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The contribution of Coulomb elastic scattering of beam particles on the residual gas to the
beam halo development in a linear accelerator is studied. Starting from the basic differ­
ential cross section formula giving the probability of a particle to scatter at a given angle,
we analyse the behaviour of those few particles which scatter at rather large angles and we
estimate their proportion relative to the beam intensity. We present a transport code dedi­
cated to the scattering ofa beam on the residual gas, which we validate with an experiment
in which the beam is transported through a drift space. We use then our code to simulate
the transport of a beam matched to a uniform focusing channel and we show how the col­
lisional halo develops. The code is finally used in order to establish the loss rate per meter
in a high intensity linac. This loss rate is compared to the acceptable one.

Keywords: Halo; Scattering; Residual gas; High intensity linac; Experiment;
Simulation

INTRODUCTION

The requirements of very high current linear electron and proton accel­
erators have increased considerably over the recent years. Beam losses
are a main concern in the design of such machines. Experimental obser­
vations and theoretical predictions have shown the existence of a
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low-density halo surrounding the central core of a high-intensity beam.
This halo not only leads to particle loss along the accelerator, but also
can induce enough activity in the structures to complicate the main­
tenance of the machine. There are many contributions to the forma­
tion of the halo. Several theoretical studies have been undertaken to
understand the formation of the halo through the dynamics of particle
beam transport. 1,2 However, up to now, very few attempts have been
made to study halo formation via interactions ofbeam particles with the
residual gasses of the accelerator.

The scattering of particles in the residual gas of a circular accelerator
is known to be crucial for the lifetime of the beam. It is essentially due
to the billion kilometres covered by the beam before its extinction.
However, in a linear accelerator, the distance is not so large, and it often
seems reasonable to neglect the scattering effect on the residual gas.
Moreover, in a linear accelerator, the vacuum quality is not as good as in
a circular one, especially near the source where the beam energy is rather
low, and the scattering effects can be important. This is why some phys­
icists have studied the influence of scattering on the beam emittance
growth, and have shown that its contribution is sometimes non-negli­
gible. 3 They have used, in their studies, a statistical description of the
scattering process (including multi-scattering), thereby neglecting the
detailed effect of individual scattered particles on the beam profile.

We have undertaken an experimental study of halo formation and
development around an intense (50mA), low-energy (500keV), low­
emittance (O.61r· mm . mrad, normalised) proton beam during its trans­
port through a periodically focusing FODO channe1.4 The aim of this
study is to understand the dynamics of an intense charged particle beam
submitted to the interplay of internal, repulsive, space-charge forces
and externally applied focusing forces. 5 In order to provide a coherent
interpretation of this halo-producing process, it appears necessary
to estimate the amount of halo produced by the scattering of beam
particles on the residual gas, and to subtract it from the measured
data.

Analysing the basic scattering process, we show that its effect is not
negligible in the case ofour experiment. Then, we validate a simple theo­
retical and numerical model by an experiment which consists in mea­
suring over a large dynamic range the transverse profile of a proton
beam at the end of a drift space, for various gas pressures. Using this
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model, we simulate the transport of the proton beam under our FODO
experimental conditions and estimate the magnitude of the scattering­
induced halo.

THE SCATTERING PROCESS OF A PROTON BEAM

The Basic Process

We consider, here, the elastic Coulomb scattering of beam particles on
the atoms of the residual gas in an accelerator. The probability of col­
lisions is governed by the well known Rutherford differential cross
section formula: 6

dO"
dO

1 (M cos 0 + J M2 - m2 sin20) 2
---:..---------;:::===============~-=-- . 10- 22

. sin3 0 . MJM2 - m2sin20
(1)

where 0" is the scattering cross section (in m2), 0 is the scattering angle
from the incident direction (in rad), z is the incident particle charge
number, Z is the target nucleus charge number, m is the incident particle
mass, M is the target nucleus mass, E is the incident particle energy
(in MeV).

This formula calls for three comments:

(i) The scattering cross section decreases rapidly with angle (in 0-3
),

which explains that the scattering process has usually no significant
influence on the beam emittance growth. 3 However, the decreasing
rate is much smaller than the one of an exponential or a Gaussian
shape, which is usually used to describe a beam transverse profile.
This implies that, from the halo point of view, a non-negligible
number ofparticles can be scattered at angles greater than the mean
divergence of the beam. These particles, under the influence of the
beam transport laws, may be rapidly kicked out into the halo
region and contribute to beam losses.

(ii) Since the cross section varies as E-2
, the scattering process is very

important for low-energy particles, which is the case in our experi­
ment (SOOkeV).

(iii) In most practical applications, the correction term (containing m
and M) in formula (1) is considered as constant and equal to 4.
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This is justified because, on the one hand, we are dealing with small
scattering angles « 100 mrad), on the other hand, the mass of the
incident particle is lower than that of the target nucleus. For
example, with m == 1, M == 16 (proton scattering on an oxygen
atom), and for a scattering angle of 100 mrad, the correction term is
equal to 3.98 (compared to 4 when B---tO and M/m---too). So,
for small angle scattering, we can use the simplified differential
cross section formula:

(2)

Application to a Proton Beam

Scattering Angle

Let P be the residual gas pressure (in Pascal) in the accelerator vacuum
system. Using the perfect gas formula, the number of particles n (m-3

)

per unit volume is: n==(NAP)/(RT) where NA==6.02·1023 mol- 1
, is

Avogadro's number, R == 8.315 J/mol/K is the perfect gas constant and
T is the gas absolute temperature in Kelvin.

The probability per meter (m-1) for a particle to scatter in one col­
lision at an angle between Band B+ dB is

dProb(B) == da(B) . n.

This gives for protons (z == 1) in a gas at temperature T == 300 K:

(3)

(4)

with Pin hPa, E in MeV, Band dB in mrad.
One can notice that, according to Eq. (4), the probability to scatter at

an infinitely small angle is infinitely large, which is not physically real­
istic. In fact, this formula applies only for angles between a minimum
angle Bmin corresponding to a large impact parameter of the order of the
atom radius (field screening of nucleus by electrons), and a maximum
angle Bmax corresponding to a small impact parameter of the order of
the nucleus radius (charge distribution in the nucleus).
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TABLE I Scattering limit angles for protons on nitrogen
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Energy (keV) p (MeV/c)

4.33
13.7
43.3
137
445
1670

Bmin (/lrad)

1180
372
118
37

11.5
3.0

Bmax (rad)

1r

1r

1.35
0.43
0.13
0.034

We have7
: ()min==11/(p·a) and ()max==11/(p·b), where 11 is Planck's

constant divided by 27r, p is the incident particle momentum, a ==
1.4aoZ- 1

/
3 is the atom radius, with ao==0.529·10- 10 m the Bohr

radius and b == 1.4A 1/3 .10-15 m is the nucleus radius. Table I gives the
values of these extreme angles for protons of different energies, incident
on nitrogen nuclei (Z == 7, A == 14).

From Eq. (4), we calculate the probability, per meter, for a particle to
be scattered in one collision at an angle larger than ()o (()min < ()o < ()max):

1
8max

0.155Z
2
P [1 1]Prob(() 2:: ()o) == dProb(()) == E2 . ()2 - ~ .

80 0 max

In the case where ()~ax » ()6, we have

b(() ()) _ 0.155Z 2P. ~
Pro 2:: 0 - E 2 ()2 .

o

The Transverse Phase-space

(5)

(6)

We examine now the effect of collisions with the residual gas on the
transverse profile of a proton beam. In this section, the beam is assumed
to have zero emittance, i.e. all proton trajectories are parallel to the pro­
pagation axis Oz, as shown in Figure lea). The beam transverse profile
is further observed through its projection on a given axis, say the hori­
zontal axis Ox (see Figure l(b)).

We consider a particular proton which is scattered in direction e, the
azimuthal angle (() E [0, 7r]), and ¢, the radial angle (¢ E [-7r, 7r]), with a
probability Prob((), ¢) == PI (()) . P2(¢), since () and ¢ are independent vari­
abIes. PI(()) is given by expression (4), P2(¢) is constant within [-7r, 7r].
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(a)

FIGURE 1 Projection of the scattered particle trajectory on the horizontal plane.
(a) Spatial view: the particle scatters at an azimuthal angle () and a radial angle cP,
which gives an angle ()x in the horizontal plane and an angle ()y in the vertical plane.
(b) Projection in the transverse space: the probability for ()x to be greater than ()o is
represented by the hatched part of the figure.

The angle of the proton trajectory projected onto the horizontal plane
xOz is ex' We can easily see from Figure l(b), that ex==e·cos(¢). The
particles scattered at an angle ex '2 eo (hatched part of Figure l(b)) are
those scattered at an azimuthal angle e '2 eo with a radial angle ¢ such
that cos(¢):S eole, which means that -¢':s ¢:S ¢' with cos(¢') == eole.

We obtain

Prob(Ox > 00) = [Omax ¢' . dProb(O) dO (7)
Jmax(OO,Omin) 1r de

where ¢'11r == (l/1r)arccos(eole) is the normalised probability for having
ex '2 eo for a given e. Putting a == eole, we have

O.31Z2Plmin(1,oo/Omin) a
Prob(ex > eo) == 2 2 -. arccos(a) da.

E eo OO/Omax 1r

We define G(u) as

(8)

G(u) = 8 r ~. arccos(x) dxJo 1r

= ~ [-u~ + 2u2 arccos(u) + arcsin(u)], (9)
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we have

G(I) == 1 and G(O) == o.

We finally obtain for the probability relation:

3.9·10-2Z 2p
Prob(Ox > (0 ) == 202 . k(Oo)

E 0

with

217

(10)

_ { G(OO/Omin) - G(OO/Omax)
k(Oo) - 1 - G(OO/Omax)

o

if 00 < Omin,

if Omin ::; 00 ::; Omax,

if Omax < 00 .

(11 )

In the case often encountered where Omin « 00 « Omax, we can use the
formula

3.9·10-2Z 2p
Prob(Ox > (0 ) == 202 .

E 0
(12)

We have represented, in Figure 2, the variation ofProb(Ox > ( 0) with
00 for different proton energy values, in a monoatomic nitrogen gas
(Z == 7) at a pressure of 10-6 hPa (this is the same probability as in a
molecular nitrogen at a pressure of 5.10-7 hPa). The curves allow one
to calculate the scattering-halo development in an accelerator by know­
ing the beam energy and the gas composition and pressure along the
transport line.

The multiple scattering and the plural scattering effects apply only for
probabilities greater than 1-10%. In most cases considered here, they
do not apply, and the model taking into account single scattering is
sufficient. 7 But sometimes, especially for low-energy protons scattered
at small angles, in a high-pressure gas over a long distance, we could be
obliged to use the statistic-scattering models.

Beam with Small Angular Spread

In the preceding calculation, we have assumed a beam without angular
spread. Nevertheless, a real beam has an angular spread (even though,
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FIGURE 2 Probabilities, per meter, for protons of different energies to scatter at an
angle ()x greater than ()o in a monoatomic nitrogen gas at the pressure of 10-6 hPa.
(See color plate I).

it may be small). A particle trajectory makes an initial non-zero slope x(
with the beam propagation axis

Assuming x( « 1, and scattering x-projected angle 0x« 1, the final
particle slope Xf can be written as

(13)

EXPERIMENTAL OBSERVATION

Experimental Results

The experimental set-up is schematically presented in Figure 3.
A 500 keV pulsed proton beam, with 500 IlS pulse duration, 50 rnA peak
current, and 1Hz repetition rate, is delivered by a duoplasrnatron



HALO FROM COULOMB SCATTERING 219

Pressure measurements

Vacuum pump

EC

Residual gas

Drift space lenght : L=2.8m Gas injection
~

D=1.3m

FIGURE 3 Schematic drawing of the experimental set-up.

source. The beam transverse profile is limited by a first diaphragm (¢4),
with 4 mm diameter, located at the exit of the source, and a second one
(¢9), with 9mm diameter, placed downstream 1.3 m from the first one.
This diaphragm combination has been adopted to obtain a beam core
with homogeneous transverse profile and sharp edges, which ensures
accurate observation of the collisional halo. The collimated beam
propagates through a drift space towards a scintillating screen located
downstream 2.8 m from the first diaphragm (¢4) and observed with an
intensified CCD camera. This imaging technique is very powerful since
it allo\vs density distribution measurements over a very large dynamic
range. 8 This scintillating screen is home made. It consists of P47 phos­
phor crystal powder deposited on a rectangular stainless steel plate. The
gas pressure in the evacuated transport line can be changed by injecting
nitrogen gas at the level of the scintillating screen. The gas pressure is
measured at three locations in the transport line: at the beginning close
to the source, in the middle near diaphragm ¢9, and at the end in the
vicinity of the phosphor screen.

The beam profile is observed on a wide dynamic range by progres­
sively moving the phosphor screen towards the beam centre. For each
screen position, the light intensification is adjusted to get an analysable
image of the halo, as shown on Figure 4.

The total beam profile is, further, restored using the light intensifier
calibration curve. Beam profiles are presented in Figure 5 for two dif­
ferent nitrogen gas pressure sets given in Table II.



FIGURE 4 Image of the scattering halo with a scintillating screen partly on the path
of the beam. (See color plate II).
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FIGURE 5 Experimental and simulated beam profiles for two different nitrogen gas
pressures. (See color plate III).
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TABLE II The two pressure sets in the experiment measured at the beginning, the
middle and the end of the drift space

"Low" N2 pressure (hPa)
"High'~ N2 pressure (hPa)

Beginning

6.4 . 10-6

8.5 . 10-6

Middle

2.0.10-5

6.0.10-5

End

3.2.10-5

1.1 . 10-4

We observe that an increase of the residual gas pressure, by approx­
imately a factor 3 in the second part of the drift space, induces an
increase of the beam halo intensity by the same factor. Other mea­
surements, not presented here, obtained for 8 different gas pressures
exhibit the same behaviour but more precisely.

Simulation of the Experiment

We have simulated the experiment using the analytical results presented
in first section. The simulation method is schematically presented in
Figure 6 and described below.

A 2D array (called T, with a size of N x M) contains the beam density
distribution digitised in the (x, x') phase space. It is sampled with a step
dx in the x direction and a step dx' in the x/ direction. Ti,j then repre­
sents the beam density for x between ((i + 1) - N12) dx and (i - N12) dx
and for x/ between ((j+ 1)-MI2)dx' and (j-MI2)dx'. This array
is initially filled with a homogeneous parallelepiped, corresponding
approximately to the measurement of the beam distribution in this
(x, x') phase-space presented in Ref. [4] (see Figure 6(1)).

A ID array (called PP, with a 2M size) contains the probability for a
particle to scatter at an angle ()x between i· dx' and (i + 1) . dx', i being
the index in the ID array. We have PP i == {Prob(()x > [(i + 1) - M] .
dx') -Prob(()x > [i-M] ·dx')}dz. The term Probe) is calculated
using formula (10), dz is the longitudinal processing step length. We
note that dx' is the numerical sampling step in both arrays T and PP.

We then simulate the evolution of the beam distribution function.
We choose, for that, a processing step length dz and for each step, we
determine

- The beam scattering, by folding each column of array T (at x == Cste
)

with the array PP (see Figure 6(2)),
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FIGURE 6 Schematics relevant to the simulations. See text for explanations.

- The beam transport, by translating each point of the phase-space
pattern T along the x axis of a quantity proportional to the
co-ordinate x' (that is xf== Xi + X' . dz, xf == x{). This corresponds to
the beam transport in a drift space without space-charge effect
(see Figure 6(3)).

The difficulty of this study arises from the fact that the particles are
scattered in the x' direction of the phase-space, and that we want to
observe the scattering effect in the x direction. The coupling between
directions x and x' is obtained from the beam transport parameters.

We have assumed here that the scattering probability in the x'
direction is independent of the initial slope x{ of the particle trajectory.
In fact, this is not really true, but in the case of small x{ and small
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scattering angles, it is a good assumption to consider the scatter­
ing distribution as being the same as that of a zero divergence particle
beam.

The space-charge effect on the beam-size growth is not taken into
account in our simulation code. Thus, in order to compare precisely the
experimental and simulation results, we have multiplied the x axis of the
profile obtained from the simulation by a factor 1.7 to obtain the same
beam-core diameter for experiment and simulation. The simulation
results are also shown in Figure 5, they have been established for the
pressure conditions of the experiment. However, pressure values at
intermediate positions along the transport line have been determined
by linear interpolation between the three measurements.

Although the space-charge effect is roughly considered, the particle
motions in the x and y directions are assumed to be independent, the
detailed initial beam emittance and the exact gas pressure distribution
are not taken into account in our simulation code, the calculated results
are in quite good agreement with the experimental data, especially
far from the beam centre, beyond 1.5 times the beam-core radius. We
observe, however, a discrepancy between the measured and simulated
transverse distributions in the halo region close to the beam-core
(between 1 and 1.5 times the beam-core radius). This can be explained
by the crude description of the initial beam emittance in the simulation,
which leads to sharper beam edges than for the experiment. This experi­
mental "nearby" halo, whose shape seems to be independent of the gas
pressure, may also be created by space charge effect within the beam.
Nevertheless, we can conclude that our simple model of beam scattering
on the residual gas is good enough to allow predictions on the scattering
halo formation in the FODO experiment, or in a high intensity linear
accelerator.

SIMULATION OF THE FOnO EXPERIMENT

We now consider the simulation of a proton beam transport in our
FODO experiment.4 To simplify the simulation, the beam is assumed to
be transported in a uniform focusing channel of 10m in length. From
the scattering point of view, it is nearly equivalent to the transport in a
periodic focusing channel. Moreover, we assume that the proton beam



224 N. PICHOFF et al.

has a Kapchinsky-Vladimirsky (K- V) distribution9 in the transverse
phase-space, which means that the emittance ellipse in the (x, x') phase­
space is homogeneous. In addition, we consider that the beam is
matched in the channel. This means that, in the K- V conditions, each
beam particle moves in a harmonic-oscillator potential well. The other
beam properties are: a proton beam energy of 500 keV, a maximum
angular spread x~ == ±4 mrad, a residual gas of monoatomic nitrogen
(Z == 7) and a betatron wavelength of 2 m. The transverse beam size is
a parameter which does not influence the simulation results.

The simulation method is nearly the same as that used for the drift
space and described above. The only differences are the following:

- The array T is initially filled with a homogeneous disc, corresponding
to the projection of the beam K - V distribution in the transverse
phase space.

- We choose a processing step length, dz, much smaller than the beta­
tron oscillation wavelength L. During one step, we can verify that the
probability for a particle to scatter to an angle greater than dx ' is
much smaller than unit (== 3 . 10-4 for a 10-5 gas pressure), justifying
the use of single scattering probabilities rather than multiple scat­
tering one.

- The beam transport, for each step dz, consists in rotating the phase­
space pattern T an angle () == 21r(dz)/L. This corresponds to beam
transport in a harmonic-oscillator potential well.

The beam profile obtained at the exit of the channel is represented in
Figure 7, for different pressure values. We can notice that the collisional
halo develops very far away from the core.

DISCUSSION ABOUT INFLUENCE OF SPACE-CHARGE

When the beam is space-charge driven, 2D phase-space beam distri­
butions are no longer ellipses, but tend to become rectangles. In that
case, particle trajectories (iso-hamiltonian curves) are not ellipses in
phase-space, but are curves whose shape depends on the beam distri­
bution through the space-charge potential.

When the beam is space-charge dominated, it can be assumed
that iso-hamiltonian curves in (x / XQ, X I / x~) are nearIy rectangles1

0
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FIGURE 7 Influence of the scattering process on the beam profile. The different
curves correspond to different gas pressures. The tails, induced by the scattering,
decrease in l/(r - ro)4. (See color plate IV).

(as represented in Figure 8). In that case, in order to get the same
amplitude, a particle needs to be scattered to an angle larger than the
one that would have been necessary with no space-charge force (where
ellipses are the iso-hamiltonian curves).

This situation can be seen in another way: When there are space­
charge forces, more external focusing forces are needed to transport the
beam with the same size. In that case, the confinement potential well
is deeper, and the kinetic energy (gained in a collision) needed to reach
the same amplitude is higher. This will decrease the residual gas scat­
tering halo.

If ko is the external focusing phase advance per meter, and 7] is the
tune depression factor of the beam, then

X~ == 7]ko . Xo.

Rd is the homogenous-part beam size, and b:.R is its border size, then

Xo == Rd + b:.R.
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Trajectories with space-charge , Trajectories without space-charge

x
Xmax

FIGURE 8 Beam shape and particle trajectories around a beam with: • no space­
charge forces (ellipses, in red), • space charge forces (quasi-rectangles, in green). The
scattering angle necessary to get an amplitude X max is larger with space-charge than
without space-charge. (See color plate V).

If we assume* that particles outside the beam are only subject to
external forces, we can write

x'
LlR = k~'

which gives Rd == Xo - (x~/ko) == xo(l - rJ).
Two particles scattering to the same angle x:nax will not reach the same

amplitude depending on whether we take into account space-charge
(XSCmax) or not (xmax). We have

XSCmax = Rd ~ x:nax/ko = Rd + rJXmax = 11 + (1 - rJ) .~.
Xmax xmax/ko Xmax Xmax

*The logarithm contribution of the space-charge potential can be neglected.
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The space-charge decreases the particle amplitude by a factor between
(close to the core when Xmax == xo) to ry (far from the core when

xmax/XO ---+ (0).
The amplitude- density is increased because the scattering x-slope

range for which particles have amplitudes between x and x +dx is larger
with space-charge than without space-charge. This amplification factor is

dXSCmax (1) Xo---==ry+ -ry .--.
dxmax Xmax

Ignoring space-charge when calculating the density leads to a too high
value. The calculations presented in Figure 7 must therefore be cor­
rected (see Figure 9) to take space-charge into account. This can be done
by the following transformations:

n x) = n(x)
( (1] + (1 - 1]) . (xo / x)) ,

x == x . (ry + (1 - ry) . (xo / x)).

Due to the profile variation in 1/r4 far from the core, the beam far­
halo density will be decreased by a factor ry3.

0.5 1.5 2.5 3.5

, P =10 -7'hPa

10--4

10-6

10-10 ....l......---....:....--.__"-__:..-_---...:.__-...:..__-----:....__-...:..-__----l

FIGURE 9 Space-charge influence on the particle amplitude distribution. (See color
plate VI).
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BEAM LOSSES IN A HIGH INTENSITY TRISPAL LINAC

TRISPAL Linac

The proton TRISPAL linac ll is composed of 4 different parts
(Figure 10):

(1) ECR source (SILHI, 100keV, 40 rnA (up to 100 rnA) protons),
(2) RFQ (from 100 keV to 5 MeV),
(3) DTL-CCDTL (from 5 MeV to 100 MeV),
(4) CCL (from 100 MeV to 700 MeV).

The residual gas in the linac will be responsible of halo formation.
Residual gas scattering is more important at low energy than at high

energy, firstly because of the scattering cross section varying in (kinetic
energy)-2 and secondly because of the higher gas pressure close to the
source.

Nevertheless, because the beam size and normalised emittance are
kept constant along the acceleration, the beam angular spread decreases
as lip (p being the particle momentum). In consequence, the scattering
angle allowing to reach the halo decreases as lip.

In addition, as shown in Table III, the acceptable loss rate decreases
with energy.

100 keV 5 MeV 100 MeV 600 MeV

[-~-~~-ceH RFQ HDTL HEeL t
FIGURE 10 TRISPAL linac.

TABLE III Proton losses inducing a 2.8 mrem/h gamma dose at 1m from the linac
after 1h decay

Energy (MeV)
Acceptable losses (nA/m)

10
200

20
15

50
2.5

100
1

200
0.2

500
0.05

1000
0.03
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Let us modelize the TRISPAL linac with a continuous focusing channel,
increasing smoothly the matched beam energy from 10 MeV to 1GeV.
The beam RMS normalised emittance is constant along the transport:
CnRMS == 2.4.10-7

1r' m· rad. The RMS-beam size is kept constant too:
o"x == 3 mm. Linac pipe has a ¢ == 28 mm diameter. Space-charge tune
depression factor used in this model is TJ == 1 (no space-charge forces).

Particle trajectories in (xjO"x, x' jO"x') phase-space are circles. 0"x is the
RMS-beam size in x direction and 0"x' is the beam RMS-divergence in
the same direction. A particle scattering to an angle x' > x~ax will be
directly lost (Figure 11) (after 1/4 of betatron period) where

x~ax

A particle which scatters to an angle x I > some 0"x', will enter the halo.

FIGURE 11 Particle scattering inducing loss.
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FIGURE 12 Direct losses in residual gas for TRISPAL linac.

On Figure 12 direct losses of a 100 rnA beam have been represented.
They are compared with acceptable losses given by Table III. The
molecular nitrogen (Z == 7) residual gas pressure is 10-7 hPa.

Remarks

As shown on Figure 12, losses are proportional to the gas pressure,
the square of charge number, and inversely proportional to the
square of the angular spread and the pipe diameter.
Losses in hydrogen gas (Z == 1) are 49 times lower than in nitrogen. In
fact, the partial pressures of all gases, and especially of heavy rare
gases or hydrocarbon, have to be taken into account.

- The gas pressure is not constant over the accelerator. Between
vacuum pumps, the gas pressure can be several times the one at the
pump position.
All "with gas" elements will induce localised losses.

Extension of the Basic Model

In the basic model, some assumptions have been made. Let us have a
look on their influence.
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Space-charge influence With space-charge (TJ < 1), as seen pre­
viously, scattered particles do not have the same phase advance per
meter than those of the core. This increases the maximum angle
beyond which the particle is lost. Direct losses are then reduced by a
factor IjTJ2.

Periodic transport In a reallinac, the transport channel is not con­
tinuous but periodic. The beam size is then oscillating around a mean
value, and has a higher value in the focusing quadrupoles. In the basic
model, continuous losses have been considered while they are actually
localised in quadrupoles.

Non-direct Losses

Results of calculations shown in Figure 13 take the direct losses into
account. But many scattered particles are not lost but enter into the
beam halo, and are potential losses which are dangerous in case of
mismatch and misalignment.

For example, in TRISPAL linac, assuming a mean energy gain of
1MeVjm, the beam fraction stored from an energy of 10 MeV to the
final energy of 600 MeV, in a 10-7 hPa nitrogen gas pressure, having an
amplitude between 25 and 28 mm (very close to the pipe) is 1.4 nA,
which is 30 times the acceptable losses per meter at that energy!!

In case of misalignment and mismatch, or a change of accelerator
acceptance (for example in matching sections), the beam will undergo
localised losses.

Off centered beam Mismatched beam

FIGURE 13 Basic representation of the effect of some transport errors on beam
losses.
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In a linear accelerator, the scattering process can be very significant,
particularly in the low-energy part and near the source, where the
vacuum pressure is generally high. The transport of this "collisional
halo" through the high-energy sections, where its effects may be serious,
has to be studied. A means ofeliminating the halo before it reaches these
sections has to he found.

We notice that the larger the angular spread of the beam is, the less
important the scattering effects are. This means that, for a given emit­
tance, it is better to transport a small-size beam, with large angular
spread. It also leads to an increased tune depression factor 'fJ.

Losses can be reduced:

By decreasing the residual gas pressure and particularly of heavy gas
molecules (losses ex: p. Z2),
by using strong focusing forces (losses ex: (J"~ • 'fJ4),

by increasing the pipe diameter (losses ex: ¢-2), even if this is not very
efficient for this kind of losses.
by controlling carefully the beam matching and alignment. The
acceptance should not decrease in order to avoid localised losses.

As a consequence of the huge diffusion at low energy, it seems inter­
esting to clean the beam at low and medium energies.
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