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A bstract

W e review recent work on understanding the next to leading order corrections to the classical

elds that dom inate the initial stages of a heavy ion collision.W e have recently shown that the
leading In 1=x divergences of these corrections to ghion m ultiplicities can be factorized into the
JIM W LK evolution of the color charge density distributions.

1. Introduction: G lass and G lasm a

At lJarge energies (an all x) the hadron or nucleus wavefiinction is characterized by a
saturation scale Q ¢ ,cp arising from the strong nonlinear interactions of the color
eld.In the ColorG lass C ondensate (CGC ) (for review s see [1[2]) fram ew ork the sm allx
part of the hadron wavefiinction is described In term s of a classicalW eizsackerW illiam s
W W ) eld radiated by the hard, lJarge x, sources. The color sources are stochastic
variables uctuating according to a probability distrdoution W ([ (x» )], where y is the
rapidity scale separating fast and slow partons 3].

The m atter during the st fraction of a farm 1 in a collision of two such ob fcts is
whatwe refer to as the G laan a [4]. The glasm a con guration after the collision, at tin es
0 . 1=Q4, consists of Iongitudinal chrom om agnetic and -electric eld which depend
on the transverse coordinate on a typicalscale  1=Q4.A s the systam expands the elds
are diluted and can be treated as particles, form ing the leading order (LO ) production
is the contribution that is com puted in the num erically solving the classical Yang-M ills
equations [5671.

In the follow ing we are concemed w ith the next to leading order (NLO ) In g, ~ or,
equivalently, loop corrections to this classical eld.At NLO one can produce pairs of
quarks (see Refs. [8G10]) or gluons (real corrections) and one m ust take into account
one loop corrections to the classical eld (virtual corrections).W e shall argue that these
corrections have logarithm ically divergent contributions, which m ust then be resum m ed
into the renom alization group evolution of the sourcesW [ (x- )] Z1I2].
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2. Factorization theorem

Tt is perhaps usefill to ook rst at the weak eld lin it of the CG C , where particle
production can be com puted using kr factorization ([13], see eg. [14] for an application
to heavy ion collisions). T he leading order m ultiplicity is

Z
aN 11 d’ks
d’p,dy  .p (27
For the real part of the Leading Log correction to this result one m ust take the corre-
sponding expression for double inclusive gluon production

Z
dN 1 d’ks o,
d2p? ded2q? dYq s p?2q?2 (2)?
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and integrate it over the phase space of the second gluon (g, ;yq). Note that at leading
log accuracy we have here taken the m ultiR egge kinem atical 1im it, assum ing that the
two produced gluons are far apart in rapidity (seeeg. [18]). T he integralover y, diverges
linearly (this is the general behavior of the gg ! gg scattering am plitude In the high
energy lin it t xed, s u! 1 ).Thisdivergence is com pensated (to the appropriate
orer in ) by the realpart of the BFK L evolution equation for ’, (k- ;).

In the fully nonlinear case of A A collisions the kr -factorization
isbroken (see eg. [5i160]), and one m ust solve the equations
of motion to all orders In the strong classical eld. The
analogue of the unintegrated parton distributions ’ (k- )
is the color charge density distrdbution W [ ]. These are
sin ilar in the sense that they are not (com plex) wavefiinc—
tions but (at least loosely speaking) real probability dis-
tributions. Factorization can be understood as a statem ent
that one has found a convenient set of degrees of freedom
in which one can com pute physical observable from only
the diagonalelem ents of the density m atrix of the incom ing
nuclei. The di erence is that when in the dilute case these
degrees of freedom  are num bers of gluons w ith a given m o-
m entum , In the nonlinear case the appropriate variable is
the color charge density and the relevant evolution equation
is JIM W LK, not BFKL. The kinem atical situation, how — Fig. 1. Production of two ghi-
ever, rem ains the sam e. To produce a gluon ata very large  ng: the integral over y is di-
rapidity (ora contribution in the loop integralofthe virtual vergent.
contribution w ith a Jarge k* ) onem ust get a Jarge + -m om entum from the right-m oving
source. T hus one is probing the source at a Jarge k* , ie. sn alldistances in x , and the
result must nvolve W , [ Jat a Jarger rapidity. T he underlying physical interpretation of
factorization is that this uctuation w ith a lJargek™ requires such a long Intervalin x* to
radiated that it m ust be produced well before and independently of the interaction w ith
the other (leftm oving and thus localized in x* ) source. T he concrete task is then to show
that when one com putes the NLO corrections to a given observable In the G lJasm a, all
the leading logarithm ic d ivergences can be absorbed Into the RG evolution of the sources
w ith the sam e H am iltonian that was derived by considering only the D IS process. T his
is the proof [11[1217] of factorization that we w illbrie y describe in the ollow ing.
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3. Deriving JIM W LK factorization

Consider the single inclisive ghion multiplicity which is a sum of probabilities to
produce n + 1 particles, w ith the phase space of the additionaln m ust be integrated out
Z .
dN ® 10 3 3 . 2
dTp Y d’p,; pnd PPy . 0p : (3)
n=0
Because we have a theory w ith external color sources of order 1=g;all insertions of
source appear at the sam e order [18].A calculation using the Schw ingerK eldysh form al-
isn leads to the follow ing results: At LO , the m ultiplicity is obtained from the retarded
solution of classical eld equations (here (:::) includes the appropriate nom alization
and pro fction to physical polarizations)
h i
dN .
o - Pxdly e & Y A IGx)A(Gy) : (4)
dp w1
TheNLO contribution includes the one loop correction to the classical eld and the +
com ponent of the Schw ingerK eldysh (SK ) propagator in the background el

aN h i
NLO _ ip (x y) . . . . . .
= e ( G )iy L (Gx)A (Gy)+A, (Gx)  (Gy) 1 ()
d p X5y tl 1
Because of the SK index structure (also 0 0

satis esan equation ofm otion w ith a retarded * ; ®
boundary condition ), one can express the prop—
agation ofa sm all uctuation a (x) above the
past light cone as a functional derivative
T, of the LO clssical ed A (x) with re—
goect to its initial condition on :a (x) =
wp afu) JA (x): This leads after some
rearrangeam ents to the expression for the NLO
contribution to them ultiplicity asa functional Fig.2.The 1-loop one and two point functions
derivative operator acting on the leading order i the background ed.
result:

B

Z Z
dN 1 3 3 3 dnN
- = — dudvG @u;,v)I,T,+ du )T, — : (6)
d3p NLO 2 d3p LO
. . . R a’k
Here the two point function below the light coneG (u;v) TorED @ x ()a,, (v)

isbilinear in the small uctuation eld a (x) satisfying the sn all uctuation equation of
m otion w ith and initialcondition given by a planewave lin,o, 1 a , (x)= ke * %
see Fig.[d for a pictorial representation of this structure.

T he leading logarithm ic contrbution com es from the longitudinal com ponent of the
integral over k, the m om entum of the nitial plane wave perturbation (and the corre—
sponding m om entum 1in the one loop source term for the equation ofm otion satis ed by

). This LLog part of the finctional derivative (@) operator tums out to be precisely
equivalent to the sum of the JIM W LK Ham iltonians describing the RG evolution of
the source distrdbutions W [ ]. T he fact that no other temm s w ith the sam e logarithm ic
divergences appear is the crucial result for factorization. The JIM W LK Ham iltonian
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Z
1

H o 5 d'xdly,Dalxz) %z jy; Dby, ) (7)
ism ost naturally expressed in tem s of L e derivatives D afke ) operating on the W ilson
lines form ed from the classical eld (U (x,; )= P exp ig dx l=r§ (X, ;x ) for

the nucleusm oving in the + z direction) in temm s of whhich the kemel in Eq. (4) is

z h i

ab

1 X U U
ab(X? Yo ): - ( - - ) (y - ) UX? Ug? UX? Ug? UU? Ug? +1 : (8)

w, (X2 w )y, w )

Let us conclude by sum m arizing som e in portant aspects of the JIM W LK factoriza-
tion theorem of Refs. [I11[12]. W e are interested in the high energy kinem atical lim it,
with transversem om enta Qg and the energy s large; the dilute lin it is that of BFK L
physics. T he relevant degrees of freedom in this fram ew ork are the color charge densities

ofthe fast partonsand the classical elds ofthe sm allx ones. T he color charges 1=g
are param etrically large, and thus the problem is inherently nonperturbative, but there
is, however, a consistent weak coupling or loop expansion. T he prim ary observables of
Interest are inclusive single and m ultighion m ultiplicities (not cross sections for produc—
ing a xed num ber of particles), which leads to results that can be expressed in tem s of
retarded (and advanced ) propagators.W e express these propagators as functionalderiva—
tives w ith respect to the eld on an Initial surface on the light cone, which can then be
m apped to the functionalderivatives of the color elds of the Individualnucleiappearing
In the JM W LK Ham iltonian.
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