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Abstract

We study the framework of hierarchical soft terms, in which the first two generations
of squarks and sleptons are heavier than the rest of the supersymmetric spectrum.
This scheme gives distinctive predictions for the pattern of flavor violations, which we
compare to the case of nearly degenerate squarks. Experiments in flavor physics have
started to probe the most interesting parameter region, especially in b↔ s transitions,
where hierarchical soft terms can predict a phase of Bs mixing much larger than in
the Standard Model.

1 Introduction

The softly-broken supersymmetric Standard Model introduces new terms in the Lagrangian with
non-trivial transformation properties under the flavor symmetry group. These terms appear in
the squark mass matrices and the trilinear interactions

Q̃†LM
2
QL
Q̃L + D̃†RM

2
DR
D̃R + Ũ †RM

2
UR
ŨR +(

D̃†RYDADQ̃LHD + Ũ †RYUAU Q̃LHU + h.c.
)
. (1)

Here YD,U are the Yukawa couplings and generation indices have been suppressed. We concentrate
on the quark sector, but the extension to leptons is straightforward.

Fully generic flavor-breaking structures in the soft terms are ruled out by experimental con-
straints. However, these constraints can be used to identify the restricted class of allowed soft
terms, providing useful guidelines for model building. A broad class of theories is singled out
by the hypothesis of Minimal Flavor Violation (MFV) [1], which states that any flavor violation
originates from Yukawa couplings. The MFV hypothesis effectively suppresses new-physics con-
tributions to most of the flavor-violating processes. However, in the search for new effects in K,
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D and B physics it is useful to consider departures from exact MFV. Usually such departures
are described in terms of a small expansion parameter that measures the breaking of the flavor
group or of one of its subgroups. Three especially interesting examples have been studied in the
literature.

1) Degeneracy. The starting point is the universality assumption [2], which states that M2

and A in eq. (1) behave as flavor singlets. A distortion from exact universality comes from
additional contributions to M2 and A which are fully generic in flavor space, but their size is
characterized by a smaller mass scale, δm̃. The small expansion parameter is given by the ratio of
these two scales, δm̃2/m̃2, i.e. the ratio between the flavor-violating and flavor-symmetric terms.
The rotation angles that diagonalize the squark mass matrices are generally large, because they
are neither suppressed by the expansion parameter nor related to CKM angles. The suppression
of flavor-violating amplitudes arises from the near degeneracy of the quark mass eigenstates.

2) Alignment. The assumption is that quark and squark mass matrices are nearly simultane-
ously diagonalized by a supersymmetric field rotation, either in the down or in the up sector [3].
The bounds from the kaon system severely constrain the case in which M2

QL
is aligned along

the up direction. The bounds on D0–D̄0 mixing give important constraints on the alignment
along the down direction [4]. Correlations between quark and squark mass matrices leading to
alignment are possible in models where some approximate flavor symmetry determines the form
of Yukawa couplings and soft terms [3, 5]. Flavor alignment does not imply mass degeneracy of
squarks. Thus, in this case the situation is exactly reversed with respect to the case of degener-
acy. The suppression of flavor violating processes is due to the small squark mixing angles, while
squark masses can be widely different.

3) Hierarchy. The flavor structure of the first and second generation squarks is tightly con-
strained by K physics. On the other hand, the upper bounds on the masses of the first two
generations of squarks are much looser than for the other supersymmetric particles. Therefore
one can relax the flavor constraints, without compromising naturalness, by taking the first two
generations of squarks much heavier than the third [6, 7, 8, 9]. As discussed in more detail in Sec-
tion 2, this procedure alleviates, but does not completely solve, the flavor problem and a further
suppression mechanism for the first two generations must be present. However, it is not difficult
to conceive the existence of such a mechanism which operates if, for instance, the soft terms
respect an approximate U(2) symmetry acting on the first two generations [8, 10]. In the case of
hierarchy, the small expansion parameter describing the flavor violation is the mismatch between
the third-generation quarks identified by the Yukawa coupling and the third-generation squarks
identified by the light eigenstates of the soft-term mass matrix. This small mismatch can be re-
lated to the hierarchy of scales present in the squark mass matrix and to CKM angles. However,
for the phenomenological implications we are interested in, we do not have to specify any such
relation and we can work in an effective theory where the first two generations of squarks have
been integrated out. Their only remnant in the effective theory is the small mismatch between
third-generation quarks and squarks.

In this paper, we will revisit the properties of hierarchical soft terms, concentrating especially
on their implications in flavor physics. We will show how the hypothesis of hierarchy predicts
correlations between ∆F = 1 and ∆F = 2 processes which are different from the correlations
found in scenarios with degeneracy. We will present the bounds on the expansion parameters of
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the hierarchy case and compare them with the case of degeneracy. As a particularly interesting
example we will study the phase of Bs mixing, for which there are some claims [11, 12, 13] that
experiments have measured an excess with respect to the SM prediction. We will show that the
case of hierarchy is compatible with much larger phases of Bs mixing than the case of degeneracy,
and thus a hierarchical squark spectrum has more room to explain the alleged effect.

2 Hierarchical Soft Terms and Naturalness

The hypothesis of hierarchical soft terms states that the first two generations of squarks and
sleptons are much heavier than the rest of the supersymmetric particles, assumed to lie near
the electroweak scale. We will denote by m̃h the mass of the heavy squarks and sleptons and
by m̃` the mass scale of the other “light” supersymmetric particles. The original motivation
of this hypothesis [9] is that m̃h is more weakly bound by naturalness arguments than other
supersymmetric parameters, because its radiative effect on the Higgs mass parameter m2

H is
rather moderate. The leading effect comes from a one-loop renormalization of m2

H proportional
to an induced hypercharge Fayet-Iliopoulos term

Tr(Y m̃2) = Tr(m̃2
Q + m̃2

D − 2m̃2
U − m̃2

L + m̃2
E). (2)

Assuming that soft terms are generated at the GUT scale, this term leads to a naturalness bound
on m̃h just below the TeV scale [7]. Nevertheless, the term in eq. (2) vanishes if, at some energy
scale, scalar masses are universal or satisfy a GUT condition where hypercharge is embedded in a
non-abelian group. Since the term in eq. (2) is only multiplicatively renormalized, it will remain
zero at any scale.

If the Fayet-Iliopoulos term vanishes, then the leading renormalization of m2
H proportional

to m̃2
h comes from two-loop effects. In Fig. 1 we show an upper bound on m̃h, assuming that

first and second generation scalars are degenerate at a matching scale Msusy, where we start
the renormalization group flow. The bound corresponds to an upper limit ∆ < 10 on the fine-
tuning parameter ∆ [14], which is optimistic in the light of the present naturalness status of the
supersymmetric SM. Still, multi-TeV squarks are allowed by naturalness. It is also possible to
reach values of m̃h in the range of 10 TeV, but only if soft terms are generated at a very low scale
Msusy.

Another bound on the hierarchy of soft terms comes from the requirement that m̃h does
not drive the squared masses of third-generation squarks to negative values, through its two-
loop renormalization-group effect [15]. This bound, although weaker than the previous one, is
independent of naturalness arguments. Assuming complete degeneracy of the heavy states with
mass m̃h and of the light states with mass m̃`, the condition that color remains unbroken imposes
m̃h/m̃`

<∼ 15, if Msusy is close to the GUT scale. In the case of low Msusy, where the effect is
due to two-loop threshold effects not log enhanced, the bound becomes m̃h/m̃`

<∼ 25. However,
these bounds can be avoided by choosing appropriate boundary conditions of the soft terms at
the scale Msusy. For instance, all sfermions could be heavy at Msusy, but Yukawa effects could
dynamically bring the third generation to be light [16]. It is also possible to introduce new states
that approximately cancel the two-loop renormalization-group contribution to m̃2

` proportional to
m̃2
h and maintain the stability of the soft-term hierarchy against large radiative corrections [17].
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Figure 1: Upper bound on m̃h, assuming that first and second generation scalars are degenerate
at a matching scale Msusy. The bound corresponds to an upper limit ∆ < 10 on the fine-tuning
parameter.

These upper bounds on m̃h have to be compared with the lower limits coming from flavor-
violating effects in the K system. Assuming that the heavy squark sector is neither degenerate
nor aligned, we find the bound1

m̃h > 35 TeV (3)

from the real part of the ∆S = 2 transition, and

m̃h > 800 TeV (4)

from εK .
This shows that the hypothesis of hierarchical soft terms is not sufficient to solve the flavor

problem, unless one is willing to give up naturalness, in the spirit of Split Supersymmetry [19],
assuming that the first two generations of sfermions are directly coupled to the supersymmetry-
breaking sector. More concretely, we can retain naturalness and rely on a scheme for suppressing
the flavor transitions in the heavy sector, as can be achieved by an approximate U(2) symmetry
acting on the first two generations. In this respect, the hierarchical structure of soft terms can
be a useful way of parametrizing supersymmetric theories which, for model-dependent reasons,
have a certain separation of scales in the scalar sector. Moreover, hierarchical soft terms are
interesting because they make specific predictions in flavor physics controlled by relatively few
parameters related to physical quantities, like the mass hierarchy. As we will show, hierarchical

1These numbers are based on the analysis presented in Section 5. The effect of QCD corrections for heavy
squarks has been considered in ref. [18].
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soft terms offer a well-defined benchmark to be compared with the new experimental results in
flavor physics.

3 Hierarchy versus Degeneracy in ∆F = 1 and ∆F = 2 Processes

Let us first consider the gluino contribution to a ∆F = 1 process in the left-handed down quark
sector, dLi → dLj , neglecting for simplicity chirality changes. The amplitude of such a process is
proportional to

A(∆F = 1) ≡ f
(
M2

D

M2
3

)
dLi d

L
j

=WdLi D̃I
f

(
m2
D̃I

M2
3

)
W∗
dLj D̃I

. (5)

Here f is a loop function, M3 is the gluino mass and W is the unitary matrix diagonalizing the
6×6 down squark squared mass matrix M2

D in a basis in which the down quark mass matrix is
diagonal. We can simplify eq. (5) by using a perturbative expansion in the small off-diagonal
entries of the squark mass matrix. It is often sufficient to keep the first order in the expansion.
However, the second order can become important and even dominate in the case of 1–2 transitions,
depending on the relative size of the 12 expansion parameter compared to the product of the 13
and 23 ones, and on the relative sizes of the sfermion masses. One important example of the case
in which the second order dominates is the hierarchy case discussed below, in which the first order
is suppressed because of the heaviness of the sfermions of the first two families. Then, eq. (5)
becomes [20]

f

(
M2

D

M2
3

)
dLi d

L
j

=
m̃2

M2
3

f
(
xdLi

, xdLj

)
δLLij , (6)

where xi ≡ m2
i /M

2
3 , δLLij ≡

(
M2

D

)
dLi d

L
j
/m̃2, and

f(x, y) =
f(x)− f(y)

x− y
. (7)

The “mass insertion” δLLij is the expansion parameter and we have normalized it to a mass m̃
which can be chosen to be a typical scale of squark masses. This parameter effectively accounts
(at first order) for the flavor transition.

The “degenerate” case is obtained in the limit in which the squark masses in the loop function
coincide,

m2
d̃Li

= m2
d̃Lj
≡ m̃2. (8)

With this assumption, we obtain

f

(
M2

D

M2
3

)
dLi d

L
j

= xf (1)(x) δLLij , (degenerate case) (9)

where x = m̃2/M2
3 and f (n) is the n-th derivative of the function. The δ parameters are in this

case normalized to the universal scalar mass m̃2.
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In the “hierarchical” limit, the contribution to the loop function in eq. (5) from the heavy
squarks is negligible. Therefore eq. (5) becomes

f

(
M2

D

M2
3

)
dLi d

L
j

= f(x) δ̂LLij . (hierarchical case) (10)

Here x = m̃2/M2
3 as before, where now m̃2 is interpreted as the third-generation squark mass.

We have defined δ̂LLij ≡ WdLi b̃L
W∗
dLj b̃L

. Note that δ̂LLa3 ≈ −(M2
D)dLa dL3 /m̃

2
a, so that δ̂LLa3 is again

a normalized mass insertion. Also, δ̂LL12 = δ̂LL13 (δ̂LL23 )∗. Eq. (10) can also be obtained from an
extension of eq. (6) to the second order in δ.

Equations (9) and (10) show that for δ = δ̂ the difference between the two schemes, the
degenerate and the hierarchical one, is given by the order one difference between a function and
its derivative. However, this O (1) difference becomes larger when we consider ∆F = 2 processes
and turns out to affect the predicted correlation between ∆F = 1 and ∆F = 2. In fact, let us now
consider the gluino contribution to a ∆F = 2 dLi ↔ dLj process. The amplitude is proportional to

A(∆F = 2) ≡ WdLi D̃I
WdLi D̃J

g

(
m2
D̃I

M2
3

,
m2
D̃J

M2
3

)
W∗
dLj D̃I
W∗
dLj D̃J

, (11)

where the loop function g(x, y) is of the form2

g(x, y) =
g(x)− g(y)
x− y

. (12)

Expanding in the small off-diagonal elements of the squark mass matrix and assuming, as in the
case of ∆F = 1, the dominance of 2× 2 transitions, we obtain that eq. (11) can be written as

A(∆F = 2) =
m̃4

M4
3

ĝ
(
xd̃Li

, xd̃Lj

)
(δLLij )2, (13)

ĝ(x, y) =
g(x, x)− 2g(x, y) + g(y, y)

(x− y)2
. (14)

Thus, eq. (11) becomes

A(∆F = 2) =


x2

3!
g(3)(x)(δLLij )2 (degenerate case)

g(1)(x)(δ̂LLij )2 (hierarchical case).
(15)

Therefore, if m̃2 is the same in the two cases we find that the amplitudes for ∆F = 1 and ∆F = 2
processes satisfy the relation

A(∆F = 2)
[A(∆F = 1)]2

∣∣∣∣
degenerate

=
g(3)

6g(1)

(
f

f (1)

)2 A(∆F = 2)
[A(∆F = 1)]2

∣∣∣∣
hierarchical

. (16)

2This decomposition follows from the form of the loop integral

g(x, y) =

Z
dk

G(k)

(k2 − x)(k2 − y)
=

1

x− y

Z
dk G(k)

„
1

k2 − x −
1

k2 − y

«
≡ g(x)− g(y)

x− y .
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Figure 2: Dependence of the factor R = (g(3)/6g(1))(f/f (1))2 on x = m̃2/M2
3 . The loop functions

enter the coefficients of the LL insertions in the Bs–B̄s oscillation amplitude and in the B → Xsγ
decay amplitude.

This result is independent of the values of the mass insertions in the two cases. Partly due to the
different factorials involved, the ratio R = (g(3)/6g(1))(f/f (1))2 is typically small, easily O

(
10−1

)
for x = 1. As a consequence, the bounds on the ∆F = 2 processes inferred from ∆F = 1, or
viceversa, may be significantly different in the two frameworks. The factor R is shown in Fig. 2
as a function of x = m̃2/M2

3 . The loop functions entering the factor R plotted in Fig. 2 are the
ones entering the coefficients of the LL insertions in the Bs–B̄s oscillation amplitude and in the
B → Xsγ decay amplitude.

Another interesting point has to do with the relation between the s ↔ d, b ↔ d, b ↔ s
∆F = 2 processes. In the degenerate case, such processes are proportional (for given chiralities
and charge of the gaugino involved) to the a priori independent three quantities δ2

sd, δ
2
bd, δ

2
bs.

A partial correlation among the three processes could in principle be generated by higher order
contributions to the s ↔ d transitions, e.g. the ones proportional to δ2

sbδ
2
bd. However, such

contributions turn out to be always small. This is because of the limits on the two factors δbs
and δbd and because the four-insertions δ2

sbδ
2
bd contribution is proportional to (x4/5!) g(5), i.e. it is

suppressed by the factor 5! = 120. On the other hand, in the hierarchical case, a correlation does
arise because δ̂ds = δ̂dbδ̂

∗
sb/|Wbb̃|

2 ≈ δ̂dbδ̂
∗
sb. Moreover, the higher-order contribution proportional

to δ̂2
dbδ̂
∗2
sb is now proportional to g(1)(x), with no factorials involved.

4 The Flavor Structure for Hierarchical Soft Terms

In this Section we define the setting of hierarchical soft terms in greater detail. In order to obtain
the expressions for the amplitude of a generic flavor process in the hierarchical case, it suffices to
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consider the case of a one-variable loop function, as in ∆F = 1 transitions. The generalization
to more variables is straightforward. Let us then consider an amplitude whose dependence on
sfermion masses comes through

f

(
M2

M2

)
Ai,Bj

=WAi,If

(
m̃2
I

M2

)
W∗Bj,I . (17)

In the expression above, M is the mass of the relevant gaugino,M2 is the 6× 6 sfermion squared
mass matrix in the up squark, down squark, or charged slepton sector (the extension to sneutrinos
is again straightforward), written in a basis in which the corresponding fermion mass matrix is
diagonal and positive. The amplitude corresponds to a flavor transition between two fermions
with chirality A,B = L,R of families i, j = 1, 2, 3, i 6= j andW is the unitary matrix diagonalizing
M2, so thatWAi,I is the mixing between the fermion “Ai” and the I-th sfermion mass eigenstate,
I = 1 . . . 6.

According to our assumption, 4 out of the 6 squarks are much heavier than the others or the
gaugino mass. Their contribution to the loop function is then suppressed by the light-to-heavy
ratio of squared masses m̃2

`/m̃
2
h (at least, up to logarithms) with respect to the contribution from

third-generation squarks. However, for flavor transitions between quarks of the first two families,
the exchange of third-generation squarks comes at the price of mixing angles, also suppressed by
powers of the heavy mass scale m̃2

h. Nevertheless, as shown in the Appendix, the contribution
of heavy squarks to eq. (17) is subdominant, as long as some GIM mechanism is operative in
the first two generation squark sector. Since this must be the case in order to evade the strong
constraints from εK , we can neglect the effect of the heavy squarks in the summation of eq. (17).
Alternatively, the assumption of neglecting the heavy-state exchange is justified when the first
two generations of squarks are completely decoupled and the flavor mixing of the third-generation
squarks are determined by quark rotation angles (see Appendix).

We are then left with two light squarks with masses m̃`α and mixings WAi,α, where α = 1, 2
is the index of the light eigenstates. This gives a total of 2+20 real parameters. However, since
the mixings always appear in the combination WAi,αW∗Bj,α, the overall phases of the mixing
parameters (for any value of α) do not affect eq. (17) and the number of effective parameters is
2+18.

This is still more general than needed. In fact, the decoupling of the first two sfermion families
leads (under certain assumptions) to two additional constraints, as discussed in the Appendix.
First, in the limit in which the 4 heavy sfermions decouple, the 2×2 matrixWA3,α that diagonalizes
the 2×2 third-family sfermion mass matrix is approximately unitary. It is then always possible
to describe it in terms of an angle 0 ≤ θ ≤ π/2 and a phase φ. The angle θ corresponds to
the usual mixing angle between the two chiral components of third-generation squarks. Second,
the chirality-changing mixing is subdominant with respect to the chirality-conserving one, except
within the third family. This means that the leading effect in any chirality-changing transition
comes from the combination of a chirality-conserving one times a θ-angle rotation.

We are then left with 4 parameters describing the third generation squarks (m̃`α , θ, φ) and
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the four complex chirality-conserving “insertions” δ̂LLi3 , δ̂RRi3 , i = 1, 2 defined as follows:

δ̂LLi3 ≡
∑
α=1,2

WLi,αW∗L3,α δ̂LL3i = δ̂LL∗i3 (18a)

δ̂RRi3 ≡
∑
α=1,2

WRi,αW∗R3,α δ̂RR3i = δ̂RR∗i3 . (18b)

Using the expression of the matrix W derived in the Appendix, at first order in the insertion δ̂,
eq. (17) becomes

f

(
M2

M2

)
Li,Lj

=

[
cos2 θ f

(
m̃2
`1

M2

)
+ sin2 θ f

(
m̃2
`2

M2

)]
δ̂LLi3 δ̂LL∗j3 (19a)

f

(
M2

M2

)
Li,Rj

= sin θ cos θeiφ
[
f

(
m̃2
`1

M2

)
− f

(
m̃2
`2

M2

)]
δ̂LLi3 δ̂RR∗j3 (19b)

f

(
M2

M2

)
Li,L3

=

[
cos2 θ f

(
m̃2
`1

M2

)
+ sin2 θ f

(
m̃2
`2

M2

)]
δ̂LLi3 (19c)

f

(
M2

M2

)
Li,R3

= sin θ cos θeiφ
[
f

(
m̃2
`1

M2

)
− f

(
m̃2
`2

M2

)]
δ̂LLi3 . (19d)

Equations (19) further simplify if the mixing angle θ is small, as in the case of the down
squark sector in the moderate tanβ regime. By taking, for simplicity, equal masses for the third
generation squarks, m̃`1 ≈ m̃`2 ≡ m̃, we obtain

f

(
M2

M2

)
Li,Lj

= f (x) δ̂LLij (20a)

f

(
M2

M2

)
Li,Rj

= x f (1) (x) δ̂LRij (20b)

f

(
M2

M2

)
Li,L3

= f (x) δ̂LLi3 (20c)

f

(
M2

M2

)
Li,R3

= xf (1) (x) δ̂LRi3 , (20d)

where x = m̃2/M2 and we have defined

δ̂LLij ≡ δ̂LLi3 δ̂LL∗j3 (21a)

δ̂LRij ≡
M2

L3,R3

m̃2
δ̂LLi3 δ̂RR∗j3 i, j = 1, 2 (21b)

δ̂LRi3 ≡
M2

L3,R3

m̃2
δ̂LLi3 . (21c)

Here we have written eiφ sin θ as M2
L3,R3/(m̃

2
`1
− m̃2

`2
). Equations (21) express two important

results of the flavor structure of hierarchical soft terms. The flavor transition between the first two
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generations (δ̂LLij ) is determined by the product of the transitions involving the third generation
(δ̂LLi3 δ̂LL∗j3 ). The chiral-violating flavor transitions (δ̂LRij and δ̂LRi3 ) are determined by the product
of chiral-conserving flavor transitions and the chiral violation in the third family (M2

L3,R3/m̃
2).

5 Bounds on Flavor-Violating Parameters

We now illustrate the bounds on the flavor-violating parameters δ̂ and δ in the hierarchical and
degenerate cases, respectively. An early analysis of the hierarchical case was presented in ref. [21].
Our results for the LL insertions are summarized in Table 1. For definitess, here and below we
set the A-terms to zero and we consider the case m̃ = M3 = µ, with m̃ normalized to 350 GeV.
This choice allows a direct comparison with several results in the literature and is appropriate
for the sbottom mass. For simplicity we use the same value for the stop mass, relevant in the
case of D0–D̄0 oscillations, although that is barely compatible with the Higgs mass bound. For
sufficiently large tanβ, the leading chiral flip in the sbottom sector comes from µv tanβ. The
limits on the RR insertions are the same, except the one from BR(B → Xsγ), which is much
weaker. This is because the contribution of the LL insertion to the B → Xsγ amplitude interferes
with the SM one, while the RR contribution does not.

The bounds have been computed by constructing two-dimensional likelihood functions in
the Re δ–Im δ planes. Such functions have been obtained using a standard bayesian approach.
The real and imaginary parts of the insertions are varied with flat distributions and the input
parameters, summarized in Table 2, are varied according to their distributions. The likelihood
function is then constructed from a fit of the relevant experimental values, also shown in Table 2.
The expressions for the supersymmetry contributions to the Wilson coefficients in terms of the
hierarchical insertions have been obtained from [22, 23]. They have been used at the scale m̃ and
then runned at lower scales according to [23, 24, 25].

The bounds on s↔ d transitions are obtained using the constraints from the kaon mass dif-
ference ∆mK and the kaon mixing CP-violation parameter εK . Because of the large theoretical
uncertainty on the long-distance part of ∆mK , the absolute value of the supersymmetry contri-
bution to ∆mK has been allowed to be as large as its experimental value, with a flat probability
distribution. For each parameter δ (degenerate or hierarchical, LL or RR) a combined two-
dimensional likelihood function is first built in the Re δ–Im δ plane. The likelihood for

√
|Re(δ2)|

(or
√
| Im(δ2)|) is then obtained as the section along the

√
| Im(δ2)| = 0 (or

√
|Re(δ2)| = 0)

direction and is used to determine the 95% CL limits shown in Table 1. The limit from ∆mK

is compatible with the limit in [26], whereas the limit from εK is stronger. This is because the
allowed range for the supersymmetric contribution to εK is now smaller, in particular it is not
anymore allowed to take values as large as the SM contribution.

The bounds on b ↔ d transitions are obtained using the constraint from the B0
d–B̄0

d system
mass difference ∆mBd and on the phase of the corresponding amplitude. Again, a two-dimensional
likelihood is constructed. The corresponding 95% CL and 68% CL regions in the Re δ–Im δ plane
are shown in Fig. 3. The bounds on Re δ (Im δ) in Table 1 are obtained from the one-dimensional
section of the two-dimensional likelihood corresponding to Im δ = 0 (Re δ = 0). Choosing Im δ = 0
makes the limit on Re δ in Table 1 much stronger than the size of the allowed region in the Figure.
The corresponding constraint in Table 1 should therefore be considered as optimistic. Fig. 3 also
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D0 − D̄0 mixing∣∣∣δ̂LLut δ̂LL∗ct

∣∣∣ < 8.0× 10−3
( mt̃

350 GeV

) ∣∣δLLuc ∣∣ < 3.4× 10−2
( mq̃

350 GeV

)
B → Xsγ∣∣Re

(
δ̂LLsb

)∣∣ < 2.2× 10−2
( mb̃

350 GeV

)2 ( 10
tanβ

) ∣∣Re
(
δLLsb

)∣∣ < 3.8× 10−2
( mq̃

350 GeV

)2 ( 10
tanβ

)
∣∣ Im (δ̂LLsb )∣∣ < 6.7× 10−2

( mb̃
350 GeV

)2 ( 10
tanβ

) ∣∣Im (δLLsb )∣∣ < 1.1× 10−1
( mq̃

350 GeV

)2 ( 10
tanβ

)
∆mBs∣∣Re

(
δ̂LLsb

)∣∣ < 9.4× 10−2
( mb̃

350 GeV

) ∣∣Re
(
δLLsb

)∣∣ < 4.0× 10−1
( mq̃

350 GeV

)∣∣ Im (δ̂LLsb )∣∣ < 7.2× 10−2
( mb̃

350 GeV

) ∣∣Im (δLLsb )∣∣ < 3.1× 10−1
( mq̃

350 GeV

)
B0
d–B̄0

d mixing∣∣Re
(
δ̂LLdb

)∣∣ < 4.3× 10−3
( mb̃

350 GeV

) ∣∣Re
(
δLLdb

)∣∣ < 1.8× 10−2
( mq̃

350 GeV

)∣∣ Im (δ̂LLdb )∣∣ < 7.3× 10−3
( mb̃

350 GeV

) ∣∣Im (δLLdb )∣∣ < 3.1× 10−2
( mq̃

350 GeV

)
∆mK√∣∣∣Re

(
δ̂LLdb δ̂

LL∗
sb

)2∣∣∣ < 1.0× 10−2
( mb̃

350 GeV

) √∣∣∣Re
(
δLLds

)2∣∣∣ < 4.2× 10−2
( mq̃

350 GeV

)
εK√∣∣∣ Im (δ̂LLdb δ̂LL∗sb

)2∣∣∣ < 4.4× 10−4
( mb̃

350 GeV

) √∣∣∣Im (δLLds )2∣∣∣ < 1.8× 10−3
( mq̃

350 GeV

)

Table 1: Bounds on the LL insertions in the hierarchical and degenerate cases. The limits on
the RR insertions are the same, except the one from BR(B → Xsγ), which is much weaker. The
bounds are obtained at the 95% CL from one-dimensional distributions defined as explained in
the text.
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Figure 3: 95% CL (light shading) and 68% CL (dark shading) bounds on the real and imaginary
parts of δLLdb (left, blue) and δ̂LLdb (right, red) from the measurements of ∆mBd for m̃ = M3 = µ =
350 GeV.

shows that the point δ̂LLdb = 0 (δLLdb = 0) is excluded at more than 1σ. This is a consequence of
the mild deviation from the SM or MFV hypothesis observed in b↔ d transitions (see e.g. [12]).

In the case of b ↔ s transitions, the constraints we have considered are the mass difference
∆mBs and the B → Xsγ branching ratio. We have used ref. [27] to compute the SM contribution
to BR(B → Xsγ). We have constructed two separate likelihoods because of the different tanβ
dependence of the two constraints. In fact, the ∆mBs constraint is tanβ independent, while the
B → Xsγ constraint has a linear dependence on tanβ for moderately large tanβ.3 The 95% CL
contours corresponding to the two constraints are shown in Fig. 4 for tanβ = 10. As mentioned,
the B → Xsγ constraint is relevant for the LL insertions, whose contribution interferes with
the SM one, but not for the RR insertions. The bounds on Re(δ) and Im(δ) in Table 1 are
obtained as in the case of b ↔ d transitions. Because of the “holes” in the two-dimensional
likelihood function shown in Fig. 4, the one-dimensional likelihood for Im(δ) corresponding to
Re(δ) = 0 has three almost disconnected parts. We calculated the bounds in Table 1 by using
the central part of the likelihood only. A comment on this procedure is in order. It is of course
possible to obtain the one-dimensional likelihood for Im(δ) by a proper projection of the two-
dimensional one. However, this would not take into account the fact that in the region at largest
| Im(δ)| the agreement of the SM with data, ∆mBs ∼ 2|ASM

s |, is reproduced through an accidental

3The reason is that the leading contribution to BR(B → Xsγ) comes from the product of an LL insertion times
an LR transition between sbottom states, which grows linearly with tanβ. At large tanβ, this dominates over the
amplitude where the chiral transition occurs in the bottom quark line.
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Figure 4: 95% CL bounds on the real and imaginary parts of δLLsb (left, blue) and δ̂LLsb (right,
red) from the measurements of ∆mBs (lighter shading) and BR(B → Xsγ) (darker shading) for
m̃ = M3 = µ = 350 GeV and tanβ = 10. Switching the sign of µ approximately corresponds to
switching the sign of Re(δLLsb ) and Re(δ̂LLsb ) in the two figures. In the background, the contour
lines of the phase φBs are shown. The darker regions correspond to the 90% CL range presently
favoured by the experiment [13]. The axis of the two figures are chosen in such a way that the
contour lines are the same for the degenerate and hierarchical cases.

cancellation: ∆mBs = 2|ASM
s +ANP

s e2iφNP
s |, where ANP

s e2iφNP
s ∼ −2ASM

s . Our recipe “empirically”
discards such possibilities, and it seems appropriate for the purpose of calculating the bounds in
Table 1.

Finally, we show in Fig. 5 the bound on the c ↔ u transitions obtained from D0–D̄0 mix-
ing. The theoretical prediction for the SM contribution to the mixing amplitude is affected by
a large uncertainty due to long-distance contributions and it is assumed to lie in the interval
(−0.02, 0.02) ps−1 [28], with flat probability distribution. We translate in this case the likelihood
in a bound on |δ| by considering the one-dimensional section of the two-dimensional likelihood
along the |Re(δ)| = | Im(δ)| line.

In the hierarchical case, the bound from the s↔ d transitions apply to the product δ̂LLdb δ̂
LL∗
sb ≡

δ̂LLds . It is therefore possible to compare that bound with the indirect one obtained from the
constraints on δ̂LLsb and δ̂LLdb . It turns out that the combined bound is stronger than the direct
one in the case of ∆mK but not in the case of εK .

If the parameters δ̂ are related to the hierarchy according to the relation δ̂ ∼ m̃2
`/m̃

2
h, from
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Parameter Value Gaussian (σ) Uniform (∆
2 ) Reference

|εK | 2.229× 10−3 0.012× 10−3 − [29]
∆mK (ps−1) 5.292× 10−3 0.009× 10−3 − [29]

BR(B → Xsγ) 3.55× 10−4 0.26× 10−4 − [30]
∆mBs (ps−1) 17.77 0.12 − [29]
∆mBd (ps−1) 0.507 0.005 − [29]

φBd [
o] −4.1 2.1 − [24]∣∣MD

12

∣∣ (ps−1) 7.7× 10−3 2.5× 10−3 − [28]
ρ̄ 0.167 0.051 − [31]
η̄ 0.386 0.035 − [31]
λ 0.2255 0.010 − [29]
|Vcb| 41.2× 10−3 1.1× 10−3 − [29]

FK (GeV) 0.160 − − [29]
FBd (MeV) 189 27 − [32]

FBs
√
Bs (MeV) 262 35 − [32]

FD (MeV) 201 3 17 [33]
B̂K 0.79 0.04 0.08 [33]
BB

1 0.88 0.04 0.10 [33]
ηcc 0.47 0.04 − [34]
ηct 0.5765 0.0065 − [34]
ηtt 1.43 0.23 − [34]

Table 2: Main inputs used in the numerical analysis.
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the results in Table 1 we obtain a lower bound on the heavy mass scale

m̃h
>∼

(
m̃`

350 GeV

)1/2

5 TeV. (22)

As discussed in the Appendix, it is plausible to expect that, independently of the value of the
hierarchy m̃`/m̃h, the size of the parameters δ̂LLsb , δ̂LLdb cannot be smaller than the corresponding
CKM angles, |Vtd|, |Vts| respectively. Thus, it is particularly interesting to probe experimentally
flavor processes up to the level of |δ̂LLdb | ≈ 8 × 10−3, |δ̂LLsb | ≈ 4 × 10−2 and |δ̂LLds | = |δ̂LLdb δ̂LL∗sb | ≈
3× 10−4. The present constraints on the b↔ d transitions and on εK are at the edge of probing
this region. An interesting conclusion is that hierarchical soft terms predict that new-physics
effects in b↔ s transitions can be expected just beyond the present experimental sensitivity.

6 The Phase of the Bs Mixing

Let us now discuss the implications for the phase of the Bs mixing. In the hierarchical scenario,
the new-physics effects in b↔ s transitions are particularly promising. We have already pointed
out that the value of δ̂LLbs might be not so far from saturating the bound in Table 1. On top of
that, a value of the insertion parameter close to its ∆B = 1 bound gives rise to effects in ∆B = 2
observables that are more pronounced in the hierarchical than in the degenerate case. The reason
goes back to eq. (16). For most values of tanβ, the bound on the insertions is mainly due to the
B → Xsγ constraint. Its translation into a constraint on ∆B = 2 observables such as ∆mBs or
the phase φBs of the Bs–B̄s mixing depends on the scenario we consider. Eq. (16) shows that
for (g(3)/g(1))(f/f (1))2 ∼ 1 the bound on ∆B = 2 observables is expected to be looser in the
hierarchical case. This is confirmed by the relative size of the ∆B = 1 and ∆B = 2 constraints
in Fig. 4.

The previous considerations have interesting implications on the possible size of new-physics
effects in the phase of Bs mixing. The Bs–B̄s mixing amplitude in the presence of new physics
can be parameterized as

〈Bs|H full
eff |B̄s〉 = CBse

2iφBs 〈Bs|HSM
eff |B̄s〉, (23)

where H full
eff = HSM

eff +HNP
eff , 〈Bs|HSM

eff |B̄s〉 = ASM
s e−2iβs , 〈Bs|HNP

eff |B̄s〉 = ANP
s e2i(φNP

s −βs), and βs =
arg(−(VtsV ∗tb)/(VcsV

∗
cb)) = 0.018 ± 0.001. Recent measurements from the CDF [36] and D0 [37]

collaborations have shown a mild tension between the experimental value φBs ∼ −20o (for the
allowed region closer to the origin) and its SM prediction, φBs = 0o, at the 2.5σ level [11, 12, 13].
In the supersymmetric scenarios under consideration, the value of the phase φBs can be read from
the contour lines in Fig. 4. The lines have been obtained by fixing all the relevant parameters to
their central values. They converge in the two points corresponding to a vanishing total amplitude
ASM
s + ANP

s e2iφNP
s . The figure shows that in the region allowed by both the BR(B → Xsγ) and

∆mBs constraints, the phase reaches larger values in the hierarchical case. This is apparent in
Fig. 6, where the expectation for φBs in the two scenarios has been shown in the form of an
histogram (for a fixed value of tanβ = 10). The hierarchical case allows values of the phase φBs
about three times larger than in the degenerate case, in agreement with the generic expectation
from eq. (16). The range of φBs presently favored by the experiment is shown in Fig. 4.
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Figure 6: Expected distribution of the phase φBs, as determined by the BR(B → Xsγ) and ∆mBs

constraints in the degenerate (blue) and hierarchical (red), for tanβ = 10.

7 Conclusions

Hierarchical soft terms describe a class of supersymmetric theories which is characterized by the
existence of two separated mass scales: a large mass m̃h for the first two generations of squarks
and sleptons and a smaller mass m̃`, of electroweak-scale size, for the rest of the spectrum. A
certain hierarchy of the ratio m̃h/m̃` is not incompatible with naturalness, and it is welcome to
relax constraints from K0-K̄0 mixing and εK .

This class of theories includes radical proposals in which m̃h is in the range of hundreds of
TeV, fully addressing the supersymmetric flavor problem at the price of a certain amount of un-
naturalness. However, the pattern of hierarchical soft terms is also useful to describe less extreme
scenarios in which there is a more modest mass separation in the squark sector, nevertheless
sufficient to make the degeneracy assumption a poor starting point.

Hierarchical soft terms make well-defined and interesting predictions in flavor physics. Flavor-
violating effects in the down sector are described by four complex numbers: δ̂LLdb , δ̂LLsb , δ̂RRdb , δ̂RRsb .
There are fewer free parameters than in the ordinary case of degenerate squarks, mostly because
the d ↔ s transition is determined by the product of d ↔ b and b ↔ s transitions. Also, under
certain assumptions, flavor and chiral violating transitions are specified in terms of δ̂ and of
the same parameters that describe squark mixing in the third generation. Another interesting
peculiarity is the correlation between ∆F = 1 and ∆F = 2 transitions, which is characteristic of
the hierarchical soft term pattern and distinct from the one derived in the case of degeneracy.

In this paper we have analyzed how present experiments constrain the parameters δ̂. The
limits are derived by calculating the likelihood function for new-physics effects and combining
the different experimental data and theory parameters with their relative errors. We have also
applied the same procedure to the case of degeneracy, revisiting the limits on the mass insertion
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parameters δ.
For a degenerate spectrum, the mass insertions δ are the appropriate way to parametrize

new flavor-violating effects. The coefficients δ describe the small deviations from universality
but, lacking the knowledge of a complete theory of soft terms, they can only be treated as free
parameters and do not provide information on the required experimental sensitivity to discover
new-physics effects. The analogous quantities in the hierarchical scheme, δ̂, are related either to
the m̃`/m̃h hierarchy or to CKM angles, because of the special assumptions made on the pattern
of soft terms. Therefore the quantities δ̂ are associated to physical parameters and they provide
a defined target for the required experimental sensitivity. In particular, we expect that each δ̂i3
is larger than the maximum between m̃2

`/m̃
2
h and the CKM elements V ∗3i. The results obtained

in Table 1 show that present experiments have not yet probed u ↔ c transitions at the level
required by δ̂i3 = V ∗3i, and have only marginally tested the case of d ↔ s and d ↔ b transitions.
On the other hand, experiments have begun to explore the crucial range of values for δ̂sb in s↔ b
transitions. In this respect, it is tantalizing that there are claims for a deviation from the SM
predictions in the phase of Bs mixing, φBs [11, 12, 13]. Hierarchical soft terms could account for
such new-physics effect, compatibly with the other constraints in the b-s system. Actually we have
proved that, because of the correlation between ∆F = 1 and ∆F = 2 transitions, hierarchical
soft terms can lead to larger values of φBs than degenerate ones, for an equal value of tanβ.
Independently of the reliability of the alleged anomaly in φBs , the hypothesis of hierarchical soft
terms represents an interesting benchmark to confront experimental searches in flavor physics.
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Appendix

In this Appendix we compute the fermion-sfermion mixing matrix W in the limit of hierarchical
soft terms. We also discuss the conditions under which the heavy-squark contribution can be
neglected in the amplitude of eq. (17) and the natural size of the flavor-violating parameters δ̂.

In a general basis in which the quark mass matrix is not necessarily diagonal,W is a combina-
tion of the matrices that diagonalize the quark and squark mass matrices M andM2 respectively,

W =
(
UL 0
0 UR

)
W ′, URMU †L = diagonal, W ′†M2W ′ = diagonal. (24)

Because the relevant amplitudes will turn out to be dominated by loops with only third-
generation squark exchange, we are justified to neglect chiral-violating entries in the squark mass
matrix involving first or second generation indices. Under this assumption and working at leading
order in an expansion in inverse powers of the heavy-squark mass scale, we obtain

W ′ =


ŨL δ̂LL cos θ 0 −δ̂LL sin θeiφ

−δ̂LL†ŨL cos θ 0 − sin θeiφ

0 δ̂RR sin θe−iφ ŨR δ̂RR cos θ
0 sin θe−iφ −δ̂RR†ŨR cos θ

 , (25)
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where we have omitted the generation indices of the first two generations. The 2 × 2 unitary
matrices ŨL,R diagonalize the 2× 2 blocks of the heavy states in the squark mass matrix (which
we call M2

hL and M2
hR) according to

Ũ †LM
2
hLŨL = diagonal, Ũ †RM

2
hRŨR = diagonal. (26)

The two-component vectors δ̂LL,RRi3 (i = 1, 2) are given by

δ̂LLi3 ≡ −
2∑
j=1

(
M−2

hL

)
ij
M2

Lj,3, δ̂RRi3 ≡ −
2∑
j=1

(
M−2

hR

)
ij
M2

Rj,3. (27)

It is easy to verify that this definition coincides with eq. (18), at the leading order in the expansion
and neglecting quark rotation effects. Finally, θ and φ are the parameters determining the
diagonalization of the light-squark sector and are defined by

tan 2θ ≡
2
∣∣∣M2

L3,R3

∣∣∣
M2

L3,L3 −M2
R3,R3

, eiφ ≡
M2

L3,R3∣∣∣M2
L3,R3

∣∣∣ . (28)

The result presented in the text in eq. (19) can now be easily derived by replacing eq. (25)
into eq. (17). Moreover, we can use eq. (25) to compare the contributions to flavor-violating
amplitudes from heavy and light squarks . For instance, the flavor transition between the first
and second generations in the down-left sector, obtained from eq. (17), is given by

f

(
M2

D

M2

)
dLsL

=
m̃2
h

M2
∆hf

(1)

(
m̃2
h

M2

)
+ δ̂LL13 δ̂

LL∗
23 f

(
m̃2
`

M2

)
. (29)

Here, for simplicity, we have neglected quark rotations and we have considered near degeneracy
among the heavy squark states (with a common mass m̃h) and among the light squark states (with
a common mass m̃`). We have defined ∆h ≡ (M2

hL)12/m̃
2
h to parametrize the mass insertion in

the heavy sector. Using the property that, for large x, f(x) ∼ 1/x (and therefore f (1)(x) ∼ 1/x2),
we obtain that the second term in eq. (29) dominates over the first one when

δ̂LL >∼ ∆1/2
h

m̃`

m̃h
. (30)

Analogous considerations hold for δ̂RR. When the condition in eq. (30) is satisfied, we are allowed
to neglect the heavy-squark contribution in the loop diagram.

To establish if the condition is satisfied we have to discuss what is the natural range of
values for δ̂LL. A lower limit on δ̂LL is obtained from eq. (27) with the requirement that any
chiral-conserving entry of M2

D is at least of size m̃2
` ,

δ̂LL >∼
m̃2
`

m̃2
h

. (31)
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An upper limit on δ̂LL is derived by observing that the light left squark receives a contribution
from the heavy sector to its mass square equal to

− δ̂LL†M2
hLδ̂

LL cos2 θ − δ̂RR†M2
hRδ̂

RR sin2 θ ∼ O(δ̂LL2m̃2
h). (32)

Thus, barring special cancellations, the hierarchical separation between the light and heavy sectors
is maintained only if

δ̂LL <∼
m̃`

m̃h
. (33)

The natural range for δ̂LL (or δ̂RR) is defined by eq. (31) and eq. (33). In the absence of any
GIM suppression in the heavy sector (i.e. when ∆h ≈ 1), the natural values of δ̂LL are nearly
inconsistent with the condition in eq. (30). However, as discussed in the text, the constraint from
εK require that ∆h < 10−2m̃h/(3 TeV). In presence of a mechanism justifying the smallness of
∆h (like, for instance, an approximate U(2) symmetry), the condition in eq. (30) can be satisfied.

When the ratio m̃h/m̃` becomes very large, the quark rotation angles in UL,R can dominate
over those of W ′ in eq. (24). In this case, eq. (30) is automatically satisfied, and the assumption
of neglecting heavy squarks in the loop diagram is perfectly justified. Assuming that the CKM
matrix V = UuLU

d†
L is dominated by the rotation in the down sector, we obtain

δ̂LLdb ≈ V ∗td, δ̂LLsb ≈ V ∗ts. (34)

Thus, excluding unexpected cancellations, δ̂LL cannot be smaller than the maximum between
m̃2
`/m̃

2
h and what given in eq. (34). Although we cannot directly relate UR to CKM angles, we

expect that the result in eq. (34) will hold approximately for δ̂RR too if, for instance, the quark
mass matrix is nearly symmetric.
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