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We present a new formulation of effective field theory for nucleon-nucleon (NN) interactions
which treats pion interactions perturbatively, and we offer evidence that the expansion converges
satisfactorily to third order in the expansion, which we have computed analytically for s and d wave
NN scattering. Starting with the Kaplan-Savage-Wise (KSW) expansion about the nontrivial fixed
point corresponding to infinite NN scattering length, we cure the convergence problems with that
theory by summing to all orders the singular short distance part of the pion tensor interaction. This
method makes possible a host of high precision analytic few-body calculations in nuclear physics.

PACS numbers: 21.45.Bc, 21.30.Fe, 12.39.Fe

I. INTRODUCTION

All strong interactions in nuclear physics are of finite
range, and therefore should be amenable to an effective
field theory (EFT) treatment at sufficiently low energy
[1, 2, 3]. However, in contrast to the Fermi EFT for
the weak interactions, the strong interactions between
nucleons are nonperturbative even for momenta much
smaller than the inverse range of the interactions; there-
fore the effect of the leading four-fermion interaction
must be treated to all orders in perturbation theory, even
though by conventional power counting it is an “irrele-
vant” operator. Weinberg was the first to describe an
EFT for nuclear forces [4, 5, 6], and devised the prescrip-
tion that one compute the nuclear potential in an EFT
expansion, truncate at a given order, and then solve the
Lippmann-Schwinger equation exactly with that poten-
tial. This program has since been pursued by a number
of groups [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23], with very impressive fits to phase shift
data at N3LO. An advantage of this approach is that
the long distance part of the interaction correctly incor-
porates chiral symmetry; furthermore, with Weinberg’s
power counting scheme for the EFT expansion, there is
in principle a systematic improvement of the results with
increasing order. A disadvantage of Weinberg’s scheme
is that it is not renormalizable, in the sense that at any
given order in the expansion there are divergences that
cannot be absorbed by operators included at that order,
arising from the singular nature of the EFT potential
[24, 25, 26]. Thus results depend on a regulator scale
Λ which cannot be removed, implying that the treat-
ment of short distance interactions is model-dependent;
in more recent developments the potential is regulated
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FIG. 1: The 1S0 NN phase shift in the KSW expansion, versus
momentum in the center of mass frame to NNLO, compared
with the Nijmegen PWA93 partial wave analysis [27]. Our
calculation reproduces the result of [28, 29].

separately from the Lippmann Schwinger equation, so
that the result depends on two independent regulariza-
tion scales [17]. An analysis of high partial wave channels
at NLO in the Weinberg EFT in ref. [26] demonstrated
that the cutoff dependence was a feature of all channels
subject to an attractive pion tensor force — despite the
fact that there is no local operator to absorb this model
dependence until order (`+1) in the expansion for a chan-
nel with angular momentum `. Furthermore [26] demon-
strated that at this order, observables in some channels
(e.g. 3P0) are particularly sensitive to the value of the
cutoff even at energies as low as Tlab = 50 MeV. It is
argued that predictions at a given order only vary at the
level of higher order corrections as the regulator is var-
ied over some range, so that the model dependence does
not interfere with the predictive power of the EFT. This
hope is difficult to verify since the computations are all
numerical, and the numerical evidence suggests that the
acceptable range for Λ is very narrow.

The alternative KSW theory entails an expansion of
the NN scattering amplitude, instead of the nuclear
potential, effected by computing a well-defined class
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of Feynman diagrams at each order in the expansion
[24, 30, 31]. KSW power counting is not determined
by how operators scale near the trivial IR fixed point of
the nucleon contact interaction (as in Fermi’s weak inter-
action EFT); instead it is determined by operator scal-
ing about the nontrivial UV fixed point corresponding
to infinite scattering length. At this fixed point nucleon
operators for s-wave scattering develop large anomalous
dimensions and are resummed nonperturbatively, a rea-
sonable starting point given how much larger NN scat-
tering lengths are than the range of their interaction.

The KSW scheme expands the NN scattering ampli-
tude in powers of Q, where the nucleon momentum p,
pion mass mπ and the inverse scattering length 1/a are
all considered O(Q), while other mass scales such as the
nucleon mass M , the pion decay constant fπ are taken to
be O(1). It was argued that convergence of the KSW ex-
pansion is governed by the scale ΛNN = 16πf2

π/(g
2
AM) =

300 MeV. An advantage of this approach is that the scat-
tering amplitudes can be computed analytically, and at
each order the amplitude is renormalized and indepen-
dent of the cutoff. NN phase shifts were computed to
order NNLO in refs. [28, 29]; the result for the spin-
singlet 1S0 phase shift is shown in Fig. 1, plotted versus
the momentum p of each nucleon in the center of mass
frame.

Although successful in the spin-singlet channel, it was
discovered in ref. [29] that the KSW expansion does not
converge in the 3S1 channel, and the authors identified
the singular tensor potential mediated by pions, scaling
as −1/r3 for small r, to be the cause of the failure. Such
a singular attractive interaction is incapable of support-
ing a ground state and no contact interaction can remedy
this pathology. One possible solution suggested in [25] is
to expand around the chiral (mπ = 0) limit, treating the
infinite number of bound states in the pion potential as
being short-range and outside the purview of the EFT. In
this letter we propose a different solution: we modify the
pion propagator in a manner reminiscent of Pauli-Villars
regulation characterized by a heavy mass scale λ. This
modification tames the 1/r3 singularity in pion exchange,
effectively shifting that physics into the contact inter-
actions and reordering the summation of strong short-
distance effects. The advantages of the KSW expan-
sion are retained: there is a well-defined power counting
scheme that organizes the calculation, and results are an-
alytic. Dependence on the scale λ can therefore be stud-
ied analytically, and we find that all contributions that
grow as powers of λ are absorbed into counterterms. The
limit λ → ∞ is therefore smooth, and the KSW expan-
sion is recovered in that limit. Here we present promis-
ing results for the low-lying spin triplet phase shifts to
NNLO that indicate convergence of the expansion, and
we discuss how the scale λ resembles the renormalization
scale µ encountered in perturbative QCD calculations:
an unphysical scale which controls the ordering of the
perturbative expansion and its convergence.

II. SHORT DISTANCE MODIFICATION OF
THE PION PROPAGATOR

Our starting point is the assumption that the failure
of the KSW expansion is due to the singular short dis-
tance pion tensor interaction, which can be eliminated by
a shift in the contact interactions of the EFT. The under-
lying principles of EFT imply that we are free to distort
the short range pion interactions however we please, as
the counterterms serve to ensure the correct low energy
effects of short distance physics. We therefore choose
the modification in order to: (i) make it possible to ana-
lytically perform the diagrammatic expansion; (ii) leave
unaltered the KSW expansion of the spin-singlet channel,
since apparently no convergence problem is encountered
there. These considerations lead us to replace the pion
propagator Gπ(q,mπ) by

Gπ(q,mπ) +G(1,1)(q, λ) +G(1,0)(q, λ) (1)

where the subscript (I, J) indicates the isospin and spin
of a fictitious meson. Including couplings at the ends of
the propagators, these expressions are given by

Gπ(q,mπ) = i
g2
A

4f2
π

(q · σ1)(q · σ2)(τ1 · τ2)
q2 +m2

π

G(1,0)(q, λ) = i
g2
Aλ

2

4f2
π

(τ1 · τ2)
q2 + λ2

, (2)

and G(1,1)(q, λ) = −Gπ(q, λ). The G(1,1) term looks like
exchange of a pion with the wrong sign propagator and
mass λ, canceling the short distance 1/r3 part of the
pion-induced tensor interaction for r . 2π/λ. The G(1,0)

term is included to exactly cancel G(1,1) (up to a contact
interaction) in the spin-singlet channel; it resembles the
exchange of an I = 1, J = 0 meson, also of mass λ. In
the above expressions gA ' 1.25 and fπ ' 93 MeV; σ
and τ are spin and isospin matrices respectively. Note
that the only free parameter is the mass scale λ. We
expect that for λ & 2ΛNN the derivative expansion is not
adversely affected, and that the original KSW expansion
is recovered in the λ→∞ limit.

We emphasize that we are not using G(1,1) and G(1,0)

to model real meson exchange, but only as a device to
eliminate the strong short distance behavior from the ten-
sor pion exchange, putting all that physics in the contact
interactions which are fit to data. Choosing the masses
in G(1,1) and G(1,0) to both equal λ greatly simplifies the
analytic computations.

III. NNLO CALCULATION OF SPIN-TRIPLET
AMPLITUDES

Making use of the modified pion propagator eq. (1)
and classifying the mass scale λ to also be O(Q), we have
computed all the Feynman diagrams in [28, 29] relevant
for the 3S1, 3D1 and ε1 partial wave channels. These
diagrams are evaluated using dimensional regularization
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FIG. 2: New results for the 3S1, 3D1, and ε̄1 phase shifts plotted versus momentum in the center of mass frame to NNLO,
compared with the Nijmegen PWA93 partial wave analysis.
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FIG. 3: The NLO (green band) and NNLO (blue band) results for the 3S1, 3D1, and ε̄1 phaseshifts showing their variation as
λ is varied in the range 600 MeV ≤ λ ≤ 1000 MeV.

and we choose the renormalization scale, µ = mπ. The
analytic formulas for our NNLO calculations will be given
elsewhere; here we present the results graphically. In
Fig. 2 we show our results with λ = 750 MeV for the 3S1,
3D1 and ε1 phase shifts, compared with the Nijmegen
partial wave analysis [27]. All three of our results are
improvements over the NNLO KSW computation in [28,
29], and with the exception of ε1, show signs of converging
on the correct answer. The result for ε1 is less convincing,
but it should be noted that the anomalously small value
for ε1 in nature suggests that delicate cancellations are
at play, and one would only expect an EFT prediction to
start converging at high order in the expansion.

The dependence of our results on λ is displayed in
Fig. 3, where the bands indicate the changes in the phase
shifts over the range 600 MeV ≤ λ ≤ 1000 MeV . It is
apparent from these figures that our results are not ex-
tremely sensitive at low p to the value we take for λ.

The role of the scale λ in these calculations can be eas-
ily addressed given the analytic form we have derived for
the scattering amplitudes. It may seem strange that λ—
a regularization scale—is being treated as O(Q) which is
our low energy expansion scale. In particular, one might
worry that scattering amplitudes have terms proportional
to powers of λ/ΛNN , which is formally O(Q) but numer-
ically > 1. In fact though one can show analytically

that at each order in the expansion, contributions to the
amplitudes proportional to positive powers of λ are all
absorbed into the counterterms available at that order.
Therefore the amplitudes only depend on inverse powers
of λ, and in the λ→∞ limit the fictitious meson propa-
gators in eq. (1) decouple and one smoothly recovers the
results of [28, 29].

IV. DISCUSSION

The EFT scheme we have presented here for comput-
ing NN scattering in perturbation theory appears to con-
verge well and preserve the desirable feature of the KSW
scheme that at each order the amplitude can be computed
as a well defined set of Feynman diagrams. Unlike the
KSW scheme, there is now a new dimensionful parameter
λ which regulates the short distance tensor interaction.
The manner with which we have performed this regu-
lation is certainly not unique, and we have shown that
our results are not particularly sensitive to the value of
λ, and that over a wide range for λ the variation of the
phaseshifts are comparable to or smaller than higher or-
der corrections in the EFT expansion.

On the other hand, we know that by taking λ → ∞
we recover the KSW expansion, which fails to converge
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above p ∼ 100 MeV. The parameter λ apparently plays
a role analogous to the renormalization scale µ in pertur-
bative QCD. The scale µ is unphysical, and a nonpertur-
bative QCD calculation will not depend on it; however,
at any finite order in perturbation theory, amplitudes do
depend on µ, and varying µ corresponds to reordering the
perturbative expansion. Choosing µ appropriately (e.g.,
via the BLM scale-setting prescription [32]) can optimize
the perturbative expansion, while non-optimal choices for
µ lead to poor convergence. Similarly, λ is an unphysical
parameter, and varying λ constitutes a reordering of the
the EFT expansion, with smaller λ resulting in more of
the pion interaction being accounted for in the resummed
contact interactions. Taking λ ' 750 MeV appears to
optimize the expansion, while choosing λ =∞ yields the
standard KSW expansion which fails to converge at rel-
atively low momenta.

It is not possible to directly compare our expansion
with the Weinberg expansion results at a given order,
since the calculations are arranged differently. For ex-
ample, one-pion and two-pion exchange appear at NLO
and N3LO in the KSW expansion respectively, while they
appear at LO and NLO in the Weinberg expansion. Nev-
ertheless, numerically our NNLO results compare favor-
ably with the NLO Weinberg expansion results in [14],
with the exception of ε1 which is comparable to LO.

In a subsequent paper we will present the detailed
form of the amplitudes at NNLO for the partial waves
presented here, as well as others. Our theory provides
a well defined prescription for computing a number of
additional processes to NNLO, such as electromagnetic
effects, including form factors, Compton scattering, po-
larizabilities, and radiative capture, and it will be inter-
esting to compare such results with experiment to thor-
oughly judge the efficacy of this method.
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