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Abstract

Using G rad’sm ethod,wecalculate theentropy production and derivea form ula forthesecond-

ordershearviscosity coe�cientin a one-dim ensionally expanding particle system ,which can also

beconsidered outofchem icalequilibrium .Fora one-dim ensionalexpansion ofgluon m atterwith

Bjorken boost invariance,the shear tensor and the shear viscosity to entropy density ratio �=s

are num erically calculated by an iterative and self-consistentprescription within thesecond-order

Israel-Stewart hydrodynam icsand by a m icroscopic parton cascade transporttheory. Com pared

with �=s obtained using the Navier-Stokes approxim ation,the presentresultisabout20% larger

ata Q CD coupling �s � 0:3(with �=s � 0:18) and isa factor of2� 3 larger ata sm allcoupling

�s � 0:01.W edem onstratean agreem entbetween theviscoushydrodynam iccalculationsand the

m icroscopic transportresultson �=s,exceptwhen em ploying a sm all�s. O n the otherhand,we

dem onstratethatforsuch sm all�s,thegluon system isfarfrom kineticand chem icalequilibrium ,

which indicatesthebreak down ofsecond-orderhydrodynam icsbecauseofthestrongnoneqilibrium

evolution. In addition,forlarge �s (0:3� 0:6),the Israel-Stewarthydrodynam icsform ally breaks

down atlarge m om entum pT
>
� 3 G eV butisstilla reasonably good approxim ation.
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I. IN T R O D U C T IO N

Recent experim entalm easurem ents on the elliptic 
ow param eter v2 at the BNL Rel-

ativistic Heavy Ion Collider (RHIC) [1,2,3]show a strong collectivity ofthe decon�ned

quark-gluon m atter. The m atterproduced wasthusspeci�ed asa strongly coupled quark-

gluon plasm a (sQGP)[4,5,6]orasa perfect
uid [7].Furtherattem ptsto determ ine how

im perfect the sQGP really is have drawn attention to transport coe�cients like viscosity

[8,9,10,11,12,13,14,15,16]and to thederivation and solution ofviscoushydrodynam ics

[17,18,19,20,21,22,23,24],which isstilla m athem aticalchallenge.

M ostcurrentviscoushydrodynam ic equationsare based on second-orderIsrael-Stewart

kinetic theory [25]. They are solved num erically using the given viscosity coe�cients and

initialconditionsaswellasparton and hadron equation ofstate. In particular,the shear

viscosity to entropy density ratio �=sisdeterm ined by com paring theelliptic
ow from the

viscoushydrodynam icalcalculationswith the data atRHIC,ashasbeen done recently in

Refs.[26,27],wherethevalue�=s� 0:1 wasobtained.On theotherhand,even though the

early partonic phase m ay be welldescribed by idealhydrodynam ics(� = 0),the hadronic

afterburning [28]has a larger dissipative e�ect,which m ay be enough to slow down the

generation oftheelliptic
ow and bring its�nalvalueinto agreem entwith thedata.

Dissipative phenom ena can be alternatively described in transport calculations solving

Boltzm ann equationsofm atterconstituents[29,30,31,32,33,34,35,36].Thisapproach is

applicable forinvestigationsofsuch phenom ena astherm alization,kinetic decoupling,and

dynam ics ofhigh-energy particles in system s farfrom equilibrium ,i.e.,in a regim e where

thesecond-orderviscoushydrodynam icsbreaksdown [37].

Recently,an on-shellparton cascade Boltzm ann Approach ofM ultiParton Scatterings

(BAM PS)hasbeen developed tostudytherm alization [34,38,39],elliptic
ow v2 [40,41,42],

and theenergy loss[43]ofgluonsproduced in Au+Au collisionsatRHIC energy.Also the

generation and evolution ofviscous shock waves are surprisingly wellrealized in BAM PS

calculations[44].Theshearviscosity ofthegluon m atteratRHIC hasbeen estim ated from

BAM PS calculations [41,42]within the Navier-Stokes approxim ation [12]. The authors

found that to produce large v2 com parable with the experim entaldata,the gluon m atter

should have an �=s between 0:08 and 0:2 constrained by details ofthe hadronization and

the kinetic freeze out. This is in line with the dissipative hydrodynam ic approach [26].
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Perturbative QCD (pQCD)gluon brem sstrahlung gg $ ggg isresponsible forthe low �=s

ratio and forthegeneration oflargeelliptic
ow.

Beyond theNavier-Stokesapproxim ation,which hasbeen used in Refs.[11,12],wederive

anew m icroscopicform ulafortheshearviscosity coe�cientfrom thekinetictheoryusingthe

second-orderGrad’sm ethod.Thisisoneofthegoalsin thepresentarticle.Thederivation

followsRef.[45]and isgeneralized fora particlesystem outofchem icalequilibrium .

Anothergoalistoelaborateonthebreakdown regionofthesecond-orderviscoushydrody-

nam ics.To do thisweinvestigatethetim eevolution ofa gluon m atterin a one-dim ensional

expansion with Bjorken boost invariance [46]by solving the Israel-Stewart hydrodynam ic

equations[37]aswellasby perform ing sim ilarBAM PS transportcalculationsforcom pari-

son. W e quantify the deviation ofthe gluon distribution function from kinetic equilibrium

and show the region with large deviation,where the applicability ofthe Israel-Stewarthy-

drodynam icsisquestionable.

The article is organized as follows. In Sec. IIwe introduce theoreticalfram ework for

deriving viscosity from thekinetictheory using second-orderGrad’sm ethod.W econsidera

m asslessparticlesystem ,which undergoesa one-dim ensionalexpansion with Bjorken boost

invariance.A com parison with theresultsobtained by theNavier-Stokesapproxim ation [12]

isgiven in Sec. III. Using the form ula derived in Sec. IIwe calculate the shearviscosity

to entropy density ratio �=s ofgluon m atter: in Sec. IV an iterative and self-consistent

approach isintroduced tocalculate�=sfrom theIsrael-Stewarthydrodynam ics,whereasthe

results from BAM PS calculations are presented in Sec. V. For both hydrodynam ic and

transport calculations,deviations from kinetic as wellas chem icalequilibrium are shown

and analyzed.Conclusionsaregiven in Sec.VI.

II. SH EA R V ISC O SIT Y C O EFFIC IEN T FR O M SEC O N D -O R D ER K IN ET IC

T H EO RY

Relativistic causaldissipative hydrodynam ic equations can be derived from the kinetic

theory by applying Grad’s m ethod ofm om ents [47]. A detailed derivation is reported in

Refs.[45,48]and a prescription forcalculating transportcoe�cientsisalso given there.In

thissection wewillfollow Ref.[45]to derivean expression fortheshearviscosity coe�cient

� when theconsidered system isoutofchem icalequilibrium .
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Thebasicequation ofrelativistickinetictheory istheBoltzm ann equation

p
�
@�f(x;p)= C[f(x;p)] (1)

foraone-particlephase-spacedistribution function f(x;p))= dN
1

(2�)3
d3pd3x

.C[f(x;p)]denotes

thecollision term ,which accountsforallm icroscopicinteraction processesam ong particles.

Theentropy four-currentisde�ned by [45,49]

s
� = �

Z
d3p

(2�)3p0
p
�
f(x;p)[ln(f(x;p))� 1]: (2)

Theentropy production isthen given by

@�s
� = �

Z

dw p
�
@�f(x;p)lnf(x;p)= �

Z

dw C[f(x;p)]lnf(x;p) (3)

with theshortnotation dw =
d3p

(2�)3p0
.

W e now assum e thatthe deviation off(x;p)from the equilibrium distribution feq(x;p)

issm all:

f(x;p)= feq(x;p)(1+ �(x;p)) (4)

where�(x;p)� 1 and

feq(x;p)= �e
�

u� p
�

T : (5)

�(x)and T(x)denotethelocalfugacity and tem perature,respectively.u�(x)isthehydro-

dynam ic four-velocity ofthe m edium . Equation (5) is the standard form for Boltzm ann

particles. The derivation below can be easily extended for Bose and Ferm iparticles. In

addition,we willrestrict the following discussions to the case ofm assless particles (e.g.,

gluons).

W eexpand �(x;p)up to second orderin m om entum ,thatis,

�(x;p)= �(x)� ��(x)p
� + ���(x)p

�
p
�
; (6)

where the m om entum -independentcoe�cientscan beexpressed in term softhe dissipative

currents�,q� and ��� denoting bulk pressure,heat
ux and sheartensor[45,48]:

��� = A 2(3u�u� � ���)�� B 1u(�q�)+ C0��� (7)

�� = A 1u��� B 0q� (8)

� = A0� (9)
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with theprojector� �� = g��� u�u� and sym m etrization operation u(�q�)=
1

2
(u�q�+ u�q�).

Them etricused in thiswork isg�� = diag(1;� 1;� 1;� 1).In general,thedissipative
uxes

are de�ned as projections ofdeviations ofthe energy-m om entum tensor T �� and particle

four-currentN � from theirequilibrium form [45,48]:

� = �
1

3
� ���T

�� (10)

q
� = � �

�u��T
�� �

4

3
� �

��N
� (11)

�
�� = �T

< ��> =

�
1

2
� �

��
�
� +

1

2
� �

��
�

�
�
1

3
� ���

��

�

�T
�� (12)

with the de�nitions N � =
R
dwp�f ,T�� =

R
dwp�p�f and �T�� = T�� � T��eq ,�N

� =

N � � N�
eq.

W eusethefollowing localm atching conditionson theenergy and particledensities:

e= eeq =
3�T4

�2
(13)

n = neq =
�T3

�2
(14)

with the de�nitionsforthe densities e = u�T
��u� and n = u�N

�. The localtem perature

sim ply followsasT = e=3n.Thefugacity isthen calculated via � = n=(1

�2
T3).Oneobtains

im m ediately u��T
��u� = 0 and u��N

� = 0. The bulk pressure � from Eq. (10) then

becom es

�� (g�� � u�u�)�T
�� = �T

�
� = 0 (15)

for m assless particles,since the energy m om entum tensor is traceless in this case. Thus,

� = 0 according to Eq.(9).

In thefollowing,wewillconsidera one-dim ensionalBjorken expansion [46].Thisim plies

thatin thelocalrestfram e,thedistribution function f(x;p)issym m etricwhen transform ing

~p to � ~p.Thusin thelocalrestfram e,T0i= 0 and N i= 0,where i= 1;2;3.Theheat
ux

q� (11)vanishesin thelocalrestfram ebecause

q
� = g

�
�u��T

�� � u
�
u��T

�� �
4

3
g
�
��N

� +
4

3
u
�
u��N

� = u��T
�� �

4

3
�N

� = 0: (16)

W eobtain then ��p
� � q�p

� = 0 [seeEq.(9)].

Fora one-dim ensionally expanding system ,Eq.(6)thusreducesto

�(x;p)= ���(x)p
�
p
�
: (17)
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Putting f = feq(1+ �)into Eq.(3)and using thelinearization

ln(1+ �)� � = ���(x)p
�
p
� (18)

werewriteEq.(3)as

@�s
� = �

Z

dw C[f(x;p)]lnfeq(x;p)�

Z

dw C[f(x;p)]���p
�
p
� (19)

Using theform ula (5)forfeq in the�rstterm ofEq.(19)onehas

�

Z

dw C[f(x;p)]lnfeq(x;p)= �

Z

dwC[f(x;p)](ln� � u�p
�
=T)

= � ln�

Z

dw C[f(x;p)]+ u�

Z

dw p
�
C[f(x;p)]=T

= � ln�

Z

dw C[f(x;p)]= � ln�@�N
�
: (20)

For the second-last identity in Eq. (20), we used the energy-m om entum conservation:
R
dw p� C[f(x;p)]= @�

R
dw p�p�f = @�T

�� = 0. Equation (20) describes entropy pro-

duction due to particle production (@�N
� > 0 for � < 1) and absorption (@�N

� < 0 for

� > 1).

W ith thede�nitions

P
�� =

Z

dwp
�
p
�
C[f(x;p)] (21)

�C =

Z

dwC[f(x;p)]= @�N
�
; (22)

which are the 2nd and the 0th m om ent ofthe collision term the entropy production in

Eq.(19)can benow written in a m orecom pactform

@�s
� = � �C ln� � ���P

��
: (23)

In general,the entropy production in an im perfect 
uid can be expressed by the positive

de�niteform [25,50,51]

@�s
� = � J ln� + (�T)�1 � 2 � (�T)�1 q�q

� + (2�T)�1 ����
��
; (24)

where�,�,and � arenon-negativecoe�cientsdenotingthebulk viscosity,heatconductivity

and shearviscosity,respectively.J = @�N
� isthesourceofparticleproduction [50,51]and

isidenticalwith �C (22). Fora chem ically equilibrated system J vanishes. Com paring Eq.

(23)to (24)we�nd

� ���P
�� = (2�T)�1 ����

��
; (25)

6



because in ourcase � = 0 and q�q
� = 0 asdiscussed above.The expression (25)isexactly

thesam easobtained in [45]and describesentropy production dueto shearviscouse�ects.

W ethen obtain the�nalexpression fortheshearviscosity coe�cient

� = �
����

��

2T���P
��

= �
����

��

2TC0���P
��
: (26)

The last identity is due to the fact that q� vanishes in the localrest fram e and thus

u(�q�)P
�� = 0. W e note that the derived form ula (26) is an approxim ate expression of

the true shearviscosity. W e callthe \second-order" shearviscosity,because we have used

term sup to second orderin m om entum for�(x;p)[seeEq.(6)].

To calculateC0 wego to thelocalrestfram e,i.e.,u
� = (1;0;0;0),where

�
�� = �T

�� = T
�� � T

��
eq = ���

Z

dw p
�
p
�
p
�
p
�
feq(x;p) (27)

isvalid according to Eqs. (12)and (17)fora (0+1)dim ensionalexpansion. In thisfram e

��� [seeEq.(7)]reducesto

��� = C0��� : (28)

Calculating theintegralsin Eq.(27)with feq = �e�E =T gives

(1� C040�T
6
=�

2)�0j = 0; j= 1;2;3 (29)

(1� C08�T
6
=�

2)�ij = 0; i;j= 1;2;3: (30)

W ehaveused thefactthat��� istracelessand �00 = 0 dueto them atching condition (13)

and T00 = e in the localrestfram e. Fora system undergoing a one-dim ensionalBjorken

expansion,i.e.,in a (0+1)dim ensionalcase,allo�-diagonalelem entsofT �� -and thus���

as well-vanish in the localrest fram e,particularly T0j = �0j = 0;j = 1;2;3. Thus we

obtain

C0 =
�2

8�T6
: (31)

Ifthethird spatialcoordinateischosen astheexpansion axis,wehaveT11 = T22,and in

thelocalrestfram ethesheartensortakestheform

�
�� =

0

B
B
B
B
B
@

0 0 0 0

0 � ��

2
0 0

0 0 � ��

2
0

0 0 0 ��

1

C
C
C
C
C
A

(32)
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which isalso given in [51].W ethusobtain

����
�� =

3

2
��2 (33)

���P
�� = C0���P

�� =
C0��

2
(3P 33 � P

00); (34)

where we have used P 11 + P 22 = P 00 � P33,because P �� is traceless following from the

de�nition (21).Putting Eqs.(27)and (34)into (26)givestheshearviscosity coe�cientfor

a (0+1)dim ensionally expanding system ofm asslessparticles:

� = �
3��

2TC0(3P
33 � P00)

= 4n
� T2��

P 33 � 1

3
P 00

: (35)

Forthelastidentity,wehaveused them atching conditions(14)and Eq.(31).

Theenergy density e,thetem peratureT and theshearcom ponent�� in a (0+1)dim en-

sionalexpansion can becalculated by solving viscoushydrodynam icequationswith a given

valueofshearviscosity �.If�� isknown,thedistribution function f isknown too [seeEqs.

(4),(17)and (28)].Onecan thusevaluate P 00 and P 33 according to theirde�nitions(21).

Then � can be calculated em ploying Eq. (35). In sSec. IV we willintroduce an iterative

and self-consistentprescription to calculatethesecond-ordershearviscosity.

On the other hand,f can be obtained by solving the Boltzm ann equation (1)directly

em ploying transport sim ulations. Then � can be easily extracted using Eq. (35). Such

calculationswillbepresented in section V.Theresultswillbecom pared with thoseobtained

in Sec. IV. Asitturnsout,a ratio ofm ean transportfree path to expansion tim e being

largerthan unity and the variance of�(x;p)being largerthan unity willpossibly indicate

the breakdown ofthe second-order viscous hydrodynam ics. In this regim e the validity of

(35)isalso questionable.

III. C O M PA R ISO N T O SH EA R V ISC O SIT Y FR O M N AV IER -ST O K ES A P -

P R O X IM AT IO N

In Ref. [12],the shearviscosity coe�cientwasderived assum ing the Navier-Stokesap-

proxim ation

�
�� = 2�r < �

u
�>
: (36)

Itreads

�N S
�=
1

5
n
hE =3� p2z=E )i
1

3
� hp2z=E

2i

1
P

R tr+ 3

4
@t(ln�)

(37)
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where
X

R
tr =

R
dw

p2z
E 2 C[f]� hp2z=E

2i
R
dw C[f]

n(1
3
� hp2z=E

2i)
(38)

isthetotaltransportcollision rate,which wasintroduced in [38].Allintegralsareexpressed

in thelocalrestfram e.hidenotestheaverageoverparticlem om entum .

Equation (26)can be used to calculate the shearviscosity ifthe sheartensor��� obeys

theIsrael-Stewartequation [51]

���
�
��

�
� _��� + ��� = 2���� �

�
�T@�

�
��

2�T
u
�

�

���
�
; (39)

where��� = r < �u�> and �� denotestherelaxation tim e[seealsoEq.(47)below].Equation

(39)ism oregeneralthan (36)in the�rst-order(Navier-Stokes)theory.

Ifwede�ne
X

R
tr
G rad =

P 33 � 1

3
P 00

n
�
1

3
hE 2i� hp2zi

�; (40)

then theshearviscosity from theGrad’sm ethod (35)can berewritten to

�G rad = 4n
T2hE =3� p2z=E i

1

3
hE 2i� hp2zi

1
P

R tr
G rad

; (41)

wherewehaveused �� = T33 � T33eq = T33 � 1

3
T00 = nhp2z=E � E =3i.Rem em berthatP�� is

thesecond m om entofthecollision term [seeEq.(21)].Theexpression (41)issim ilartoEq.

(37)exceptforthe term 3

4
@t(ln�),which indicatesthatchem icalequilibration contributes

explicitly totheshearviscosity in theNavier-Stokesapproxim ation ratherthan in theIsrael-

Stewartapproach.

In thenextsection,we calculatetheshearviscosity in a gluon system within theIsrael-

Stewart approach and com pare the result with thatobtained using the Navier-Stokes ap-

proxim ation [12].

IV . C A LC U LAT IO N O F SH EA R V ISC O SIT Y IN A G LU O N SY ST EM :A N IT ER -

AT IV E A N D SELF-C O N SIST EN T P R ESC R IP T IO N

In thissection we wantto calculate the shearviscosity to the entropy density ratio �=s

for a gluonic system , which undergoes a one-dim ensionalexpansion with Bjorken boost

invariance,i.e.,a (0+1)dim ensionalexpansion.
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A . P rescription

Fora (0+1)dim ensionalcasethesheartensor��� in thelocalrestfram eisgiven by Eq.

(32).Then thegluon distribution function in thelocalrestfram ereads

f(x;p)= �e
�

E

T

�
1� C0��(p

2

z � p
2

t=2)
�

(42)

according to Eqs. (4),(17),(28) and (32). If��,T and � are known,the shear viscosity

� can be calculated according to Eq. (35),where P �� are evaluated by Eq. (21) via Eq.

(42). Note thatforthe case ofa gluonic system the value of� hasto be am pli�ed by the

degeneracy factor ofgluons dG = 16. W e thus de�ne �g = dG �. In addition,the gluon

entropy density isgiven by

sg = u�s
� = � dG

Z

dwp0f(x;p)(lnf(x;p)� 1)� (4� ln�)ng �
9��2g

8ngT
2
; (43)

where ng = dG �T
3=�2 and ��g = dG �� are the gluon num ber density and the gluon shear

com ponent,andwehaveusedtheapproxim ationln(1+�)� � forsm all� = � C0��(p
2
z� p2t=2).

W e note that� can be largerthan unity forlarge m om enta. In these cases,the expansion

[also forEq.(19)]fails.On theotherhand,the distribution function f(x;p)becom esvery

sm allatlargem om enta.Thee�ectoftheinvalid expansion on theintegrated quantity sg is

thusnegligibleatthispoint.

In principle,� = (f� feq)=feq givestherelativedeviation from kineticequilibrium .How-

ever,� isalsoafunction ofm om entum .Theaverageh�(x;p)ieq overm om entum distributed

in equilibrium ,i.e,using f(x;p)in zeroth orderof��,isobviously zero. W e introduce the

variance �� =
p
h�2ieq asthe quantity determ ining the deviation from kinetic equilibrium

and we�nd

�� =
9
p
2

4

j��gj

eg
; (44)

whereeg = 3ngT isthegluon energy density.

Ifthedeviation from thelocalkineticequilibrium issu�ciently sm all,then thedynam ical

expansion in a (0+1) dim ensionalcase can be welldescribed by the Israel-Stewart (IS)
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viscoushydrodynam ic equations[25,37,45,48,51,52]:

dng

d�
= �

ng

�
; (45)

deg

d�
= �

4

3

eg

�
+
��g

�
; (46)

d��g

d�
= �

��g

��
�
1

2
��g

�
1

�
+

1

�2
T
@

@�
(
�2

T
)

�

+
2

3

1

�2�
; (47)

where �2 = 9=(4eg)and �� = 2�2�g denotesthe relaxation tim e. Equation (47)isjustEq.

(39) expressed in the localrest fram e using the hydrodynam ic velocity u� = 1

�
(t;0;0;z),

where � =
p
t2 � z2. In derivation ofEq. (39),which isdiscussed in Ref. [51],only term s

ofsecond orderin gradientsand dissipative 
ux ��� have been included. If�� in Eq. (44)

is larger than unity,further term s containing �2� � (��=e)2 � (�2��)
2 are no longer sm all

enough anym ore to beom m ited in derivation ofEq.(39)and thusin Eq.(47)aswell,i.e.,

a higherorderhydrodynam ic equation isneeded.Thusthevalueof�� isan indicatorfora

breakdown ofsecond-orderhydrodynam ictheory.

Equation (45)forthegluon density can beeasily solved:

ng(�)= ng(�0)
�0

�
; (48)

which isidenticalwith theresultfrom idealhydrodynam ics.On theotherhand,theenergy

density decreasesslowerthan in idealhydrodynam icsdueto theviscouse�ects:

eg(�)= eg(�0)

�
�0

�

��
; � �

4

3
: (49)

Thusweobtain thegluon fugacity

�(�)=
ng(�)

n
eq
g (�)

=
ng

dG
�2
T3

=
ng

dG
�2
(eg=3ng)

3
= �0

�
�0

�

�4�3�
� �0; (50)

where �0 = �(�0). The system willbe continuously out ofchem icalequilibrium during

the expansion,even ifitisinitially atlocaltherm alequilibrium (�0 = 1). The largerthe

viscosity,thesm alleristhevalueof� and thefasteristhedecreaseofthefugacity.Inclusion

ofproduction and annihilation processes such as the gluon brem sstrahlung and its back

reaction (gg$ ggg)m akeschem icalequilibration possibleand thus,ofcourse,Eq.(45)has

to be m odi�ed!However,in thiswork we willuse Eq.(45)withoutany m odi�cations.The

derivation ofnew and altered equationsand theirsolutionswillbe given in a forthcom ing

publication [53].
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Onecan solve Eqs.(46)and (47),ifthe initialvaluesofng,eg,��g and also the valueof

the shearviscosity �g aregiven.On theotherhand,to calculate �g using Eq.(35)via Eq.

(42)we need ng,eg,and ��g. Itisobviousthatan iterative algorithm hasto be developed

to calculateng,eg,��g and �g self-consistently.Thisalgorithm isasfollows:

1.W esolve Eqs.(45)-(47)with a guessed valueof�g.The guessed valuecan bechosen

arbitrarily because the �nalresultdoesnotdepend on it. �g=ng isassum ed to be a

constantoftim e.

2.Theobtained ng(�),eg(�)and ��g(�)ata tim e� areused to calculate�g(�)according

to (35). W e calculate �rst the m om ents P �� using f(x;p) in Eq. (42) with given

ng(�);eg(�)and ��g(�).

3.W eturn back to step 1.Thevalueof�g(�)isused to solveEqs.(46)and (47)again.

Iterationswillcontinue,untiltherelativedeviation of�g from thepreviousoneissu�cient

sm all. The iterative procedure allowsto calculate ��(�),e(�)and n(�)aswellas�=s(�)in

a consistentway forgiven interactions. W e note thatif�g=ng isstrongly tim e dependent,

furtheriterationswillberequired to accountforthistim edependence.A re�ned algorithm

willbepresented in [53].

To obtain �g,P
�� hasto be�rstevaluated by (21)via (42).P �� isa second m om entof

the collision term and thus isdeterm ined by gluon interactions considered. The com pact

form softhe collision term scan be found in [34]. In thisarticle elastic (gg ! gg)aswell

asbrem sstrahlung (gg $ ggg)processesinspired within perturbative QCD are responsible

forthe gluon dynam ics. The di�erentialcrosssection and the e�ective m atrix elem entare

taken asin Refs.[34,39]:

d�gg! gg

dq2
?

=
9��2s

(q2
?
+ m 2

D
)2
; (51)

jM gg! gggj
2 =

9g4

2

s2

(q2
?
+ m 2

D )
2

12g2q2?

k2
?
[(k? � q? )

2 + m 2
D ]
�(k ? �g � coshy) (52)

whereg2 = 4��s.TheDebyescreening m ass

m
2

D = dG ��s

Z

dw N cf(x;p) (53)

with N c = 3 isapplied to regularizeinfrared divergences.Although gg$ ggg processesare

considered,they contribute only to the shear viscosity but not to chem icalequilibration,
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because asm entioned above,particle num berconservation isassum ed atpresentto derive

Eq.(45)).Im provem entswillbedonein a forthcom ing publication [53].

B . R esults

Figure1(a)shows�g=sg asafunction oftheexpansion tim efortwovaluesofthecoupling

constant�s = 0:05 and 0:3.The initialgluon system at�0 = 0:4 fm /c isassum ed to be in

therm alequilibrium with a tem peratureofT0 = 500 M eV.Each oftheresultsindicated by

thesym bolsin Fig.1isobtainedbyabout40iterationswithaguessed valueof�g(guessed)=

0:5seqg .From Fig.1(a)we see thatthe ratio �g=sg isalm ostconstantin tim e for�s = 0:3,

whereasfor�s = 0:05,�g=sg increasesm oderately.Theassum ption underlying theiterative

algorithm that�g=ng � 4�g=sg doesnotdepend on tim e isjusti�ed accordingly. One �nds

that�g=sg � 0:18 fora coupling of�s = 0:3 and �g=sg � 3 for�s = 0:05.

Theresultsforthegluon fugacity (obtained from thesolution ofEqs.(45)-(47))depicted

in Fig. 1(b)show a strong tim e dependence. The sm aller the value of�s,i.e.,the larger

the �g=sg,the faster is the deviation from the chem icalequilibrium . This quantitatively

dem onstratestheconsideration from above[seeEqs.(50)].

W hen puttingEq.(42)intoEq.(21)onerealizesthatP �� � �2C0�� � ��� in leadingorder

of��.Thus�g doesnotdepend on �.Secondly,from Eq.(43)weobtain sg=T
3 � �(1� ln�).

Thus,�g=sg � 1=�(1� ln�)and willincrease slowerthan a logarithm icalbehaviorwhen �

decreases:astrongerdecreaseof� (com paringtheresultfor�s = 0:05with thatfor�s = 0:3

in thelowerpanelofFig.1)willlead to strongerincreaseof�g=sg,asseen in thenum erical

resultsshown in Fig.1(a).

Figure2(a)showsthedeviation from kineticequilibrium ,�� from Eq.(44),asafunction

oftim escaled with theinitialtim e.For�s = 0:3thevalueof�� startsatzero(equilibrium ),

increasesuntil3�0 and then relaxesto zero.Thesystem �rstevolvesoutofequilibrium and

then relaxesbacktoequilibrium .On thecontrary,�� increasescontinuouslywhen em ploying

a m uch weaker(and unphysically low)coupling �s = 0:05.In thiscasethesystem isalways

out ofequilibrium . To explain the di�erent behaviors we de�ne R O E as the ratio ofthe

m ean transport free path,1=
P

R tr
G rad de�ned by Eq. (40),to the Hubble-like expansion

tim escale�:

R O E =
�tr

�
=

1

� �
P

R tr
G rad

(54)
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OurconceptofR O E issim ilartothatintroduced in [37],wheretheauthorsdem onstratethat

the ratio ofexpansion tim e to the m ean free path controlsthe deviation from equilibrium .

For a �xed �g=sg the m ean transport path �tr = 1=
P

R tr
G rad changes with tim e. At full

equilibrium �tr � 1=T � �1=3 and thus �tr=� � ��2=3 . IfR O E is larger than unity,the

system startsto departfrom equilibrium . IfR O E issm allerthan unity,the system relaxes

to equilibrium .R O E (�)isshown in Fig.2(b).W ith �s = 0:05 thesystem evolvesfaraway

from equilibrium and the evolution is dom inated by free stream ing. The ratio R O E is a

m easure ofthe ability ofthe system to relax to kinetic equilibrium . For�s = 0:05 kinetic

equilibration isnotpossibleforthetim escalesshown.Theregim eforwhich thesystem can

notcom e close to kinetic equilibrium isforthe coupling �s = 0:1� 0:2 corresponding to a

shearviscosity to entropy density ratio �=s= 0:8� 0:4.

In addition,�� islargerthan unity at� > 3�0 for�s = 0:05. The true entropy density

sg should be sm aller than that estim ated according to Eq. (43),because the expansion

ln(1+ �)� � isnotvalid any m oreforlarge�.Thederivation oftheshearviscosity in Eq.

(35)becom esquestionable aswell,since the sam e expansion isused to obtain the entropy

production (19).

Finally,in Figs. 3 and 4 we com pare the results on �g=sg from the second-order (IS)

kinetic theory with those presented in Ref. [12]using the Navier-Stokes approxim ation.

Thesolid (dotted)curvein Fig.3 depictsthecontribution ofgg! gg (gg$ ggg)to �g=sg

obtained in [12].Thesolid (dotted)curvewith sym bolsdepictstheresultsfrom thepresent

calculationsat� = 2�0,atwhich the system isstillneartherm alequilibrium . W e see that

theresultsfollowing from thesecond-orderexpansion arem ostly largerthan thosebased on

the Navier-Stokesschem e,both forgg ! gg and forgg $ ggg processes. At(unphysical)

sm all�s the di�erence between the results is given by a factor of2 � 3. In particular,

the di�erence between the second-order and the Navier-Stokes results for brem sstrahlung

gg $ ggg is bigger than that for elastic gg ! gg process. At large �s the gg $ ggg

processesplay adom inantrole(com pared with gg! gg)in lowering�g=sg,whereasatsm all

�s this dom inance becom es weaker [11]. In Fig. 4 the results on �=s im plem enting both

elastic and inelastic processesare shown forthe physicalregion of�s. Here the di�erence

between second-orderand Navier-Stokesbased calculationsisapproxim ately 50% (�s = 0:2)-

20% (�s = 0:3)-0% (�s = 0:6).
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V . C A LC U LAT IO N O F SH EA R V ISC O SIT Y IN A G LU O N SY ST EM : T R A N S-

P O RT SIM U LAT IO N S EM P LO Y IN G B A M P S

In this section,we solve the Boltzm ann equation for gluons using the parton cascade

Boltzm ann Approach ofM ultiParton Scatteringsand repeatthe task in the previous sec-

tion to calculate the shear viscosity to entropy density ratio �g=sg in a Bjorken-type one-

dim ensional(0+1)expansion. W e calculate �g and sg according to Eqs. (35)and (43)by

extracting P ��,��g,ng and eg from thetransportsim ulations.

The partonic cascade BAM PS which was introduced in [34,38]hasbeen applied fora

(0+1)dim ensionalexpansion tostudy therm alization ofacolorglasscondensatepotentially

produced in ultrarelativistic heavy ion collisions [39]. W e take the sam e num ericalsetup

forBAM PS asconsidered in [39]. The initialcondition and interactionsofgluonsare the

sam e as given in the previous section. In the parton cascade calculations,di�erent from

calculations using the viscous hydrodynam ic equations (45)-(47),the inelastic gg $ ggg

processeslead to a netparticle production orabsorption,i.e.,@�N
�
g 6= 0,which drivesthe

chem icalequilibration.

W e note thatparticle num berchanging processesareim plem ented in BAM PS,whereas

theparticlenum berwasconsidered tobeconstantin previoussection.Thereforewearenot

able to m ake a directcom parison between BAPM S resultsand those calculated by solving

Israel-Stewartequations.

Figure5 shows�g=sg extracted within thespace tim e rapidity interval�s 2 [� 0:1 :0:1],

where�s =
1

2
ln[(t+ z)=(t� z)].W hen com paringtheseresultswith thoseshown in theupper

panelofFig.1we�nd thatthey arealm ostthesam efor�s = 0:3,whereasfor�s = 0:05the

increase of�g=sg is slightly weaker in BAM PS calculations than in viscous hydrodynam ic

ones.Thereason forthisdi�erenceisthedi�erentbehaviorofthegluon fugacity (rem em ber

that�g=sg � 1=�(1� ln�)).Thegluon fugacity extracted from BAM PS isshown in Fig.6.

Itsvalue islargerthan thatshown in the lowerpanelofFig. 1,because ongoing chem ical

equilibration isrealized in theBAM PS calculations.

The kinetic equilibration is dem onstrated in Fig. 7(a) via the variance �� and in Fig.

8 via the m om entum isotropy Q(t) =<
p2z
E 2 >. The results on �� are sim ilar to those in

Fig.2 and can bewellunderstood by theout-of-equilibrium ratio R O E shown in Fig.7(b).

For�s = 0:3 the transportm ean free path isshorterthan the expansion rate whereasfor
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�s = 0:05theevolution isdom inated byexpansion.M om entum isotropization,shown in Fig.

8,ispractically restored for�s = 0:3 atlatertim es,whereasfor�s = 0:05 thisrestoration

is not possible. Here again the di�erences between transport and viscous hydrodynam ic

calculations stem from the di�erent tim e evolution ofthe gluon fugacity. To m ake fair

com parisons,m odi�cationsin the hydrodynam ic equationswillbe done in the nearfuture

[53]to takeinto accountthechem icalequilibration.

As pointed out already in the previous section,the param eters for which the system

cannotcom e close to kinetic equilibrium arethe couplingsof�s � 0:1� 0:2 corresponding

to a ratio �=s� 0:8� 0:4.Forsuch param eters,the ratio �tr=� isofthe orderof1 atlate

tim esand thesystem becom eshighly di�usive and viscous.

Finally,in Fig. 9 we investigate deviations from equilibrium ofthe gluon distribution

in BAM PS calculations at large m om entum . Figure 9 shows the non-equilibrium part of

the transverse spectrum (norm alized to the equilibrium spectrum )
dN =(pT dpT d�)

dN eq=(pT dpT d�)
� 1 from

BAM PS calculationsand thequantity < � > pz (��;T;�)=
R
feq�(��;T;�)dpz=

R
feqdpz [with

�(x;p)= �2

8�T 6 ��(p
2
z �

1

2
p2T)],which isthe analytically calculated second-ordercontribution

to the transverse spectrum , as a function ofthe transverse m om entum pT at � = 4�0.

The average < � > pz is calculated using ��;T;� extracted from the particular BAM PS

calculations. The com parison of
dN =(pT dpT d�)

dN eq=(pT dpT d�)
� 1 and < � >pz from Fig.9 showsthatfor

�s = 0:05 the distribution function in BAM PS contains contributions higher order in pT

and �� and thus the second-order ansatz (17)is notsu�cient to describe the evolution in

BAM PS.In contrast,for�s = 0:3thedistribution function isreasonablygood approxim ated

by second-orderkinetic theory overthe shown m om entum range. Thuswe argue thatthe

dependence of� on ��=(�T4) is stronger than given by ansatz (17),since ��=(�T4) � ��

quanti�esthe strength ofdissipative e�ects,which are strongerat� s = 0:05. Inclusion of

additionalterm sin Eq. (17)would lead to a m odi�cation ofthe evolution equation for ��,

which follows from the conservation law for the energy m om entum tensor: 0 = @�T
�� �

@�
R
p�p�feq(1+ �). Ifem ploying �s = 0:05(�=s � 3)forlarge pT > 2:3 GeV the variance

< � > pz becom eslargerthan 1.For�s = 0:3thishappensatpT > 2:75GeV.Fortransverse

m om entalargerthan thesecriticalvaluestheexpansion ln(1+ �)� � donetoobtain Eq.(19)

isinvalidated.Thusin thecalculation oftheentropy density (and entropy production)the

ln(1+ �)term should beapproxim ated by ln(1+ �)� ��
�2

2
�(p T � pTcrit),i.e.higherorder

term sshould be taken into accountin the integration overthe m om entum forpT > pTcrit.
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However,with �=s= 0:18 thiscorrection islessthan 0:5% ,which isdueto thesm allnessof

��.W ith �=s= 3thecorrection is� 6% .Thusforphysicalvaluesof�=s� 0:2second-order

hydrodynam icsisvalid,even though form ally breaking down atlargepT.In theunphysical

regim e�=s� 3higherordercorrectionsarenotnegligible.Thisdeservesfutureinvestigation

[53].

V I. C O N C LU SIO N S

W e have derived the shear viscosity coe�cient � from kinetic theory for m assless par-

ticle system undergoing a one-dim ensionalexpansion with Bjorken boost-invariance. The

derivation m akes use ofGrad’sm om ent m ethod [45,47]and is based on an expansion of

the distribution function up to second orderin m om entum . The �nalexpression obtained

in the present work is sim ilar to the one based on the Navier-Stokes theory [12],but the

transportrate hasto be calculated in a di�erentway. How close the resultobtained using

Grad’sm ethod approxim atesthetruevaluedeterm ined using theKubo-Green form ula [54]

willbe studied and reported in a forthcom ing publication. The valuesneeded to calculate

theshearviscosity [Eq.(35)]aresheartensor���,theparticleand energy densitieseand n,

thefugacity � and �nally thesecond m om entsP�� ofthecollision term from theunderlying

kinetic process. They can be calculated either using transport setup solving the kinetic

theory orfrom dissipativehydrodynam ic(Israel-Stewart)equations(45)-(47).However,the

IS equationsthem selvesneed thevalueofshearviscosity asaparam eter.Thusweintroduce

a new iterativem ethod thatallowsusto solveIsrael-Stewartequationsand calculate�=sas

a function oftim e and coupling constant�s.The resultson �=s calculated in thepartonic

cascadeBAM PS and from IS theory arein agood agreem entforphysicalcoupling �s = 0:3.

In thisregim eweobtain �=s= 0:18.Asa furtherdem onstration even forunphysicalsm all

coupling �s = 0:05thedi�erencebetween BAM PS and second-orderhydrodynam iccalcula-

tionsof�=sissm all.W eobtain �=s� 3in thisregim e.Atsuch sm allcoupling�=sincreases

slightly in BAM PS and som ewhatstrongerin hydrodynam ic calculations. Thisincrease is

dueto theintrinsic fugacity,which evolvesdi�erently in both calculations.

Using IS theory,we calculate �=s ratio fora system close to equilibrium as a function

of�s. Forphysicalcoupling �s � 0:3 the second-orderresultisapproxim ately 20% higher

than in calculationsbased on �rstorderNavier-Stokestheory [12].For�s = 0:6 �=s= 0:08
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within theIsrael-Stewartand Navier-Stokesprescription.

Deviations ofhydrodynam ic evolution from equilibrium are quanti�ed in the present

work introducing the variance �� ofthe nonequilibrium part ofthe distribution function.

W e dem onstrate that its value is sm aller than unity and later decreases with tim e at a

physicalcoupling �s = 0:3 and thus our expression of� is valid in this case. Here again

hydrodynam ic and BAM PS results are in good agreem ent. Forsm allcoupling �s = 0:05

hydrodynam icsdoesnotrelax back to equilibrium and Grad’sm ethod becom esinvalid.In

BAM PS in thisregim ethedeviation of�� from equilibrium issm aller,which isan e�ectof

theongoingchem icalequilibration.Theability ofthesystem torestorekineticequlibrium is

quanti�ed by theratio ofthem ean transportfreepath to theexpansion tim e.W econclude

thatthesecond-orderdissipativehydrodynam icsisapplicablein theregim e�=s<� 0:2which

correspondsto valuesof�s >� 0:3.Athigh m om enta pT > 3 GeV itfrom ally breaksdown,

howeverfor�=s� 0:2� 0:4 itisapplicableeven fordi�erentialobservables.Forreally high

�=s � 3 the applicability ofhydrodynam ics certainly breaks down. For the interm ediate

regim e0:3< �=s< 0:8 a m oredetailed analysisin thecom parison ofm icroscopictransport

description to dissipative second-(oreven higher)orderhydrodynam icsisrequired.

To m ake consistent com parisons between the kinetic transport m odelBAM PS and IS

solutionswe have to m odify the hydrodynam ic equation to take into accountparticle pro-

duction and absorption.Thesecalculationswillbereported in a forthcom ing publication.
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FIG .1: (Color online) (a) �=s ratio and (b) fugacity � calculated by the iterative procedure

described in the text for �s = 0:05 and �s = 0:3 at ten di�erent tim e points,with initialtim e

�0 = 0:4 fm /c,T(�0)= 500 M eV.Theinitialinputvalue of�=s is0:5.
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FIG .2: (Color online) (a)Variance �� and (b) ratio R O E calculated by the iterative procedure.
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