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Perturbative nuclear physics
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We present a new formulation of effective field theory for nucleon-nucleon (NN ) interactions that treats
pion interactions perturbatively, and we offer evidence that the expansion converges satisfactorily to third order
in the expansion, which we have computed analytically for s- and d-wave NN scattering. Starting with the
Kaplan-Savage-Wise (KSW) expansion about the nontrivial fixed point corresponding to infinite NN scattering
length, we cure the convergence problems with that theory by modifying the short distance pion interaction,
essentially resumming those contributions in the contact interactions. This method appears to make possible a
host of high precision analytic few-body calculations in nuclear physics.
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I. Introduction. All strong interactions in nuclear physics
are of finite range and therefore should be amenable to
an effective field theory (EFT) treatment at sufficiently low
energy [1–3]. However, in contrast to the Fermi EFT for the
weak interactions, the strong interactions between nucleons
are nonperturbative even for momenta much smaller than the
inverse range of the interactions; therefore the effect of the
leading four-fermion interaction must be treated to all orders
in perturbation theory, even though by conventional power
counting it is an “irrelevant” operator. Weinberg [4–6] was
the first to describe an EFT for nuclear forces and devised
the prescription that one compute the nuclear potential in
an EFT expansion, truncate at a given order, and then solve
the Lippmann-Schwinger equation exactly with that potential.
This program has since been pursued by a number of groups
[7–23], with very impressive fits to phase shift data at N3LO.
An advantage of this approach is that the long distance part
of the interaction correctly incorporates chiral symmetry;
furthermore, with Weinberg’s power counting scheme for the
EFT expansion, there is in principle a systematic improvement
of the results with increasing order. A disadvantage of
Weinberg’s scheme is that it is not renormalizable, in the
sense that at any given order in the expansion there are
divergences that cannot be absorbed by operators included
at that order, arising from the singular nature of the EFT
potential [24–26]. Thus results depend on a regulator scale
� that cannot be removed, implying that the treatment of
short distance interactions is model dependent; in more recent
developments the potential is regulated separately from the
Lippmann-Schwinger equation, so that the result depends on
two independent regularization scales [17]. An analysis of
high partial wave channels at NLO in the Weinberg EFT
in Ref. [26] demonstrated that the cutoff dependence was a
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feature of all channels subject to an attractive pion tensor
force—despite the fact that there is no local operator to absorb
this model dependence until order (� + 1) in the expansion for
a channel with angular momentum �. Furthermore the analysis
in Ref. [26] demonstrated that, at this order, observables in
some channels (e.g., 3P0) are particularly sensitive to the value
of the cutoff even at energies as low as Tlab = 50 MeV. It is
argued that predictions at a given order only vary at the level
of higher order corrections because the regulator is varied over
some range, so that the model dependence does not interfere
with the predictive power of the EFT. This hope is difficult
to verify because the computations are all numerical, and the
numerical evidence suggests that the acceptable range for �

is very narrow.
The alternative KSW theory entails an expansion of the NN

scattering amplitude, instead of the nuclear potential, effected
by computing a well-defined class of Feynman diagrams at
each order in the expansion [24,30,31]. KSW power counting
is not determined by how operators scale near the trivial IR
fixed point of the nucleon contact interaction (as in Fermi’s
weak interaction EFT); instead it is determined by operator
scaling about the nontrivial UV fixed point corresponding to
infinite scattering length. At this fixed point nucleon operators
for s-wave scattering develop large anomalous dimensions and
are resummed nonperturbatively, a reasonable starting point
given how much larger NN scattering lengths are than the
range of their interaction. (See Ref. [32] for a related expansion
utilizing explicit dibaryon fields [33].)

The KSW scheme expands the NN scattering amplitude in
powers of Q, where the nucleon momentum p, the pion mass
mπ , and the inverse scattering length 1/a are all considered
O(Q), while other mass scales such as the nucleon mass
M and the pion decay constant fπ are taken to be O(1).
It was argued that convergence of the KSW expansion is
governed by the scale �NN = 16πf 2

π /(g2
AM) = 300 MeV. An

advantage of this approach is that the scattering amplitudes can
be computed analytically, and at each order the amplitude is
renormalized and independent of the cutoff. NN phase shifts
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FIG. 1. (Color online) The 1S0 NN phase shift in the KSW
expansion versus momentum in the center of mass frame to NNLO,
compared with the Nijmegen PWA93 partial wave analysis [27]. Our
calculation reproduces the result of Refs. [28] and [29].

were computed to order NNLO in Refs. [28] and [29]; the result
for the spin-singlet 1S0 phase shift is shown in Fig. 1, plotted
versus the momentum p of each nucleon in the center of mass
frame.

Although successful in the spin-singlet channel, it was dis-
covered in Ref. [29] that the KSW expansion does not converge
in the 3S1 channel, and the authors identified the singular
tensor potential mediated by pions, scaling as −1/r3 for small
r , to be the cause of the failure. Such a singular attractive
interaction is incapable of supporting a ground state and no
contact interaction can remedy this pathology. One possible
solution suggested in Ref. [25] is to expand around the chiral
(mπ = 0) limit, treating the infinite number of bound states in
the pion potential as being short range and outside the purview
of the EFT. In this article we propose a different solution:
we modify the pion propagator in a manner reminiscent of
Pauli-Villars regulation characterized by a heavy mass scale λ.
This modification tames the 1/r3 singularity in pion exchange,
effectively shifting that physics into the contact interactions
and reordering the summation of strong short-distance effects.
The advantages of the KSW expansion are retained: there
is a well-defined power counting scheme that organizes the
calculation, and results are analytic. Dependence on the scale
λ can therefore be studied analytically, and we find that all
contributions that grow as powers of λ are absorbed into
counterterms. The limit λ → ∞ is therefore smooth, and the
KSW expansion is recovered in that limit. Here we present
promising results for the low-lying spin-triplet phase shifts to
NNLO that indicate convergence of the expansion, and we
discuss how the scale λ resembles the renormalization scale µ

encountered in perturbative QCD calculations: an unphysical
scale that controls the ordering of the perturbative expansion
and its convergence.

II. Short-distance modification of the pion propagator.
Our starting point is the assumption that the failure of the
KSW expansion is due to the singular short-distance pion
tensor interaction, which can be eliminated by a shift in the
contact interactions of the EFT. The underlying principles of
EFT imply that we are free to distort the short-range pion
interactions however we please, because the counterterms
serve to ensure the correct low energy effects of short-distance
physics. We therefore choose the modification to (i) make it

possible to analytically perform the diagrammatic expansion
and (ii) leave unaltered the KSW expansion of the spin-
singlet channel, because apparently no convergence problem
is encountered there. These considerations led us to replace
the pion propagator Gπ (q,mπ ) by

Gπ (q,mπ ) + G(1,1)(q, λ) + G(1,0)(q, λ), (1)

where the subscript (I, J ) indicates the isospin and spin of
a fictitious meson. Including couplings at the ends of the
propagators, these expressions are given by

Gπ (q,mπ ) = i
g2

A

4f 2
π

(q · σ 1)(q · σ 2)(τ 1 · τ 2)

q2 + m2
π

G(1,0)(q, λ) = i
g2

Aλ2

4f 2
π

(τ 1 · τ 2)

q2 + λ2
, (2)

and
G(1,1)(q, λ) = −Gπ (q, λ).

The G(1,1) term looks like exchange of a pion with the wrong
sign propagator and mass λ, canceling the short distance
1/r3 part of the pion-induced tensor interaction for r <∼ 2π/λ.
The G(1,0) term is included to exactly cancel G(1,1) (up to a
contact interaction) in the spin-singlet channel; it resembles
the exchange of an I = 1, J = 0 meson, also of mass λ. In the
above expressions gA � 1.25 and fπ � 93 MeV; σ and τ are
spin and isospin matrices, respectively. Note that the only free
parameter is the mass scale λ. We expect that for λ >∼ 2�NN

the derivative expansion is not adversely affected and that the
original KSW expansion is recovered in the λ → ∞ limit.

We emphasize that we are not using G(1,1) and G(1,0) to
model real meson exchange, but only as a device to eliminate
the strong short-distance behavior from the tensor pion
exchange, putting all that physics in the contact interactions
that are fit to data. Choosing the masses in G(1,1) and G(1,0) to
both equal λ greatly simplifies the analytic computations.

III. NNLO calculation of spin-triplet amplitudes. Making
use of the modified pion propagator Eq. (1) and classifying
the mass scale λ to also be O(Q), we have computed all
the Feynman diagrams in Refs. [28] and [29] relevant for the
3S1,

3D1, and ε1 partial wave channels. These diagrams are
evaluated using dimensional regularization and we choose the
renormalization scale, µ = mπ . The analytic formulas for our
NNLO calculations will be given elsewhere; here we present
the results graphically. In Fig. 2 we show our results with
λ = 750 MeV for the 3S1,

3D1 and ε1 phase shifts, compared
with the Nijmegen partial wave analysis [27]. All three of our
results are improvements over the NNLO KSW computation
in Refs. [28] and [29] and, with the exception of ε1, show signs
of converging on the correct answer. The result for ε1 is less
convincing, but it should be noted that the anomalously small
value for ε1 in nature suggests that delicate cancellations are
at play, and one would only expect an EFT prediction to start
converging at high order in the expansion.

The dependence of our results on λ is displayed in Fig. 3,
where the bands indicate the changes in the phase shifts over
the range 600 MeV � λ � 1000 MeV. It is apparent from these
figures that our results are not extremely sensitive at low p to
the value we take for λ.
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FIG. 2. (Color online) New results for the 3S1,
3D1, and ε̄1 phase shifts plotted versus momentum in the center of mass frame to NNLO,

compared with the Nijmegen PWA93 partial wave analysis.

The role of the scale λ in these calculations can be
easily addressed given the analytic form we have derived
for the scattering amplitudes. It may seem strange that λ—a
regularization scale—is being treated as O(Q), which is our
low energy expansion scale. In particular, one might worry
that scattering amplitudes have terms proportional to powers
of λ/�NN , which is formally O(Q) but numerically >1. In
fact though one can show analytically that, at each order in
the expansion, contributions to the amplitudes proportional to
positive powers of λ are all absorbed into the counterterms
available at that order. Therefore the amplitudes only depend
on inverse powers of λ, and in the λ → ∞ limit the fictitious
meson propagators in Eq. (1) decouple and one smoothly
recovers the results of Refs. [28] and [29].

IV. Discussion. The EFT scheme we have presented here
for computing NN scattering in perturbation theory appears to
converge well and preserve the desirable feature of the KSW
scheme that at each order the amplitude can be computed as
a well-defined set of Feynman diagrams. Unlike the KSW
scheme, there is now a new dimensionful parameter λ that
regulates the short-distance tensor interaction. The manner
with which we have performed this regulation is certainly not
unique, and we have shown that our results are not particularly
sensitive to the value of λ and that over a wide range for λ the
variation of the phase shifts are comparable to or smaller than
higher order corrections in the EFT expansion.

However, we know that by taking λ → ∞ we recover the
KSW expansion, which fails to converge above p ∼ 100 MeV.

The parameter λ apparently plays a role analogous to the
renormalization scale µ in perturbative QCD. The scale µ

is unphysical, and a nonperturbative QCD calculation will
not depend on it; however, at any finite order in perturbation
theory, amplitudes do depend on µ, and varying µ corresponds
to reordering the perturbative expansion. Choosing µ appro-
priately (e.g., via the BLM scale-setting prescription [34])
can optimize the perturbative expansion, while nonoptimal
choices for µ lead to poor convergence. Similarly, λ is an
unphysical parameter, and varying λ constitutes a reordering
of the the EFT expansion, with smaller λ resulting in more
of the pion interaction being accounted for in the resummed
contact interactions. Taking λ � 750 MeV appears to optimize
the expansion, while choosing λ = ∞ yields the standard
KSW expansion, which fails to converge at relatively low
momenta.

It is not possible to directly compare our expansion with
the Weinberg expansion results at a given order, because the
calculations are arranged differently. For example, one-pion
and two-pion exchange appear at NLO and N3LO in the
KSW expansion, respectively, while they appear at LO and
NLO in the Weinberg expansion. Nevertheless, numerically
our NNLO results compare favorably with the NLO Weinberg
expansion results in Ref. [14], with the exception of ε1, which
is comparable to LO.

In a subsequent paper we will present the detailed form of
the amplitudes at NNLO for the partial waves presented here,
as well as extending our work to other channels. While we
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FIG. 3. (Color online) The NLO (green band) and NNLO (blue band) results for the 3S1,
3D1, and ε̄1 phase shifts showing their variation

as λ is varied in the range 600 MeV � λ � 1000 MeV.
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have demonstrated that our expansion fixes the convergence
problems at NNLO in the s and d waves that had been found
in Ref. [29], we have not addressed here the issues raised
in Ref. [26] concerning the need for counterterms in higher
partial wave channels with an attractive tensor force. While
our expansion is fully renormalized and therefore does not lack
the necessary counterterms at any order to make the amplitude
cutoff independent, it is possible that these channels (such
as 3P0) may not converge well until the order at which the
first counterterm appears. To study this will require computing
the p-wave amplitudes to N3LO, a project which is currently
under way.

Our theory provides a well-defined prescription for com-
puting a number of additional processes to NNLO, such
as electromagnetic effects, including form factors, Compton

scattering, polarizabilities, and radiative capture, and it will
be interesting to compare such results with experiment as
additional tests of the efficacy of this method.
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[10] C. Ordoñez, L. Ray, and U. van Kolck, Phys. Rev. C 53, 2086
(1996).

[11] J. L. Friar, D. Huber, and U. van Kolck, Phys. Rev. C 59, 53
(1999).

[12] M. C. M. Rentmeester, R. G. E. Timmermans, J. L. Friar, and
J. J. de Swart, Phys. Rev. Lett. 82, 4992 (1999).

[13] V. Bernard, N. Kaiser, and U.-G. Meissner, Nucl. Phys. A615,
483 (1997).

[14] E. Epelbaum, W. Gloeckle, and U.-G. Meissner, Nucl. Phys.
A671, 295 (2000).

[15] E. Epelbaum et al., Phys. Rev. Lett. 86, 4787 (2001).
[16] E. Epelbaum et al., Eur. Phys. J. A 15, 543 (2002).
[17] E. Epelbaum, W. Gloeckle, and U.-G. Meissner, Eur. Phys. J. A

19, 401 (2004).

[18] E. Epelbaum, W. Glockle, and U.-G. Meissner, Nucl. Phys.
A747, 362 (2005).

[19] D. R. Entem and R. Machleidt, Phys. Lett. B524, 93 (2002).
[20] D. R. Entem and R. Machleidt, Phys. Rev. C 66, 014002 (2002).
[21] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001(R)

(2003).
[22] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,

054001 (2006).
[23] M. Pavon Valderrama and E. Ruiz Arriola, Phys. Rev. C 74,

064004 (2006).
[24] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B478,

629 (1996).
[25] S. R. Beane, P. F. Bedaque, M. J. Savage, and U. van Kolck,

Nucl. Phys. A700, 377 (2002).
[26] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev.

C 72, 054006 (2005).
[27] V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J.

de Swart, Phys. Rev. C 48, 792 (1993).
[28] S. Fleming, T. Mehen, and I. W. Stewart, Phys. Rev. C 61, 044005

(2000).
[29] S. Fleming, T. Mehen, and I. W. Stewart, Nucl. Phys. A677, 313

(2000).
[30] D. B. Kaplan, M. J. Savage, and M. B. Wise, Nucl. Phys. B534,

329 (1998).
[31] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B424,

390 (1998).
[32] J. Soto and J. Tarrus, Phys. Rev. C 78, 024003 (2008).
[33] D. B. Kaplan, Nucl. Phys. B494, 471 (1997).
[34] S. J. Brodsky, G. P. Lepage, and P. B. Mackenzie, Phys. Rev. D

28, 228 (1983).

011001-4


