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Using a time-domain analysis, we determine the longitudinal wakefield of an electron
moving on a circular orbit in both free space, and between a pair of symmetrically
placed infinitely conducting plates. Our calculation is restricted to points on the cir­
cular orbit. We obtain an analytic expression for the short-range wakefield of a highly
relativistic electron in free space. For an electron circulating midway between parallel
plates, the method of image charges is used to derive the wakefield, exhibit a scaling
property and evaluate the scaling functions. As a complement to the time-domain ana­
lysis of the wakefield, we discuss its frequency-domain counterpart, the longitudinal
coupling impedance. Beginning with a review of the seminal work of Schott from the
early part of the century, our presentation continues to the frontier where many new
results are provided.
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1. INTRODUCTION

It is of interest to determine how short a bunch can be maintained in
a storage ring. Can 107-108 electrons be stored in a bunch of rms
length 300, 100, 50 Jlm, ...? Some aspects of this problem depend on
specific details of the storage ring design. A question of more uni­
versal character is whether the curvature· wakefield, resulting from
synchrotron radiation, can result in bunch lengthening. This has been
discussed for a long time, but there is still no definitive answer.

*Corresponding author. Tel.: 516 344 5160. E-mail: jbm@bnl.gov.
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In this paper, we present a detailed discussion of the longitudinal
wakefield due to orbit curvature. Motivated by the pioneering work
of Schott,l published in 1912, we focus on the time-domain descrip­
tion of the radiation field, although the impedance is also discussed.
Part of this paper is a review, since we treat aspects of the problem
already discussed in the literature. 1

-
16 However, new results are also

presented. We derive a simple analytic expression for the short-range
wakefield of a highly relativistic electron in free space. Also, using
the method of images, we determine the wakefield for an electron
moving on a circular trajectory between two parallel plates of infinite
conductivity. A short account of some of the results we have
obtained was presented in Ref. 17.

Our study identifies the parameter ~ == (a/(2p))(p/h)3/2, Eq. (8.8),
as the key to determining whether or not the wakefield of a Gaussian
bunch of length a, circulating in a magnet of bending radius p, is
affected by infinite extent conducting plates located a distance ±h
above or below the electron beam. For ~« 1, the plates produce a
negligible effect on the free space wakefield on a scale length of order
of a few a. Therefore, we suggest that in the determination of the
equilibrium bunch length of very short bunches, the effect of the con­
ducting plates can be neglected and the starting point for bunch
lengthening calculation should be the free space wakefield. As ~

increases beyond 0.2 the free space results begin to be modified by
the shielding plates.

In Section 2, we review the result of Schott for the electromagnetic
field at all points on the circular orbit of the radiating electron. In
Section 3, we utilize this result to determine an analytic expression
for the wakefield of a highly relativistic electron moving in tree
space. See Eqs. (3.10)-(3.16) and Figure 2. This extends previous
work in Refs. 5, 8, and 12. In Section 4, the problem of an electron
moving on a circular orbit between parallel plates is treated in the
time-domain utilizing the method of image charges. Previous work
on this problem3,5,7,11,13-16 has' all been in the frequency domain. The
solution found in Section 4 is considered in greater detail in Section 5.
A scaling property of the wakefield is exhibited, and the scaling func­
tions are evaluated. See Eq. (5.21) and Figure 3. The behavior of the
wakefield is considered for large distances (times). In free space, the
wakefield has an algebraic fall off for large distances (times), but in
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the presence of the conducting plates, this algebraic fall off is can­
celled by the fields due to the image charges, resulting in an exponen­
tial decay of the wakefield, as expressed in Eq. (5.34). This is the
time-domain analog of the suppression of low frequencies in the
resistive impedance due to the parallel plates. The impedance in free
space is discussed in Section 6, and between parallel plates in
Section 7. The coherent power radiated between parallel plates is
considered in Section 8. The wakefield resulting from a bunch of
electrons is discussed in Section 9. Some concluding remarks are
given in Section 10. In the appendices, we derive from the wakefield,
representations for the impedance in free space (Appendix A) and
between parallel plates (Appendix B). In Appendix C, we present
numerical results, illustrating the important scaling property of the
wakefield between parallel plates derived in Section 5.1.

2. REVIEW OF SCHOTT'S RESULT

In his pioneering book, Electromagnetic Radiation, published in 1912,
Schott l calculated many of the properties of the radiation due to a
relativistic point charge moving with uniform velocity on a circular
orbit. In particular, Schott determined the electromagnetic field at all
points on the circular orbit, yielding what we now refer to as the
wakefield of the point charge. Here, it is our goal to extend Schott's
work in several directions, considering a highly relativistic particle
whose velocity is close to the speed of light c. In this case th~ lon­
gitudinal wakefield is large in front of the point charge and very
small behind. Working directly in the time domain, we first obtain a
simple analytic expression for this leading longitudinal wake. Next,
we use the method of image charges to derive the longitudinal wake
due to a point charge moving on a circular orbit lying between two
parallel plates of infinite conductivity.

The Lienard- Wiechert potentials and fields for a point particle are
derivable from the time-dependent Green's function2

,l8

G( - . -, ') _ 8(t' - t + Ix - x'l/c)
x, t, x ,t - 1_ _ I .

x-x'
(2.1 )
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In the Lorentz gauge, the scalar and vector potentials are given by

<I>(x,t) = Jd3x/dtlp(XI,tl)G(X,t;xl,t'), (2.2a)

l(x, t) = Jd3x /dt IJtX', t')G(x, t;x', t'). (2.2b)

For a point particle following a trajectory Yo(t), the charge density and
current density are

p(X, t) == e8(x - Yo (t) ),

J(x, t) == vo(t)p(x, t),

(2.3a)

(2.3b)

where vo(t) == ciJo(t) == dYo(t)/dt is the instantaneous velocity. The
Lienard- Wiechert potentials are

<1>(x, t) == _e ,(2.4a)
Ix- Yo (T) I - f30 (T) . (x - Yo (T) )

l(x t) = e~o(T) (2Ab)
, Ix- Yo (T)I - f30 (T) . (x - Yo (T))

The retarded time T is defined by the implicit equation

IX-Yo(T)1
T==t- .

c
(2.5)

Following Schott, l in Figure 1 we introduce the angle 2X between
the observation point x (at time t) and the emission point x' == ro(T)
at the retarded time. Note that in Figure 1 the observation point lies
behind the source point. It is seen that in the plane of the circular
orbit,

Ix - Yo (T) I == 2p sin X(T),

where p is the radius of the circular orbit; hence

(
_ ) 1 e

<1> x, t == . ,
2p SIn X(T) 1 + f3 cos X(T)

(2.6)

(2.7a)
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FIGURE 1 Geometry for an electron moving on a circular orbit of radius p. 2X is
the angle between the observation point x(t) at the time t, and the emission point 10(7)
at the retarded time 7. Note that the observation point lies behind the source point. 2'ljJ
is the angle between the observation point x(t) at the time t, and the present position
1o(t) of the electron at time t.

A - _ 1 e,B(1-2sin2x(r))
q,(x, t) - 2p sin x(r) 1 + ,Bcosx(r) (2.7b)

Here, A¢ is the component of the vector potential tangent to the
circular orbit at the observation point x. In Figure 1, we also introduce
the angle 2ttjJ between the observation point x (at time t) and the
present position ro(t) of the electron. Clearly

2'ljJ - 2X == wo(t - T), (2.8)

where the angular frequency Wo == (3cjp. Utilizing Eqs. (2.5), (2.6) and
(2.8) we derive the retardation condition

'ljJ == X + (3 sin X· (2.9)
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In the notation of Schott, l the trajectory of the electron in the
plane is parametrized according to

ro(t) == (pcos(wot + 8), psin(wot + 8)), (2.10)

where 8 is a constant phase. The observation point x is specified by

x == (p cos ¢, p sin ¢).

Schott writes

1
X==2(WOT+8-¢),

1
'ljJ==2(wot+8-¢),

from which we see that

a 1 a
a¢ -2a'ljJ'

a Wo a cf3 a
at 2 a'ljJ 2pa'ljJ·

The tangential electric field at the observation point is

1 a_I a
E¢ == ---<I>(x,t) ---A¢.

pa¢ cat

Employing Eqs. (2.12) and (2.13) one derives Schott'sl result

(2.11 )

(2.12a)

(2.12b)

(2.13a)

(2.13b)

(2.14)

E ==~[ e I-j12 +~ j12 SinX ] ()
<P 8'ljJ4p2sinxl+j1cosx 2p2 1+j1cosX· 2.15

Note that for motion in the plane, as considered here, the field is ex­
pressable as the gradient of a "potential." Recall that X is determined
as a function of 1/J by the retardation condition of Eq. (2.9).

The trailing wake, behind the point charge, corresponds to X f'.J 0
and 'ljJ f'.J O. The factor 1+ f3 cos X in the denominator is approxi­
mately equal to two, and the trailing wake is not large. The leading
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wake, in front of the electron, corresponds to X rv 1f and r¢ rv 1f. Now
the factor 1+ ,8 cos X in the denominator is close to vanishing when
,8 rv 1, hence the leading wake is much larger than the trailing wake
for a highly relativistic particle.

Starting from the expression for E¢ given in Eq. (2.15), Schott
separated the singular Coulomb term, and carried out a Fourier
expansion in the variable r¢ for the non-singular contribution to E¢
due to synchrotron radiation, obtaining

(2.16)

3. FREE SPACE WAKEFIELD

In considering the leading wake of a highly relativistic electron, it is
convenient to introduce the angles a and ~ according to

X == 1f - a.

Equation (2.15) can then be written as

av
Eq, = - oF,,'

V _ ~ [ 1 - ,82 ,82 sin a ]
-2p 2 2sina(I-,8cosa)+I-,8cosa'

(3.1a)

(3.1 b)

(3.2a)

(3.2b)

where a is determined as a function of ~ by the retardation condition
of Eq. (2.9):

~ == a - ,8sina. (3.3)

For the short-range leading wake, the angles ~ and a are small, so
Eq. (3.3) can be simplified using sina ~ a-a3/6. We consider a
highly relativistic electron for which f! == (1_,82)-1/2 is large, and
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replace Eq. (3.3) by the approximate equality

(3.4)

The solution of this cubic equation for a, which vanishes when ~

approaches zero, is given by

rya == 0 1/ 3 - 0-1/ 3, (3.5)

where

0== 11+ n+1 (3.6a)

and

11 == 3ry3~ == ncs/p. (3.6b)

Here s is the arc length between the charge and the observation
point, and nc == 3ry3/2.

In Eq. (3.2b), let us separate the singular Coulomb term

e [1 - ,82 ]
v= 2p2 2sine +F ,

1 - ,82 ,82 sin a 1 - ,82
F = 2 sin ex (1 - (3 cos ex) + 1 - (3 cos ex - 2 sin e .

(3.7a)

(3.7b)

The expression for the non-singular radiation contribution to the
wakefield can be reduced using small angle approximations to the
form

(3.8)

and using Eq. (3.6) one can show

F -1 2(01/ 3 + 0-1/ 3 ) 2(02/ 3 - 0-2/ 3)

::Y=-;-+(O-O-I)(O+O-I)+ 0+0-1 • (3.9)
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Let us write the tangential electric field as a sum of the singular
Coulomb term and a non-singular term E¢ due to synchrotron
radiation:

.(3.10)

We now write, for J-t> 0,

where

and

9F
v(J-t) =-­

8,

( )
_ dV(J-t)

W J-t - dJ-t '

(3.11)

(3.12)

(3.13)

with .A = #+1. The expression for v(J-t) can be simplified by
introducing the parametrization

J-t = sinh 7].

It is easily verified that for J-t > 0,

(3.14)

V( )
__ ~ cosh [j sinh- l J-tJ - cosh[sinh- l J-t].

J-t (3.15)
4 sinh[2sinh-1 J-t]
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FIGURE 2 Plot of the free space wake function W(Il,) versus J.L as given by Eqs. (3.12)
and (3.15).

The function w(Ji') is plotted in Figure 2. Some useful properties of
w(Ji') are

14 2
jj2 « 1,I--jj+'"9 '

3 1
jj2 » 1,

w(jj) == - 4 . 21/ 3 jj4/3 + ... , (3.16)

1
jj == 0,2'

0, jj < O.

The wakefield behind the charge is of order l/ry4 smaller than that
just in front of it. The asymptotic expansions for large and small jj

were discussed previously in Refs. 5, 8, and 12. Noting that v(jj) van­
ishes at jj == 0 and jj == 00, it follows from Eq. (3.12) that

(3.17)

The wake function is discontinuous at the position of the point
charge. The choice w(O) ==! represents an average of the electric field
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immediately in front and behind the charge, and results in the power
loss being correctly given by ec(3EqlO). The total power radiated by N
particles is

(3.18)

The double sum can be approximated by aJ1 integral by introducing
the number density n(Mp), with the normalization

(3.19)

(3.21 )

One then finds

Carrying out some straightforward manipulation of this integral and
an integration by parts, we can write ((3 == 1)

p == ~ ce
2

1'4 [N N2C]
3 p2 2 + ,

where

and v('\) was defined in Eq. (3.12).
For a rectangular density profile

one finds

(3.23)

1 12
/-l

O

C == 42 d( v((),
Mo 0

(3.24)
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and for a Gaussian distribution

(3.25)

it follows that

(3.26)

In Eqs. (3.24) and (3.26), when the bunch length is large compared to
pj~3, the large argument approximation for v(() can be used:

9 -1/3
v(() ~ 4 . 21/ 3 ( , (3.27)

Evaluating the integrals in Eqs. (3.24) and (3.26) using (3.27), we
derive

(3.28)

Here, B == 1 for the rectangular distribution and B == 2r(5j6)j
31

/
3yin- ~ 0.88 for the Gaussian distribution. We use ag to denote the

rms bunch length in each case. For the rectangular distribution, J-La ==

3~3 v!3ag/2p and for the Gaussian distribution aJ-l == 3~3agj2p, recall­
ing the definition of J-L in Eq. (3.6b).

For a Gaussian bunch, Eq. (3.28) is in agreement with the result of
Schiff,3 and for a rectangular bunch with the result of Nodvick and
Saxon.3 The result presented by Nodvick and Saxon for the case of a
Gaussian bunch appears to be too large by a factor 25

/
3.

4. SOLUTION BETWEEN PARALLEL PLATES
USING IMAGE CHARGES

Let us now consider an electron moving with uniform velocity on a
circular orbit in the horizontal midplane between two parallel plates
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of infinite conductivity located at z == ±h. Using the method of image
charges we easily see that the free space Green's function of Eq. (2.1)
should be replaced by the parallel plate Green's function

G (
-+ • -+, ') _ ~ (-I)k8(t' - t + Ix - x' - 2khzl/c)

pp x, t, x , t - ~ Ix _x' _2khz I .
k=-oo

(4.1 )

Here the observation point x and the source point x' lie in the mid­
plane, and z is a unit vector in the vertical direction perpendicular to
the plates. This approach working in the time domain complements
earlier work utilizing the frequency domain. 3,s,7,11,13-16

As in Section 2, the electron trajectory in the midplane is denoted
ro(t), and the charge density and current density are specified by
Eq. (2.3). Using Eq. (2.2) with the Green's function of Eq. (4.1), we
determine the scalar and vector potentials in the case of parallel
plates:

The retarded time Tk corresponding to the kth image charge is
determined by

(4.3)

Proceeding as in Section 2, we introduce the angle 2Xk between the
observation point x (at time t) and the emission point x' == ro(Tk) at
the retarded time Tk [Eq. (4.3)] for the kth image charge. Clearly,

\x - ro(Tk) I == 2p sin Xk,

Ix - r'o(Tk) - 2kh.zl = V(2p sin Xk)2 + (2kh)2,

ffo( Tk) . z == o.

(4.4a)

(4.4b)

(4.4c)
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It follows that
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<I>(x,t) = f (-l)ke ,

k=-oo V(2psinXk)2 + (2kh)2 + ,B(2psinXk)COSXk

A ( ~ )_ ~ (-I)ke,B(1-2sin2 Xk)
¢ x, t - L....i . .

k= -00 V(2psin xkf + (2kh)2 + ,B(2p sin Xk) cos Xk

(4.5a)

(4.5b)

We also introduce the angle 21/; between the observation point x(at
the time t) and the present position ro(t) of the electron. In a manner
analogous to the derivation of Eq. (2.8), one can show that the angle
Xk is determined as a function of 1/; by the retardation condition:

(4.6)

The tangential electric field can now be determined from Eqs. (2.12)
and (2.13) which imply

1 8
E", = 2p 8'IjJ (<I> - ,BA",); (4.7)

where Eq. (4.6) is used to express Xk as a function of 1/;.

5. WAKEFIELD BETWEEN PARALLEL PLATES

5.1. Scaling Property of the Wakefield

We are now able. to determine the wakefield of a highly relativistic
electron moving on a circular orbit in the midplane between two
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parallel plates of infinite conductivity. Defining the angles ~ and O~k

by

(5.la)

(5.1b)

Eq. (4.8) can be written in the form

where

1
VI,k = ((3/2)' 2 'Sk - SIn Qk

sin2
Qk

V2,k == (1Q12)' 2 'Sk - fJ SIn Qk

(5.2)

(5.3a)

(5.3b)

(5.4)

The angle Qk is determined as a function of ~ by the retardation
condition

where we have defined

~ == hlp·

(5.5)

(5.6)

In treating the contributions from the image charges (k =I- 0), we
assume "'1 2~» 1 and set (3 == 1 in Eq. (5.5).

In what follows we shall consider the dominant contribution of the
parallel plates to the wakefield given in Eq. (5.2). This contribution
arises from the low k terms in the sum on k for which the solution
of Eq. (5.5) satisfies the criteria that Qk ~ 1. It can be shown that
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the remainder of the terms in the infinite sum over k give a small
contribution to the wakefield. Proceeding under the assumption
Ok::; 1, Eq. (5.5) can be approximated by

(5.7)

We now exploit a scaling property of the wake function due to
image charges (for Ll« 1) by defining the variables x and Yk via

Keeping only terms oforder Ll2, Eq. (5.7) reduces to

x Yk __1_
k3/ 2 6 2Yk·

From Eq. (5.3a), we find

(5.8a)

(5.8b)

(5.9)

(5.10)

The retardation condition of Eq. (5.5) tells us that Sk - Ok == -~ (when
f3== 1). Therefore, using Eqs. (5.8) and (5.9) we obtain

2 Yk
Vlk~ --

, - (kLl)3/2 1+Yk .

In a similar manner one finds from Eq. (5.3b)

Since

(5.11 )

(5.12)

av 1 av
a~ Ll3/2 ax

1 avaYk
Ll3/2 aYk ax ' (5.13a)
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and

we conclude

and

aYk 2Yf 1
ax 1 +Yk . k3/ 2 '

aV1,k __4_ Yf(l - 3Yk)
a~ - (k~)3 (1 +Yk)3

4 Yk(3 - Yk)

(k~)2 (1 +Yk)3 '

(5.13b)

(5.14a)

(5.14b)

where Yk is determined as a function of x/k3
/
2 by Eq. (5.9).

In the derivation of Eqs. (5.14a, b), there are terms of order 1/ry2
which have been neglected. From the expression for E¢ given in
Eq. (5.2), it is seen that the coefficient of aVl,k/a~ is of order 1/ry2,
while that of aV2,k/8~ is of order unity. Hence, the leading correction
to E¢ arising due to the conducting plates is correctly determined
from Eq. (5.14b). However, to determine the result to order 1/ry2, it is
necessary to include the order 1/ry2 correction to Eq. (5.14b).

To proceed, we must improve the previous treatment of the retar­
dation condition of Eq. (5.5) by using the approximation (3~ 1 - 1/2ry2
rather than (3~ 1. In this case, Eq. (5.9) is replaced by

x Yk - 3 1 Yk-==--+--
k 3/ 2 6Yk 2ry2 kbt. .

Also, we must employ (3~ 1-1/2ry2 in Eq. (5.3b), obtaining

(5.15)

Then, using Eq. (5.13a) to determine 8V2,k/8~, with 8y/8x computed
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from Eq. (5.15), we find
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Let us now define Yk by

X

k3/ 2

From Eq. (5.15) it follows that

(5.18)

y4 _ 3 y 4 - 3 Yk_k__ -_k _

6Yk - 6Yk 2k~12 .

We see that Yk == Yk if order 1/12 terms are neglected, and

(5.19)

(5.20)

The tangential electric field on the orbit can be determined from
Eq. (5.2), with aVl,k/a~ and a,V2,k/a~, k=/=-O, given, respectively,
by Eqs. (5.14a) and (5.17). The k==O fields are as presented in
Eqs. (3.10) and (3.11). In this manner we obtain for 1~1~~«1,

12~» 1:

rv e [cos~ 1 3/2 ]E¢ ==-42 2 -·-2-+ A3 Gl(~/~ )
P 1 SIn ~ u

(5.21)

where

G (~/ /).3/2) = 2~ (-ll+ 1 [4Yf(1 - 3Yt) _ 32YZ(5 - 7Yt)]
1 f=I k3 (1 + Yt)3 (1 + Yt)5

(5.22a)
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and

G (~/1:::,.3/2) = 2~ (_l)k+ I [ 4Yt(3 - Yt)] .
2 ~ k2 (1 + y4)3

k=l k

(5.22b)

Equation (5.20) has been used to change variables from Yk to Yk . It
is clear from Eq. (5.18) that Yk is a function only of the variable
~/(kD,.)3/2, which shows that G1 and G2 are functions only of the scaled
variable ~/D,.3/2. The scaling functions GI, G2 are plotted in Figure 3.

Numerical calculations of the wakefield using the exact expression
of Eqs. (5.2) and (5.3) are discussed in Appendix C. It is found that
when 1~1;5 D,.« 1, the sum over k converges rapidly, and the scaling
relation of Eq. (5.21) is verified. On the other hand, when lei» D,.,

the convergence of the sum over k is found to be slow, and violation
of the scaling behavior is to be expected, even for small D,.. One
should note that the magnitude of the wakefield is very small when
I~I »D,.; therefore, from the point of view of estimating instabilities,
only the interval 1~1;5 D,. is important.

8

4

-4

-8

-5 -3 -1 3 5

FIGURE 3 Plot of the parallel plate wakefield scaling functions G t (() and G2(() as
given in Eqs. (5.22a,b).
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In Section 5.2, we present an asymptotic analysis indicating that
the exact wakefield decays as· exp(-7rI~I/~) for I~I»~. This form
violates the scaling of Eq. (5.21). A non-leading term is also found
which decays as exp[_(9/32)1/3(7r~2/3 /~)], consistent with scaling.
These results indicate the nature of the. violation of scaling when

I~I»~·
In free space the radiation travels along a chord to another point

on the circle, thereby always arriving before (in front) of the exciting
charge. With the plates in place the radiation can bounce off the
plates once or numerous times and arrive behind the exciting charge
resulting in a trailing wakefield, which we have described using image
charges. For 1 2~» 1, the G1 term is smaller than the G2 term and
for small ~ they are both small compared to the free space radiation
wakefield, w(313~). When 12~ ';::j 1, the GI, G2 and w terms become
comparable in magnitude, and the situation is more complicated.

5.2. Behavior of Wakefield for Large Separation

In free space, the wakefield has an algebraic fall off ( rv ~-4/3) for
large distances (times). In the presence of the conducting plates,
this algebraic fall off is cancelled by the fields due to the image charges,
resulting in an exponential decay of the wakefield. This is the time­
domain analog of the suppression of low frequencies in the resistive
impedance due to the parallel plates. Here, we present a non-rigorous
argument indicating the leading exponential behavior of the wake­
field at large separations between the observation point and the
source. In Eq. (5.2), we convert the sum over k into a contour inte­
gral in the complex k-plane. The contribution from V2,k involves the
integral

(5.23)

where the contour C1 + C2 is illustrated in Figure 4. The quantity Sk

was defined in Eq. (5.4).
The integration contour will be deformed, and the asymptotic

behavior in ~ will be determined by the contribution of the singular­
ities in the complex k-plane. One set of singularities is associated
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FIGURE 4 Sketch of the contour in the complex k-plane used to evaluate Eq. (5.23).

with the vanishing of the denominator when

Jsin2
Qk + k2.6.2 - sin Qk cos Qk = O.

This condition provides a relationship between ak and k,

(5.24)

(5.25)

Now to solve for the singular value of k, we use the retardation
condition

(5.26)

For small ak, we find

and

( )

2/3

k.6. ~ 32~ (±i)(l, e±4hr/3).

(5.27a)

(5.27b)
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The absolute value of the contour integral is controlled by the limit

_1_ ~ e-(1r/~)IIm(k~)1
sin 7rk .

(5.28)

The smallest value of IIm(k~)1 is given by (3~/2)2/3 sin(7r/6); hence the
exponential decay is dominated by

(5.29)

Further consideration shows that the singularities are branch points
in the complex k-plane, and not simple poles.

Another singularity arises from the branch point at Sk == 0, i.e.

sin CY-k == ±ik~.

Using the retardation condition, which in this case is simply

we determine the location of the branch points at

k~ == ±isin~ ~ ±i~.

The asymptotic behavior arises from the term

1-_ ~ e-1r~/~
sin 7rk .

(5.30)

(5.31 )

(5.32)

(5.33)

Physically this exponential behavior corresponds to the evanescence
of the electric field below cutoff in the parallel plate waveguide. We
do not attempt to determine the functional dependence of the coeffi­
cients of the exponential factors of Eqs. (5.29) and (5.33).

This general result implies that the algebraic terms which can be
extracted for large distances from G1, G2 , wand the Coulomb term
in Eq. (5.21) must all cancel. We have carried through the detailed
calculation of all the ~-4/3 and ~-2/12 terms and confirm their can­
cellation. In fact, the contribution to V1,k and V2,k cancel indepen­
dently when one separates the w term into V1,o and V2,o parts at
large distances.
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In conclusion, our analysis suggests that the asymptotic behavior
of the wakefield for large separations in front of the charge is given by

{

~-4/3

/E</>I ~ (' 7r~)
exp -----'­

~'

1 ~
-33 «~«-,

1 1r
~
-«~« 1.
1r

(5.34a)

(5.34b)

(5.35)

In the regime of Eq. (5.34b), our analysis indicates the existence of
terms with the non-leading behavior exp[-(9/32)1/3(1r~2/3/~)]. The
asymptotic behavior of the electric field behind the charge is given by
Eq. (5.34b) with ~ replaced by tt/J == 1r - ~.

5.3. Wakefield at the Position of the Point Charge

To calculate the tangential electric field at the position of the elec­
tron itself (~== 0), we must keep terms of higher order in ~ when
considering the contribution from V2,k. From the retardation condi­
tion of Eq. (5.5), it follows that

dak 1
d ~ 1 - ((3 sin 2ak) / (2Sk) .

Hence from Eqs. (5.3) one can derive

(3 cos 2ak - (sin 2ak) / (2Sk)

sk[1 - ((3 sin 2ak) / (2Sk)]3 '
(5.36a)

aV2,k (Sk - ((3/2) sin2ak) sin2ak + sin2 ak((3cos2ak - (sin2ak)/(2sk))

a~ s~[1- ((3sin2ak)/(2sk)]3

(5.36b)

For ~==O, (3 rv 1 and 12~» 1, the retardation conditon of Eq.
(5.5) becomes (k =I 0)

(5.37)

When k~« 1, the solution of Eq. (5.37) is approximately given by
(k=lO)

(5.38)
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Using small-angle approximations for the trigonometric functions in
Eq. (5.36b) we obtain

(
aV2 k) 3 1--'- ----ae ~ = 0- 5 Q~o •

It follows from Eq. (5.2) that for lrr«~« 1:

2 e [4 3J311:2 1 (1)]
E",(O)=-3 p2 'Y +-1-0-~+O 'Y2~3 '

where

00 (_I)k+l
"'2 e:! L k = In2.

k=l

(5.39)

(5.40)

(5.41)

In Eq. (5.40), we have averaged the singular free space contribu­
tion to the electric field immediately in front and behind the point
charge. The second term cannot be obtained from Eq. (5.21) because
G2(O) == O. It was necessary to go to higher order in ~. The correction
due to the conducting plates is small in magnitude, and has the sign
indicating that the electron radiates more energy between the con­
ducting plates than it would in free space. This is the case despite the
fact that the plates cut off the lowest frequencies.

~ FREE SPACE IMPEDANCE

Until this point we have been considering the wakefield in the time
domain. Now we consider its Fourier transform, the impedance.
Introducing the azimuthal angle

we define

f27r dO -in(} (0)
E""n = Jo 21re E", ,

(6.1 )

(6.2)
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and the impedance Zn by

(6.3)

where In is the Fourier coefficient of the electron current. For a
single electron

I _ ec{3
n - 21rp'

00

1(0) == L Ine infJ
•

n=-oo

(6.4)

(6.5)

The real (radiated) power Pn and the reactive power Qn are deter­
mined by

Pn + iQn == -ec{3E</J,n o

From Eq. (6.3), it follows that

Pn == I;(ReZn ),

Qn == I;(ImZn).

(6.6)

(6.6a)

(6.6b)

When discussing synchrotron radiation, one usually considers· the
power Pn radiated into the modes n and-n,

(6.7)

From Eq. (2.16), we take E¢ to be the non-singular field due to
synchrotron radiation, dropping the singular Coulomb term. Con­
verting to MKS units, we can write

where

-e 00 ( 0)E</J =-42 L(-I)mfmcos m.. 1r--
2

'
1rEoP m= 1 .

(6.8)

(6.9)
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The impedance is found to be given by (Zo == 1/eoc)

{3 Zn 1 i ~ 2n
;: Zo = 2. hn + 21r {;-;;( 1m (mj2)2 _ n2 .

(odd)

The Weber function En(z) is defined19 by

(6.10)

In(Z) + iEn(z) = ~ r dOei(nO-zsinO), (6.11)
1r io

and it can be expressed in a Kapteyn series19

2 00 4n
E2n(2n{3) == - LJm (m{3) 2. (6.12)

1r m=l (2n) - m2

(odd)

Using Eq. (6.12), we can express Eq. (6.10) in the form

2n 00 (fJ
- i(1 - (32) ---:;~ Jo Jm(mx) dx.

(odd)

Employing the Kapteyn series19

00 x
(; h(kx) = 2(1 - x) ,

(6.13)

(6.14a)

(6.14b)
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the last term in Eq. (6.13) can be evaluated and we obtain

(1-(32) ( 1) 2- i2n -/3- -4 In(l - /3 ). (6.15)

A similar but not totally equivalent expression for Zn was given in
Ref. 10.

If we consider the ultrarelativistic limit, (3 rv 1, and restrict our
attention to the region

(6.16)

where nc == 3"13/2, then we can use

and we find

rv Zor(j) (0 ~) 1/3
31/3 2 + 2 n .

(6.17a)

(6.17b)

(6.18)

The asymptotic expression of Eq. (6.18) was discussed by Faltens and
Laslett. 11 In this asymptotic form, the positive sign of the imaginary
part corresponds to the fact that the wake function is large in front of
the electron and negligible behind.

For n»nc , one can evaluate the ImZn from Eq. (6.15) by using
the limiting form for E2n(2nx), which can be derived from the integral
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representation in Eq. (6.11). The result is

I Z
f'oJ -2Z0')'4 !

m n f'oJ ,

3 n
(6.19)

which is consistent with the small M limit of the wakefield given in
Eq. (3.16).

For 1«n«ne, only the J~n and E~n terms in Eq. (6.15) for the
impedance are significant. These arise from the far field radiation.
When n» ne, all terms in the expression for the impedance are sig­
nificant. This is because at very high frequencies, characteristic of
very short distances, the near field also contributes to the impedance.
The asymptotic form for the impedance when n » ne is

[
J3 (1f)1 /2 (2nc)I/3 ( n )1/2 -n nc •(2)7/3 n13]Zn ~ Zo - - - - e / - 1 - -.
4 2 3 nc 3 n

(6.20)

Note that the real part of the impedance decays exponentially with
increasing n while the imaginary part decays more slowly as the
inverse of n. Using the results of Appendix A, we plot Re Zn and
1m Zn as functions of nine in Figure 5.

Physical insight into the connection between the time-domain
wakefield and the frequency-domain coupling impedance can be had
by noting that the two are a Fourier transform pair. For this char­
acterization we need only consider the real part of the impedance. If
one approximates Re Zn as a step function extending from zero to ne,

the Fourier transform will have a width on the order of (line) which is
exactly the behavior of the short time wakefield. If one includes the fact
that the impedance is not a constant step but grows as Re Zn ex: nI/3

this yields the ~-4/3 asymptotic tail of the wakefield for large

~» line·

7. LONGITUDINAL COUPLING IMPEDANCE
WITH PARALLEL PLATES

The longitudinal coupling impedance of a charge circulating on an
orbit of radius p in the midplane between two conducting plates has
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FIGURE 5 Plot of the free space impedance ReZn and ImZn versus n for an
extensive range of n including n > nco

been derived by several authors:3,S,7,11,13-16

Zpp(n) = 27r~ZO ~ . L Ap · {jPJ~({pp)[J~({pp) + iY~({pp)]
p(odd) 2:: 1

+ (Qp/"/p)2In(,,/pp) [In(,,/pp) + iYn(,,/pp)]}, (7.1)

where

( )

2
2 p1r

Q p == 2h '

h is the distance of each of the plates from the electron beam,

A == . (P1r 8.h)/(P1r 8h)
p SIn 2h 2h

and 8h is the vertical thickness of the electron beam. When consider­
ing the real part of the impedance Ap can be set to unity. However,
when considering the imaginary part of impedance Ap must be used
in the above form to properly introduce a cutoff for the divergence
due to the Coulomb field.
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The real part of this impedance is given by

and is non-zero only for n ~ 1rpl(2h{3), which is characteristic of the
simple waveguide cutoff of the parallel plate resonator. In this form
the first term corresponds to the emission of radiation which is polar­
ized in the plane of the electron orbit and the second term corre­
sponds to radiation which is polarized perpendicular to the midplane.

The real part of the impedance can also be written as

n2hf3/ p1r [ t 2 () ]2 P 12 an P 2
Re Zpp(n) = 21f (3nZo2h L In (n(3cos Op) +~Jn (n(3cos Op) ,

15:p(odd)

(7.3)

where

and the definition of ()p is given by

. p1rC p1rp
sm Op = 2hw = 2hn(3' (7.4)

The summation over p adds the contributions of radiation from
emission at different vertical angles. Note that in the parallel plate
case the transverse wave number, p1rI(2h), is quantized and therefore
the angles of emission are also quantized. In the limit of h -t 00 the
sum over p can be converted to an integral over all vertical angles
and it can be shown in a straightforward manner that this real part
of the parallel plate impedance goes over to the real part of the free
space impedance. as required.

If we consider {3 ~ 1 and large n, then

(7.5)

with ~ == hlp.
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Near (}p == 0, the Bessel functions in Eq. (7.3) can be written in
terms of the modified Bessel functions K 1/3 and K2/3. Defining

x ';:::j n [1 __1__ (}2]
212 2'

we can write for n » 1

1 (1 2)1/2 [n ( 1 2)3/2]
In(x) ~ V37f "(2 + () KI / 3 "3 "(2 + () ,

( ) [ ( )
3/2]I 1 1 2 n 1 2

In(x) ~ V37f "(2 + () K2/ 3 "3 "(2 + () .

We make use of the following approximations:

(7.6a)

(7.6b)

3 3
for n « nc == 21 , (7.7a)

(7.7b)

Using the above approximations, the first term in Eq. (7.3) can be
rewritten for 1~ n ~ n}/2 as

Using tan2Bp ';:::j B;, the other term simply doubles the contribution
as the large argument approximation for K n does not depend on n.
Including all the constant factors, we find

00 [ 2 3]nl np npReZpp(n) ';:::j L 2Zo-exp --2 '
p(odd) = 1 n 3n

(7.9)
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where the replacement of the K-Bessel functions by the exponential
asymptotic form in the pth term is justified only when 1« n« n~/2,

which would limit the applicability of the full sum to n« nl. How­
ever, the sum still provides a useful approximation to Re Zpp for all
nl ~ n «nc because when the exponential approximation to the K­
Bessel function is less accurate the contribution to the sum is small.
In fact, if the sum over p in Eq. (7.9) is converted to an integral, the
integration can be done analytically resulting in the expression

(
2)1/3Z r (2)

ReZ ~ - ~nl/3
n 3 2 ' (7.10)

which differs from the exact asymptotic expression Eq. (6.18) by only
a factor of (2/3)1/3/31/6.

For.p== 1, Eq. (7.9) is precisely Warnock'sl5 approximate expres­
sion. Note that Re Zpp (n) remains vanishingly small for values of n
in excess of the simple waveguide cutoff. As such, it has been sug­
gested that the "cutoff" should be given by

(7.11 )

Recall that the wakefield in the parallel plate geometry [Eq. (5.21)]
exhibited the corresponding scaling in the variable e~ -3/2.

We can give an intuitive argument yielding insight into Eq. (7.11).
One can think of the pth waveguide mode as bouncing between the
parallel plates at an angle Op [Eq. (7.4)] relative to the midplane. The
cutoff frequency corresponds to sin Op == np/n == 1, i.e. n == np ==p1r/2~.
The vertical angular distribution of synchrotron radiation at fre­
quency w == nc/p is characterized by the emission angle18

(
3)1/3

Orad ==. 2n (7.12)

The emission of the pth mode will be suppressed for

Op » Orad, (7.13)
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that is for

n« f!:. n3/ 2V3 p ,
(7.14)

as is exhibited in Eq. (7.9).
In Figure 6 we plot Re Zpp(n) versus n (n« nc) for several values

of the parameter ~ == h/p. Included in the figure for comparison is
the free space asymptote,

r(~) J3 1/3
ReZn ~ Zo· 31/ 3 Tn .

A good estimate of the local maximum value of. ReZpp can be
computed from the impedance given in Eq. (7.9), ReZ~aX(n) ~

Zo,8J3n~/2 exp[-1/2] and it occurs at n== 2ni/2 / J3. This peak value
of Re Zpp (n) is 30% larger than the free space result. All of the
curves for finite ~ have the same characteristic behavior. They start
out from zero in the neighborhood of nco and grow to a value rough­
ly 30% larger than the free space value and then undershoot slightly
before becoming equal to the free space value thereafter.

To emphasize the self-similarity of Zpp, we plot ~ I/2[Re Zpp­
ReZFS]/ZO versus n~3/2 in Figure 7. It is seen that the several curves
of Figure 6 merge to lie on a single curve in Figure 7. We also see the
approach of Zpp to ZFS as n increases.

The imaginary part of the impedance contains two types of terms:

. . 2 2 Z [n f32h/1r
p

{
ImZpp(n) = 1r; 0;" .L !iJ~('Ypp)Y~('Ypp)

p(odd) 2: 1
"Ipreal

+ (ap)2Jn ('YPP) Yn('YPP)}+ L Ap~ {,82I~(J-Lpp)K~(J-Lpp)
IP p(odd) 2:

n(32h/1rp
ILpreal

(7.15)
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FIGURE 8 Plot of the real part of the parallel plate impedance, ReZpp, and the JY
and J' Y' contributions to the imaginary part of the parallel place impedance for
~ = 1/8. For comparison we also show the real and imaginary parts of the free space
impedance.

The JY and J' Y' terms in the above expression are the counterpart
of the imaginary part of the radiation impedance in free space and as
such the form factor Ap can be taken to be unity. The JYand J'Y'
terms of 1m Z together with Re Z are plotted versus n in Figure 8.

.From Figure 8 it is seen that for sufficiently large n this contribution
to 1m Zn is asymptotically equal to the reactive part of the free space
radiation impedance, supporting the notion that at least for large n,
these terms are the reactive part of the impedance arising from radia­
tion in the presence of the parallel plates. Presumably, the IK and I'K'
terms (which are divergent in the absence of a high frequency cutoff)
arise from the space charge effect in the presence of the parallel plates.

8. COHERENT RADIATED POWER

The total coherent power radiated by a current distribution is given by

00

P == 2 L I; ReZ(n).
n=l

(8.1 )
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8.1. Single Electron

For a single electron, In is a constant given by Eq. (6.4), and hence
the power is simply determined by a sum over the real part of the
impedance:

(
eCf3 )2 00

P=2 211" LReZ(n).
p n=l

(8.2)

For an electron circulating in free space the real part of the impedance, '
ReZ(n), is given in Eq. (6.13). The seemingly complicated summa­
tion over Bessel functions can be done exactly to yield the following
expression for the power radiated by a single charge in free space: 1

(8.3)

This is the ,same result obtained earlier in Section 3 when one takes
N== 1 in Eq. (3.18).

In the presence of infinitely· conducting parallel plates, In is still
given by Eq. (6.4), but now Eq. (7.2) must be used for ReZ(n). In this
case there is no simple analytic expression for the power so one must
resort to qualitative discussions and numerical techniques. From
Figure 6 it can be seen that there are five distinct regions of interest
when discussing the qualitative behavior of Re Zpp(n). Starting from
n == 0, Re Zpp(n) == 0 .well below cutoff, then there is a region where
Re Zpp(n) < Re Zps(n). This is followed by a region where Re Zpp(n) >
Re Zps(n). In the fourth region Re Zpp(n) < Re Zps(n) again. Finally
for n» nco, Re Zpp(n) == Re Zps(n). This implies that the presence of
the conducting plates suppresses the power radiated in regions 1, 2
and 4 -of the spectrum, increases the power radiated in region 3,
and in region 5 the radiated power is equal to the free space result.
By computing the sum of the parallel plate impedance in the five
regions numerically, one obtains the surprising result that slightly
more power is radiated with the plates in place than in free space!
A similar conclusion was obtained in Section 5 by considering the
parallel plate wakefield to determine the power radiated by a single
charge. In Eq. (5.40) it is seen that the small additional power scaled
at ~-1. Note that this result has only been obtained for nco « nc, but
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this is always true for realistic plate separations and relativistic elec­
tron beams.

8.2. Gaussian Electron Bunch

For the Gaussian electron bunch,

In = NecfJ exp [-! (na)2] .
21rp 2 P

(8.4)

Due to the exponential decay of the In, the approximate expression
for the free space impedance, Eq. (6.18), can be used to write the
coherent power in CGS units as

(8.5)

where it has been assumed that the current decays fast enough that
the upper limit on the sum can be taken to be infinity. If the above
sum is approximated as an integral, the integral can be recognized to
be a gamma function, so the coherent power radiated by a Gaussian
electron bunch in free space can be written in CGS units as

N 2e2c 31
/ 6r 2 (2/3)

PFS = p2/3(74/3 2rr . (8.6a)

This result is seen to agree with Schiff3 upon taking his bunch width
parameter ¢ == 20a. It is straightforward to rewrite Eq. (8.6a) in the
form

(8.6b)

in agreement with Eq. (3.28) derived using the wakefield. For compu­
tational purposes Eq. (8.6) is written in the more useful form as

[ ]
-20 N

2

PFS W = 2.42 x 10 p2/3[m](74/3[m] '

where P is in watts, and p and a are in meters.

(8.7)
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FIGURE 9 For a Gaussian bunch we plot the ratio of the coherent power radiated
between parallel plates to that radiated in free space versus the scaling parameter ~,

defined in Eq. (8.8).

To accurately compute the coherent power radiated by a Gaussian
electron beam in the presence of conducting plates one must resort to
numerical analysis as the expressions are very complicated. In
Figure 9 we plot the ratio of the coherent radiated power for the
Gaussian electron bunch circulating between parallel plates to the co­
herent radiated power for the same bunch in free space, versus the
scaling parameter, ~, which is defined as

(8.8)

The parameter ~ compares the width a/p of the current spectrum
with the range of the wakefield 2f~,?12. To obtain the coherent radi­
ated power for a Gaussian electron bunch circulating between paral­
lel plates, first use Eq. (8.7) to compute the free space power, then
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compute ~ and obtain the ratio PPP/PFS from Figure 9, then multi­
ply the free space power by the ratio Ppp/PFS to obtain the desired
result. The data points in Figure 9 are an amalgam constructed from
several values of ~ == 1/8, 1/16, 1/32 and 1/64 and numerous values
of a/p. It can be seen that for ~« 1 the plates have little effect, and
Eq. (8.7) alone can be used to estimate the radiated power.

In order to discuss some approximate expressions for the radiated
power we follow Ref. 20. These authors introduce the parameter, Xth,
which is related to ~ as follows:

(8.9)

Ref. 19 suggests that the approximate impedance given in Eq. (6.18)
can be used to give an approximation for the coherent power in CGS
units,

(8.10)

where

It can be shown that Xc~ 00 does not introduce any significant
error, and the integral in Eq. (8.10) reduces to the incomplete f­
function of order 2/3. In this case the ratio of the power between the
plates to the free space result is simply given as

Ppp F(Xth)
Pps f(2/3) .

(R.11 )

To gauge the accuracy of this approximate expression, in Figure 9
we plot the ratio as given in Eq. (8.11) together with the more exact
result discussed above. The approximation in terms of the incomplete
gamma function is seen to consistently underestimate the coherent
radiated power.
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9. WAKEFIELD FOR A BUNCH OF ELECTRONS

In the previous sections we have derived expressions for the tangen­
tial electric field due to a single point electron. As in Eq. (3.10), let us
denote by E this electric field due to a point charge, with the singular
space charge contribution removed. From Eq. (3.20) we recall that
the coherent power loss Pc for a bunch of electrons is given by

Pc = -f3ce1:ds'1:ds"E",(s' - s ")n(s')n(s "), (9.1)

the sign is so chosen that Pc is positive for power loss by the electron
beam. The beam profile is described by the number density n(s), and
we shall take this to be Gaussian,

We can define a wakefield for the bunch by

W(s) = -1: ds' E",(s - s')n(s').

(9.2)

(9.3)

In Eqs. (9.1)-{9.3) we are using the arc length s=2pe as the variable
specifying the location of the electrons, and since for highly relativistic
particles the range of the wakefield is very small compared to the cir­
cumference of the orbit, we extend the range of integration to be
fr~m -00 to + 00. The coherent power loss can be written in terms
of the wakefield as

Pc = f3ce1:ds W(s)n(s). (9.4)

9.1. Free Space

In free space, the non-singular part of the tangential electric field due
to synchrotron radiation can be written as

(9.5)



(9.7)
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by using Eqs. (3.11) and (3.12). Employing Eq. (9.5) in Eq. (9.3), we
carry out a partial integration to derive

W(xo-) = Ne _1_ f!:.~ roo y-l/3e-(1/2)(x-y)2 dy (9.6)
(3 p2//3 0 4/ 3 V;. ax Jo '

where v(p) has been replaced by its large argument approximation,

r-.J 9 -1/3
V(M) r-.J 4.3 1/ 3 M (M » 1).

Equation (9.6) can be used to express W(s) in terms of the parabolic
cylinder function D I /3 (z), yielding6

,S

- f; NeW(s) == 1/3 <P(s/a) ,
1r (3 p2a 4)

with

The function <p(x) is plotted in Figure 10.

9.2. Parallel Plates

(9.8)

(9.9)

In the presence of infinitely.conducting parallel plates, the contribu­
tion of image charges must be added to the free space result. From
Eq. (5.21), it is seen that the non-singular part of the electric field
due to a point electron can be well approximated by the following
expression when 1/"12 « ~« 1:

- 4 e'Y4
[dV(M) 3 1 (s) ]

E¢(s) = - 3" fJ2 d;- ~"8 6,2,),4 G2 2p6,3/2 .

Now using Eqs. (9.8), (9.9) and (9.3), we derive

(9.10)

Ne f;[ (3)1/3 100
2]W(xa)== - <p(x) - - E4/ 3 dyG2(Ey)e-(I/2)(x- y)

(3 p 2a 4) 1/3 1r 4 -00 '
(9.11 )
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FIGURE 10 Plot of the function <I>(x) as given in Eq. (9.9), which determines the
wakefield of a Gaussian bunch via Eq. (9.8).

where ~ was defined in Eq. (8.8) to be

(J' (J' (P)1/2
~ = 2pb:.3/ 2 = 2h It . (9.12)

In the case when ~« 1,

(9.13)

10. CONCLUDING REMARKS

There is a long history to the study of the electric field produced by
an electron moving on a circular orbit. For the case of an electron
moving in free space, an expression for the tangential electric field on
the circular orbit was given back in 1912 by Schott,l in his treatise
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on electromagnetics. For a relativistic electron we have been able to
simplify Schott's results, and we have derived a useful expression for
the short-range wakefield. The longitudinal impedance has been
determined via Fourier transform.

For an electron moving on a circular orbit between parallel plates,
the electric field was determined by Nodvick and Saxon.3 Whereas
Schott's free space results were obtained by working in the time­
domain, the results of Nodvick and Saxon were found by working in
the frequency domain. In our paper, we have solved the parallel plate
problem by working in the time domain, utilizing the method of
image charges. As is often the case, time and frequency domain
results are complementary, each illuminating different aspects of the
problem.

The free space wakefield can be separated into a "Coulomb term"
and a "radiation term." The Coulomb term, which exists in equal
magnitude both in front and in back of the exciting charge, is simply
the manifestation of the static Coulomb field which is carried along
by the electron but is corrected for the relativistic motion of the elec­
tron, E ex 1/ry2s2. The radiation wakefield has the peculiar character­
istic that it is predominantly in front of the exciting charge; this is
due to the presence of the factor (1 + (3 cos X) in the denominator of
the expression for the radiation wakefield. The free space radiation
wakefield has a single scale factor, /1 == ~ry3s1p. The radiation wake­
field is such that charges within a distance, 0 < /1 < 2.7, of the excit­
ing charge lose energy while charges further away (/1 > 2.7) gain
energy from the exciting charge. For /1»2.7, the radiation wakefield
is given by

which is independent of the energy of the exciting charge and decays
slower with distance than the Coulomb term.

If infinitely conducting plates are introduced on the top and bot­
tom of the circulating charge, the wakefield can be found using the
method of images. In this case an additional scale factor appears,
~3/2 == (hlp)3/2, which is characteristic of the separation 2h of the
plates. For small distances s« p~3/2 in front of the exciting charge,
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the wakefield remains essentially unchanged from the free space
wakefield. However, for large distances, s» p~3/2, the wakefield
now decays exponentially with distance far from the exciting
charge.

The longitudinal coupling impedance is the frequency domain
counterpart of the radiation wakefield. In free space, both Re Z and
1m Z grow with frequency as nl

/
3 in the range ,0 < n < nco This behav­

ior arises since n l
/
3 is the Fourier transform of the long tail of the

wakefield E¢ls) ex S-4/3. Beyond nc, Re Z decays exponentially with n

while ImZ decays much slower as lin. The power spectrum of syn­
chrotron radiation is given by Re Z.

In the parallel plate case, the low frequency part of the impedance,
for n« ~ -3/2, is suppressed while the high frequency part of the
impedance, for· n» ~ -3/2, remains unchanged from the free space
result. In the connecting region, n ~ ~-3/2, the real part of the paral­
lel plate impedance actually exceeds the free space impedance and its
peak value is proportional to ~ -1/2.

An intense source of coherent synchrotron radiation could be pro­
vided by short bunches circulating in a storage ring. Suppose the cir­
cumference of the ring is 21rR and the dipole bending radius is p.

If the bunch is short enough so that the shielding of the metallic
vacuum chamber is not significant, the average power radiated by a
Gaussian bunch of rms length 0", containing N electrons, is given by
the free space result

N 2 ()4/3- -w P
Pps[W] = 2.42 x 10 R[m]p[m];: . (10.1 )

For longer bunches the shielding of the chamber can be approxi­
mately taken into account by using the correction factor presented in
Figure 9, which was derived for an electron bunch moving on a cir­
cular orbit between parallel plates. This correction factor depends on
the scaled bunch length ~ == ~/2p~3/2. When ~:$0.2, Fps is a reason­
able estimate of the coherent radiated power; however, for larger
values of ~, the shielding of the plates greatly reduces the coherent
radiation.

In Table I we list the key parameters and scale factors for three
storage rings. The first ring, label CSRE (Coherent Synchrotron
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TABLE I

Ring CSRE NSLS VUV LBLALS

p[m] 0.6 1.909 4.96
R[m] 1.35 8.12 31.3
'Y 293 1565 2935
a [mm] 0.33 52.7 3.5
h[mm] 17.5 20 20
~ 2.9x 10-2 1.05 x 10-2 4.0x 10-3

~ 5.5x 10-2 12.9 1.38

Radiation Experiment), is proposed21 to serve as a compact, low
energy ring at the NSLS with a very short electron bunch. The second
ring is the NSLS VUV ring and is characteristic of an operating syn­
chrotron light source. The third ring is the Advanced Light Source at
LBL which has the shortest electron bunch for normal operations of
all the existing synchrotron light sources.

For the VUV and ALS rings, ~ is too large and the bunch length
is too long to observe coherent synchrotron radiation. This conclu­
sion applies to nearly all existing electron storage rings. The CSRE
ring was designed with a small bending radius and very short elec­
tron bunches to produce coherent synchrotron radiation in the milli­
meter portion of the spectrum. Assuming N == 108

, the total coherent
power radiated can be determined from Eq. (8.7) to be 15W. More
details on the coherent radiation spectrum can be found in Ref. 21.

For existing storage rings with relatively long bunches (~ > 1), the
shielding due to the plates is very important. In proposed future sto­
rage rings with short bunches (~« 1), the shielding effect will be
small. The coherent radiation emission and the impedance presented
to the e~ectron beam will be close to the free space results. We believe
it is of significant interest to pursue further theoretical and experi­
mental investigations of short bunches in storage rings.
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APPENDIX A. REPRESENTATION FOR
FREE SPACE IMPEDANCE

Using Eqs. (6.2) and (6.3), the impedance can be expressed in terms
of the tangential electric field by

(AI)

Recall from Eq. (3.10) that the tangential electric field is a sum of the
singular Coulomb field and the non-singular contribution due to
synchrotron radiation. Here, we consider only the non-singular
radiation field. Then for ry3» 1 and n» 1, the impedance is well
approximated by

(A2)

where use was made of Eq. (3.11), and J-L == nc() with nc== 3ry3/2. Also,
Zo is the impedance of free space.
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Now using Eq. (3.11) to express w==dv/dJ-l, we carry out a partial
integration in Eq. (A2) to obtain

Zn _ 4il'A roo d -iAI-£ ( )
Zo - 9 Jo J-le v J-l , (A3)

(A4)

where A==n/nc and v(J-l) is given explicitly in Eq. (3.15). Deforming
the contour of integration in Eq. (A3) from the positive real axis to
the negative imaginary axis, we derive the following integral repre­
sentations useful for numerical integration:

Zn v'31'A100 _ (Y + JY2=1) 5/3+(Y + JY2=1) -5/3
Re - == -- dye AY -------:;.----'------....:..---

Zo 4 1 2yJY2=1
v'3I'A roo

== -4-J>. K5j3(ry) dry,

I
Zn

m-
Zo

1
1 _ (iY + vr=J2) 5/3+(iY + vr=J2) -5/3~ 2vr=J2.

== I'A dye AY ---:.-.-------=--------:.....------=--------
o 4yvr=J2

1
00 - 8JY2=1- (Y+ JY2=1r/\(y+ JY2=1)-S/3

-I'A dye AY •
1 8yJY2=1

(AS)

The results of the numerical integration are shown in Figure 5, and
confirm the asymptotic forms given in Eqs. (6.18) and (6.20).

Having accomplished our goal of deriving Eqs. (A4) and (AS), let
us close with the following comment. Since the wakefield vanishes
behind the point charge, the Kramers-Kronig relations hold, and the
wakefield can be expressed in terms of the real part of the impe­
dance. One can show that for J-l > 0

(A6)
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which expresses the wakefield as a cosine transform of Schwinger's2
result for the frequency spectrum of synchrotron radiation. Also
note that Eq. (A6) could be derived starting from Schott's result of
Eq. (2.16), taking the large 1 limit, and converting the sum over m to
an integral, after approximating the J-Bessel functions in terms of K­
Bessel functions.

APPENDIX B. APPROXIMATE IMPEDANCE DERIVED
FROM THE SCALED WAKEFIELD FUNCTION G2

The wakefield due to synchrotron radiation can be approximated
from Eq. (5.21) as

(B1)

where the first term is the free space contribution and the second
term contains the dominant contribution of the parallel plates wake­
field which satisfies the scaling law given in Section 5.

It should be noted that the exact parallel plate wakefield contains
a small contribution which does not satisfy the scaling law and is not
included in Eq. (B1). As such the approximate impedance considered
in this appendix can be expected to have different analytic properties
from the exact impedance.

Using Eq. (B1) in Eq. (AI), and recalling () == 2~, we derive

FS Zo 100

d -2int!:J..3/2xG ( )
Zn ~ Zn - 2.6.1/2 -00 x e 2 x , (B2)

denoting the free space impedance Z~s. Utilizing the expression for
G2 given in Eq. (5.22b), and the retardation condition of Eq. (5.9),
we write

Inserting this in Eq. (B2) yields

00 ( l)k+I]OO 3
Z r-...JZFS-4iZn~"""'" - dxe-2int!:J..3/2x~

n - n 0 L.J kI/2 1 + y4 .
k= I -00 k

(B3)

(B4)
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We now use Eq. (5.9) to change the integration variable from x to
Yk, obtaining

Zn ~ Z~s - 2iZontl~(-)k+lk100

ydy exp [-in(tlk)3/2 e:-D].
(B5)

Changing the integration variable to v, defined by

31/3e-i7r/6v

y= n1/ 3(tlk)I/2'

we derive

(B6)

where we have introduced

2e-i7r/3n4/3~22_
a == --3-1/-3--

Consider the sum

(B8)

s= f)_1)k+l e- ah 2/(2v) =~+~ f (_1)k+l e- ah 2 /(2v). (B9)
k=1 k=-oo

Using the Fourier expansion

(BIO)

together with the Poisson summation formula
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it is seen that
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(B14)

Transforming the sum in Eq. (B7) by using Eq. (B12), we derive

Z ~ ZFS _ Z or(2/3) (J3 ~) 1/3
n n 31/ 3 2 + 2 n

+2ei1f/6Zo32/3nl/3V'Iii f: h(~P:), (B13)
a p(odd) = 1 2a

with the function h(z) defined by

h(z) =100

v3
/
2 dve- v3

-
zv

•

The expression for the impedance given in Eq. (B13) is in the
appropriate form to compare with the results of Section 7. In parti­
cular, the summation over image charges k has been converted to a
sum over waveguide modes p.

The approximate expression for ReZn given in Eq. (7.9) can be
derived from Eq. (B13) by carrying out an asymptotic approximation
of h(z) for large z (i.e. small n« [1r/(2~)]3/2), using the method of
steepest descent.

The saddle point analysis proceeds as follows: Let

z == zei7r
/

3
,

For n« 3~3/2, the first two terms of Eq. (B13) cancel, and

(B-15)
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FIGURE 11 Contour C utilized in the integral of Eq. (BI6), and the distorted
contour through the saddle point vo.

The real part of Zn is given by

(BI6)

where the contour C is shown in Figure 11.
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For z» 1, i.e. n« [7r/(2~)]3/2, the contour integral in Eq. (BI6)
can be approximated by a steepest descent analysis. We define

The saddle point Vo satisfiesf'(vo) ==0. We choose

V
== 7rp e-i7r/3

OIL .
ay6

In this case

2 (7rP ) 3 1
f(vo) ==3 2~ n2 '

(BI7)

(BI8)

(BI9)

(B20)

Deforming the contour C to follow the path of steepest descent
through the saddle point, we find

Z 32/3 1/3 IF- 00

R Z rv 0 n y L.7r -i7r/3 '"' 3/2 i7r/6e n - e L...J Vo e
a p(odd) = 1

27r -f(vo)

If"(vo) Ie ,
(B21)

which leads to the final result for n « [7r/(2~)] 3/2:

~ Z07r
2
p [2 (7rP )3 1]

ReZn ~ L...J 2n~2 exp -3 2~ n2 ·
p(odd) = 1

(B22)

Due to the neglect of the non-scaling part of the wakefield, the
approximate impedance considered in this appendix has different
analytic properties than the exact impedance of Eq.. (7.1). The exact
impedance has branch points at the· cutoff frequencies, n ==p7r/2~
(p == 1,3,5, ...) and is analytic22 about the origin n == O. The exact
impedance is pure imaginary on the real n-axis for Inl < 7r/2~. The
approximation· to the impedance considered here does not exhibit the
branch points at the cutoff frequencies, and has an essential singular­
ity at the origin as indicated in Eq. (B22). For n > 7r/2~, the real part
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of the exact impedance behaves as shown in Eq. (7.9), which is iden­
tical to Eq. (B22). In the case of the exact impedance, the essential
singularity at the origin is located on the second Riemann sheet, not
the first, and can only be reached by analytically continuing across
the branch cut.

APPENDIX C. NUMERICAL ILLUSTRATION
OF THE SCALING PROPERTY OF THE
PARALLEL PLATE WAKEFIELD

To explore the scaling properties of the parallel plate wakefield we
examine the contributions to it of the functions V2,k given in (5.3b).
Since we are looking for the effect of the plates, we ignore the free
space contribution (k == 0) and consider the following:

E~P(~) = - ~~k~(-ll av~~(~) = 4e:;1'4 ~(_l)k+l W2,k(~), (Cl)
k=l0

where

Sk = vsin2 ak + (kf::!..)2 and ~ is a solution of the retardation equation
(5.5)

Numerically solving Eq. (5.5), we evaluate

25

W2(~) == L(- )k+l W2,k(~)
k=l

and the results are given in Figures 12-14 for the three values of the
parameter ~ == 10- 1

, 10-2 and 10-3
, respectively, assuming '"'I == 300

and including 25 terms in the sum over k in (e1). It can readily be
seen from the figure that the curves differ only in the scaling of the
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FIGURE 12 Plot of W2 (~) as given in Eq. (el) versus ~ for ~ = 10-1
, assuming

'Y = 300 and including 25 terms in the sum over k.
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FIGURE 13 Plot of W2 (~) as given in Eq. (el) versus ~ for ~ = 10-2
, assuming

'Y = 300 and including 25 terms in the sum over k.
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FIGURE 14 Plot of W2 (~) as given in Eq. (Cl) versus ~ for ~ == 10-3
, assuming

7 == 300 and including 25 terms in the sum over k.
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FIGURE 15 Plot of W2 (~) versus ~ for ~ == 10-1
, 10-2

, and 10-3 as given in Figures
12-14. The data for ~==10-2 and 10-3 have had the vertical axes scaled by ~-2

and the horizontal axes by ~3/2. Also included in the figure is the function
[3/(8~274)]G2(~/~3/2) scaled to ~ == 10-1.
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FIGURE 16 Plot of W2,k (~) as given in Eq. (Cl) versus ~ for ~ = 10-2
, '"Y = 300 and

k= 1-4.

vertical axis by ~-2 and the horizontal axis by ~3/2. The scaling
behavior is displayed graphically in Figure 15 where the data for
~ == 10-2 and 10-3 are scaled as noted and plotted on the same
set of axes as the ~ == 10-1 data, along with the function
[3/(8~21'4)]G2(e/~3/2) (Eq. (5.22)) scaled for ~== 10-1

. It can be seen
that all the numerical results are well approximated by the scaling
curve derived from G2. These results are valid as long as I' 2~ » 1.

While the sum over k in Eq. (e1) extends to infinity, there is a
rapid convergence with increasing k if we restrict ourselves to the
region lei s~. This is demonstrated numerically in Figure 16 for
~ == 10-2

, where we plot W2,k(~) versus ~ for k== 1-4. This rapid
convergence in the region I~I s ~ shows that the sum is dominated
by only a few leading terms in the series of Eq. (4.8).

A similar analysis can be carried out for the VI,k contribution to
the wakefield and the GI scaling function, and quick convergence is
also observed in this case.




