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Electron multipacting can cause loss of the field level in resonators or it can break the high
power rf components like couplers and windows. This phenomenon starts if certain
resonant conditions for electron trajectories are fulfilled and if the impacted surface has a
secondary yield larger than one. A general cure against multipacting is to avoid the
resonant conditions. Therefore, we investigated the dynamics of the electron trajectories
in order to find rules for these resonances. We developed new computational methods
which combine the standard trajectory calculations with advanced searching and
analyzing methods for multipacting resonances. In numerical experiments we consider
different coaxial structures. We are able to find those rf incident power levels at which the
multipacting occurs and, thereafter, to locate and identify different multipacting pro-
cesses. We characterize multipacting behavior in straight and tapered lines, and for the
straight coaxial line we give simple scaling laws for the multipacting power bands with
respect to the diameter, impedance and frequency. Furthermore, the present analysis
method turns out to be a powerful tool for optimizing different methods to suppress
multipacting. Here, in particular, the biasing DC voltage method is considered.
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1 INTRODUCTION

Electron multipacting is a major problem in rf structures, especially in
superconducting cavities. Multipacting occurs when free electrons,
accelerated by the rf field, strike the surface of the cavity and release
secondary electrons, which repeat the process and, rapidly cause an
electron avalanche. This electron discharge absorbs the rf energy and
may cause quenching and breakdown of high power rf components like
couplers and windows. The phenomenon starts if certain resonant
conditions for electron trajectories are fulfilled and if the impacted
surface has a secondary electron yield larger than one.

Basically two different multipacting mechanisms are described in
literature."*>? In the first one, the model case consists of two parallel
electrodes with oscillating voltage drop. The resonant electron trajec-
tories bounce from one electrode to another and back in a flight
time roughly equal to an integer number of rf cycles. In the second
one, the shape of the electron trajectories is mostly due to the magnetic
field.

In this article, we describe a systematic computational way to analyze
electron multipacting in rf structures. The first step, in the given geom-
etry, is to recognize those rf power levels that are able to multipact. The
second step is to locate and identify the possible multipacting processes.
The basis of the analysis consists of standard trajectory calculations in
relativistic dynamics. The novel feature here is to analyze the general
nearly periodic structures of the resonant trajectories by using a special
distance function defined in a multidimensional phase space and other
ideas arising from the theory of dynamical systems. Preliminary results
have been reported previously.”®

The approach is applied numerically to analyze multipacting in
coaxial structures. We consider straight coaxial lines as well as tapered
lines and lines with an impedance step. In the straight lines, both the
standing wave and traveling wave operations as well as a combination
of the standing and traveling wave operations, so-called mixed wave
operation, are considered. For the more complicated structures, we have
developed our own code for computing the electromagnetic fields. The
code is based on the boundary integral equation method for solving
Maxwell’s equations. A summary of the algorithm is contained in the
Appendix.
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A general cure against multipacting is to avoid the resonant condi-
tions. Therefore, we investigated the dynamics of the -electron trajec-
tories in order to find rules for these resonances and, thereafter, we
suppress the multipacting by an appropriate cavity design and field
perturbations. For plain coaxial lines, our algorithm enables us to find
simple scaling laws for the multipacting power bands with respect to the
dimensions, frequency and impedance of the line. By these laws, one can
shift the multipacting bands by appropriately altering the design of the
line. Furthermore, we studied the effect of grooving to multipacting as
well as DC biasing and static magnetic perturbations of the rf field. With
our present multipacting analysis method, it is possible to optimize the
perturbations and suppress the multipacting to acceptably low levels.

2 MULTIPACTING AND DYNAMICS

Physically, the multipacting process is described as follows. An electron
is emitted from the surface of an rf cavity and driven by the field. When
it impacts the cavity wall, it may release one or more electrons from the
surface of the wall, the number of the secondary electrons depending on
the impact energy and the wall material characteristics. These second-
ary electrons are again accelerated by the field, yielding new impacts
and possibly new secondary electrons. In appropriate conditions, the
number of electrons may increase exponentially, leading to remarkable
power losses, gassing of the surface and heating of the walls.

One illustrating model case of multipacting consists of two parallel
electrodes with an oscillating voltage drop. Denote the distance of the
electrodes by d > 0, and assume that the voltage between the electrodes
is given by the formula

U((P) = U sin 2 (1)

where 0 < ¢ < 27 is the phase of the field. Denote the rf frequency of the
field by f. Using non-relativistic dynamics, an electron leaving the
electrode with lower voltage at the initial phase. ¢y and zero initial
velocity is at the distance

x(t) = d(a27lrjf0)2 ((¢ — o + 2mn) cos py — (sin @ — sin py)) (2)



110 E. SOMERSALO et al.

from the electrode at a later time 1=(p/2r+n)/f, or p=p(f)=
2n(tf — n). Here, a(=e/m) >0 is the charge-to-mass ratio of the elec-
tron. By requiring that the electron leaving at the initial time ¢, and
phase ¢, hits the other electrode at t=1to+(n—1/2)/f, n=1,2,...,
ie., o=po+ 2n— ) and x(to+ (n—1/2)/f)=d, we get the follow-
ing resonant condition for the peak voltage:

(2rdf )? 1
U: Un = . b - 1’2"' *
(o) a  2m(n—1/2)cospy + 2sin gy "
(3)

for the two-point multipacting between the electrodes. Note that after n
full rf cycles, the trajectories of the possible secondary electrons emitted
from the opposite electrode hit the first electrode. In the particular case
o =0, we get the following well-known formula:

L An(df) B
U_U,,_m, n=12,.... (4)

Formula (4) gives the theoretical upper limit for the resonance voltage
and the lower limit is obtained from (3) by letting ¢, vary from 0 to 7.

Generalizing the reasoning to arbitrary rf cavities, the resonance
conditions for multipacting can be written as follows:

(1) An electron emitted from the cavity wall is driven by the EM fields
and returns back after an integer number of rf cycles to the same
point of the cavity wall;

(2) The impacting electron produces more than one secondary
electron.

If conditions (1) and (2) are fulfilled and if there have been m impacts
and n full rf cycles before the electron returns back to the emission
point, the process is called as an (m + 1) point nth order multipacting
process.

In the case of the traveling wave in structures like straight wave-
guides and coaxial lines the above condition (1) should be modified as
follows. The emitted electron, after an integer number of rf cycles,
returns and impacts the wall at a moment of time when the field con-
ditions are the same at the location of the impact as they were at the
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location of emission, and, accordingly, the trajectory will be repeated
by the possible secondary electrons.

By using this simple geometry as a model case, we formalize the
above ideas to general cavities in terms of dynamical systems.

2.1 The Dynamical System

In the sequel, we assume that the electron dynamics is governed by
relativistic dynamics. Assuming that the effect of the field of the elec-
tron itself on the external field is negligible, the dynamics of a relati-
vistic electron in an electromagnetic field, is generated by the equations

dv w2\ /2 1
a—_——'a<l—<z)) (E+V><B—Z2-(V‘E)V),
i,

de 7

(5)

where v is the 3-velocity of the electron, v=|v|, and c is the speed of
light in vacuum.?
Let Q be a void cavity with a time harmonic electromagnetic field,

E(x,¢) = E(x)sin g, B(x, ) = B(x) cos . (6)

Here, for convenience, the phase ¢ = ¢(tf) =2nt/T plays also the role
of the normalized time with 7= 1/f.

Denote the wall of Q2 by 0€2, and assume that the field map is known.
Consider an electron being emitted at a point x, of the cavity wall 942,
the field phase at the time of emission being g, 0 < o < 27. Further-
more, it is assumed here that the initial velocity vy of each electron is
normal to the cavity wall and of constant size, typically a few eV. This
assumption is a representative average of the real physical initial con-
ditions of the emitted electron population, and it leads to an adequate
modelling of the multipacting trajectories. Suppose that the electron is
driven by the EM fields according to the system (5). Denote by x; the
point and by ¢ the field phase, where the electron hits the cavity wall
for the first time. We may define a mapping

R : (x0, p0) = (x1,01)- (7)
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Using the notation X'= 02 x [0, 27], the above mapping R defines a
dynamical system in the phase space X: Each point p=(x, ¢) € X gen-
erates a discrete trajectory { p, R(p), R*(p),...}.

Let us divide the phase space X into an electron emitting and non-
emitting part by writing X =G U W, where

G = {(x,) € X |n(x) - E(x, ) <0}, (8)
W= {(x,0) € X |n(x) - E(x,¢) > 0} = X\G. )

Here, n(x) is the unit normal vector at x € 9) pointing into the cavity.
In other words, W consists of those points of the phase space where a
free electron is immediately captured to the wall by the field while the
electrons leaving G are injected into the cavity by the electric field. We
assume here that the initial kinetic energy is negligible. The set G is
called the bright set, while W is called the shadow set.

We can now rewrite the first condition (1) in the terms of R mapping
by

R"(p)=RoRo---oR(p)=p, peG. (10)

n times

i.e., p € G is a fixed point of the iterated mapping R". For the secondary
yield we define another function. Let Ey,(p) be the kinetic impact
energy of the electron starting at p and denote the secondary electron
yield function of the cavity wall by §. This function depends on the
impact energy and the properties of the material at the location of the
impact, i.e., § =0(x, Exn). A typical curve Ey,+— 6(x, Ey,) obtained
from the literature” is displayed in Figure 1 (the one we have used in our
calculations).
We define the multiplicity function « as

a: X —R, a(p) = 6(x1, Exin(p)), where R(p) = (x1,¢1). (11)

Thus, the function « simply tells how many secondary electrons (in
average) each initial electron in the phase space will produce when
impacting the wall. Note that in the shadow set we define naturally

a(p)=0, peW. (12)
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FIGURE 1 The secondary electron yield at different impact energies (in eV) for a
niobium surface baked at 300°C.

Considering the full discrete trajectory, the number of secondary
electrons due to one single electron starting at p after n impacts is

n—1

an(p) = [[a®(p)), rec. (13)
=0

Now the second condition (2) for multipacting can be written in the
terms of the multiplicity function by

an(p)>1, peaq. (14)

2.2 Counter and Distance Functions

Our aim is to develop methods by which we can, on one hand, find
those EM field levels at which the electron multipacting may occur,
and, on another hand, analyze the mechanism of the process at the
found multipacting field levels. Especially, we want to find the location
of the multipacting process in the phase space, and also, to compute the
multipacting trajectories and find their kind (one-point, two-point,
etc.) and order.
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Let us first look at the problem of finding possible multipacting
power levels. Let us assume that we are interested in a power interval
[Pumin, Pmax]- We choose a representative sample of power values from
this interval and for each fixed power value we do the multipacting
analysis along the following lines. First, we pick a large number of
initial points p; in the phase space X and for each point p; compute the
discrete trajectory { p;, R( pj),Rz( Py, ---}. After a fixed number n of
iterations of the map R, we count those electron trajectories that were
still in the bright set, and hence able to multipact. This count is denoted
by Cn= Cn(P),

en(P) = #{p; | R"(p)) € G}, (15)

1.e., ¢, is the number of surviving trajectories after » impacts. Obviously,
if ¢, is large for a large n, the geometry favors trajectories that may cause
multipacting. Since no information of the secondary electron yield is
included in ¢, a large value does not necessarily mean that multipacting
occurs.

In order to take the secondary yield into account, we define an
enhanced counter function as a sum of multiplicity functions of single
electrons after » iterations

L
en(P) = Zan(pj)’ (16)
=1

where L is the number of initial electrons and «,( p;) gives the secondary
yield due to jth electron after n impacts. The enhanced counter function
is a good indicator for strong multiplication, i.e., whether the second-
ary yield is large enough for multipacting.

The functions ¢, and e, provide means of recognizing possible
multipacting powers. Once the multipacting levels are recognized, we
need to locate the processes in the phase space. Especially, we are
interested in finding those points that satisfy the fixed point condition
(10), or more generally points p with p — R"(p) small in an appropriate
sense. An effective way of searching for those points p in the phase space
is to consider the distance function

dn(p) = /10 — xal? +Alein — e, (17)
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where p=(xo, o) and (x,, ©,) = R"(p). Here, ~ is a scaling constant,
e.g., chosen so that one discretization step in the phase direction affect
d, roughly as much as one in the distance direction. The distance
function d,, tells how far away the trajectory is after » impacts from the
initial point. The minima of d, give the initial points of those trajec-
tories that correspond to multipacting. Note that the minimum search
must be restricted to the area where a,(p) > 1.

A recomputation of the trajectories starting at the minima of d,
can be used to analyze the nature of the multipacting process. The
important questions are the order of the multipacting, whether it is a
one-point or multi-point multipacting and whether it is mostly due to
the magnetic or electric field.

3 NUMERICAL EXPERIMENTS

In this section we apply the ideas to different geometries. First, the
algorithm is verified by using the two-electrode model as a test problem.
This is a simple model for multipacting in rectangular waveguides.'
Other geometries are different coaxial structures.

3.1 Model Problem: Parallel Electrodes

Consider the non-relativistic electrons between two parallel electrodes
with an oscillating voltage drop described in the previous section. In
terms of the peak voltage, the resonant multipacting levels are obtained
from formula (3). The first test is to see how well these values corre-
spond to the local maxima of the counters ¢,(U) and e,(U). In Figure 2,
we have plotted the counter function ¢, computed by using 180 initial
electrons with different initial phases. The theoretical upper and lower
limits for the resonance voltages U, given in (3) are marked in the figure.
For the first order process corresponding to the highest voltage, for
example, the upper and lower limits are obtained from (3) by sub-
stituting o =0 and =32 degrees, respectively. Figure 2 shows that
multipacting may occur in a relatively broad voltage band. Typically,
lower order multipacting bands are broader than the higher order
bands, the bandwidth decreasing roughly inversely proportionally to
(1+n)*, where n is the order of the process. This phenomenon is
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FIGURE 2 Relative counter (c3o(U)/co(U)) after 30 impacts. The abscissa is U'/? and
the voltage U is given in kV. The 10 first theoretical values U, (upper and lower limits)
are marked by circles. The first order process is on the right, then the second order pro-
cess, etc., i.e., the order increases when moving to the left. The distance of the electrodes
is 29.1 mm and the frequency is 500 MHz.

encountered in actual multipacting experiments, t00.% It should be emp-
hasized that this broadening is not due to varying initial velocities of
the emitted electrons: In our calculations, the initial velocities are kept
fixed. Rather, the bandwidth should be understood as measure of the
stability of the multipacting process with respect to the perturbations of
the field. This phenomenon is clearly demonstrated in Figure 3, where
we have plotted the distance function (defined in (17)) due to the first
order process. The process is found to be strongly phase focusing, i.c.,
the electrons cluster to certain phase values. In Figure 3, the darkest
band is the attracting phase and the shaded areas around it are the
focused phases. Theoretical resonance voltage/initial phase values are
marked in the figure. However, only the the lower part of the theore-
tical curve is focusing, the upper part turns out to be defocusing.
Next the effect of the secondary electron yield to the counter function
is checked. First, Figure 4 shows the average impact energy of those
electrons which are still in the bright set after 30 impacts. Between the
solid lines the secondary yield corresponding to the curve in Figure 1 is
greater than one, and the maximum yield 1.5 is reached when the
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FIGURE 3 Distance function due to the first order process. The vertical axis gives the
initial phase in degrees and the horizontal axis is U"? in kV. Theoretical resonance
voltage/initial phase values are marked by a curve.
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FIGURE 4 The average impact energy in eV. The vertical axis gives the impact energy
in 10 base logarithmic scale. Between the solid lines the used secondary yield is greater
than one, i.e., when 50eV < Ey;, <1500eV, and along the dashed line (Ey, =400€V)
the maximum yield 1.5 is reached. The third order process seems to have optimal
impact energy for multipacting. This is shown in Figure 5, where the third order
process have the highest peak, i.e., the greatest number of secondary electrons.
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FIGURE 5 Relative enhanced counter function in the logarithmic (base 10) scale after
30 impacts. Note that multipacting occurs only when the relative enhanced function (in
the logarithmic scale) is greater than one, i.e., the number of the electrons is increased.

impact energy is close to the dashed line. Figure 4 suggests that only
processes of order 2—6 correspond to multipacting processes. For the
lowest order process, the kinetic impact energy is too high to produce
secondaries while for the processes of order 7 and up the kinetic energy
is too low. This is clearly demonstrated in Figure 5, where we have
plotted the enhanced electron counter functions e,

3.2 Coaxial Lines: Standing Wave

Here we apply the multipacting analysis to straight coaxial lines in
standing wave (SW) operation.

Let a and b denote the inner and outer radii of the coaxial line. If fis
the frequency and U is the voltage drop between the inner and outer
conductor, the TEM-mode fields in SW operation are given by the
formulae

Esw(x, ) = WUb/a) (cos(kz — ) — cos(kz + ¢))e,, o)
Bsw(x, ) = ml%/?) (cos(kz — @) + cos(kz + ¢))ep.
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Here k =w/c =2x/X and (r, 6, z) is the representation of the field point x
in cylindrical coordinates. The average incident power flow P of the
electromagnetic field is related to the voltage U through the formula

U2 o b
P—S—Z, Z—Eln;, (19)

where Z is the line impedance and 79 = 1/ o/ is the wave impedance
in vacuum.

By the symmetry of the standing wave fields, we restrict the com-
putations to a segment of the line of length one quarter of the wave-
length, from the maximum to the first zero of the electric field.

By the form of the rf fields, it is obvious that electrons with the initial
velocity in a plane # = constant remain in that plane. To find the pos-
sible multipacting power bands, we compute the counter function
¢,(P). Figure 6 shows the plot of the function ¢,(P). Here, initial elec-
trons are sent both from the inner and outer conductor. By considering
the distance functions it is found that the surviving trajectories appear
near the maximum of the electric fields. To verify this conclusion, we
compute separately the counter functions for electrons initiated at
the electric field maximum only, and on the other hand for electrons
starting from the maximum to the first zero of the electric field. These
functions are plotted in Figure 6. Evidently, the major features of the
counter function in the top frame of Figure 6 are repeated in the bottom
frame. Essential contribution from electrons outside the electric field
maximum comes only at high incident powers. We may deduce that at
least within the incident power range used in our calculations, multi-
pacting in coaxial lines with a standing wave is predominantly due to
the electric field only. In fact, electron trajectories perturbed off the
maximum of the electric field are bending towards the minimum due to
the magnetic field. Hence, the electrons are drifting towards the shadow
set. A further analysis of the dynamics shows that the multipacting
processes are strongly phase-focusing, i.e., all the electrons near the
electric maximum are clustered to well defined phase values. Thus, there
are points in the phase space that are repelling in the spatial direction but
attractive in the phase direction. This phenomenon is demonstrated
clearly in Figure 7, where we have plotted the locations of 1000 elec-
trons on the outer conductor after 1, 2 and 4 impacts when the incident
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FIGURE 6 Relative electron counter functions after 30 impacts. The computation
was done with a 50 line with inner and outer radii a=22.4mm, b=51.5mm,
respectively, at the frequency 500 MHz. In the top frame, electrons from A\/4 (maximum
electric field) to \/2 (maximum magnetic field) were tracked, and in the bottom frame,
the initial electrons were restricted to the maximum of the electric field only. The
differences showing in these plots (from 450 to 690 kW) are due to the first order two-
point process. Note the different scaling of the figures.

rf power is chosen from one of the multipacting bands. A further
demonstration of the phase focusing is seen in Figure 8, where we have
plotted the distance |p — ¢,|, i.e., the difference between the original
and final phases after » impacts for each incident power. Here, the
electron trajectories are initiated only at the maximum of the electric
field. The darkest areas are the attracting phases, and the shaded areas
around them are the focused phases.

Basically two different dominant multipacting types can be recog-
nized. First, there are one-point multipacting processes of different
order on the outer conductor of the line. Secondly, there are two-point
processes from the outer conductor to the inner one and back. In
addition, we were able to find some more complicated processes that
show up only on relatively narrow power bands that are usually
overlapping with the more prominent one- and two-point bands. An
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FIGURE 7 The initial electron distribution and the distributions after 1, 2 and 4
impacts corresponding to a first order one-point process. Horizontal axis gives the
distance from the electric field maximum in millimeter and the vertical axis gives the
phase of the field in degrees. Here, the electrons only on the outer conductor are
plotted. Phases from 0 to 180 correspond to the bright set and phases from 180 to 360
correspond to the shadow set. All electrons in the bright set cluster to a certain phase
value (close to 60°) after a few impacts.

exceptionally prominent peak corresponding to the more complicated
trajectories appear around 390 kW. The process is a combination of a
two-point process of order one and a one-point process of order two.

The order and the type of the most prominent process in each power
band is indicated in Figure 6. The merging of the two different first
order processes is due to electrons with relatively stable trajectories
outside the maximum of the electric field. An analysis of the trajectories
shows that these electrons are order one two-point multipactors.

For comparison, Figure 9 shows the enhanced electron counter
versus incident power plotted in the logarithmic (base 10) scale. The
analysis was restricted here to the maximum of the electric field. The
peaks with values greater than one represent power levels when mul-
tipacting is probable. Note again that at high rf powers, the kinetic
energy is prohibitively high for secondary electrons to appear.
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FIGURE 8 The gray scale contour plot of the distance function ds, when the primary
electron emission is restricted to the maximum of the electric field. The darkest shading
corresponds to the minima. Initial phases corresponding to electron trajectories that
end up to the shadow are marked with white. Same geometry as in Figure 6. The
horizontal axis gives the square root of the incident power in kW and the vertical axis
gives the field phase in degrees.
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FIGURE 9 Relative enhanced counter function in the logarithmic (base 10) scale
restricted to E,x, same geometry as in Figure 6. Note that when multipacting occurs,
the relative enhanced function (in the logarithmic scale) is greater than one,
i.e., the number of the electrons is increased.
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Next, we examine the question whether the multipacting phenomena
described above obey some simple scaling laws. More specifically, we
perform the multipacting analysis with coaxial lines with different
dimensions as well as with different rf frequencies, and identify in each
case the multipacting processes of different type and order. The idea is
to find simple rules relating multipacting power levels and geometric
parameters.

The first natural question is what the ratios of the field intensities are
corresponding to the same multipacting process of different order. In
Figure 10, the maxima of the electric field at the outer conductor are
plotted versus the inverse of (n+ 1) where n is the order of one-point
multipacting, yielding an approximately linear dependence. This sug-
gests that the multipacting field values are proportional to 1/(n+ 1).

Next, we check the effect of varying the frequency f of the field.
By computing data sets equivalent to Figures 6 and 9 with different
frequencies, the general form of the counter functions remains strikingly

electric field [V /m]
(2]
1

| I L 1 ! | 1 I
0 005 01 015 02 025 03 035 04 045 05
1/(n+1)

FIGURE 10 The peak values of the electric field at the outer shell of the coaxial line.
The horizontal axis is 1/(n+ 1), where » is the order of the multipacting. The outer
diameter of the line is 40 mm, impedance is 50 and the frequency is 1.3 GHz.
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similar and it is easy to identify corresponding processes and recognize
the power levels of the multipacting processes of different type and
order. In Figure 11(a), we have plotted the rf frequency versus the
square root of the peak values of the electric field when the line mul-
tipacts. The multipacting processes here are one-point multipacting,
the order being indicated in the plot.

The effect of geometric dimensions of the coaxial line is studied in the
similar fashion. Let both the inner and outer diameter of the line vary
so that the impedance of the line remains unaltered, i.e., b/a = constant.
Again, the counter function plots retain their shape, and similarly to
the previous case, we may locate the one-point multipacting rf powers
of different order. Figure 11(b) depicts the peak values of the electric
field at multipacting powers.

The results of Figures 10 and 11 can be summarized in a concise way
as a scaling law: The one-point multipacting powers in a coaxial line
with fixed impedance obey the rule
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FIGURE 11 (a) The curves represent the effect of varying the rf frequency. In the
experiment, the radial dimensions of the coaxial line were kept fixed. The outer radius
is 20mm and the impedance is 50. The labels indicate the order of the multipacting,
and the curve indicates the square root of the peak value of the electric field at the
outer shell at which the multipacting occurs. (b) The rf frequency is fixed as 1.3 GHz
and the radial dimensions of the coaxial line are changed, keeping the impedance of
the line fixed (=50), i.e., the ratio of the inner and outer radius is unaltered. The
horizontal axis is the radius of the outer shell, the vertical one the maximum of the
electric field at the outer radius.
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where fis the frequency of the field, d is the outer diameter of the line
and n is the order of the process. This scaling law with respect to the
frequency and dimensions agrees with the experimental ones found by
Woo0.'°

We were able to find a similar dependence on frequency and dimen-
sion for two-point multipacting process. The dependence on the order
is harder to verify since the two-point processes of order higher than
one appear at powers overlapping with predominant one-point pro-
cesses and consequently, the identification is more difficult.

So far, the impedance of the line was fixed. To find a scaling law for
impedance we made the following numerical experiment: The rf fre-
quency and the diameter of the outer conductor were fixed, while the
inner diameter was varying, corresponding to a varying impedance,
obtained from formula (19). For each line impedance the multipacting
levels were computed and identified. The multipacting analysis was
restricted to the maximum of the electric field. With different impe-
dances, the counter functions do not have a shape as invariant as with
respect to frequency and dimension perturbation. However, the dif-
ferent processes can be identified. In Figure 12, we have plotted the
bounds of each multipacting band with different line impedances.
Multipacting processes identified to belong to the same family are joined
with lines and the order of each process is indicated in the plot. The one-
point processes are marked with a circle and the two-point process of
order one with an asterisk. The conclusion is that the one-point multi-
pacting levels depend approximately linearly on the line impedance,
while the two-point multipacting levels depend quadratically on it. The
coefficient of this dependence is a function of the order of the process.
Combined with the previously obtained results, we may thus write a
scaling law for the impedances as

Pone-poim ~ (fd)4Z, tho-point ~ (fd)4Z2' (21)

To get the complete picture, the secondary electron yield must be
included. Therefore, we compute the average kinetic impact energies of
the multipacting electrons for each process. It is found that with a fixed
impedance, the average impact energy obeys roughly the scaling law

Ein ~ (fd)?, (22)
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FIGURE 12 The bounds of each multipacting band with different line impedances for
352MHz, 502 coaxial line with inner and outer radius ¢=22.5mm and a=51.5mm,
respectively. The impedance is changed by varying a while b is fixed. Multipacting
processes identified to belong to the same family are joined with dashed lines and the
order of each process is indicated in the plot. The one-point processes are marked with
a circle and the two-point process with an asterisk. The computation for the one-point
processes is stopped at 302 (404 for the first order process) because the multipacting
bands get narrower and harder to identify at lower impedances.

in accordance to a simple dimension analysis. Typically the secondary
electron yield for niobium is larger than one in the range ~ 100—
1500 eV (see Figure 1). Figure 13 is a graphical summary of the multi-
pacting analysis in coaxial lines including the scaling laws and the
secondary yield.

3.3 Traveling Wave and Mixed Operation

It is important to understand the behavior of multipacting when the
field is switched from standing wave to the traveling wave (TW), i.e.,
the reflected wave vanishes. It turns out that the distribution of the
multipacting levels of purely one-way traveling wave resembles the
standing wave case. However, for partly reflected waves, the situation is
more complicated.
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Multipacting bands in coaxial lines
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FIGURE 13 The graphical summary of the multipacting analysis in coaxial lines
including the scaling laws and the secondary yield. The left vertical axis is for one-point
multipacting processes, the processes marked by circles, in the base 10 logarithm of
(fd)*Z (in (GHz x mm)* x ), and the right vertical axis is for two-point processes, the
processes marked by asterisks, in the base 10 logarithm of (fd)*Z* (in (GHz x
mm)* x Q?). The horizontal axis is the base 10 logarithm of the incident power (for all
processes, in kW). The lowest band (at right) is the first order one-point multipacting
band. The next band upwards is a two-point first order band, then follows a set of one-
point bands, the order increasing up to 8 when in the figure one moves up to lower
powers (to left). The circles (one-point) and asterisks (two-point) in the picture corre-
spond to the 502, 1.3 GHz, 40 mm (outer diameter) line. The dark parts of the bands
represent the areas when multipacting may occur, i.e., the average impact energy is in
the range ~ 100—1500¢V and the secondary yield is larger than one.

Let us start with the pure TW wave. The TEM-mode fields in TW
operation are given by the formulae

Erw(x,p) = iTnl(/% (cos(kz — ¢))e,, )
Brw(x,¢) = Taﬁa (cos(kz — ©))ey,

with ¢ = (gop0) V%
The computation of the counter function ¢, with no reflected
wave has a very similar shape as in the case of complete reflection.'?
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A closer analysis of the multipacting trajectories show that there
is a simple scaling rule between the multipacting levels of different
order in the traveling and standing wave operations, given by the
formula

Prw = 4Psw, (24)

i.e., in the traveling wave operation the multipacting processes remain
the same but they appear at rf power levels four times higher than in
the SW case. Heuristically, one could give a simple physical explana-
tion to this phenomenon: the peak voltage in the standing wave
operation is twice the peak voltage of the traveling wave. The analysis
of the trajectories show, however, that the situation is more subtle,
since the multipacting electrons are traveling along with the wave as the
wave form moves. Thus, the magnetic field must play a crucial role in
the process. The wall impacts of the stable trajectories appear close to
the maximum of the electric field. This traveling of the multipacting
locations is quite slow; in the 50 2 line with 1.3 GHz rf frequency, the
velocity is typically less than 1.1 mm/rf cycle between succeeding wall
impacts to the same direction as the wave propagates, i.e., away from the
source. In this aspect, the multipacting electrons behave differently
from the typical field emission electrons that tend to move toward the
source. Numerical calculations suggest that the distance between suc-
cessive wall impacts is roughly of the form'?

fd*
l+n

(25)

More generally, we may consider superposition of the SW and
TW fields, i.e., a mixed wave case. The mixed waves can be expressed
as follows:

U . _
E = = |[eTile—kz) _ R’ —i(p+kz)
(r.2.¢) §R<2r In(b/a) (° € )

(26)
= —i(p—kz) ! a—i(pt+kz)
Blrz,0) = % <2cr In(b/a) ( +Re ))(39,
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where R’, |R’| <1, is a complex number. Writing R’ in polar coordi-
nates R’ = Re', 0 < R < 1, the fields allow a representation

E = REsw + (l - R)ETw, B = RBgw + (1 — R)BTw, (27)

where z and ¢ are shifted appropriately. In the straight coaxial line this
shifting can be ignored. A computation of the counter functions with
different values of the reflection coefficient R shows an interesting
feature. When the reflection coefficient is increasing from the initial
value R =0, the TW multipacting bands start to split into two different
bands. As R is increased to its maximum value R=1 of total
reflection, half of these bands coincide with the purely electric
multipacting bands of the corresponding order of the SW operation
discussed before. Hence, we may recognize multipacting bands in the
mixed operation that are electric in nature. The other half of the TW
bands shift very quickly to very high incident power region as R
increases. An analysis of the stable electron trajectories shows that
these levels are due to the magnetic field. More specifically, the stable
trajectories are found near the maximum of the SW magnetic field, the
attracting phase being close to a multiple of .

Figure 14 displays the gray scale plot of the counter function e, as a
function of the incident power and reflection coefficient. At the bottom
of the figure, we have the TW operation (R =0), and at the top the pure
SW operation (R = 1). The orders of different multipacting processes are
indicated in the picture. Furthermore, Figure 14 suggests that the electric
multipacting bands due to the higher order processes (order greater than
one) disappear when the wave is partially reflected. These bands seem to
appear only when the wave formis close to the SW or TW. However, this
phenomenon is a graphical artefact, only due to the finite discretization.
The electric processes turn out to be repelling in the axial direction.
Therefore, the scan of the multipacting power levels must be performed
with a very dense grid in the axial direction in order to recognize all
possible multipacting processes. The grid used here has been too coarse.
Using a finer grid we are able to locate the missing processes.

To summarize the situation we note that in the pure TW operation
the multipacting bands are of mixed nature and the electric and mag-
netic multipacting processes have merged together. As the reflection
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FIGURE 14 The gray scale plot of the 10 base logarithmic of the enhanced counter
function e;( as a function of the incident power (horizontal axis) in kW and reflection
coefficient (vertical axis). In the figure, all positive values of the counter function
correspond to the multipacting processes of different order and type. This zero line is
indicated in the plot. The outer diameter of the line is 103 mm, frequency is 500 MHz
and the impedance is 50.

coefficient increases, the processes of different nature split into electric
and magnetic processes. The dependence of the electric multipacting
powers on the reflection coefficient can be described approximately by
the formula

Pelectric

= ——— Psw. (28)

A heuristic physical explanation for this rule is similar as for the rule
relating the SW and TW operations: For given R, the peak voltage is
(1 + R) times the corresponding peak voltage of the traveling waves.
However, the behavior of the magnetic multipacting bands are differ-
ent. As R increases, the multipacting power levels increase very rapidly.
A logarithmic scale plot shows that the increase is faster than poly-
nomial with respect to R.

A closer analysis of electron trajectories shows an important feature.
Multipacting in the mixed wave operation is due to certain fixed points
in the phase space. There seem to be certain locations where the
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opposite drifting forces due the SW and TW parts of the magnetic field
compensate each other and allow stationary trajectories. These loca-
tions, i.e., fixed points, shift in the phase space as the reflection coeffi-
cient varies. But, on the other hand, the fixed points are always rather
close either to the maximum of the SW electric field (electric multi-
pacting) or to the maximum of the SW magnetic field (magnetic multi-
pacting). Thus, the multipacting electrons do not travel along with the
wave when the wave is partially reflected. However, when R is very
small, there is a certain limit after which the traveling part of the wave is
dominant and the electrons start to travel. This limit seems to be lower
for the magnetic processes (R < 0.05) than for the electric processes
(R~0.15).1

Furthermore, in the case of the electric multipacting the fixed points
are found to be repelling in the spatial direction but attractive in the
phase direction. In other words, all electrons outside the fixed point in
the spatial direction are slowly drifting towards the shadow set. In the
previous section the (electric) multipacting in the SW operation was
found to behave similarly. However, the magnetic processes behave
differently. They are attractive in both directions. In other words,
electron trajectories starting from a certain phase space neighborhood
of the fixed point drift toward the fixed point. Therefore, the magnetic
processes are not so sensitive to the perturbations of the field than the
corresponding processes of the electric nature. A heuristic explanation
to this phenomenon is rather obvious. The TW part of the field drives
electrons to one direction only. Therefore, at the maximum of the SW
electric field the repelling force due to the SW magnetic field, gives rise
to a repelling fixed point in the axial direction. On the other hand, close
to the maximum of the SW magnetic field, the SW and TW parts of the
field drive electrons to opposite directions, giving arise to an attractive
fixed point.

Finally, the scaling laws (21) are found to be valid also for the TW
and mixed wave operations, for both the electric and magnetic processes.

3.4 Tapered Lines and Impedance Steps

For the tapered line and the line with an impedance step, any exact
analytic formulae for the electromagnetic fields are not available, and
we have to resort to a numerical scheme. A short description of the
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numerical algorithm used in computing the field map is given in the
Appendix. For the trajectory calculations the fields have been com-
puted beforehand in a dense grid and a linear interpolation is used to
compute the fields elsewhere.

First consider a 502 tapered line in the 1300 MHz SW operation.
The tapered line is modelled as a closed line with perfectly reflecting
ends such that 1300 MHz is a resonant frequency for the resulting
closed cavity. The dimensions of the line are indicated in Figure 15.

We choose the length of the line so that the maximum of the electric
field is in the tapered area, and so we expect to see multipacting in the
tapering. The initial electrons are sent from the whole length of the
tapered region with different initial phases.

The overall distribution of the multipacting bands have certain
similarity to that computed for a 502 straight coaxial line in the
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FIGURE 15 Examples of long living trajectories in a tapered line and in a line with
an impedance step, causing elevated counter function values. Initial points are marked
by asterisks. In the tapered line, the wavelength is A=0.2306 m and the maximum of
the electric field lies at z=0.175m. In the line with the impedance step, the
corresponding figures are A=0.8517m and z=0.2m.
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SW operation. The processes do not appear at the maximum of the
electric field. An analysis shows that the most stable trajectories
appear where the axial component of the electric field and the axial
component of the force v x B due to the magnetic field compensate
each other to allow stationary trajectories. Figure 15 shows two rela-
tively long-living electron trajectories in a tapered line. It seems that
the trajectories in the tapering are not as stable as those in a straight
coaxial line. This suggests that tapering might be used to reduce
multipacting.

The second geometry is a coaxial line with an impedance step,
i.e., the radius of the inner conductor has a step, changing the
impedance from 25 to 50. The dimensions are again indicated in
Figure 15. The maximum of the electric field is close to the impe-
dance discontinuity. A multipacting analysis shows that when the
maximum is on the side of lower impedance, stable trajectories
appear on the side of the higher impedance. Again, the stable tra-
jectories appear where the axial component of the electric field due
to the step compensates the axial force due to the magnetic field. A
long-living trajectory initiating from the corner of the step is
depicted in Figure 15.

4 METHODS TO SUPPRESS MULTIPACTING

The present work is aimed mainly to develop and to demonstrate
the general ideas how to find multipacting levels. In forthcoming
works, these ideas will be applied to analyze different methods to
suppress multipacting and to analyze multipacting in more specific
geometries, including windows, etc. In the suppressing methods we
have so far studied the effect of grooving to multipacting as well as
DC biasing, static magnetic perturbations and perturbations of the
frequency of the rf field. Our preliminary results show that with our
multipacting analysis method, it is possible to optimize the pertur-
bations of the cavity geometry or the fields, so that we can suppress
the multipacting to acceptably low levels. To demonstrate the power
of our method, we consider here a DC biasing voltage in a coaxial
line.
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4.1 DC Bias

Consider the standing wave operation in a straight coaxial line per-
turbed with a DC biasing voltage between the conductors, i.e.,

B(x.¢) = Ew(x,0) + porrser (29)

where V' is a constant biasing voltage. By a DC voltage we try to
generate a repelling force in order to break the multipacting conditions
(1) and/or (2). In the numerical experiments we use both the negative
and positive voltages and for each value of V/, the multipacting levels
are computed and identified. We have restricted the scan to the electric
field maximum. Figure 16 displays the gray scale plot of the base 10
logarithm of the relative enhanced counter function ¢, as a function of
the incident power and biasing voltage. The orders of different multi-
pacting processes are indicated in the picture.
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FIGURE 16 The gray scale plot of the base 10 logarithm of the relative enhanced
counter function e, after 30 impacts, as a function of the incident power (vertical axis)
in kW and biasing voltage (horizontal axis) in V. Note that when multipacting occurs,
the logarithm of the relative enhanced function is positive, i.e., the number of the
electrons is increased. This zero-line is indicated in the plot. The computations
correspond to the 500 MHz, 50 2 coaxial line with the outer diameter of 103 mm.
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The plot suggests that by coupling the DC bias to the rf voltage one
can raise the rf field from zero to the desired value without crossing any
multipacting bands. The scheme should be such that the ramping path
in Figure 16 does not cross any of the bands. One simple possibility, for
instance, is to use a fixed biasing voltage of —2100V. Then the first
order one-point process starts around 150 kW, but the impact energy is
too high for the secondary electron yield to generate multipacting.
Another promising possibility is to use high positive voltages, higher
than 2000 V. Then a process corresponding to a multipacting process
appears above 900 kW.

Figure 16 shows two families of one-point processes, the one on
the positive voltages (narrow bands near the lower right corner of
Figure 16), and the other on the negative voltages (broad bands). The
latter family coincides with the processes of corresponding order of the
pure SW multipacting, i.e., when V=0, and the processes continue to
positive voltages, too. A closer analysis of electron trajectories show
the different behavior of these processes. The family on the positive
side appears on the inner conductor and the family on the negative
side appears on the outer conductor. Figure 17 shows the trajectories.

A further analysis of varying the dimensions of the line and the
frequency of the field shows that the multipacting bands shown in
Figure 16 remain the same but they scale according to the following
rules. The y-axis of the figure, i.e., the incident rf power obeys the
previously found scaling laws (21) and the x-axis of the figure, i.e., the
biasing voltage scales like

Vone—poim ~ (fd)2Z, Vtwo-point ~ (fd)zzza (30)

where fis the frequency, d is the outer diameter, Z is the impedance of
the line and V' is the biasing voltage. Thus, the above scaling laws
together with the scaling laws for the incident power (21), can be used
to determine multipacting bands of Figure 16 for any coaxial line with
the SW operation. Furthermore, when the wave switches from the
standing wave to the traveling wave, the dependence of the multi-
pacting bands of Figure 16 on the reflection coefficient can be described
by our previously found formula (28). Of course, when the wave is
partially reflected this gives an incomplete picture, since there are also
processes which are of magnetic nature. The magnetic multipacting
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FIGURE 17 Electron trajectories in radius/time scale due to the one-point process of
order one. The first picture on the top-left shows the trajectory without the DC bias.
The pictures on the top-right and bottom-left give the trajectories when DC voltage is
—1500V and the rf power is 500 kW (top) and 70 kW (bottom). Finally the last picture
shows the trajectory when the DC voltage is + 1500V and the rf power is 40kW. In
all pictures the upper and lower borders of the pictures correspond to the outer and
inner conductors of the line and the electrons are initiated from the maximum of the

electric field. The computations correspond to the 500 MHz, 502 coaxial line with the
outer diameter of 103 mm.

power levels shift again very rapidly to very high power regions and,
especially, a magnetic process appears always on a higher power level
than the corresponding electric process. For more details we refer to
literature.'?

5 SUMMARY AND CONCLUSIONS

In this article, we describe a systematic computational way to analyze
electron multipacting in rf structures. We are able to recognize those rf
power levels that are able to multipact and thereafter, to locate and
identify the possible multipacting processes. The basis of the analysis
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consists of standard trajectory calculations in relativistic dynamics. The
novel feature here is to analyze the general nearly periodic structures of
the resonant trajectories by using a special distance function defined in
a multidimensional phase space and other ideas arising from the theory
of dynamical systems.

The approach is applied numerically to analyze multipacting in
coaxial structures for standing, traveling and mixed wave operations.
For straight coaxial lines, our algorithm enables us to find simple
scaling laws for the multipacting power bands with respect to the
dimensions, frequency and impedance of the line. By these laws, one
can shift the multipacting bands by altering the design of the line in an
appropriate way. Furthermore, we studied the effect of DC biasing to
multipacting. With our present multipacting analysis method, it is
possible to optimize the perturbations and suppress the multipacting to
acceptably low levels.

The concepts arising from the theory of dynamical systems provide
effective tools for analyzing the multipacting phenomenon. The
numerical methods developed here can be used to analyze multipacting
in any geometry, including structures with dielectric windows. The use
of the general theory developed for dynamical systems? is still limited in
this work, and we believe that the analysis can be developed much
further by using, e.g., probability densities in connection with super-
conducting structures. Especially important issues are to find effective
measures for the stability of the various multipacting processes as well
as methods for estimating the multipacting currents. From the physical
point of view, this would require more detailed analysis of the dynam-
ical onset of the processes as well as their coupling to the field itself.
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APPENDIX: FIELD COMPUTATION

In this appendix, we give a brief summary of the field computation
algorithm used to produce the field maps when no analytical solutions
are available. The method is based on the boundary integral equation
approach for solving Maxwell’s equations. Since multipacting is a
possibly unstable phenomenon with respect to perturbations in the rf
fields, special emphasis has been put on the accuracy of the computa-
tion near the cavity walls.

We assume that the cavity as well as the fields are axisymmetric, and
consider the TM-mode. The current version is capable of modelling an
open resonator having both electric and magnetic ends, and of mod-
elling a segment of a coaxial line with a ceramic dielectric window. The
dielectric case is not discussed here.

We represent the electric and magnetic field in terms of the electric
and magnetic surface currents, J=—n x H and M= —n x E, respec-
tively. Here n stands for the exterior unit normal vector of a surface.
Our harmonic time factor is ¢ *“*. Denoting by 92 the boundary of the
cavity 2, we have the equations

1

E(x) = = — (Vx)Sa(/)(¥) + V x Sa(M)(x), (1)

H(x) = V x So(J)(x) +ﬁ(Vx>2SQ(M><x>, (32)
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where the integral operator Sg is

Sa(l)(x) = /6 O(ex-DI0)SG), xeR ()
with
eik|>c—y\
O(k,x —y) :m, k = wy/pE. (34)

For the TM, ,, ,-mode, we may write the electric and magnetic currents
as

J(x) = ji(r,2)e, + jz(r, 2)e., M(x) = my(r,z)ep.

Since in the TM, , ,-mode the magnetic current has only the angular
component which is independent of the angular variable, the surface
divergence of M vanishes, that is DivM=0. By writing (V x )*=
VV - — A, using the continuity of the electric current and the fact that
S is the solution of the Helmholtz equation, Eqgs. (31) and (32) may be
written by integration by parts as

E(x) = —ig (VSa(DivJ)(x) + k>Sq(J)(x)) + V x So(M)(x), (35)
H(x) =V x Sq(J)(x) — iweSq(M)(x), (36)
x €.

The geometries considered in Section 3.4 are modelled as closed lines
with perfectly reflecting ends at the resonance distances. Therefore,
they require the solutions with electric type boundary conditions,

nxE=0, (37)

only. If the point x € Q approaches the boundary 952, then the layer
potentials Sq, Ko=V X Sq and Do=(V x )ZSQ have the well-known
limiting behavior

lim Sa(1) = S(). (38)
. 1

XEIgQKQ(I) = K(I) +anx I (39)
. |

xlirgQ Do(I) = D(I) + EnDIV I, (40)
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where S is the single layer potential operator, i.e., the integral (33) with
x € 092. The integral operators K and D are defined as principal value
integrals by the formulae

K(I)(x) = /a VLl = 3) x 3) dS), (41)
D(I)(x) = - V. ®(k,x — y)DivI(y) dS(y) + k? /aQ D(k,x —y)
1(7) dS(y). (42)

Since there is no magnetic current present on the perfectly conducting
wall (n x E=0), the electric boundary condition (37) yields, with the
boundary behavior of the layer potential D, (40), an integral equation

- ﬁn(x) x VS(DivJ)(x) + iwpon(x) x S(J)(x) =0, (43)

with x € 9Q.

Equation (43) is discretized by approximating the current in an
appropriate basis and using the Ritz—Galerkin method. We write the
approximation for the electric current as

N
J(x) =) auji(x). (44)
I=1

In the present application, a piecewise linear approximation is used.
We multiply Eq. (43) by iweon X ji, k=1,..., N, and integrate over
the surface I' = 9€2. We obtain the equations

/Divjk(x)S(Div J)(x)dS(x)
r
— K2 /jk(x) -S(J)(x)dS(x) =0, k=1,...,N. (45)
r
A substitution of the approximation (44) of the electric current to the
integral equation above, yields to a homogeneous matrix equation of
the type

Ac=0. (46)
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Here ¢ is a vector containing the coefficients of the piecewise linear
basis functions, i.e., c=[a,...,ay]". Hence, the integral equation
method is reduced to the problem of finding a non-zero ¢ satisfying
the above matrix equation. Obviously, if 4 is non-singular, the only
solution of the matrix equation is ¢ =0. This property can be used for
finding the resonances of a given structure, by studying the condition
number of A(§), depending on a free parameter £&. The parameter &
may be, e.g., the rf frequency or the length of the resonator. When at
resonance, the condition number of A(£) explodes, and the solution
c#0 of Eq. (46) is (a constant times) the eigenvector of 4 cor-
responding to the least singular value of the matrix A4.

Once the coefficients ¢ are solved, the fields E and H can be evaluated
using the representations (31) and (32). The field computation is
designed so that the field values are obtained with high accuracy even at
points close to the walls. Details are omitted here.

For the geometries having ceramic windows, the application of
boundary integral equations yields not only a single integral equation,
but a set of integral equations. The resulting equations can be solved in
the similar fashion as above.

More details about the field computations, including ceramic win-
dows, will be presented in a forthcoming paper by the authors.





