘2 XIIZ EJITZ X|2‘2 E|2‘2
&t Td?z T Td2  d? d
X|2‘16|2‘1 X&Z EJITZ X|2‘2 E|2‘2 XIIZ EJITZ X|2‘2 E|2‘2
&t a2 T d?  d? d?

of the L2 trigger itemsi2 for the case that only

L1 L1

X € + (42)

(1-xtety.

In each term of the sum thdfeiencies of the L2 trigger items have to be replaced by thpewive
conditional ones. If the L2 trigger itemfficiencies are correlated to each other, the expressions in
parentheses have to be modified, as shown inZy. ¢
In general, if the ficiencies are correlated both within one level and betwegfardnt levels, a signif-
icant number of dferent correction functions may have to be determined foh ¢agger item. One
should note that even if some of the used trigger items frdferdint trigger levels are not combined into
a chain, their decisions may be correlated and hence conditificiencies may have to be used. For
instance, the trigger items* and s;? in the above example may be correlated and thus the conalition

efficiencieset?. .. andek?

2L1-12

2L1-12

may difer.

6 Implications for Design and Operation of Trigger Systems

The various methods presented in this paper have consezgitarcthe design and operation of trigger

systems. Some non-trivial rules are summarised in thevallg:
1. The raw trigger item bits should be stored in the eventrcbewailable for the data analyq to

reduce the statistical uncertainty of tf@ency determination (Se@) and(ii) to allow the weight
calculation for fully dficient trigger combinations (Sedt2).

2. The optimum downscaling procedure should select evants ndom basis, to avoid end-of-run
uncertainties (Sec8) and statistical dependencies of (quasi-)identical &iggems (Sec#.2.9.

3. For deterministic downscaling systems, several optiomsinimise the end-of-run correction exist:
(i) the status of the downscale counters at the end-of-run dtoeutecorded(ii) a randomly chosen
position should be used for the selection in all downscakerials of one run(iii) the event in the
middle of the downscale interval should be selected (Skgct.

4. The Inclusion Method assumes no correlation of the doalimgrdecisions of dferent trigger items.
For deterministic downscaling systems, configurationd weveral (quasi-)identical trigger items
should be avoided. Alternatively the downscaling factoustfulfill certain constraints (Seet.2.2.
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5. While downscale factors can be changed arbitrarily, Ueed redefinitions of trigger items should
be avoided. Every redefinition limits the run range in whibk #ficiency correction for the re-
spective trigger item must be determined (SBcand in which weight averaging for fullyfiécient
combinations of trigger items can be applied (S¢@.

6. For an optimised trigger selection of events, sophiitalefinitions of trigger items combining
many trigger elements might seem to be advantageous. Howerg complex definitions should
be avoided since the determination of thetiaency corrections and correlations with other trigger
items may be challenging (Se4t3).

7. For multi-level trigger systems, the simplest configiorafor data analysis consists of parallel 1-to-1
chains (all-1-to-1-only). If the assignment of severajger items on one level to the same trigger
item on another level is unavoidable, it should be resuli¢teseparate 1-to-all, all-to-1 or all-to-all
configurations (Sech, especially5.3.]).

8. Although the final trigger decisions are based on the pisdof actual trigger bits from ffierent
trigger levels, the algorithms determining the raw triggies at higher levels must not use the actual
trigger bits from lower levels; otherwise the Exclusion dndlusion Methods for fully ficient
trigger combinations which involve raw trigger bits arepplcable (Sect).

9. On all trigger levels the raw and actual bits of all triggems used to select the analysed events
should be available for the analysis (see also Item 1). Fiy-aacept systems this implies that the
trigger information should be calculated in thélioe data processing where the selection code and
the event parameters must be accessible to reproduceggktrilecisions. For early-reject systems
the information should be calculated either in the triggetesm after a positive trigger decision or
likewise in the d@fine data processing (Seb).

7 Summary and Conclusions

We have presented calculation methods fidliree corrections of event losses in trigger systems of par-
ticle collider experiments. Emphasis has been put on theections of prescale factors and trigger
inefficiencies for combinations of event samples collected Hgmint trigger items. Each method pro-
vides event weights, the sum of which reproduces the ofiginenber of events that occured in the
detector. The methods have been discussed both for sexgédnd multi-level trigger systems with
and without considering uncorrelated and correlated éngudficiencies. We have studied the statistical
performance of all methods and considered implicationslésign and operation of trigger systems.

In detail, three conceptually ftierent methods with increasing complexity have been studibd Divi-
sion Method can provide flicient statistical precision if the individual trigger iterhave low downscale
factors and high féiciencies in their respective phase space regions. Theamycaoan be improved us-
ing the Exclusion Method which is adequate for many analy$eg optimum performance is however
provided by the more complicated Inclusion Method whichalmakes use of all selected events in the
combined sample. For all methods the application of eveight® averaged over run ranges can yield a
significant gain in the statistical precision of the result.
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