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A bstract

U sing G rad’sm ethod, we calculate the entropy production and derive a form ula for the second—

order shear viscosity coe cient in a one-dim ensionally expanding particle system , which can also
be considered out of chem ical equilbbrium . For a one-din ensional expansion of gluon m atter w ith
B jprken boost invariance, the shear tensor and the shear viscosity to entropy density ratio =s
are num erically calculated by an iterative and selfconsistent prescription w ithin the second-order
IsraelStew art hydrodynam ics and by a m icroscopic parton cascade transport theory. Com pared
with =s obtained using the N avierStokes approxin ation, the present result is about 20% larger
ata QCD coupling 5 O03(with =s 0:{8) and isa factor of2 3 larger at a sm all coupling
s 0:01.W edean onstrate an agreem ent between the viscous hydrodynam ic calculations and the
m icroscopic transport results on =s, except when em ploying a amnall 5. On the other hand,we
dem onstrate that for such an all 4, the gluon systam is far from kinetic and chem ical equilbbrium ,

w hich Indicates the break dow n of second-order hydrodynam ics because of the strong nonegilibrium
evolution. In addition, for large 4 (03 0%), the IsraelStew art hydrodynam ics form ally breaks

down at Jargem om entum pr ~ 3 G &V but is still a reasonably good approxin ation.
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I. INTRODUCTION

R ecent experim ental m easuram ents on the elliptic ow param eter v, at the BNL Rel-
ativistic Heavy Ton Collider (RHIC) ,B,B] show a strong collectivity of the decon ned
quark-gluon m atter. T he m atter produced was thus speci ed as a strongly coupled quark—
gluion plasna (LGP) D,H,B] or as a perfect uid H]. Further attem pts to determ ine how

erfect the RGP is have drawn attention to transport coe cients lke viscosity
E H B B D ﬁ Jand to the derivation and solution of viscous hydrodynam ics
!,,,,a,,,],whjch is still a m athem atical challenge.

M ost current viscous hydrodynam ic equations are based on second-order Israel-Stew art
kinetic theory ]. They are solved num erically using the given viscosity coe cients and
Initial conditions as well as parton and hadron equation of state. In particular, the shear
viscosity to entropy density ratio =s is determm Ined by com paring the elliptic ow from the
viscous hydrodynam ical calculations w ith the data at RH IC , as has been done recently in
R efs. ,a ], where the value =s 0:1 wasobtained. O n the other hand, even though the
early partonic phase m ay be well described by deal hydrodynam ics ( = 0), the hadronic
afterbuming ] has a larger dissipative e ect, which m ay be enough to slow down the
generation of the elliptic ow and bring its nalvalue into agreem ent w ith the data.

D issjpative phenom ena can be altematively described in ‘G:anErt calculations solving

Boltzm ann equations ofm atter constituents ,Q,B,Q,E ,@,

applicable for investigations of such phenom ena as them alization, kinetic decoupling, and

@ T his approach is

dynam ics of high-energy particles in system s far from equilibrium , ie., in a regim e where
the second-order viscous hydrodynam ics breaks dow n

R ecently, an on-shell parton cascade Boltzm ann A roach of M ultiParton Scatterings
(BAM PS) hasbeen developed to study therm alization ], elliptic ow v, m Q |j
and the energy loss ]Jof gluons produced in Au+ Au collisions at RH IC energy. A lso the
generation and evolution of viscous shock waves are surprisihgly well realized in BAM PS
calculations ]. T he shear viscosity of the gluon m atter at RH IC has been estim ated from
BAM PS calculations !, ] w ithin the NavierStokes approxin ation ]. The authors
found that to produce large v, com parable with the experim ental data, the gluon m atter
should have an =s between 008 and 02 constrained by details of the hadronization and
the kinetic freeze out. This is In line with the dissipative hydrodynam ic approach ].



Perturbative QCD (pQ CD ) gluon brem sstrahlung gg $ ggg is regponsble for the low =s
ratio and for the generation of large elliptic ow .

Beyond the N avier-Stokes approxin ation, w hich hasbeen used in Refs.[11,114], we derive
a new m icroscopic form ula for the shear viscosity coe cient from the kinetic theory using the
second-order G rad’sm ethod. T his is one of the goals in the present article. T he derivation
follow sR ef. [45]and is generalized for a particle system out of chem ical equilibrium .

A nothergoalisto elaborate on the breakdow n region of the second-order viscous hydrody—
nam ics. To do thiswe investigate the tin e evolution of a gluon m atter in a one-dim ensional
expansion w ith B jprken boost invariance [46] by solving the Israel-Stew art hydrodynam ic
equations [37]as well as by perform ing sim ilar BAM P S transport calculations for com pari-
son. W e quantify the deviation of the ghion distrlbution function from kinetic equilbrium
and show the region with large deviation, where the applicability of the Israel-Stewart hy—
drodynam ics is questionable.

T he article is organized as follows. In Sec. we Introduce theoretical fram ework for
deritving viscosity from the kinetic theory using second-order G rad’sm ethod . W e consider a
m assless particle systam , which undergoes a one-din ensional expansion w ith B jprken boost
Invariance. A com parison w ith the results obtained by the N avier-Stokes approxin ation [14]
is given in Sec. [III. U sing the form ula derived in Sec. [[I we calculate the shear viscosity
to entropy density ratio =s of gluon m atter: in Sec. [I[V] an iterative and selfconsistent
approach is ntroduced to calculate =s from the Israel-Stew art hydrodynam ics, w hereas the
results from BAM PS calculations are presented in Sec. [V]. For both hydrodynam ic and
transport calculations, deviations from kinetic as well as chem ical equillbbrium are shown

and analyzed. C onclusions are given in Sec. [/ 1.

II. SHEAR VISCOSITY COEFFICIENT FROM SECOND-ORDER KINETIC

THEORY

R elativistic causal dissipative hydrodynam ic equations can be derived from the kinetic
theory by applying G rad’s m ethod of m om ents [47]. A detailed derivation is reported in
Refs. [45,/48]and a prescription for calculating transport coe cients is also given there. In
this section we will follow R ef. [45]to derive an expression for the shear viscosity coe cient

when the considered system is out of chem ical equilibrium .



T he basic equation of relativistic kinetic theory is the Boltzm ann equation
p @ f(x;p)= CIE(x;p)] (1)

for a one-particle phasespace distribution function f (x;p)) = % . C [f (x;p)]denoctes
2 )3 ®

the collision term , which accounts for allm icroscopic interaction processes am ong particles.

T he entropy four-current isde ned by [45,149]

Z
d3p . . .
s = WP fx;p)MIn(fx;p)) 11: (2)
T he entropy production is then given by
Z Z
@s = dwp @ £(x;p)Inf (x;p)= dw C [f (x;p)1In £ (x;p) (3)

w ith the short notation dw = (ZL)fpo .

W e now assum e that the deviation of £ (x;p) from the equilbrium distrdbution f(x;p)
isanall:

fxip)= fqx;p) L+ (x;P)) (4)

where (x;p) 1 and

up

fqxXip)= e 7 5)

(x) and T (x) denote the local fugacity and tem perature, respectively. u (x) is the hydro-
dynam ic fourwvelocity of the medium . Equation (3) is the standard form for Boltzm ann
particles. The derivation below can be easily extended for Bose and Fem i particles. In
addition, we w ill restrict the follow ing discussions to the case of m assless particles (eg.,
gluons).

W e expand (x;p) up to second order in m om entum , that is,

x;p)= (x) xp + xpp ; 6)

w here the m om entum —<independent coe cients can be expressed in term s of the dissipative

currents ,gq and denoting buk pressure, heat ux and shear tensor [45,/481]:

= A,(3uu ) Biu g+ Cy (7)
= AU Bog (8)
= Ag 9)



w ith the profctor =g uu and symm etrization operation u  q = %(uq+uq).
Themetricused In thiswork isg = diag(l; 1; 1; 1).In general, the dissipative uxes
are de ned as progctions of deviations of the energy-m om entum tensor T  and particle

fourcurrent N from their equilibrium form [45,1481:

_ (10)
-3
T 2oy 1)
= u —
4 3
1 1
= T< > = — + — - T (12)
2 2
R R
with the de nitionsN = dwp f , T = dwppfand T =T T,, N =
N Neq.

W e use the follow Ing localm atching conditions on the energy and particle densities:

3 T!

o= e - — (13)
T3

n= neq: —2 (14)

w ith the de nitions for thedensitiese= u T u andn = u N . The local tem perature
sinply ollowsasT = e=3n. T he fugacity is then calculated via = n=(%T?). One cbtains
immediately u T u = 0Oandu N = 0. The buk pressure from Eq. ([I0) then
becom es

(g uu ) T = T =0 (15)

for m assless particles, since the energy m om entum tensor is traceless In this case. Thus,
= 0 according to Eq. [@).

In the follow ing, we w ill consider a one-din ensional B prken expansion 44]. T his in plies
that in the Jocalrest fram e, the distribution function f (x;p) is sym m etric w hen transform ing
pto p.Thus i the ocalrest frame, T = 0and N*= 0,where i= 1;2;3. The heat ux
g (1) vanishes in the Jocal rest fram e because

4 4 4
g=gu T uu T -g N +-uu N =u T - N =0 (16)
3 3 3
W ecbtain then p gp = 0 [seeEqg. 9)].
For a one-din ensionally expanding system , Eq. (d) thus reduces to
x;p)= Xpp: 17)



Putting £ = f4(1+ ) into Eq. (3) and using the Iinearization
h@+ ) = &pp (18)
we rew rite Eq.(3) as
@s = dw C [f (x;p)]In feq (x;P) dw C [f(x;p)] PP (19)
U sing the ormula (3) for fo; In the rst term of Eg. (19) one has
Z Z
dw C [f (x;p) ] In £ (x5P) = dw C [f (x;p)](In up =T)

Z Z
In dw C [f (x;p)]+ U dwp CIf (x;p)FT

= h dwC[fx;p)l= I €N : (20)

For the second-last dentity in Eq. (20), we used the energy-m om entum conservation:
Rdwp CExp)l= @ Rdwp pf=@T = 0. Equation (20) descrbes entropy pro—
duction due to particle production (e N > 0 for < 1) and absorption (@ N < 0 for
> 1).
W ith the de nitions

P = dwppCIEXp)] (21)

C

dwC [f (x;p)]= @ N 5 (22)

which are the 2nd and the Oth m om ent of the collision term the entropy production in

Eq.(I9) can be now written in a m ore com pact form
@s = Ch P (23)

In general, the entropy production in an im perfect uid can be expressed by the positive
de nite form [25,50,[51]

@s = Jh + (T} ? (T)qgg+@T)! ; (24)

where , ,and arenon-negative coe cientsdenoting the bulk viscosity, heat conductivity
and shear viscosity, regpectively. J = @ N is the source of particle production 50,151 Jand
is denticalw ith C (22). For a chem ically equilibrated system J vanishes. Com paring Eq.
23) to (24) we nd

P =(27T)" ; (25)



because in ourcase = 0and g g = 0 asdiscussed above. T he expression (23) is exactly
the sam e as obtained in [45]and describes entropy production due to shear viscous e ects.

W e then obtain the nalexpression for the shear viscosity coe cient

2T P 2TC, P

The last dentity is due to the fact that g wvanishes in the local rest fram e and thus
u g P = 0. W e note that the derived formula (26) is an approxin ate expression of
the true shear viscosity. W e call the \second-order" shear viscosity, because we have used
term s up to second order n mom entum or  (x;p) [see Eq. @)].

To calculate Cy we go to the localrest fram e, ie.,u = (1;0;0;0), where
Z

- T =T T, = AW p P P P feqxip) (27)

is valid according to Egs. (I2) and (I7) for a (0+ 1) din ensional expansion. In this fram e
[see Eq. (1)] reduces to
= CO N (28)

(1 Co8 T°=7?) Y=0; 1;9=1;2;3: (30)

W e have used the fact that is traceless and %’ = 0 due to the m atching condition (I3)
and T% = e in the Iocalrest frame. For a system undergoing a one-<in ensional B jprken
expansion, ie., In a (0+ 1) din ensional case, allo diagonalelementsof T —and thus

as well —vanish in the local rest fram e, particularly T% = 9 = 0;9= 1;2;3. Thuswe

obtain
2

Co= (31)

8 TG~
If the third spatial coordinate is chosen as the expansion axis,wehave T = T2, and in

the Jocal rest fram e the shear tensor takes the fom

0 1
00 0 0
B
0 = 0 0
- £ 2 g (32)
80 0 3 0%
0 0 0



which isalso given in [51]. W e thus obtain

3 2
_ 3 33
> (33)
C
P =C, P = %(3p33 p%) ; (34)

where we have used P + P?? = P%  pP¥ because P is traceless Hllow ing from the
de nition (21). Putting Egs. (27) and (34) into (28) gives the shear viscosity coe cient for
a (0+ 1) din ensionally expanding system ofm assless particles:

3 T2

4n :
2T C, (3P 33 poo) p 33 %P 00

For the Jast dentity, we have used the m atching conditions (14) and Eq. (31).

T he energy density e, the tem perature T and the shear com ponent in a (0+ 1) dim en—
sional expansion can be calculated by solving viscous hydrodynam ic equations w ith a given
value of shear viscosity . If isknown, the distrbbution function f is known too [see Egs.
), I7) and (28)]. O ne can thus evaluate P °° and P *° according to their de nitions (21)).
Then can be calculated em ploying Eq. [33). In sSec. [V] we will introduce an iterative
and self-consistent prescription to calculate the second-order shear viscosity.

On the other hand, £ can be obtained by solving the Boltzm ann equation (1) directly
an ploying transport simulations. Then  can be easily extracted using Eq. [33). Such
calculationsw illbe presented in section [V]. T he resultsw illbe com pared w ith those cbtained
in Sec. [[V]. As it tums out, a ratio of m ean transport free path to expansion tin e being
larger than unity and the variance of (x;p) being larger than unity w ill possibly indicate
the breakdown of the second-order viscous hydrodynam ics. Tn this regin e the valdity of
(39) is also questionable.

IIT. COM PARISON TO SHEAR VISCOSITY FROM NAVIER-STOKES AP-

PROXIM ATION

In Ref. [12], the shear viscosity coe cient was derived assum ing the N avier-Stokes ap-

proxin ation

Tt reads
1 =3 g=F)i_ 1
= —nN T
RS B=E2i RT+ 2@.(h )

Wl



where R 5 R
X R dw L2 C[f] hg=E°i dw C [f]
n (% g=F 21)

is the total transport collision rate, which was introduced In [38]. A 1l integrals are expressad

(38)

n the local rest fram e. hi denotes the average over particle m om entum .
Equation (2d) can be used to calculate the shear viscosity if the shear tensor obeys
the IsraelStewart equation [51]

+ =2 TR ——u ; (39)

w here =r< u” and denotesthe relaxation tin e [see also Eq. (47) below ]. Equation
(39) ism ore general than (34) in the rst-order (NavierStokes) theory.

Ifwe de ne

’ R raa = ?33 .%POO — (40)
n shE?1 hgi
then the shear viscosity from the G rad’sm ethod (33) can be rew ritten to
o 4DT2hE=3 §=E1P 1 . 1)
JE2L MBI R
wherewehaveused =T TJ=T" :T%=nhp/=E E=3i.RenemberthatP is

the second m om ent of the collision term [see Eq. (21)]. The expression (4]]) is sin ilar to Eq.
(37) except for the tem %@t(]n ), which Indicates that chem ical equilibration contributes
explicitly to the shear viscosity In the N avier-Stokes approxin ation rather than in the Israel-
Stew art approach.

In the next section, we calculate the shear viscosity in a gluon system w ithin the Israel-
Stew art approach and com pare the result with that obtained using the N avier-Stokes ap—

proxin ation [14].

Iv. CALCULATION OF SHEAR VISCOSITY IN A GLUON SYSTEM :AN ITER -

ATIVE AND SELF-CONSISTENT PRESCRIPTION

In this section we want to calculate the shear viscosity to the entropy density ratio =s
for a gluonic system , which undergoes a one-din ensional expansion with B jprken boost

Invariance, ie., a (0+ 1) din ensional expansion.



A . Prescription

Fora (0+ 1) din ensional case the shear tensor In the localrest fram e isgiven by Eq.
(32). Then the gluon distribution function in the local rest fram e reads

fxijp)= et 1 G (& B=2) (42)

according to Egs. (4), I7), (28) and (32). If ,T and are known, the shear viscosity
can be calculated according to Eq. [33), where P are evaluated by Eq. (21) via Eq.
(42). Note that for the case of a glionic system the value of has to be am pli ed by the
degeneracy factor of guons d; = 16. We thusde ne 4 = d; . In addition, the gluon
entropy density is given by
Z 9 2

s;=us = & dwpfep)mitip) 1) (@ b op —5i (43
g

whereny; = dz T’= 2 and 4 = dz are the gluon number density and the gluon shear
com ponent, and we have usad the approxin ation In (1+ ) foramall = G (pi §=2).
W e note that can be larger than unity for lJarge m om enta. In these cases, the expansion
also for Eq. (19)] fails. O n the other hand, the distribution function f (x;p) becom es very
snallat largem om enta. The e ect of the Invalid expansion on the Integrated quantity sq s
thus neglighble at this point.

In principle, = (f £4)=f gives the relative deviation from kinetic equilbrium . H ow -
ever, isalsoa function ofm om entum . Theaverageh (X;p)ieq Overm om entum distributed

n equilbbrium , ie, using f (x;p) In zeroth order of , is cbviously zero. W e Introduce the

| O —
variance = h 2iy as the quantity detem ining the deviation from kinetic equiliorium
and we nd o_
9 2 J47
= - =97 (44)
4 &

where ¢, = 3n4T is the gluon energy density.
Ifthedeviation from the localkinetic equillorium issu ciently an all, then thedynam ical
expansion in a (0+ 1) din ensional case can be well described by the Israel-Stewart (IS)

10



viscous hydrodynam ic equations [25,137,145,148,151,/521:

dn n
g _ Do, (45)
d
d 4
%S _ _i+ = (46)
d 3
d 1 1 1 d 2 1
—2 = 2 g ST () 4 (47)
d 2 > @ T 3,

where , = 9=(4e,) and = 2 , 4 denotes the relaxation tine. Equation (47) is just Eq.

(39) expressed I the ocal rest fram e using the hydrodynam ic velocity u = 2 (t;0;0;z),
where = € Z. Tn derivation of Eq. (39), which is discussed in Ref. [51], only tem s
of second order in gradients and dissipative ux have been included. If 1 Eqg. (44)
is Jarger than unity, further tem s containing 2 ( =ef (, ) are no longer snall
enough anym ore to be omm ited in derivation of Eq. (39) and thus in Eq. (47) aswell, ie.,
a higher order hydrodynam ic equation is needed. T hus the value of  is an indicator for a

breakdown of second-order hydrodynam ic theory.

Equation (43) for the gluon density can be easily solved:
ng( )=m4(0)—; (48)

which is denticalw ith the result from ideal hydrodynam ics. O n the other hand, the energy

density decreases slower than in ddeal hydrodynam ics due to the viscous e ects:

Thus we obtain the gluon fugacity

Nneg( ) Ng Ng o 43
()= —= = = o — ; (50)
ns( ) BT3B (e=3n,p ’
where o = (). The system will be continuously out of chem ical equilibrium during

the expansion, even if it is nitially at local themm al equilbbriim ( ¢ = 1). The larger the
viscosity, the an aller is the value of and the faster is the decrease of the fiigacity. Tnclusion
of production and annihilation processes such as the ghion brem sstrahlung and its back
reaction (gg $ ggg)m akes chem ical equilibration possible and thus, of course, Eq. (49) has
to bemodi ed! However, In thiswork we willuse Eq.(49) w ithout any m odi cations. The
derivation of new and altered equations and their solutions w ill be given In a forthcom ing
publication [53].

11



One can sove Egs. (4d) and (47), if the mitialvalies of ny, e;, 4 and also the value of
the shear viscosity 4 are given. On the other hand, to calculate 4 using Eq. (39) via Eq.
(42) we ne=d ng, & ,and 4. It is obvious that an iterative algorithm has to be developed
to calculate ng, &, 4 and 4 selfconsistently. T his algorithm is as follow s:

1. W e solve Egs. (49){47) w ith a guessed value of . T he guessed value can be chosen
arbitrarily because the nalresult does not depend on it. ,=ng4 is assumed to be a

constant of tin e.

2. Theobtamed ng( ),g( )and 4( )atatine areussd tocalculate 4( ) according
to (3H). W e calculate rst themoments P ushg f (x;p) ih Eq. (42) with given

ng( )ig( )and 4( ).
3. W e tum back to step 1. The value of 4( ) isused to solve Egs. @d) and (47) again.

Iterations w ill continue, until the relative deviation of 4 from the previous one is su cient
an all. T he iterative procedure allow s to calculate ( ),e( )and n( )aswellas =s( ) in
a consistent way for given Interactions. W e note that if j=n,4 is strongly tinm e dependent,
further iterations w ill be required to account for this tin e dependence. A re ned algorithm

w illbe presented in [53].

To obtain 4,P hastobe rstevaliated by (2I) via (42). P isa second m om ent of
the collision term and thus is determm ined by ghion interactions considered. T he com pact
form s of the collision termm s can be found In [34]. In this article elastic (gg ! gg) aswell
as brem sstrahlung (gg $ ggg) processes ingpired w ithin perturbative Q CD are responsible
for the gluon dynam ics. T he di erential cross section and the e ective m atrix elem ent are

taken as in Refs. [34,139]:

d 99! 99 9 5
_ . 51
de? (@ +m2)2’ L)
9g°* s’ 129°q;
| = — : k cosh 52
R @ mIF il gFimi] C° o e
whereg? = 4 . The D ebye screening m ass
Z
mp=d; s dwNE(x;p) (53)

with N. = 3 is applied to regularize infrared divergences. A lthough gg $ ggg processes are
considered, they contrbute only to the shear viscosity but not to chem ical equilibration,

12



because as m entioned above, particle num ber consaervation is assum ed at present to derive

Eqg. (49)). In provam ents w illbe done in a forthcom ing publication [53].

B. Results

Figure[l(a) shows 4=s; asa function of the expansion tin e for two values of the coupling
constant = 005 and 03. The lnitialglion system at o= 04 fn /c is assum ed to be in
therm al equiliorium w ith a tem perature of To = 500 M €V . Each of the results indicated by
the sym bols in F 4. [1] is obtained by about 40 iterationsw ith a guessed value of  (quessed) =
0:55§q. From Fi.[d(a) we see that the ratio g=Sg Isalmost constant in tine for = 03,
whereas for ;= 005, j=s; ncreasesm oderately. T he assum ption underlying the iterative
algorithm that 4=n4 4 4=s, does not depend on tin e is justi ed accordingly. One nds
that 4=s;, 0:18 fora coupling of = 03 and 4=s;, 3 for o= 0:05.

T he results for the gluon fugacity (obtained from the solution of Egs.(49)—(47)) depicted
in Fig. [() show a strong tin e dependence. The gn aller the value of 4, ie., the Jarger
the 4=s4, the faster is the deviation from the chem ical equilbbrium . This quantitatively
dem onstrates the consideration from above [see Egs. (50)].

W hen putting Eq. (42) nto Eq. (21]) one realizes that P 2Cy in Jeading order
of .Thus 4 doesnotdepend on . Secondly, from Eq. (43) we obtain s,=T° 1 In ).

Thus, 4=s4 1= (1 In )and will nhcrease slower than a logarithm ical behavior when
decreases: a strongerdecrease of  (com paring the result for o= 005with thatfor = 03
in the Iower panel of F ig. [1) will Jead to stronger increase of 4=s;,as seen in the num erical
results shown in Fig.[d(@a).

Figure[d(a) show s thedeviation from kinetic equilbbrium , from Eq. (44), asa function
of tin e scaled w ith the initialtime. For = 03 thevalueof  startsatzero (equilibrium ),
Increases until 3 ( and then relaxes to zero. The systam  rst evolves out of equilibrium and
then relaxesback to equilbbrium . O n thecontrary, increasescontinuously when em ploying
amuch weaker (and unphysically low ) coupling ¢ = 0:05. In this case the systam isalways
out of equilbbrium . To explain the di erent behaviors we de ne R o as the ratio of the

P
mean transport free path, 1= R T4

de ned by Eqg. (40), to the Hubblelke expansion
tin e scale
« 1
Rog = — = —B——— (54)
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O ur concept ofR g is sim ilar to that introduced in [37], w here the authorsdem onstrate that
the ratio of expansion tin e to the m ean free path controls the deviation from equilibrium .
Fora xed 4=s, themean transport path * = 1=P R, changes with tine. At mll
equilbriuim 1=T 13 and thus ©= =3 | IfR,y is larger than unity, the
systam starts to depart from equilibrium . TfFRyx is am aller than unity, the systam relaxes
to equilbbrium . Rog () isshown in Fig. Q). W ith = 0:05 the system evolves far away
from equilbbriim and the evolution is dom inated by free stream ing. The ratio Ry is a
m easure of the ability of the systeam to relax to kinetic equillbbrium . For ¢ = 0:05 kinetic
equilibration is not possible for the tim escales shown. T he regim e for which the system can
not com e close to kinetic equilibbrium is for the coupling = 01 02 corresponding to a
shear viscosity to entropy density ratio =s= 08 04.

In addition, is lJarger than unity at > 3, for ¢ = 0:05. The true entropy density
Sy should be snaller than that estimated according to Eg. (43), because the expansion
@+ ) isnot vald any m ore for large . T he derivation of the shear viscosity in Eq.
(39) becom es questionable as well, since the sam e expansion is used to obtain the entropy
production (19).

Finally, In Figs. [3 and [4 we com pare the results on 4=s; from the second-order (IS)
kinetic theory with those presented in Ref. [14] using the NavierStokes approxin ation.
The solid (dotted) curve in F . [3 depicts the contrdbution ofgg ! gg (g $ ggg) to 4=S4
obtained In [12]. The solid (dotted) curve w ith sym bols depicts the results from the present
calculationsat = 2,,at which the systam is still near therm al equilibrium . W e see that
the results follow ing from the second-order expansion arem ostly lJarger than those based on
the N avier-Stokes schem e, both forgg ! gg and forgg $ ggg processes. At (unphysical)
anall ¢ the di erence between the results is given by a factor of 2 3. In particular,
the di erence between the second-order and the N avier-Stokes results for brem sstrahlung
gg $ ggg is bigger than that for elastic gg ! gg process. At large ¢ the gg $ ggg
processes play a dom nant role (com pared with gg ! gg) n lowering 4=s;,whereasatanall

. this dom -nance becom es weaker 11]. In Fi. [4 the results on =s in plam enting both
elastic and inelastic processes are shown for the physical region of . Here the di erence
betw een second-order and N avier-Stokes based calculations is approxin ately 50% ( ¢ = 02)-
20% ( 5= 03)0% ( 3= 06).
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V. CALCULATION OF SHEAR VISCOSITY IN A GLUON SYSTEM : TRAN S-

PORT SIM ULATIONS EM PLOYING BAMPS

In this section, we solve the Boltzm ann ejquation for ghions using the parton cascade
Boltzm ann A pproach of M ultiParton Scatterings and repeat the task in the previous sec—
tion to calculate the shear viscosity to entropy density ratio 4=s; In a B prken-type one-
din ensional (0+ 1) expansion. W e caloulate 4 and s; according to Egs. (39) and (43) by
extracting P, 4,ng and g, from the transport sin ulations.

T he partonic cascade BAM PS which was introduced in [34,138] has been applied for a
(0+ 1) dim ensional expansion to study them alization of a color glass condensate potentially
produced In ultrarelativistic heavy ion collisions [39]. W e take the sam e num erical setup
for BAM PS as considerad In [39]. The initial condition and interactions of gluons are the
sam e as given In the previous section. In the parton cascade calculations, di erent from
calculations using the viscous hydrodynam ic equations (49)—{47), the inelastic gg $ ggg
processes kad to a net particle production or absorption, ie., @ N, & 0, which drives the
cham ical equilibration.

W e note that particle num ber changing processes are In plem ented in BAM P S, whereas
the particle num ber was considered to be constant in previous section. T herefore we are not
able to m ake a direct com parison between BAPM S results and those calculated by solving
IsraelStew art equations.

Fiure[d shows g=s, extracted within the space tin e rapidity interval 2 [ 01 :0:1],
where ¢ = % In[(t+ z)=(t 2z)]. W hen com paring these results w ith those shown in the upper
panelofFig.dlwe nd thatthey arealnostthesamefor (= 03,whereasfor = 0:05 the
ncrease of 4=s4 s slightly weaker in BAM PS calculations than in viscous hydrodynam ic
ones. T he reason for thisdi erence is the di erent behavior of the gluon fiigacity (rem em ber
that 4=sq4 1= (1 I )).Thegluon fugacity extracted from BAM PS is shown in Figld.
Its value is Jarger than that shown in the lower panel of F . [1], because ongoing chem ical
equilibration is realized n the BAM PS calculations.

T he kinetic equilbration is dan onstrated in Fig. [1(a) via the variance and in Fi.
8 via the m om entum dsotropy Q (t) =< %>.Thereaﬂi:son are sin ilar to those In
Fi.[J and can be well understood by the out-ofequilibrium ratio Ror shown in Fig.[A(b).

For s = 03 the transport m ean free path is shorter than the expansion rate whereas for
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s = 005 theevolution isdom inated by expansion. M om entum isotropization, shown in F ig.
[d, is practically restored for ;= 03 at later tin es, whereas for = 0:05 this restoration
is not possible. Here again the di erences between transport and viscous hydrodynam ic
calculations stem from the di erent tim e evolution of the gluon fugacity. To m ake fair
com parisons, m odi cations in the hydrodynam ic equations w ill be done in the near future
53] to take into account the chem ical equilibration.

A s pointed out already in the previous section, the param eters for which the system
cannot com e close to kinetic equilibbrium are the couplings of 01 02 corresponding
to a ratio =s 08 0:#4. For such param eters, the ratio ¥= is of the order of 1 at late
tin es and the system becom es highly di usive and viscous.

Fially, n Fig. [@ we investigate deviations from equilbrium of the gluon distribution
in BAM PS calculations at Jarge m om entum . Figure[d show s the non-equilbbrium part of

the transverse spectrum (nom alized to the equilibrium spectrum ) % 1 from
R -
BAMPS calculationsand thequantity < >, ( ;T; )= foq ( ;T; )= fodp, Wih

2

(xip) = z=¢ (& 2p2)], which is the analytically caloulated second-erder contribution
to the transverse spectrum , as a function of the transverse m om entum pr at = 4,.

The average < >, is calculated using ;T; extracted from the particular BAM PS

dN=(prdprd )

To—o g Lland< >, from Fig.[d shows that for

calculations. T he com parison of
s = 0:05 the distrdbution function in BAM PS contains contributions higher order in pr
and and thus the second-order ansatz (17) is not su cient to describe the evolution in
BAM PS.In contrast, for = 03 thedistribution function is reasonably good approxin ated
by second-order kinetic theory over the shown m om entum range. Thus we argue that the
dependence of on =( T%) is stronger than given by ansatz (I7), shce =( T%)
quanti es the strength of dissipative e ects, which are stronger at ¢ = 0:05. Inclusion of
additional temm s in Eq. (I7) would lead to a m odi cation of the evolution equation for ,
which follow s from the conservation law for the energy mom entum tensor: O = @ T
@ Rp p feg(1+ ). fempbying 5= 0:05( =s 3) for Brgep > 23 G &V the variance
< >, becomeslargerthan 1. For o= 0:3 thishappensatpr > 2:75G €V .For transverse
m om enta larger than these critical values the expansion In (1+ ) done to cbtain Eq [[9)
is Invalidated. T hus in the calculation of the entropy density (and entropy production) the

2

n(l+ )tem should beapproxinated by In(1+ ) - (P B crit) s 1. higher order

term s should be taken into account in the integration over the m om entum for pr > Prerit-
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However,with =s= 0:18 this correction is less than 0:5% , which is due to the an allness of

.W ith =s= 3thecorrection is 6% . Thusforphysicalvaluesof =s  0:2 second-order
hydrodynam ics is valid, even though form ally breaking down at large pr . In the unphysical
regime =s 3 higherorder corrections are not negligible. T hisdeserves future investigation
531

VI. CONCLUSIONS

W e have derived the shear viscosity coe cient  from kinetic theory for m assless par-
ticle system undergoing a one-din ensional expansion w ith B jprken boost=nvariance. The
derivation m akes use of G rad’s m om ent m ethod [45,147] and is based on an expansion of
the distrlbbution function up to second order in m om entum . The nal expression obtained
In the present work is sin ilar to the one based on the NavierStokes theory [12], but the
transgport rate has to be calculated in a di erent way. How close the result obtained using
G rad’sm ethod approxim ates the true value determ ined using the K ubo-G reen formula [54]
w ill be studied and reported in a forthcom ing publication. T he values needed to calculate
the shear viscosity [Eq. (39)]are shear tensor , the particle and energy densitiese and n,
the fugacity and nally the sescond mom entsP  of the collision term from the underlying
kinetic process. They can be calculated either using transport setup solving the kinetic
theory or from dissipative hydrodynam ic (IsraekStew art) equations (459)—(41). H ow ever, the
IS equations them selves neaed the value of shear viscosity as a param eter. T huswe introduce
a new iterative m ethod that allow s us to solve IsraelStew art equations and calculate =s as
a function of tim e and coupling constant . The resultson =s calculated in the partonic
cascade BAM PS and from IS theory are In a good agreem ent for physical coupling = 03.
In thisreginewe obtain =s= 0:18. A s a further dem onstration even for unphysical smn all
coupling = 0:05 thedi erence between BAM P S and second-order hydrodynam ic calcula—
tionsof =sissnall. W eobtain =s 3 in thisregine. At such snallcoupling =s increases
slightly in BAM PS and som ew hat stronger in hydrodynam ic calculations. This Increase is
due to the Intrinsic fugacity, which evolves di erently in both calculations.

U sing IS theory, we calculate =s ratio for a systam close to equilibrium as a function
of . For physical coupling ¢ 03 the second-order result is approxin ately 20% higher
than in calculations based on rst order N avierStokes theory [14]. For = 06 =s= 0:08
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w ithin the IsraelStewart and N avier-Stokes prescription.

D eviations of hydrodynam ic evolution from egquilbbriim are quanti ed in the present
work introducing the variance of the nonequiliborium part of the distribution function.
W e dem onstrate that its value is sm aller than unity and later decreases with tine at a
physical coupling ¢ = 0:3 and thus our expression of is vald in this case. Here again
hydrodynam ic and BAM PS results are in good agreem ent. For snall coupling ¢ = 0:05
hydrodynam ics does not relax back to equilibrium and G rad’s m ethod becom es nvalid. In
BAM PS in this regin e the deviation of  from equilbrium is smaller, which isan e ect of
the ongoing chem ical equilibration. T he ability of the system to restore kinetic equlibrium is
quanti ed by the ratio of the m ean transport free path to the expansion tin e. W e conclude
that the second-order dissipative hydrodynam ics is applicable in theregine =s< 02 which
corresponds to values of 5~ 03.Athighmomentapr > 3 GeV it from ally breaks down,
however for =s 02 04 it is applicable even for di erential cbservables. For really high

=S 3 the applicability of hydrodynam ics certainly breaks down. For the interm ediate
regme 03 < =s< 08 amoredetailed analysis In the com parison of m icroscopic transport
description to dissipative second- (or even higher) order hydrodynam ics is required.

To m ake consistent com parisons between the kinetic transport m odel BAM PS and IS
solutions we have to m odify the hydrodynam ic equation to take into account particle pro—
duction and absorption. T hese calculations w ill be reported in a forthcom ing publication.
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FIG.1l: (Colr online) (a) =s ratio and (b) fugacity calculated by the iterative procedure
describbed In the text for ¢ = 005 and g = 03 at ten di erent tin e points, with nital tine

0= 041 /c, T(p)= 500M &V .The initial nput value of =s is 0:5.
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FIG.2: (Colr onlne) (a)Variance and (b) ratio Rog calculated by the iterative procedure.

0= 0:4ﬁ1’1/C.
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FIG.3: (Colbronline) Ratio =s (contrbutions due to elastic and nelastic processes) as function
of the coupling constant 5. The result (solid line) is com pared with results of Ref. [14] (dotted

line)
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FIG .4: (Colbronline) Ratio =s (allprocesses) as function of the coupling constant 5. Theresult

is com pared w ith result of Ref. [17]
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FIG .5: (Colbbronline) Ratio =s from them icroscopic BAM PS sinulation. R esults are calculated

using Eq. (39) for sin ulations w ith two di erent values for 4. o= 04 fm =c
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FIG. 6: (Cobr online) Fugacity = n=n.y fron BAMPS calculation. Results are shown for

sin ulations w ith di erent (constant) valuesof . o= 04 fm /c.
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FIG.7: (Cobronlne) (a) Variance and (b) ratio Rgg calculated by BAMPS. o= 04 fn /c.
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FIG .8: (Color online) M om entum isotropy < p§=E2> calculated by BAM PS. o= 04 fm /c.
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FIG .9: (Colr online) N onequilbbrium part of the transverse spectrum (nom alized to the equilib-

dN =(pr dprd )

W o= 1 from BAM PS calculations (lines w ith points) and the second-
eq=(prdprd )

rium spectrum )

ffeq ( /7T; )dpz

order contribution to the transverse spectrum TEodr
eq z

(Iines) as function of pr at = 4

with ;T; extracted from BAMPS.
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