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In order to have a large dynamic aperture in low-emittance light sources with strong chromatic
sextupoles, the understanding of phenomena determined the phase space topology of the
nonlinear system is very important. In the present paper we discuss a single particle dynamics
using azimuthal harmonics expansion of the perturbed Hamiltonian. There are two aspects
of our study: firstly, we show that the essential features of the nonlinear motion (invariant
curves, amplitude dependent tune shift, etc.) can be described taking into account only few main
(dominant) harmonics, and secondly, we establish that the magnitude of these harmonics is
determined by the basic parameters of the ring - natural chromaticity and horizontal emittance
of the beam. In specific case of the dedicated light source, the magnitude of dominant harmonics
depends weakly on the strength and position of the chromatic sextupoles. To demonstrate the
harmonic approach we solve the nonlinear Hamiltonian using Lie canonical transformations.
The phase space trajectories obtained analytically and numerically show good agreement both
for one and two degrees of freedom up to the limits of stable motion.

Keywords: Nonlinearities; single particle dynamics.

1 INTRODUCTION

A typical cell of the magnetic lattice of modem low-emittance light
source includes an achromatic bend and dispersion-free straig~t section to
accommodate insertion devices. Since the horizontal emittance is inversely
proportional to the third power of the number of achromats, a ring, as a rule,
consists of many identical cells. To achieve a high brightness of the emitted
radiation, efforts are made to minimize the natural emittance by the strong
horizontal focusing in dipole magnets. This procedure inevitably leads to the
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large chromaticity which has to be compensated by strong sextupoles placed
inside the achromat. The chromatic sextupoles act on the betatron motion,
distort the phase space trajectories and reduce a particle stable motion area
(dynamic aperture).

The main goal of this paper is an investigation of the perturbation of the
beam dynamics caused by the chromatic sextupoles. As an example we use
the magnetic lattice of the SIBERIA-2 light source, which is a 2.5 GeV
storage ring with 6-fold symmetry lattice, dedicated for synchrotron radiation
production.! We use 2D Hamiltonian with the sextupole perturbation
expanded into azimuthal harmonics. Assuming that the dominant harmonics
make the largest contribution to the beam dynamics, we analyze the features
of these harmonics whose magnitude, as will be shown, is mainly determined
by such general characteristics of the ring as natural chromaticity and
horizontal emittance.

It is known that, in case of sextupole perturbation, the high order
terms of the solution have to be considered to reproduce analytically the
phase space topology. To construct the solution systematically, order by
order, we use the recurrent series of Deprit based on Lie transforms.
These recurrent expressions were implemented in the algebraic manipulator
program REDUCE.2

The solution of the nonlinear Hamiltonian is a power series with respect
to the amplitude of betatron oscillations (or action variables) Ax,z ex JJx,z'

The coefficients of this power series have rather complex form and depend
on unperturbed betatron tunes as well as on amplitudes of azimuthal Fourier
harmonics of the sextupole potential. When the order of approximation
is increased, these coefficients became more and more complicated, and
REDUCE fails fast in attempt to manipulate them. In this case, it seems very
attractive to select only a few dominant harmonics and simplify the solutions.
We study the solutions and find the conditions for such simplifications.

2 RINGMODEL

To verify the analytical estimations and to illustrate our conclusions we use
the numerical simulation for the SIBERIA-2 storage ring.8 We have also
studied the nonlinear beam behaviour for different modem light sources
(ELETTRA, APS, SPring-8, PLS, etc.9) and obtained results similar to those
presented in this paper.
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FIGURE 1 SIBERIA-2 lattice functions.

The 2.5 GeV light source SIBERIA-2 has six achromat cells with the
reflection symmetry. The lattice functions for the SIBERIA-2 half-cell are
demonstrated in Figure 1 and the main parameters of the ring are listed in
the table below:

Energy (GeV)

Circumference (m)

Number of cells

Vx , Vz per cell

~x, ~z per cell

Ex (nm)

f3xo (m)

f3zo (m)

1Jxo (m)

2.5

124.128

6

1.294, 1.116

-3.99, -3.98

76
14.0

7.0

0.9

Here, the betatron tunes vx,z and the natural chromaticity ~x,z are given for
one cell. Beta functions presented in the table correspond to s == 0 in Figure 1.
In this paper, all the phase trajectories will be plotted for this azimuth.
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FIGURE 2 Tune diagram (solid line - first order resonances, dashed lines - second order
resonances) .

It is well known in perturbation theory that each new order ofperturbation

produces new order ofsextupole resonances (where the order ofthe resonance
kx Vx + kzVz = m is determined as usual N = Ikx I+ Ikz I). For example, the
main sextupole resonances (first order ofperturbation) have orders N = 1, 3,
the second order of perturbation brings new resonances of order N = 2, 4,
and etc. Therefore, one should distinguish the order of perturbation and the
order of resonance which appears for some order of perturbation.

Low-order resonances have significant influence on the storage ring
nonlinear features. The SIBERIA-2 tune point for one cell is shown in
Figure 2 together with the first and second order sextupole resonances.

The nearest sextupole resonances for the first order of perturbation are
Vx = 1, 3vx = 4, Vx + 2vz = 3, Vx - 2vz = -1. It means that the main
driving terms to be considered are All, A34, BII, B+4, B--I. The second
order ofperturbation produces the following important resonances: 4Vx ,z = 5
and 2vx + 2vz = 5.

Detailed nonlinear beam behaviour studies for the SIBERIA-2Iight source
have been carried out in 10
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3 AZIMUTHAL HARMONICS OF PERTURBATION

The Hamiltonian for an accelerator with sextupole harmonics can be
expressed in terms of an action-angle (J, ¢) as 4,6

+ (2Jx)3/2 L[3Alm cos(¢x - me) + A3m cos(3¢x - me)]
m

(1)
- 3(2Jx )1/22Jz L[2Blm cos(¢x - me)

m

+ B+m cos(¢+ - me) + B_m cos(¢- - me)].

where the amplitudes of five Fourier harmonics are

(2)

Here (k21)k is an effective strength of the kth sextupole (thin lens approxi
mation is assumed), f3 and 0/ are the amplitude and phase betatron functions,
¢± == ¢x ± 2¢z and similarly for O/± and v±. For the sake of simplicity, we
assume that the observation point s == 0 is a reflection-symmetry point of the
linear optics and the sextupoles location, and therefore ax,z == o.

We start with the main harmonics satisfying the resonance conditions

jvx ~ M, (j == 1,3),
(3)

v± ~M.

The amplitude of these harmonics is expressed in (2) and our question is
which basic accelerator parameters determine the value of this amplitude?
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We consider a circular accelerator lattice with several identical cells.
Each cell consists of achromatic bend and non-dispersive straight section.
The natural chromaticity for one cell is (~x, ~z). The strength of the
chromatic sextupoles, which are located in the achromat, is defined from
the chromaticity compensation condition

4Jr~x,z + L[(k21)!3x,z1]]k = 0,
k

(4)

where 1] (s) is a horizontal dispersion function.
We start with the harmonic AIm, (2). For the resonant condition m = M

(3) gives vxe - Me ~ 0. Then the resonant harmonic AIM can be written as
(we shall omit index M)

(5)

To connect the above expression with the accelerator parameters we consider
the well known 1t-function that defines the transverse horizontal emittance

2 I '21t = Yx1] + 2ax1]1] + !3x1] .

The dispersion function 1] satisfies the second order differential equation

" 11] (s) +kx (s)1] =-,
pes)

whose solution outside the bending magnets (1/pes) = 0) has the form
similar to betatron oscillations. Hence, outside the bending magnets 1t =
const, like the Courant-Snyder invariant. Following this analogy, we use the
Floquet's coordinate transformation20 for the dispersion function

and write down 1ta for achromatic bend in the form

a = ;H;cos o/x b = ;H; sin O/X
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where 1/fx is the betatron phase advance. Introducing n;/1] == cos 1/fx / ,J1[;
in" (5) and taking into account that in achromatic bend H == const, we find

(6)

Using (4), one can estimate the resonant harmonic value as

1 ~x
Al ~----.

12 ,J1[;

A similar formula can be found for the resonant harmonic BIM, but with
-~z instead of ~x (from (4), second equation). It is interesting to note that the
main harmonics A3M and B±M will satisfy the same expression if we assume
that the value of betatron phase advance is small at the sextupole azimuths
1/fx ,Z "< 1. The latter assumption is suited rather well for our case of light
source lattice, since the chromatic sextupoles are located inside the achromat,
and the major phase advance occurs in the region of small beta-functions
inside bending magnets. The resulting expressions to estimate the magnitude
of the resonant harmonics of A-and B -type are

1 ~xA rv ----

- 12,J1[;'
(7)

For the case of the light source lattice, Ha is proportional to the mean
value in dipoles (H(s)} which determines the horizontal emittance (ex ex
(H(s) }). If the latter is minimized,21 the relation is very simple: H a ==
4 (H(s) }. Otherwise, the ratio between H a and (H(s)) depends on the fJx (s)

inside bending magnets. But anyway, we can say that the amplitude of
dominant azimuthal harmonics of sextupole perturbation is defined by the
ring fundamental parameters: natural chromaticity and horizontal emittance
(for one lattice cell)

A ex ~x/~, B ex ~z/~.

For the case of the SIBERIA-2 cell ~x ~ ~z == -3.98 and H a == 4.03 em
the estimate in (7) yields A == 0.165 cm- I/2 , B == -0.165 cm- I/2 , whereas
explicit calculation gives:
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All = 0.165 cm- 1/ 2 ,

A34 = 0.177 cm- 1/ 2 ,

B11 = -0.167 cm- 1/ 2,

B-1 = -0.167 cm-1/ 2 ,

B+4 = -0.103 cm-1/ 2 ,

It is seen that the correspondence is rather good except for B+4 which requires
more rigorous phase advance consideration.

Figure 3 shows the correspondence between the explicit calculation and
our estimate in (7) for different modem light sources which have different
chromaticity and horizontal emittance. As can be seen from this figure, the
agreement is rather good.

We see, that in the case of compact achromatic bend when the betatron
phases change slowly, an amplitude of dominant driving terms depends
weakly on the chromatic sextupoles location. The straightforward tracking
with different positions of sextupoles, which correct the natural chromaticity
shows, that the value of main harmonics and the dynamic aperture size are
the same in spite of the strength of the sextupoles changes as more as twice.
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FIGURE 3 Value of main harmonics for different light sources. According to (24) the value
of harmonics should correspond to the line x = y.
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4 PHASE SPACE TOPOLOGY

4.1 Lie Perturbation Theory

The Hamiltonian (1) describes a 2D nonconservative system that cannot
be solved by the straightforward integration: But we may represent this
Hamiltonian as a sum of the linear term Ho and small nonlinear term HI, and
apply some perturbation theory to find an approximate solution. We consider
the par-axial case when the small parameter is equal to the amplitude of
the particle deviation from the reference orbit E ex VI and try to find
the approximate solution as a power series in E. It will be shown that the
coefficients of these series depend on the non-perturbed tunes in a resonant
way. This is the familiar problem of small denominators. But in spite of this
problem, in many cases, the results of perturbation theory are rather useful.
In particular, this is true for circular accelerators, where betatron tunes are
chosen far from strong resonances.

It is known that for a sextupole perturbation the first order tune shift is
zero, and an analysis of high orders is required to find reasonable phase
trajectories of the system. The classic Poincare-Von Zeipel perturbation
theory application tends to be rather clumsy for high orders, because in this
case the canonical transformation is specified by the generating function of
mixed (old and new) variables.!? There are modem kinds of formalism for
describing dynamical systems and their behaviour. II Among them we should
note normal form analysisi2 and differential algebra methods. 13

Here we use an efficient perturbation method utilizing the natural structure
of canonical transformations is based on the Lie transforms (here we use it
in the form of the Deprit perturbation theory). This theory is identical to the
Poincare-Von Zeipel approach in spirit, but the transformations themselves
are much simpler. Closed form expressions, in which only the Poisson
brackets appear can explicitly be written down for both the generating
function and transformation equation to an arbitrary order. 18

The detailed study of the Deprit perturbation technique in the context of
accelerator theory can be found elsewhere. 14 Another approach based on
the Lie transform is the Dragt and Finn perturbation theory,16 but for our
purposes both techniques are practically the same. For future reference, the
recursive equations (Deprit perturbation series relations) are given below
without proof. Begin by expanding the "old" Hamiltonian H, the "new" one
(transformed) ii, and the Lie generating function w as power series in E 15 :
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00

W = LE
n

Wn+l'
n=O

00

H = LEnHn,
n=O

00

H = LEnHn.
n=O

(8)

and defining an operator Do associated with the total time derivative along
the trajectory of the original system as

A a a a
Do = alae + [, Hol = - + vx- + vz-,

ae a4>x a4>z

we can write the equation for Wn for the n-th order:

(9)

n-l

Down = n(Hn - Hn) - L (in-mHm+ mTn__1mHm), (10)
m=1

where in = [wn, ] is the Poisson bracket operator. The arbitrary term fIn
must be chosen to make the new system more easily solved than the old
one and cancel the secular terms from Wn . In the frequency region far from
strong resonances for n-th step we must pick nfIn = (rhsn), where () is the
averaging over 4>x,z and e, and rhsn is the right hand side of (10) with nfIn
excluded. So, the Lie method together with the strategy for cancel secular
terms yields the transformed Hamiltonian H which is (i) integral of motion,
because it is time independent, and (ii) angle independent (aH la4>x,z = 0).
The latter means that for new momenta dJx,zlde = 0 and they are invariant
of motion: Jx,z = const.

The mapping between the old canonical variables (J,4» and new ones
(J, ¢) is defined by the canonical transformation operator·T·= L%O En Tn:

J = TJ, ¢= 1'4>,

l' evaluates the function at mapped point. The inverse transformation 1'-1
exists and produces the backward mapping. The phase space trajectories of
the original system are obtained by applying the inverse transform. Both
operators can be evaluated from the following recurrent equations:
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4.2 Polynomial Solution

In this section, we employ the Deprit's recursive equations for our particular
case. For simplicity and to demonstrate the Lie methods, we start with a ID
horizontal motion up to the second order.

With the nonlinear perturbating term of the following form (see (1))

HI = (2Jx)3/2 L[3AIm cos(cPx - me) + A3m cos(3cPx - me)]. (11)
m

the first two equations of (10) have the following solution:

- 3/2" [ 3AIm A3m ]
WI = - (2Jx) .f....J -- sin(cPx - me) + sin(3cPx - me) .

m Vx - m 3vx - m

-2 [" sin me " 3AllAll+m A3Z A 3Z+m
W2 = 36Jx .f....J --- .f....J + ----

mfO -m Z Vx - 1 3vx - 1

+ 6 L sin(24)x - me) L AllA3m+z(4vx - 21 - m)

m 2vx - m Z (vx - 1)(3vx - m -1)

+3 L sin(44)x - me) L AllA3m-z(2vx - 21 + m)] .
m 4vx - m Z (vx -1)(3vx - m + 1)

Here to cancel the secular terms we have chosen new Hamiltonian Hn as

HI = 0

- -2 " ( 3Arz A~Z)H2 = -18Jx .f....J -- + --- .
Z Vx - 1 3vx - 1

Note, that if we examine new Hamiltonian H, it is approximately
independent of time eand phase variable cPx. Therefore, the new momentum
Ix is (approximately) invariant of motion. To obtain the phase trajectory of
the original system we recall that the canonical transformation f relates the
old and new variables by
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(
" 1" 1 "2)== 1 - Ll - 2 L2 + 2 L 1 Jx

The general form of the polynomial solution for Jx (or Jz) is given by

00

c(n) (kx , kz) == L a(n) (kx , kz , m) cos(kx¢x + kz¢z - me),
m=-oo

(12)

(13)

where for n-th order jx + jz == n + 2 and the coefficients a(n) (kx , kz , m) can
be found from the equation for Wn . In our case, taking into account WI and
W2 and applying consequently the Poisson bracket, the equations for original
variables (Jx , ¢x) can be written as

Ix = Ix + I;/2[cos<px La~l)(l, 0, m) + cos3<px La~l)(3, 0, m)]
m m

+ J; [La~2)(0, 0, m) + cos2¢x Laf)(2, 0, m)
m m

+ cos 4<px ~a~2)(4, 0, m)],

where we set e == 0, and non-zeroth terms of sums are defined as:

(1) ~ AIm
ax (1,0, m) == 3'\18--,

Vx -m

(1) ~ A3m
ax (3,0, m) == 3'\1 8 ,

3vx -m

(14)
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a~2)(0, 0, m) = 108" AllAlm+l + A31
A

3m+l ,Lz (vx -1)(vx - m - 1) (3vx -1)(3vx - m -1)

a~2)(2, 0, m) = 72 L AllA3m+l (2/- m),
2vx - m 1 (Vx -1)(3vx -1 - m)

a(2) (4, 0, m) = 36" AllA3m-l (41 - m). (15)
x 4vx - m Lz (vx -1)(3vx + 1- m)

In the left hand side of (14) we have Ix = const, therefore, by solving this
equation we can get the final solution of the original problem.

As was shown above, all the quantities obtained through the solution
of the nonlinear Hamiltonian by Lie methods, such as action variables,
generating functions, amplitude dependent tunes shift, etc. have the general
form of power series in small parameter E ex JJx,z (12). The coefficients
of these power series are the sum of cosine terms with amplitudes defined
by the original azimuthal harmonics of sextupole perturbation, (15). The
number of cosine terms grows rapidly while the order of approximation is
increased. A distinguished feature of these expressions is that the amplitude
of azimuthal harmonics Akxkzm and Bkxkzm always appear together with the
related denominator kx Vx +kzVz-m that leads to the emphasizing ofdominant
harmonics.

This fact is illustrated in Figure 4 where the spectrum of a;~) (1,0, m) and

a;~) (4, 0, m) is plotted. Now we shall consider the individual contribution
of harmonics to the final solutions. For the sake of brevity, we introduce the
notation for m th term of the expression for a(n) (kx , kz , m) = am and write
it in the form

(16)

Using the notation for a distance from the nearest resonance that is
classified by the integers kx and kz , 8 = kx Vx + kz Vz - mkx ,kz ' 8 :::: 1/2,
we rewrite (16) in the form
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FIGURE 4 Spectrum of a;;)(l, 0, m) and a;~)(4, 0, m) for SIBERIA-2.

A straightforward computation shows that the amplitude absolute value
for azimuthal harmonic Am depends weaker on m compared to the resonant
dependence of the denominator. So, w~ can take Am :::::: Am-I and after the
substitution (m - mkx,kz ) ~ m the following estimation can be made

Rm=~=l- 1
lam-II m (1 ~ 81m)

where m is taken as an absolute value and sign "-" corresponds to m 2: O.
Recalling that 8 :::; 1/2, the following expansion can be written

1 8 2
Rm :::::: 1 - - ± 2" + 0(8 ).

m m
(17)

According to (17) R±I :::::: ~8, i.e. each of two harmonics, which are
adjacent to the main one, contributes to the solution weaker than the main
one with the factor of 118. And it is seen that the nearer tune point to the given
resonance, the more reasons to use the dominant harmonic approximation.

Note, that it is not the case of a single resonance approximation because
we stay rather far from any strong resonance and we try to leave in our
Hamiltonian a few harmonics in the frame of non-resonance perturbation
theory.

4.3 Phase Trajectories for Horizontal Motion

Here we shall apply the results obtained in the previous sections to plot
the horizontal phase trajectories using both tracking and dominant harmonic
approaches for the SIBERIA-2Iattice.
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When the polynomial coefficients were calculated taking into account
azimuthal harmonics AIm and A3m (m == -1000... + 1000), the new action
to the third order is

- _ 3/2Jx - Jx + Jx (2.2 coscPx -7.8 cos3cPx)

+ J; (158 - 80 cos 2cPx + 144 cos 4cPx)

+ J;/2 (-2113 coscPx + 2357 cos3cPx - 433 cos5cPx).

If we do the same but keeping only two initial harmonics All A34, which
are estimated according to (7), the solution for Jx will have the form

- _ 3/2Jx - Jx + Jx (2.9 coscPx - 8.1 cos3cPx)

+ J; (121 - 99 cos 2cPx + 162 cos 4cPx)

+ J;/2 (-2218 coscPx + 3300 cos3cPx -790 cos5cPx),

(18)

Due to the tune value the main contribution to the phase space topology is
from cos 3cPx term (first and third orders) and cos 4cPx term (second order).

Horizontal phase curves calculated in the dominant harmonics approxi
mation (through third order) for Vx == 7.763 and those obtained by tracking
are plotted in Figure 5. The calculated points are essentially identical to the
exact solution at the half-aperture level and at the border of the stable motion
the agreement seems quite satisfactory.

When we fail to solve the equation Jx(Jx, cPx) == const for some initial
conditions Jx == Jxo, cPx == 0, we can consider them as a stable motion
border, and in this case, the value of Jxo corresponds rather good to the
dynamic aperture defined by tracking.

4.4 Two-dimensional Case

In the previous section we have treated one degree of freedom. The extension
to a 2D motion is quite straightforward: we seek the Lie generating function
to the required order and transform the Hamiltonian to the new variables
where it is a function of new momenta alone. It means that if == const and
Jx,z == const". But in the case of two degrees of freedom, all the results are
rather cumbersome and it is better to treat them using REDUCE.
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FIGURE 5 Horizontal phase trajectories: tracking (points) and approximation by dominant
harmonics (lines). Left plot corresponds to half-aperture level, right - near to the limit of dynamic
aperture.

The mapped Hamiltonian written up to the third order is

from this expression we can obtain the well known amplitude dependent tune
shift which appears with sextupoles as a second order effect:

D,. Vx(Ix, Iz) == 2Ix h 21 + Izh22

D,. Vz(Ix, Iz) == Ix h22 + 2Izh23 ,

here the coefficients are defined by the azimuthal harmonics (2) as:

(20)

(
3A2 A

2
)h21 == -18 L __l_m_ + 3m

m Vx - m 3vx - m

In our case of SIBERIA-2 lattice h21 == 449 m- 1, h22 == 755 m- 1,

h23 == -1854m-1.
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show Jz(<Px, <Pz)' The theory results (line) are compared with tracking (points).

As the new Hamiltonian (19) does not depend on ¢x,z and (), it is
invariant of motion together with the new action variables: ]x,z = const
and if = const.

Applying operator f, the following expressions for new momenta can be
found

] = ](0) + ]0) + ](2) + ](3)x x x x x
(22)

] = ](0) + ]0) + ](2) + ](3)
z z z z z·

Due to the extreme complexity, the expressions (22) were calculated
using REDUCE. These equations were solved numerically by the Newton
method. The resulting phase surfaces (3 orders) are presented in Figure 6 in
comparison with the tracking results. The calculations have been done for the
initial conditions Jxo = 4 X 10-4 cm, Jzo = 4 x 10-5 cm while the stable
motion boundary corresponds to Jxo = 3 x 10-3 cm, Jzo = 2.5 x 10-3 cm.
Such relatively small starting conditions have been taken just to have
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FIGURE 7 2D sections Jx(¢z) (left plots) and Jz(¢x) (right plots). Tracking results (points)
and dominant harmonics (lines). Vertical amplitude corresponds to 1/2 of aperture limit (top)
and to the border of stability (bottom), while horizontal amplitude is 1/5 of that.

readable pictures, otherwise SMEARbecomes too large. Agreement oftheory
and numerical results are quite impressive.

To illustrate the technique, we shall consider the Poincare sections
Ix (¢x), Ix (¢z), Iz(¢x), Iz(¢z) with different initial conditions (far from the
dynamic aperture limits and directly at the border of stable motion). Figure 7
demonstrates the sections Ix (¢z) and Iz(¢x) under these initial conditions.

5 SUMMARY AND CONCLUSION

In the present paper, we considered nonlinear beam behaviour due to the
chromatic sextupoles in the dedicated light source SIBERIA-2. The problem
is studied analytically using the harmonic decomposition of the nonlinear
Hamiltonian. The relevant .recurrent expressions are developed by the Lie
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transforms theory and Deprit's perturbation methods to obtain the solution
of the particular system in any arbitrary order. These expressions were
programmed by the REDUCE language and provide 2D phase trajectories of
a particle which agree quite good with those obtained by tracking.

It was shown that it is possible to simplify the original problem by
taking into account only a few dominant harmonics that correspond to the
nearest resonances. It is worth noting that this is not a single resonance
approximation, because we can consider all of these major harmonics at
one time by the non-resonant perturbation theory. The validity of this
approximation is proved by tracking for a wide range of initial conditions.

We have found that in the case of the light source lattice, the magnitude of
dominant harmonics which defines the phase trajectory distortion, dynamic
aperture, nonlinear detuning, etc. depends on the natural chromaticity of the
ring and horizontal emittance of the beam and rather weakly on the location
of the chromatic sextupoles.
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