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A bstract

Charm onium states are expected to be considerably suppressed in the case of

quark-gluon plasm a form ation in high-energy heavy-ion collisions. However,a

robustidenti�cation ofsuppression patternsassignaturesofa decon�ned QCD

m edium requires a detailed understanding ofthe \norm alnuclear absorption"

already present in proton-nucleus collisions,where the charm onium production

crosssectionsincreaselessthan linearly with thenum beroftargetnucleons.W e

analyse the J/ production crosssectionsm easured in proton-nucleuscollisions

in �xed target experim ents,with proton beam energies from 200 to 920 GeV,

and in d-Au collisions atRHIC,at
p
s
N N

= 200 GeV,in the fram ework ofthe

Glauberform alism ,using severalsets ofparton distributions with and without

nuclear m odi�cations. The results reveala signi�cant dependence ofthe \ab-

sorption crosssection" on thekinem aticsoftheJ/ and on thecollision energy.

Extrapolating the observed patternswe derive the levelofabsorption expected

atE lab = 158 GeV,theenergy atwhich theheavy-ion data setswerecollected at

theCERN SPS.
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1 Introduction

According to lattice QCD calculations[1],when hadronicm atterreachessu�ciently

high energy densitiesitshould undergoaphasetransition toa\plasm a"ofdecon�ned

quarksand gluons(theQGP phase).Considerablee�ortsarecurrently beinginvested

in the study ofhigh-energy heavy-ion collisionsto revealthe existence ofthisphase

transition and to study the properties ofthe new phase in view ofim proving our

understanding ofcon�nem ent,a crucialfeatureofQCD.Theproduction yieldsofthe

quarkonium statesshould beconsiderably suppressed by \colourscreening" ifa QCD

m edium with decon�ned quarksand gluonsisform ed in high-energy heavy-ion colli-

sions[2]. However,already in proton-nucleuscollisionsthe charm onium production

crosssectionsincrease lessthan linearly with the num berofbinary nucleon-nucleon

collisions. This \norm alnuclearabsorption" needs to be wellunderstood so thata

robustbaselinereferencecan beestablished,with respecttowhich wecan clearly and

unam biguously identify thesignalsof\new physics" speci�cto thehigh density QCD

m edium .

So far,the studiesofthe J/ suppression patternsdeterm ined by the NA50 and

NA60 experim ents at the SPS,from data collected with Pb and In ion beam s of

158 GeV per nucleon,use a baseline reference established on the basis ofproton-

nucleus m easurem ents perform ed at 400 and 450 GeV,assum ing that the energy

dependencies ofthe initialand �nalstate \norm alnuclear e�ects",ifany,can be

neglected. Itisim portantto verify ifthissim ple assum ption issupported ornotby

existing experim entalevidence,looking attheresultsreported by experim entsm ade

atdi�erentenergies,com plem enting and placing in a broadercontextthe resultsto

beobtained by NA60 from proton-nucleusm easurem entsm adeat158 GeV.

In this paper we present a detailed study ofsom e \cold nuclear m atter e�ects"

a�ecting charm onium production in proton-nucleuscollisions,aswellastheirenergy

dependence. Section 2 gives a briefhistoricalm otivation. Section 3 describes the

basic fram ework ofour study: how the charm onium production cross sections are

calculated and how theabsorption ofthecharm onium statesin thenuclearm atteris

evaluated.Com paring ourcalculationsto the m idrapidity J/ production crosssec-

tionsm easured in proton-nucleuscollisionsby NA3(200GeV),NA50(400/450GeV),

E866(800GeV)and HERA-B (920GeV),presented in Section 4,weobserveasignif-

icantenergy dependenceof�
J= 

abs
in thisenergy range.Sim pleparam etrisationsofthis

energy dependencelead to J/ norm alnuclearabsorption ratesattheSPS heavy-ion

energy,E lab = 158 GeV,signi�cantly largerthan athigherenergies,aspresented and

discussed in Section 5.

2 B riefhistoricalm otivation

TheNA50experim entattheCERN-SPS m adeadetailed study ofJ/ and  0produc-

tionin�xed-targetproton-nucleuscollisionswithincidentprotonsof400and450GeV,

em ploying six di�erentnucleartargets(Be,Al,Cu,Ag,W and Pb)[3,4].Com paring
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theproduction crosssectionsm easured at400GeV,forinstance,tocalculationsbased

on the Glauberform alism (neglecting nuclearm odi�cationsofthe parton densities),

the J/ \absorption cross section" was determ ined to be �
J= 

abs
= 4:6� 0:6 m b [3].

A sim ilarvalue,�
J= 

abs
= 4:2� 0:5 m b,is extracted from a global�tto the 400 and

450 GeV J= = DY cross-section ratios,where Drell-Yan dim uonsare used asrefer-

ence. Thisvalue hasbeen used by NA50 [5]and NA60 [6]in the studiesofthe SPS

heavy-ion data,collected at158 GeV,assum ing thatthe energy dependenciesofthe

initialand �nalstate\norm alnucleare�ects",ifany,can beneglected.

An attem pt was m ade [7]to check the reliability ofthis assum ption,exploring

thecentrality dependenceoftheJ= = DY cross-section ratio m easured by theNA38

experim entin S-U collisionsat200 GeV pernucleon. Thisstudy gave �
J= 

abs
= 7:1�

2:8m b,avaluelargerthan theonederived from thehigherenergydata.However,this

resultisnotsatisfactory given thelargeuncertainty in thevalueof�
J= 

abs
and theneed

toassum ethattherearenoadditionalnucleare�ectsbetween theproton-nucleusand

the S-U collision system s. W e know,in particular,thatthe  0 state isconsiderably

m oresuppressed in S-U than in p-A collisions[8],and weshould notassum ethatthe

J/ stateisinsensitive to theadditionalm echanism sof 0absorption.

W hetherornotcharm onium absorption dependson the collision energy stillre-

m ains an open question. It is long known that E866,at FNAL,observed less J/ 

absorption at800 GeV than seen by NA50 in the sam e xF � 0 region. In term sof

thevery sim ple\� param etrisation",

�p A = �0 � A
�

; (1)

NA50 reported � = 0:925� 0:009 at400 GeV [3]while E866 obtained valuesaround

0.95 [9].

Attheotherend oftheenergy scale,NA3 reported � � 0:94 atxF � 0 [10].How-

ever,ithasm eanwhilebeen observed [11]thatan absorption pattern generated using

theGlauberfram ework,with a certain absorption crosssection,leadsto signi�cantly

di�erent� valueswhen thelighttargetisHydrogen (used by NA3)orBeryllium (used

by E866). In otherwords,ifNA3 had used Be asthe lighttarget,asdid NA50 and

E866,they would haveobtained an � valuearound 0.92.

A globalaverage ofJ/ absorption crosssectionswasrecently reported [12],as-

sum ingthatm easurem entscollected with di�erentbeam particlesand energiesshould

reectasingle�absvaluedespitetheobservation thatsom eofthevalueswerem utually

exclusive.

Knowing thecrucialim portanceofthenorm alnuclearabsorption baseline in the

interpretation ofthe J/ suppression seen in the heavy-ion data and given thatthe

charm onium absorption processesm ay very welldepend on the collision energy [13],

the NA60 experim ent collected (in 2004)proton-nucleus collisions at 158 GeV,the

energy ofthePb and In beam sused by NA50 and NA60,with seven di�erentnuclear

targets (Be,Al,Cu,In,W ,Pb and U).In addition,the PHENIX experim ent at

RHIC should soon reportm easurem entsofJ/ absorption in
p
s
N N

= 200 GeV d-Au

collisionswith m uch betteraccuracy than thatavailable in Ref.[14].These two sets
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ofresults,obtained atvery di�erentenergies,should help determ ine theexistence of

an energy dependenceand signi�cantly im proveourunderstandingofthem echanism s

causing theobserved nucleare�ectsin charm onium production.

3 B asic elem ents ofthe calculations

Thissection describesthefram ework wehaveused toderivetheJ/ absorption cross

sections.Thecalculationsofthecharm onium production crosssectionsareperform ed

with the colour evaporation m odel(CEM ) using severalsets ofparton distribution

functions(PDFs).Itshould beem phasised,however,thatourresultsarederived by

studying how theproduction yieldschangefrom lighttoheavy targetsand,therefore,

areessentially insensitiveto thespeci�cproduction m odeland setofPDFsused.W e

perform ed calculations with \free proton" PDFs and also with PDFs m odi�ed by

thenuclearenvironm ent,using severalparam etrisationsofthenuclearm odi�cations.

Thesurvivalprobability ofthecharm onium statestraversing thenuclearm atterwas

evaluated in thefram ework oftheGlauberm odel.

3.1 C harm onium production cross sections

Thecharm onium production crosssectionsused in thestudiesreported in thispaper

were calculated using the colourevaporation m odel,described in detailin Ref.[15].

In the CEM ,the production crosssection ofeach charm onium state,~�i,isassum ed

to be a constant fraction,Fi,ofthe total\closed charm " production cross section,

calculated as the integralover the c�c pair m ass, m , ofthe c�c cross section, from

threshold,2m c,to twicethem assofthelightestD m eson,2m D = 3:74 GeV/c2:

d~�i

dxF
= 2Fi

Z 2m D

2m c

m dm
d�c�c

dxF dm
2

; (2)

wherexF isthec�clongitudinalm om entum fraction in thecentre-of-m assfram eofthe

two colliding hadrons.

At leading order in perturbative QCD,the c�c hadroproduction cross section is

given bythesum oftwopartoniccontributions,gluon fusion (gg)and quark-antiquark

annihilation (q�q),convoluted with theparton densitiesin thecollidinghadrons,A and

B [16]:

d�c�c

dxF dm
2

=

Z
1

0

dx1dx2�(x1x2sN N
� m

2)�(xF � x1 + x2)

n

f
A
g (x1;m

2)fBg (x2;m
2)�gg(m

2)+ (3)

X

q= u;d;s

[fAq (x1;m
2)fB�q (x2;m

2)+ f
A
�q (x1;m

2)fBq (x2;m
2)]�q�q(m

2)

o

;
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where x1 and x2 are the m om entum fractionscarried by the two partonsand
p
s
N N

isthe centre-of-m assenergy ofthe nucleon-nucleon collision. In ourcalculationswe

useleading orderparton densities,evaluated atscalem 2 = x1x2sN N
.

A basicfeatureoftheCEM isthatd�c�c=dxF dm
2 fully determ inestheenergy and

m om entum dependencies ofallthe states. The hadronization ofthe c�c pairs into

charm onium states is nonperturbative, involving the em ission ofone or m ore soft

gluons.Each staterequiresa di�erentm atrix elem ent,condensed in thefractionsFi,

calculated foreach state: J/ , 0,�cJ,etc. W e note thatFJ= includesboth direct

J/ production and feed-down J/ production through �cJ radiative decaysand  0

hadronicdecays.

3.2 Parton densities in the proton and in the nucleus

Deep inelastic scattering (DIS)and Drell-Yan m easurem entsperform ed with nuclear

targetshave shown thatthe distributionsofpartonsin nucleiare signi�cantly m od-

i�ed relative to those in free protons. These nuclear m odi�cations depend on the

fraction ofthe totalhadron m om entum carried by the parton,x,on the m om en-

tum scale,Q 2,and on the m ass num ber ofthe nucleus,A. W hile the m echanism s

governing these m odi�cationsare notyetwellunderstood,severalgroupshave pro-

duced param etrisations,Si(A;x;Q
2),that convert the free-proton distributions for

each parton i,f
p

i(x;Q
2),into nuclearones,fAi (x;Q

2),assum ing factorisation:

f
A
i (x;Q

2)= Si(A;x;Q
2)� f

p

i(x;Q
2) : (4)

Naturally, the nuclear m odi�cations should depend on the spatiallocation ofthe

nucleon inside the target,with the nucleons at the surface being less \shadowed"

than those in the core ofthe nucleus [17]. Thise�ectcan be ignored in analysesof

p-nucleusdata sam plesintegrated overcollision centrality (asdonein thiswork).

Figure 1 showsseveralparam etrisationsofthe nuclearm odi�cation functionson

a Pb nucleus for valence quarks (left) and gluons (right),calculated for the scale,

Q,suitable forquarkonium production calculations with the M RST2001LO [18]or

CTEQ61L [19]PDF sets. Since the quark and antiquark distribution functionsare

directly probed by thenuclearDIS and Drell-Yan data,theirnucleare�ectsarerela-

tively wellconstrained and allparam etrisationsgive sim ilarresults. The connection

between the m easurem ents and the nuclear gluon densities is m uch m ore indirect,

however,relying on the scale dependence ofthe F2 structure function and on m o-

m entum sum rulesconnecting them om entum distributionsofgluonsand quarks.See

Ref.[20](and referencestherein)fora recentreview ofthe problem and ofthe solu-

tionsexplored sofar.Thispublication presentstheEPS08m odel,which usesinclusive

hadron production datam easured atforward rapidity by theBRAHM S experim entat

RHIC tofurtherconstrain thenucleare�ectson thegluon densities.Given thatthose

m easurem ents m ight reect other physicalprocesses (such as gluon saturation in a

color-glasscondensate),itisnotatallclearthatadding them in thederivation ofthe

nuclearPDFsisjusti�ed. Therefore,in ourstudy we preferto place m ore em phasis
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Figure 1: Ratio between the valence quark (left)and the gluon (right)distribution

functions in a nucleon ofa Pb nucleus and in a free proton,according to several

m odels.

on the earlierEKS98 [21]param etrisation,the �rstglobalanalysisofnucleare�ects

on the PDFs. The nDS/nDSg [22]and the HKN07 [23]param etrisations represent

alternative analyses,also illustrated in Fig.1,available both atleading order(used

in ourcalculations)and atnext-to-leading order.

Charm onium production at�xed-targetenergiesprobesx valuesin the\antishad-

owing"region,wheretheparton densitiesareenhanced in theheavy nucleus.Sincec�c

production isdom inated by gluon fusion,a good understanding ofcharm onium pro-

duction in p-nucleuscollisionsispresently ham pered by thelackofdetailed knowledge

ofthe nuclear gluon distributions,illustrated by the spread in the curves shown in

therightpanelofFig.1.

Figure 2 shows the inuence on the J/ production cross section per nucleon

(in the absence ofany �nalstate absorption) ofusing the EKS98 nuclear parton

distribution functionsratherthan thoseofthefreeproton.Theleftpanelshowsthat,

at�xed-targetenergies,m idrapiditycharm onium production should beenhanced in p-

Pb collisionswith respecttothelinearextrapolation ofthepp yields(seeRefs.[24,25]

form oredetails).Therightpanelshowsthatthe\antishadowing" e�ectturnsinto a

\shadowing" e�ectwhen charm onium production atforward xF isconsidered.

3.3 C harm onium survivalprobabilities

In the fram ework ofthe Glauber m odel,described in detailin Ref.[26],the prob-

ability thata given charm onium state,generically represented by  ,produced in a

p-A collision,traversesthe targetnucleusunbroken by interactionswith the nuclear

5
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Figure 2:Changesinduced by the nuclearm odi�cationsofthe PDFson the c�c pro-

duction cross section per nucleon in p-W collisions,using EKS98: as a function of
p
s
N N

atxF = 0 (left)and asa function ofxF atfourdi�erentenergies(right).

m atter,can becalculated as

S
 

abs
=

�
 

pA

A �
 

pN

=
1

A

Z

d2b

Z
1

� 1

dz �A(b;z)S
 

abs
(b;z) ; (5)

with

S
 

abs
(b;z)= exp

�

�

Z
1

z

dz0�A (b;z
0)�

 

abs

�

; (6)

wherebistheim pactparam eterofthecollision (transversedistancebetween theight

path oftheincidentproton and thecentreofthenucleus)and z istheccproduction

point along the beam axis. This \survivalprobability" depends essentially on the

nucleardensity pro�les,�A,and on the charm onium break-up crosssection,�
 

abs
.In

ourcalculationswe used W oods-Saxon density pro�leswith the param etersgiven in

Ref.[27].No charm onium absorption hasbeen considered in Hydrogen nuclei.

Aswewillseein detaillateron,theabsorption crosssection crucially dependson

whether the PDFs are taken to be those ofa free nucleon or those ofa nucleon in

a nucleus. Forinstance,atSPS energieswe obtain the sam e J/ nuclearabsorption

pattern using proton PDFsand �
J= 

abs
= 4:5 m b aswe do using EKS98 nuclearPDFs

and �
J= 

abs
= 7 m b,asshown in Fig.3. Ifthe enhancem ent ofthe per-nucleon char-

m onium production crosssection caused by initial-state antishadowing isignored,a

weaker�nal-state \e�ective" absorption issu�cientto obtain thesam eresult.
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Figure 3: Illustration ofthe interplay between nuclear m odi�cations ofthe parton

densitiesand �nal-statecharm onium absorption.

4 M easured charm onium production crosssections

Table1liststheexperim entsthatm easured thecharm onium productioncrosssections,

orratios,used in ouranalysis.Allexperim entsdetected theJ/ through itsdecay to

dim uonsordielectrons,with good dilepton m assresolutionsand sm allbackgrounds.

Table1:Basicfeaturesoftheexperim entsprovidingthecharm onium production cross

sections(orratios)considered in thepresentstudy.

Experim ent Elab [GeV] Collision system s Phasespace

NA3 [10] 200 p-H,Pt 0:0< xF < 0:7

NA50 [3] 400 p-Be,Al,Cu,Ag,W ,Pb �0:425< ycm s < 0:575

NA50 [4] 450 p-Be,Al,Cu,Ag,W �0:50< ycm s < 0:50

E866 [9] 800 p-Be,W �0:10< xF < 0:93

HERA-B [28] 920 p-C,W �0:34< xF < 0:14

Experim ent
p
s
N N

[GeV] Collision system s Phasespace

PHENIX [14] 200 pp,d-Au jycm sj< 0:35,1:2< jycm sj< 2:2

Sinceourstudy focuseson thenucleardependenceofthequarkonium production

cross section, it is preferable to have severaltarget nucleiat each energy. NA50

collected data with �ve orsix di�erenttargetm aterials,from Be to Pb,providing a

m ore detailed quarkonium absorption pattern asa function ofthe size ofthe target

nucleusthan theexperim entswhich only used two targets.TheJ/ production cross

sectionsm easured by NA50in p-nucleuscollisions,at400and 450GeV,in thecentre-

7



Table 2: The J/ production cross sections, tim es branching ratio into dim uons,

m easured by NA50 at400 and 450 GeV.Theerrorsincludestatisticaland target-to-

targetsystem aticuncertainties,added in quadrature.

B � �J= =A [nb/nucleon]

NA50-400 NA50-450 \LI" NA50-450 \HI"

Be 4:717� 0:10 5:27� 0:23 5:11� 0:18

Al 4:417� 0:10 5:14� 0:21 4:88� 0:23

Cu 4:280� 0:09 4:97� 0:22 4:74� 0:18

Ag 3:994� 0:09 4:52� 0:20 4:45� 0:15

W 3:791� 0:08 4:17� 0:37 4:05� 0:15

Pb 3:715� 0:08

of-m assrapidity windows �0:425 < ycm s < 0:575 and jycm sj< 0:5,respectively,are

collected in Table2.The450 GeV valuescorrespond to two statistically independent

data sets,collected with \low" (LI) and \high" (HI) intensity proton beam s. The

400 GeV errorsaredom inated by a target-dependentrelativesystem atic uncertainty

of2.1% .An extraglobalsystem aticuncertainty of3% ,duetocom m on norm alisation

uncertainties,isnotincluded because itdoesnota�ecttheevaluation ofthenuclear

dependence.Thisisbecauseallthe400GeV p-A datasetswerecollected in thesam e

week,changing thetargetexposed to thebeam roughly every hour,using a rotating

target holder. On the contrary,the 450 GeV data sets were collected in di�erent

running periods,over �ve years,and have independent norm alisation uncertainties

(due to beam counting, trigger e�ciencies, etc). Therefore, the quoted 450 GeV

errorsreectthetotaluncertainties(added in quadrature).

TheNA50450GeV crosssectionswerealsoreported in fourequidistantxF bins[4].

However,given their large uncertainties and sm allxF coverage,they do not really

provideextrainform ation with respecttotheintegrated values,re-analysed in Ref.[3]

to ensureconsistency with the400 GeV data analysis.SinceNA50 reported absolute

production crosssections(in nb)foreach p-nucleussystem ,weextracttheJ/ nuclear

absorption crosssection,�
J= 

abs
,togetherwith a �0 norm alisation factor. In the case

oftheotherexperim entswe used a one-param eter�tto extract�
J= 

abs
from the ratios

between the per-nucleon cross sections obtained with \heavy" and \light" nuclear

targets. The HERA-B and E866 data sam ples cover a relatively large range in xF

and are very im portant for a di�erentialstudy ofthe cold nuclear m atter e�ects.

Table 3 gives the E866 J/ W /Be ratios(see Ref.[9]forthe xF > 0:2 values) and

the HERA-B W /C ratios[28](derived from the exponent � using Eq.1)which we

haveused in ourstudy.Theerrorsrepresentstatisticaland point-to-pointsystem atic

uncertainties,added in quadrature.Theglobalnorm alisation errorsof3% (E866)and

4% (HERA-B,obtained from a 1.5% uncertainty on �)are notincluded in Table 3

butm ustbe considered when com paring di�erentexperim ents. E866 also m easured

Fe/Beratiosbutonly forxF > 0:2.
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Table3:J/ crosssection ratiosm easured by E866 and HERA-B,withoutincluding

globalerrors(3% and 4% ,respectively).

E866 HERA-B

xF range hxFi W /Beratio xF range hxFi W /C ratio

�0.10 /�0.05 �0.0652 0:8929� 0:0184 �0.34 /�0.26 �0.285 1:105� 0:158

�0.05 / 0.00 �0.0188 0:8682� 0:0084 �0.26 /�0.22 �0.237 1:034� 0:096

0.00 /+0.05 +0.0269 0:8720� 0:0060 �0.22 /�0.18 �0.197 1:090� 0:063

+0.05 /+0.10 +0.0747 0:8739� 0:0057 �0.18 /�0.14 �0.158 1:043� 0:042

+0.10 /+0.15 +0.1235 0:8652� 0:0067 �0.14 /�0.10 �0.118 0:986� 0:030

+0.15 /+0.20 +0.1729 0:8725� 0:0100 �0.10 /�0.06 �0.079 0:943� 0:022

�0.06 /�0.02 �0.040 0:915� 0:021

�0.02 /+0.02 �0.002 0:916� 0:025

+0.02 /+0.06 +0.037 0:902� 0:036

+0.06 /+0.14 +0.075 0:866� 0:063

Table4:J/ crosssection ratiosm easured by NA3 and PHENIX,withoutincluding

globalerrors(estim ated to be3% and 11% ,respectively).

NA3 PHENIX

xF range H /Ptratio ycm s range d-Au/pp ratio

0:0 = 0:1 1:27� 0:07 �2.2 /�1.7 0:95� 0:23

0:1 = 0:2 1:40� 0:06 �1.7 /�1.2 0:90� 0:21

0:2 = 0:3 1:34� 0:07 �0.35 /+0.35 0:85� 0:17

0:3 = 0:4 1:36� 0:12 +1.2 /+1.7 0:68� 0:13

0:4 = 0:5 1:75� 0:22 +1.7 /+2.2 0:59� 0:12

0:5 = 0:6 2:62� 0:52

0:6 = 0:7 3:58� 1:81

Table4givestheNA3 H/Ptratios,forseveralxF bins,asextracted \by eye" from

Fig.2 ofRef.[10].A com m on system aticerrorof3% [29]isnotincluded.NA3 used

two targets: protons and platinum . W hen com paring the NA3 values to the other

results,we should keep in m ind that a proton is not exactly a \nucleus". W e also

analysed thepresently availablePHENIX d-Au/pp ratiosin severalrapidity bins[14],

ascollected in Table 4. These ratioshave essentially no im pactin the resultsofour

study,given theirlargeuncertainties.

Itm ight be worth m entioning thatwe have notincluded in ourstudy the m ea-

surem entsreported by theNA38 and E772 experim ents.Lateranalysesofthosedata

sets,m ade in the fram ework ofthe NA50 [7,30]and E866 [9]experim ents,respec-

tively,revealed that those early results were biased,because ofwrongly evaluated

reconstruction e�ciencies(NA38)oracceptances(E772).
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5 A nalysis ofcharm onium nuclear absorption

5.1 C old nuclear m atter e�ects

Now that we have reviewed the available J/ production m easurem ents in proton-

nucleus collisions,we can study them in view ofderiving the so-called norm alnu-

clearabsorption,described in thefram ework oftheGlauberform alism and quanti�ed

through the \J/ break-up cross section",�
J= 

abs
,introduced in Section 3.3. Before

proceeding,however,we note thatthisisnotthe only m echanism a�ecting the per-

nucleon production crosssectionsin p-nucleuscollisions.Asm entioned in Sections3.1

and 3.2,the quarkonium production cross sections crucially depend on the parton

densities(particularly thegluon densities),which aresigni�cantly a�ected by nuclear

m odi�cations.These m odi�cationshave been taken into accountin ourcalculations,

em ploying severalparam etrisations. Other nuclear e�ects,such as energy loss,for-

m ation tim es,etc.,are likely to be present and would need to be considered in a

detailed study ofallaspectsofquarkonium \cold nucleare�ects". In particular,the

nuclearcharm onium production yieldsm easured by E866areclearly m oresuppressed

atforward xF than atxF = 0,asobserved in the W /Be and Fe/Be ratiosshown in

Fig.4. There isa rem arkable change in the suppression pattern atxF � 0:25,from

a relatively atregion around xF � 0,where the  0 ism ore absorbed than the J/ ,

to a forward region whereboth statesshow thesam estrong decreasewith increasing

xF.
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Figure 4:The xF dependence ofthe J/ and  0 production ratios,W /Be (left)and

Fe/Be(right),pernucleon,m easured by E866 atE lab = 800 GeV (points)and calcu-

lated assum ing only nuclearm odi�cationsoftheparton densities(curves).

Thecurvesin Fig.4 show theexpected trendswhen only considering thenuclear

m odi�cationson theparton distribution functions,withoutany �nalstateabsorption.
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Itisworth notingtheantishadowing enhancem entexpected in theEKS98and EPS08

m odelsatxF � 0.

In the presentwork,we concentrate on the \m idrapidity region" and neglectnu-

cleare�ectsotherthaninitial-statem odi�cationsofthepartondensitiesand�nal-state

charm onium absorption,calculated asdescribed in Sections3.1 and 3.2.Asin m ost

previousstudiesofcharm onium absorption in nuclearm atter,we treatthe J/ asa

single m eson passing through the nuclearm edium . However,signi�cantfractionsof

theJ/ yield observed in elem entarycollisionsaredueto 0and �c decays,8.1� 0.3%

and 25� 5% ,respectively,asrecently determ ined from charm onium hadroproduction

atxF � 0 [31].

5.2 Extraction of�
J= 

abs
from the m easurem ents

From the equationsin Section 3,we can see thatthe per-nucleon heavy-to-lighttar-

getratio ofthe charm onium production crosssectionsdecreasesasa function ofthe

break-up cross section. This dependence has been calculated respecting the condi-

tionsofeach m easurem ent,considering the kinem atics window,the collision energy

and the nuclear m atterdensities. The calculationswere perform ed using three sets

ofproton parton distribution functions: GRV LO 98 [32];M RST2001LO [18];and

CTEQ61L [19]. In addition to a controlcalculation with no nuclear m odi�cations

ofthe PDFs,labelled NONE,we em ploy four m odels ofthe nuclear m odi�cations:

EKS98 [21];nDSg [22];nDS [22];and EPS08 [20].
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Figure 5: Illustration ofextracting �abs for J/ and  0 production from the E866

W /Beratio with and withouttheEKS98 m odi�cationsofthePDFs.

The ratherstraightforward extraction of�abs foreach m easurem entisillustrated

in Fig.5,using theE866 J/ and  0W /Beratiosin therange�0:1< xF < 0:1.The
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PDFse�ectively cancelin thecalculationsoftheheavy/lightratios,even when nuclear

e�ectsareconsidered,sincecharm onium production isdom inated by ggfusion.Given

thatthe NA50 data were collected with �ve orsix di�erenttargets,we perform ed a

globaltwo-param eter�tto allthep-A production crosssectionswithin each data set

(400,450-LIand 450-HI).

Table 5:The J/ break-up crosssections,�
J= 

abs
,obtained in the Glauberfram ework

described in Section 3.TheNA50400and 450GeV valuescorrespond totherapidity

windows �0:425 < ycm s < 0:575 and jycm sj < 0:5, respectively. Our study uses

averagesofthetwo 450 GeV sets.

Exp. xF �
J= 

abs
[m b]

NONE nDS nDSg EKS98 EPS08

NA3 0.05 3:77� 0:98 3:94� 0:99 4:27� 1:00 5:79� 1:07 7:00� 1:12

0.15 5:35� 0:88 5:46� 0:88 5:85� 0:89 7:38� 0:95 8:15� 0:98

0.25 4:66� 0:98 4:63� 0:98 5:01� 0:99 6:18� 1:04 6:38� 1:05

0.35 4:96+ 1:51
� 1:56 4:71+ 1:49

� 1:54 5:07+ 1:51
� 1:56 5:81+ 1:56

� 1:61 5:62+ 1:55
� 1:60

NA50-400 4:83� 0:63 4:74� 0:62 4:73� 0:62 7:01� 0:70 7:98� 0:74

450-LI 4:51� 1:58 4:39� 1:58 4:39� 1:58 6:89� 1:76 7:93� 1:83

450-HI 4:82� 1:10 4:71� 1:09 4:71� 1:09 7:17� 1:22 8:21� 1:28

E866 �0.0652 2:37+ 0:83
� 0:77 2:32+ 0:83

� 0:77 3:01+ 0:85
� 0:79 4:67+ 0:92

� 0:85 6:06+ 0:98
� 0:90

�0.0188 3:00+ 0:73
� 0:69 2:85+ 0:73

� 0:69 3:62+ 0:75
� 0:71 5:39+ 0:82

� 0:76 6:20+ 0:85
� 0:79

+0.0269 2:90+ 0:71
� 0:67 2:65+ 0:70

� 0:66 3:27+ 0:72
� 0:68 4:98+ 0:78

� 0:73 5:03+ 0:78
� 0:73

+0.0747 2:85+ 0:71
� 0:67 2:50+ 0:70

� 0:66 2:65+ 0:70
� 0:66 4:36+ 0:76

� 0:71 3:81+ 0:74
� 0:70

+0.1235 3:07+ 0:72
� 0:68 2:61+ 0:71

� 0:67 2:13+ 0:69
� 0:65 3:95+ 0:75

� 0:71 2:98+ 0:72
� 0:68

+0.1729 2:89+ 0:74
� 0:70 2:31+ 0:73

� 0:68 1:28+ 0:69
� 0:65 3:13+ 0:75

� 0:71 1:91+ 0:71
� 0:67

HERA-B �0.158 | | | 0:73+ 1:42
� 0:73 2:23+ 1:52

� 1:35

�0.118 0:34+ 1:22
� 0:34 0:42+ 1:22

� 0:42 0:96+ 1:25
� 0:96 2:34+ 1:33

� 1:20 3:88+ 1:43
� 1:28

�0.079 1:39+ 1:18
� 1:08 1:38+ 1:18

� 1:08 2:04+ 1:22
� 1:11 3:68+ 1:32

� 1:19 5:08+ 1:41
� 1:26

�0.040 2:11+ 1:21
� 1:10 1:99+ 1:20

� 1:09 2:76+ 1:24
� 1:13 4:53+ 1:36

� 1:22 5:46+ 1:42
� 1:27

�0.002 2:10+ 1:28
� 1:15 1:85+ 1:26

� 1:14 2:58+ 1:31
� 1:18 4:32+ 1:42

� 1:27 4:58+ 1:44
� 1:29

+0.037 2:46+ 1:51
� 1:34 2:09+ 1:49

� 1:32 2:51+ 1:52
� 1:35 4:28+ 1:65

� 1:45 3:94+ 1:63
� 1:43

+0.075 3:52+ 2:43
� 2:02 2:96+ 2:36

� 1:97 2:52+ 2:31
� 1:93 4:58+ 2:56

� 2:11 3:59+ 2:44
� 2:02

Table5 collectsthe�
J= 

abs
valuesobtained with theCTEQ61L PDFs,including the

aforem entioned nuclearm odi�cations.OtherPDFsgive essentially thesam e results.

The globaluncertainties on the cross-section ratioswere propagated into the errors

on �
J= 

abs
using a M onte Carlo procedure;they are com m on to allthe xF binsatthe

levelofthe ratios but not at the levelof�
J= 

abs
. This way,we can directly com pare

resultsobtained by di�erentexperim ents. W e can clearly see a correlation between

the extracted �
J= 

abs
valuesand the assum ed initial-state nucleare�ectson the PDFs
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(already indicated in Fig.3): a strong antishadowing e�ect leads to a large �
J= 

abs
.

The m ost backward HERA-B bins,xF < �0:14,where � > 1,do not require any

�nal-state absorption unless strong antishadowing e�ects,such as those in EKS98

and EPS08,enhance the initial-state production rates in heavy targets. Given the

large uncertaintiesofthe presently available PHENIX ratios,we do notinclude the

corresponding �
J= 

abs
valuesin Table5.

5.3 D ependence of�
J= 

abs
on kinem atics

The ratio between the p-W and the p-Be J/ (and  0) cross sections m easured by

E866,shown in Fig.4,indicatesthe existence ofadditionalcharm onium absorption

m echanism satforward xF,perhapsrelated to form ation tim eand energy losse�ects.

On theotherhand,them easured pattern isrem arkably atin theregion xF < 0:25,

an observation naturally interpreted asm eaningthattheprocessesresponsibleforthe

strong absorption atforward xF arenegligibleatm idrapidity.Thisjusti�escon�ning

ourpresentstudiestothe\m idrapidityregion",wherethenucleare�ectsareseem ingly

sim plerand \Glauber�nal-statecharm onium absorption",asdescribed in Section 3.3,

m ay be su�cient to describe m ost m easurem ents. Furtherm ore,the SPS heavy-ion

data sam ples have been collected close to m idrapidity. Obviously, the at W /Be

ratiosat\m idrapidity" directly translate into an equally at�(xF),asshown in the

leftpanelofFig.6.
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Figure6:Thenucleardependenceofthecharm onium production crosssectionsm ea-

sured by E866,expressed in term sof� (left)and �
J= 

abs
(right),withoutthe3% global

uncertainty.Theleftpanelalso includestheNA50 and HERA-B patterns.

Ourcalculationsalso give ratherconstant�
J= 

abs
valuesin the range �0:1 < xF <

+0:2,with �
J= 

abs
� 3m b,when weneglectnuclearm odi�cationsofthePDFs,asshown

num erically in Table 5 and graphically in the rightpanelofFig.6. However,when
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we use nuclear parton distributions with strong antishadowing,we see that �
J= 

abs
is

signi�cantly largeratxF = �0:1than at+0:2,(seeFig.6-right).Anotherobservation

can be m ade from the xF dependence ofthe E866 data. Ifwe assum e thatnuclear

absorption e�ectson the J/ can be e�ectively described by the Glauberform alism

with a single �
J= 

abs
(ignoring form ation tim es,feed-down contributions,energy loss,

etc),weseearatherstriking increase of�
J= 

abs
atforward xF,explicitly shown in Fig.7

butalready clearin Fig.4 from thedi�erencebetween thecalculationsand thedata.

Theobservation ofa strongerabsorption atforward rapidity (orxF)doesnotdepend

on thenuclearm odi�cationsm odelused.

TheHERA-B m easurem entsalsospan arelatively largexF range,covering am ore

backward window buthaving a sizable overlap with E866 around xF � 0. Figure 7

showsthe E866 and HERA-B �
J= 

abs
values,obtained using the EKS98 nuclearPDFs,

asa function ofxF and laboratory rapidity,ylab,calculated from xF accounting for

theJ/ hp2Ti(which increaseswith
p
s
N N
).The\m idrapidity"(xF < 0:25orylab < 5)

E866and HERA-B patternscan beem pirically param etrised by thesam easym m etric

Gaussian shapebutindependentm agnitudes.
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Figure 7: The extracted �
J= 

abs
as a function ofxF (left) and ylab (right),as derived

from the E866 and HERA-B data. The forward E866 data points(open circlesand

stars)arenotincluded in the�tted curves.Theboxesrepresentthetotalerrors.

Beforecontinuing,wereiterateouroriginalgoalin lightofwhatwehaveobserved

so far.W e seek to determ ine and quantify possible changesofthe \m idrapidity J/ 

break-up crosssection" asafunction ofcollision energy.M orespeci�cally,wewantto

�nd outwhetheritisjusti�ed to analyse heavy-ion m easurem entsat158 GeV using

the �
J= 

abs
values derived from proton-nucleus data collected atm uch higher energies

(400and 450GeV).W ehavenow seen that,in reality,thereisnosingle\m idrapidity"

�
J= 

abs
value,unlessweneglectnucleare�ectson thePDFs.In particular,theE866data
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indicatethat,fornDSg,EKS98orEPS08,�
J= 

abs
dropsby afactorof2or3in therange

0 < xF < 0:25,corresponding to the centre-of-m ass rapidity range 0 < ycm s < 1.

Such a non-negligible change in �
J= 

abs
with the longitudinalm om entum ofthe J/ 

indicatesthatourquestisnotan easy one.Thereareseveralpossiblescenariosworth

considering. Forexam ple,itcould turn outthatalldata sets,regardlessofcollision

energy,exhibitthesam e�
J= 

abs
dependenceon ycm s,in shapeand m agnitude.Ifso,we

can determ ine the�
J= 

abs
suitablefortheanalysisoftheheavy-ion data by integrating

thatuniversalfunction in therange0< ycm s < 1,theNA50 spectrom eterwindow at

158 GeV.Thisislikely to resultin a di�erent�
J= 

abs
than thatobtained by integrating

the sam e function in the 450 GeV window,jycm sj< 0:5. On the otherhand,ifthe

m agnitude of�
J= 

abs
is energy dependent,the change in the rapidity window could,

perhaps,partially com pensatethechangein energy,leading to sim ilar�
J= 

abs
valuesat

158 GeV in 0 < ycm s < 1 and at450 GeV in jycm sj< 0:5.Itisalso possible thatthe

shape of�
J= 

abs
(ycm s)dependson energy,in which caseycm s isnota suitablevariableto

describecharm onium absorption.

5.4 D ependence of�
J= 

abs
on the collision energy

To evaluatewhich scenario bestdescribesthem easurem entsrequiresa globalsurvey

ofallavailablep-A results,obtained atdi�erentenergiesand in di�erentxF orrapidity

ranges.

The�
J= 

abs
valuescollected in Table 5 areshown in Fig.8 asa function oftheycm s

variable,forfourdi�erentparam etrisationsofthe nucleare�ectson the PDFs. The

E866,HERA-B and NA3 valuesderived using freeproton PDFs(top-leftpanel)can

be considered at in the m idrapidity range �0:3 < ycm s < 1:0. Therefore,in this

case (asfornDS)we can evaluate �
J= 

abs
(ycm s=0)by sim ply �tting each data setto a

constant.

Thenuclearm odi�cationsofthePDFsconsiderably a�ectthe�
J= 

abs
(ycm s)pattern

and anon-trivialycm sdependenceisneeded toevaluatethe�
J= 

abs
(ycm s=0)valuesforthe

variousdata sets.Using EKS98 PDFs,forexam ple,theE866 and HERA-B data sets

suggesttheuseofan asym m etricGaussian function with � � �0:21m b,�
L
� 0:37m b

and�
R
� 1:1m b.SincetheNA50�

J= 

abs
valuescorrespond tobroadrapidityranges,the

asym m etric Gaussian shape isweighted by the rapidity distribution ofthe m easured

J/ dim uons(thosewhich contributed tothederived �abs value),provided in Ref.[7].

However,thisconvolution hasalm ostno im pacton the�nalresult.

Thechangein them agnitudeof�
J= 

abs
(ycm s=0)with collision energy,

p
s
N N
,can be

observed in Fig.9,forfree proton PDFs(\NONE")and forthe nDSg,EKS98 and

EPS08 param etrisations ofthe nuclear PDFs. The corresponding num ericalvalues

are collected in Table 6. To determ ine the �
J= 

abs
relevantforthe analysisofthe SPS

heavy-ion results,we extrapolate �
J= 

abs
(ycm s=0) down to

p
s
N N

= 17:2 GeV (dotted

verticallinein Fig.9),using exponentialand linearfunctions.

Thedependenceof�
J= 

abs
onycm sat

p
s
N N

= 17:2GeV isshown inFig.10,forseveral
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Figure 8: �
J= 

abs
as a function of ycm s, obtained by considering four alternative

param etrisationsofthe nuclearPDFs. The boxes represent the totalerrors. W hen

nuclearPDFsareused,theE866and HERA-B absorption patternsclearly depend on

ycm s.

nuclearPDFs,while the valuesof�
J= 

abs
(ycm s=0)are collected in Table 7.Integrating

these functions in the NA50 heavy-ion rapidity window at158 GeV,0 < ycm s < 1,

weighted bytherapiditydistribution oftheJ/ dim uonsm easured in Pb-Pb collisions

(beforeacceptancecorrections)[33],weobtain thevaluesof�
J= 

abs
(0< ycm s < 1)given

in Table7.
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(ycm s=0)on thenucleon-nucleon centre-of-m assenergy.

The curves represent �ts with exponential(solid line with error band) and linear

(dotted line)functions.

Table 6: �
J= 

abs
(ycm s=0)valuesextracted from the �ve analysed data setsand forthe

nuclearPDFswehaveconsidered,including thefreeprotonscase.

Exp. �
J= 

abs
(ycm s=0)[m b]

NONE nDS nDSg EKS98 EPS08

NA3 4:71� 0:66 4:76� 0:66 6:78+ 1:01
� 0:91 7:82+ 0:90

� 0:84 10:55+ 1:24
� 1:10

NA50-400 4:82� 0:63 4:74� 0:62 5:02� 0:67 7:24� 0:73 8:48� 0:79

NA50-450 4:72� 0:90 4:61� 0:90 4:82� 0:95 7:25� 1:03 8:36� 1:08

E866 2:82+ 0:76
� 0:59 2:53+ 0:75

� 0:63 3:43+ 0:77
� 0:64 5:13+ 0:79

� 0:72 5:68+ 0:84
� 0:77

HERA-B 2:13+ 1:19
� 0:96 1:93+ 1:15

� 0:97 2:66+ 1:28
� 1:05 4:35+ 1:37

� 1:03 4:67+ 1:24
� 1:05
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Figure 10: �
J= 

abs
as a function of ycm s, extrapolated to 158 GeV considering four

alternativeparam etrisationsofthenuclearPDFs.

Table 7: The �
J= 

abs
(ycm s=0) and �

J= 

abs
(0 < ycm s < 1) values evaluated at 158 GeV

by extrapolating with an exponentialfunction thevaluesderived from m easurem ents

m adeathigherenergies,by NA3,NA50,E866 and HERA-B.

N-PDFs �
J= 

abs
(ycm s=0)[m b] �

J= 

abs
(0< ycm s < 1)[m b]

NONE 5:5� 0:8 5:5� 0:8

nDS 5:6� 0:8 5:6� 0:8

nDSg 7:3� 0:2 5:2� 0:2

EKS98 8:7� 0:7 7:2� 0:5

EPS08 11:8� 0:6 7:5� 0:4

5.5 D ependence of�
J= 

abs
on the J/ energy

W e now considera di�erentscenario. Ifwe assum e thatthe J/ is\broken up" by

interactionswith nucleonswhiletraversingthenucleartarget,itisnaturaltostudythe

absorption asa function oftheJ/ -nucleon centre-of-m assenergy,
p
s
 N
,a quantity

thatreectsboth the nucleon-nucleon centre-of-m assenergy,
p
s
N N
,and the energy

oftheJ/ .Thisenergy m ay bewritten asa function oftheJ/ xF as

p
s
 N

=

v
u
u
t m 2

 
+
p
s
N N

 

xF

r
s
N N

4
� m 2

 
+

r

p2
T
+ x2

F

�s
N N

4
� m 2

 

�

+ m 2
 

!

; (7)
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wherem  and pT arethem assand transverse m om entum oftheJ/ .W hen xF = 0

and thepT dependence isneglected,thisexpression reducesto

p
s
 N

= m  

s

1+

p
s
N N

m  

: (8)
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Figure 11: �
J= 

abs
asa function ofthe J/ -nucleon centre-of-m assenergy,determ ined

from the�xed-targetdatasets,with fourdi�erentnuclearPDFs.Theboxesrepresent

thetotalerrors.

Figure 11 shows �
J= 

abs
as a function of

p
s
 N

for the �xed-target data sets. The

centres and widths ofthe asym m etric Gaussians are exclusively determ ined by the

E866 and HERA-B points while the m agnitudes are independently �tted for each

data set. The NA3 values are closer to the others here than as a function ofycm s
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(Fig.8).However,itisclearthatthereisalso no scaling asa function of
p
s
 N

since

the di�erent data sets result in signi�cantly di�erent m agnitudes of�
J= 

abs
;the E866

and HERA-B valuesaretoo low whileNA50 istoo high relative to a globalaverage.

The decrease of�
J= 

abs
with increasing beam energy is always seen,regardless ofthe

nuclearPDF set,including thatofthefreeproton (NONE).

The absence ofa universalcurve indicatesthatthe m echanism sdeterm ining the

J/ nucleardependencearenotaccurately described by thesim ple\Glauberabsorp-

tion m odel"weused in ouranalysis.An im proved m odelisneeded toproperlyexplain

charm onium absorption and itsdependencieson collision energy and kinem atics,in-

cluding theextra absorption seen atforward xF.

6 Sum m ary and outlook

Previous derivations ofthe J/ norm alnuclear absorption baseline used to search

forQGP signalsin the SPS heavy-ion m easurem ents,collected atE lab = 158 GeV,

were based on proton-nucleusdata collected at400{450 GeV,assum ing that�
J= 

abs
is

a \universalquantity",insensitive to changes related to the collision energy or to

the rapidity window. Thispaperpresentsan im proved analysisofcharm onium pro-

duction in proton-nucleuscollisions. First,we studied J/ proton-nucleusdata col-

lected in several�xed-targetexperim ents,covering a broad rangeofcollision energies

(
p
s
N N

= 20{40GeV),aswellasd-Au datacollected byPHENIX at
p
s
N N

= 200GeV

(presently a�ected by large uncertainties). Second,we considered nuclearm odi�ca-

tionsofthePDFs,em ploying severalm odelswhich consistently indicate initial-state

gluon enhancem ent(antishadowing)in them idrapidityregion ofthe�xed-targetdata.

W e observe that,when the nuclearm odi�cationsofthe PDFsare taken into ac-

count,�
J= 

abs
signi�cantly dependson therapidity oftheJ/ ,even within a relatively

narrow m idrapidity window. In particular,the J/ nucleardependence determ ined

by E866 in the window �0:1 < xF < +0:2 only looks independent ofxF ifthe nu-

cleare�ectson thePDFsareneglected.Furtherm ore,thelevelofcold nuclearm atter

absorption ofm idrapidity J/ signi�cantly decreases with collision energy. W hile

the speci�c num ericalvalues depend on the nuclear PDF sets used,the decrease of

�
J= 

abs
with energy isa generalfeature,independentofany nuclearm odi�cationsofthe

PDFs. The observation that �
J= 

abs
depends on the rapidity ofthe J/ and on the

collision energy con�rm sthatthe sim ple Glauber-type absorption m odelcom m only

used in J/ suppression studies is insu�cient to properly reproduce the available

m easurem ents. The sought-for\universalquantity" is,afterall,a m ultidim ensional

function withoutobviousscaling features.

Forthe m om ent,in the absence ofa m ore detailed form alism ,we used the data-

driven �
J= 

abs
(ycm s)dependence and a sim pleextrapolation ofthe

p
s
N N

dependence to

evaluate the �
J= 

abs
value corresponding to the rapidity window covered by NA50 at

158 GeV,obtaining the valuessum m arised in Table 7. The �
J= 

abs
valuesobtained in

thisstudy should be seen ase�ective ones,incorporating the nuclear m attere�ects
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on thedirectly produced J/ aswellason them orem assive�c and  
0states.Indeed,

around 33% ofthe observed J/ yields resultfrom decays of�c and  0 states [31],

which are expected to su�erstrongernuclearabsorption than the directly produced

J/ .

Having relaxed theassum ption ofauniversalabsorption crosssection,wecan test

whetheritisjusti�ed to study the SPS heavy-ion data,collected at158 GeV,using

the �
J= 

abs
value obtained from the higher-energy NA50 m easurem ents. As shown in

Table 7,ifwe neglectnuclearm odi�cationson the PDFswe derive �
J= 

abs
(0 < ycm s <

1) = 5:5 � 0:8 m b,higher than the value used so far in the analyses ofthe SPS

heavy-ion m easurem ents(4:2� 0:5 m b,also using free proton PDFs). Ifwe use the

EKS98 param etrisation to m odelthe nuclear m odi�cations ofthe PDFs,we obtain

�
J= 

abs
(0< ycm s < 1)= 7:2� 0:5 m b.Itisinteresting to noticethatthisisidenticalto

thevalueobtained byNA50at400GeV in therapiditywindow �0:425< ycm s < 0:575

(7:01� 0:70 m b,see Table 5). The drop of�
J= 

abs
from ycm s = 0 to ycm s = 1,in the

EKS98 case,exactly com pensatesthe increase in �
J= 

abs
from E lab = 400 to 158 GeV.

Nevertheless,aquantitativere-evaluation ofthelevelof\QGP m elting"in theheavy-

ion data should beperform ed,also considering nuclearm odi�cationsofthePDFsin

thebeam nucleus(in an x rangedi�erentfrom thatofthetargetnucleus).

Ourunderstanding ofthecold nucleare�ectson J/ production,and theirenergy

dependence,should signi�cantly im prove in the near future,thanks to new NA60

resultsbased onproton-nucleusdatacollected at158GeV and tonew PHENIX results

based on a larged-Au data set.
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